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Abstract. This article is devoted to investigate the problem of finding a common point of the set of fixed
points of a total uniformly L-Lipschitzian mapping and the set of solutions of a system of generalized
nonlinear variational inclusions involving P-η-accretive mappings. For finding such an element, a new
iterative algorithm is suggested. The concepts of graph convergence and the resolvent operator associated
with a P-η-accretive mapping are used and a new equivalence relationship between graph convergence and
resolvent operators convergence of a sequence of P-η-accretive mappings is established. As an application
of the obtained equivalence relationship, we prove the strong convergence and stability of the sequence
generated by our proposed iterative algorithm to a common element of the above two sets. These results
are new, and can be viewed as a refinement and improvement of some known results in the literature.

1. Introduction

The theory of variational inequalities, which was first studied independently by Stampacchia [59] and
Fichera [25] in 1964, has been widely studied and continues to be an active topic for research. One of the
primary reasons for this is that a large variety of problems arising in the fields like optimization and control,
engineering science, mechanics, game theory, elasticity, physics, economics, transportation equilibrium, etc.,
can be formulated as variational inequalities. It is to be noted that a wide class of problems arising in diverse
branches of pure and applied sciences lead to mathematical models which cannot be expressed in terms of
variational inequalities, but one can formulate them as generalized forms of variational inequalities.

The need to formulate and study these types of problems has motivated many authors to develop
and generalize various kinds of variational inequalities in many different directions using novel and
innovative techniques, see, for example, [4–6, 8, 20] and the references therein. Among these generalizations,
variational inclusion has emerged as an efficient and productive mechanism for studying a large variety
of problems arising in various applications. The development of solution methods and the construction of
iterative algorithms by means of them for the approximation of solutions of different classes of variational
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inequalities and their generalizations have been the subjects of many research papers in the past decades.
The method based on the resolvent operator technique, as a generalization of projection method, has been
recognized as a strong tool for studying the approximation solvability of nonlinear variational inequalities
and variational inclusions and has become more and more popular. For details, we refer the reader to
[3, 9, 21–24, 38, 40, 45, 55, 62] and the references therein.

The initiation of the study of problems with monotone mappings dates back to the sixties with the
pioneering studies due to Browder [14] and Minty [52, 53]. In fact, the need to study integral and partial
differential equations, and as well as the theory of convex functions have given rise to the emergence of
monotone operators and in particular maximal monotone ones. Due to their extraordinary utility and
broad applicability in many areas of pure and applied mathematics such as optimization and nonlinear
analysis, monotone operators and maximal monotone operators continue to receive great attention and
the development and generalization of them are being the focus of attention of researchers coming from
mathematics and many other disciplines. The notion of accretive operators was initially introduced by
Browder [15] and Kato [37] independently. Those accretive operators which are m-accretive or satisfy the
range condition play an important role in the study of nonlinear semigroups, differential equations in
Banach spaces, and fully nonlinear partial differential equations. Over the last few decades, the interests
have focused on extensions of maximal monotone operators and m-accretive mappings and there has
been substantial progress made by researchers in this direction. The introduction of the class of P-η-
accretive mappings in a real q-uniformly smooth Banach space setting, as a unifying framework for the
classes of maximal η-monotone operators [30], η-subdifferential operators [19, 46], generalized m-accretive
mappings [31], H-monotone operators [22], general H-monotone operators [64], H-accretive mappings [21]
and (H, η)-monotone operators [24] was first made by Kazmi and Khan [40] in 2007. They defined the
resolvent operator (P-η-proximal-point mapping) associated with a P-η-accretive mapping and deduced
some properties relating to it. One year later, inspired and motivated by the results derived by the
authors in [40], Peng and Zhu [55] reviewed the class of P-η-accretive mappings and provided the updated
versions of properties concerning them. They considered a system of variational inclusions involving
P-η-accretive mappings in real q-uniformly smooth Banach spaces and proved the existence of a unique
solution for it under some suitable assumptions. To approximate the unique solution of the system of
variational inclusions, they suggested a Mann iterative algorithm and discussed its convergence under
some appropriate conditions.

The study of the concept of graph convergence for operators is due primarily to Attouch [7] in 1984. He
focused on maximal monotone operators and established an equivalence between the graph convergence
and resolvent operators convergence of a sequence of maximal monotone operators. Since then, many
efforts have been devoted to the development and extension of this notion for other generalized monotone
operators and generalized accretive mappings existing in the literature. More details along with relevant
commentaries, can be found in [3, 7, 32, 41, 49, 62] and the references therein.

On the other hand, since the appearance of the theory of nonexpansive mapping in the sixties, due to
the existence of a deep and close relation between the class of nonexpansive mappings and monotone and
accretive operators, two classes of operators which arise naturally in the theory of differential equations,
it has increasingly received much attentions by many researchers. It is well known that the study of
fixed point theory, which consists of many fields of mathematics such as mathematical analysis, general
topology and functional analysis, began almost a century ago in the field of algebraic topology. It is a very
active field of research activity and already a vast body of literature has grown on the subject. Due to its
importance, depth, applicability and usefulness, fixed point theory still attracts great attention from many
mathematicians and researchers. Since 1965 considerable efforts have been done to study the fixed point
theory for nonexpansive mappings in the setting of different spaces, see, for instance, [27, 42]. Besides,
over the last 50 years or so, there has been considerable activity in the introduction of various classes of
generalized nonexpansive mappings in the framework of different spaces. One of the first attempts in this
direction has been made by Goebel and Kirk [26] in 1972, who introduced the notion of asymptotically
nonexpansive mapping as a generalization of nonexpansive mapping. Afterwards, the efforts to introduce
the widest class of generalized nonexpansive mappings have been continued. In 2014, Kiziltunc and Purtas
[44] succeeded to introduce the notion of total uniformly L-Lipschitzian mapping which can be viewed as
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a unifying framework for the classes of nonexpansive mappings, asymptotically nonexpansive mappings
[26], nearly asymptotically nonexpansive mappings [57], total asymptotically nonexpansive mappings [2],
and several other classes of generalized nonexpansive mappings appeared in the literature. A detailed
study of these generalizations can be found in [2, 9, 26, 44, 54, 57] and the references therein. It is a well-
known truth that there is a strong connection between the variational inequality/inclusion problems and
the fixed point problems. This fact has motivated many investigators to present a unified approach to these
two different problems. We refer the reader to [4, 5, 9–13, 16, 33, 36, 56, 58, 60, 61] for more details and
further information.

The rest of the paper is organized as follows. We recall some basic notions, notations, and properties
of P-η-accretive mappings, together with some examples and preliminary results concerning them in
Section 2. In Section 3, a system of generalized nonlinear variational-like inclusions (SGNVLI) involving
P-η-accretive mappings is considered and the existence and uniqueness of its solution is demonstrated
under some suitable assumptions imposed on the parameters and mappings in the SGNVLI. In Section
4, applying the notions of graph convergence and the resolvent operator associated with a P-η-accretive
mapping, a new equivalence relationship between the graph convergence of a sequence of P-η-accretive
mappings and their associated resolvent operators, respectively, to a given P-η-accretive mapping and its
associated resolvent operator is established. We investigate the problem of finding a point which belongs
to the intersection of the set of solutions of the SGNVLI and the set of fixed points of a total uniformly
L-Lipschitzian mapping. To achieve this end, we suggest a new iterative algorithm. Finally, in Section 5, as
an application of the equivalence relationship obtained in Section 4, the strong convergence and stability
of the sequence generated by our proposed iterative algorithm to a common element of the above two sets
are proved.

2. Preliminary Materials and Basic Results

In what follows, unless otherwise stated, we always let E be a real Banach space with a norm ∥.∥, E∗ be
the topological dual space of E, ⟨., .⟩ be the dual pair between E and E∗, and 2E denote the family of all the
nonempty subsets of E. For the sake of simplicity, the norm of E∗ is also denoted by the symbol ∥.∥. As
usual, x∗ will stand for the weak star topology in E∗, and the value of a functional x∗ ∈ E∗ at x ∈ E is denoted
by either ⟨x, x∗⟩ or x∗(x), as is convenient. At the same time, the symbols SE and BE are used to represent the
unit sphere and the unit ball in E, respectively.

For a given multi-valued mapping M : E→ 2E,

(i) the set Graph(M) defined by

Graph(M) := {(x,u) ∈ E × E : u ∈M(x)},

is called the graph of M;
(ii) the set Range(M) given by the formula

Range(M) := {y ∈ E : ∃x ∈ E : (x, y) ∈M} =
⋃
x∈E

M(x)

is called the range of M.

Definition 2.1. A normed space E is called

(i) smooth if for every x ∈ SE there exists a unique x∗ ∈ E∗ such that ∥x∥ = ⟨x, x∗⟩ = 1;
(ii) strictly smooth if SE is strictly convex, that is, the inequality ∥x+ y∥ < 2 holds for all x, y ∈ SE such that x , y.

It is well known that E is smooth if E∗ is strictly convex, and that E is strictly convex if E∗ is smooth.

Definition 2.2. A normed space E is said to be uniformly convex if, for each ε > 0, there is a δ > 0 such that if x and
y are unit vectors in E with ∥x − y∥ ≥ 2ε, then the average (x + y)/2 has norm at most 1 − δ.
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Hence, a normed space is uniformly convex if for any two distinct points x and y on the unit sphere
centered at the origin the midpoint of the line segment joining x and y is never on the sphere but is close to
the sphere only if x and y are sufficiently close to each other.

The function δE : [0, 2]→ [0, 1] given by

δE(ε) = inf{1 −
1
2
∥x + y∥ : x, y ∈ E, ∥x∥ = ∥y∥ = 1, ∥x − y∥ = ε}

is called the modulus of convexity of E. The function δE is continuous and increasing on the interval [0, 2]
and δE(0) = 0. Clearly, thanks to the definition of the function δE, a normed space E is uniformly convex
if and only if δE(ε) > 0 for every ε ∈ (0, 2]. In the particular case of an inner product space H , we have

δH (ε) = 1 −
√

1 − ε2

4 .

Definition 2.3. A normed space E is said to be uniformly smooth if, for all ε > 0 there is a τ > 0 such that if x and y
are unit vectors in E with ∥x − y∥ ≤ 2τ, then the average (x + y)/2 has norm at least 1 − ετ.

The function ρE : [0,+∞)→ [0,+∞) given by

ρE(τ) = sup{
1
2

(∥x + τy∥ + ∥x − τy∥) − 1 : x, y ∈ E, ∥x∥ = ∥y∥ = 1}

is called the modulus of smoothness of E. It is worth noting that the function ρE is convex, continuous and
increasing on the interval [0,+∞) and ρE(0) = 0. In addition, ρE(τ) ≤ τ for all τ ≥ 0. In the light of the
definition of the function ρE, a normed space E is uniformly smooth if and only if lim

τ→0

ρE(τ)
τ = 0.

It is important to emphasize that in the definitions of δE(ε) and ρE(τ), we can as well take the infimum
and supremum over all vectors x, y ∈ E with ∥x∥, ∥y∥ ≤ 1. Any uniformly convex and any uniformly smooth
Banach space is reflexive. A Banach space E is uniformly convex (resp., uniformly smooth) if and only if E∗

is uniformly smooth (resp., uniformly convex). The spaces lp, Lp and Wp
m, 1 < p < ∞, m ∈N, are uniformly

convex as well as uniformly smooth, see [18, 29, 47]. In the meanwhile, the modulus of convexity and
smoothness of a Hilbert space and the spaces lp, Lp and Wp

m, 1 < p < ∞, m ∈N, can be found in [18, 29, 47].
For an arbitrary but fixed real number q > 1, the multi-valued mapping Jq : E→ 2E∗ given by

Jq(x) := {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥q, ∥x∗∥ = ∥x∥q−1
}, ∀x ∈ E,

is called the generalized duality mapping of E. In particular, J2 is the usual normalized duality mapping. It is
known that, in general, Jq(x) = ∥x∥q−2 J2(x), for all x , 0. Here it is to be noted that Jq is single-valued if E is
uniformly smooth or equivalently E∗ is strictly convex. If E is a Hilbert space, then J2 becomes the identity
mapping on E.

For a real constant q > 1, a Banach space E is called q-uniformly smooth if there exists a constant C > 0
such that ρE(t) ≤ Ctq for all t ∈ [0,+∞). It is well known that (see e.g. [65]) Lq (or lq) is q-uniformly smooth
for 1 < q ≤ 2 and is 2-uniformly smooth if q ≥ 2.

Concerned with the characteristic inequalities in q-uniformly smooth Banach spaces, Xu [65] proved the
following result.

Lemma 2.4. Let E be a real uniformly smooth Banach space. For a real constant q > 1, E is q-uniformly smooth if
and only if there exists a constant cq > 0 such that for all x, y ∈ E,

∥x + y∥q ≤ ∥x∥q + q⟨y, Jq(x)⟩ + cq∥y∥q.

We now introduce some notation and terminology and present some elementary results which will be
used in later sections.

Definition 2.5. Let E be a real q-uniformly smooth Banach space and let P : E → E and η : E × E → E be the
mappings. Then P is said to be
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(i) η-accretive if,

⟨P(x) − P(y), Jq(η(x, y))⟩ ≥ 0, ∀x, y ∈ E;

(ii) strictly η-accretive if, P is η-accretive and equality holds if and only if x = y;
(iii) γ-strongly η-accretive (or strongly η-accretive with a constant γ > 0) if there exists a constant γ > 0 such that

⟨P(x) − P(y), Jq(η(x, y))⟩ ≥ γ∥x − y∥q, ∀x, y ∈ E;

(iv) µ-Lipschitz continuous if there exists a constant µ > 0 such that

∥P(x) − P(y)∥ ≤ µ∥x − y∥, ∀x, y ∈ E.

It should be remarked that if η(x, y) = x − y, for all x, y ∈ E, then parts (i) to (iii) of Definition 2.5 reduce
to the definitions of accretivity, strict accretivity and strong accretivity of the mapping P, respectively.

Definition 2.6. [21, 55] Let E be a real q-uniformly smooth Banach space and P : E→ E be a single-valued mapping.
A multi-valued mapping M : E→ 2E is said to be

(i) accretive if

⟨u − v, Jq(x − y)⟩ ≥ 0, ∀(x,u), (y, v) ∈ Graph(M);

(ii) m-accretive if M is accretive and (I + λM)(E) = E holds for every real constant λ > 0, where I denotes the
identity mapping on E;

(iii) P-accretive if M is accretive and (P + λM)(E) = E holds for every λ > 0.

Huang and Fang [31] introduced and studied the class of generalized m-accretive (also referred to as
m-η-accretive and also η-m-accretive [17]) mappings as a generalization of m-accretive mappings as follows.

Definition 2.7. [17, 31] Let E be a real q-uniformly smooth Banach space and η : E × E → E be a single-valued
mapping. The multi-valued mapping M : E→ 2E is said to be

(i) η-accretive if

⟨u − v, Jq(η(x, y))⟩ ≥ 0, ∀(x,u), (y, v) ∈ Graph(M);

(ii) generalized m-accretive if M is η-accretive and (I + λM)(E) = E holds for every real constant λ > 0.

We note that M is a generalized m-accretive mapping if and only if M is η-accretive and there is no
other η-accretive mapping whose graph contains strictly Graph(M). The generalized m-accretivity is to be
understood in terms of inclusion of graphs. If M : E→ 2E is a generalized m-accretive mapping, then adding
anything to its graph so as to obtain the graph of a new multi-valued mapping, destroys the η-accretivity. In
fact, the extended mapping is no longer η-accretive. In other words, for every pair (x,u) ∈ E×E\Graph(M)
there exists (y, v) ∈ Graph(M) such that ⟨u−v, Jq(η(x, y))⟩ < 0. In the light of the above-mentioned argument,
a necessary and sufficient condition for a multi-valued mapping M : E→ 2E to be generalized m-accretive
is that the property

⟨u − v, Jq(η(x, y))⟩ ≥ 0, ∀(y, v) ∈ Graph(M)

is equivalent to (x,u) ∈ Graph(M). The above characterization of generalized m-accretive mappings pro-
vides a useful and manageable way for recognizing that an element u belongs to M(x).

Peng and Zhu [55], and Kazmi and Khan [40] were the first to introduce and study the concept of P-η-
accretive (also referred to as (H, η)-accretive) mapping as an extension of H-accretive (P-accretive) mapping,
(H, η)-monotone operator [24], H-monotone operator [22], generalized m-accretive mapping, m-accretive
mapping, maximal η-monotone operator [31], and maximal monotone operator as follows.

Definition 2.8. [40, 55] Let E be a real q-uniformly smooth Banach space, P : E → E and η : E × E → E be
single-valued mappings and M : E→ 2E be a multi-valued mapping. M is said to be P-η-accretive if M is η-accretive
and (P + λM)(E) = E holds for every λ > 0.
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With the goal of illustrating the fact that for given mappings P : E→ E and η : E×E→ E, a P-η-accretive
mapping need not be P-accretive, Peng and Zhu presented [55, Example 2.1] as follows.

Example 2.9. Let E = R and P : E→ E, η : E × E→ E, M : E→ 2E be defined as P(x) = x5, η(x, y) = x4
− y4

and M(x) = {x2, x4, x8
}, for all x, y ∈ E, respectively. The authors [55] claimed that the mapping M is P-η-

accretive, but is not P-accretive and so it is not accretive. By careful checking, we found that there is a fatal
error in the mentioned example. In fact, picking y = 2, u = x2 and v = y4, taking into account that E is a
2-uniformly smooth Banach space, y2 > x and x4 > y4, we yield

⟨u − v, J2(η(x, y))⟩ = ⟨u − v, η(x, y)⟩ = (x2
− y4)(x4

− y4)

= −(y2
− x)(y2 + x)(x4

− y4) < 0

and

⟨u − v, J2(x − y)⟩ = ⟨u − v, x − y⟩ = (x2
− y4)(x − y) < 0,

i.e., the mapping M is neither η-accretive nor accretive. Thereby, contrary to the claim of the authors in [55],
M is neither a P-η-accretive mapping nor a P-accretive mapping.

They further presented the following example to show the fact that for given mappings P : E→ E and
η : E × E→ E, a P-η-accretive mapping need not be generalized m-accretive (or m-η-accretive) mapping.

Example 2.10. Let E = R and the mappings P : E→ E, η : E×E→ E and N : E→ 2E be defined as P(x) = x5,
η(x, y) = x4

− y4 and N(x) = {x2, x2 + 1
4 , 2x2 + 3}, for all x, y ∈ E, respectively. They asserted that the mapping

N is P-η-accretive, but it is not m-η-accretive. By a careful checking, we discovered that contrary to the
claim of the authors [55, Example 2.2] is neither a p-η-accretive mapping nor an m-η-accretive mapping. In
fact, taking x = 3, y = 2, u = x2 and v = 2x2 + 3, in virtue of the facts that E is a 2-uniformly smooth Banach
space and x > y, we obtain

⟨u − v, J2(η(x, y))⟩ = ⟨u − v, η(x, y)⟩ = −(x2 + 3)(x4
− y4) < 0

and

⟨u − v, J2(x − y)⟩ = ⟨u − v, x − y⟩ = −(x2 + 3)(x − y) < 0,

which imply that N is neither η-accretive nor accretive. Accordingly, the mapping N is neither P-η-accretive
nor m-η-accretive.

In order to illustrate the fact that for given mappings η : E × E → E and P : E → E, a P-η-accretive
mapping may be neither P-accretive nor generalized m-accretive, we now present a new example as follows.

Example 2.11. Let m,n ∈ N and Mm×n(F) be the space of all m × n matrices with real or complex entries.
Then

Mm×n(F) = {A =
(

ai j

)
|ai j ∈ F, i = 1, 2, . . . ,m; j = 1, 2, . . . ,n;F = R or C}

is a Hilbert space with respect to the Hilbert-Schmidt norm

∥A∥ =
( m∑

i=1

n∑
j=1

|ai j|
2
) 1

2 , ∀A ∈Mm×n(F)

induced by the Hilbert-Schmidt inner product

⟨A,B⟩ = tr(A∗B) =
m∑

i=1

n∑
j=1

ai jbi j, ∀A ∈Mm×n(F),
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where tr denotes the trace, that is, the sum of diagonal entries, and A∗ denotes the Hermitian conjugate (or
adjoint) of the matrix A, that is, A∗ = At, the complex conjugate of the transpose A, and the bar denotes
complex conjugation and superscript denotes the transpose of the entries. Denote by Dn(R) the space of all
diagonal n × n matrices with real entries, that is, the (i, j)-entry is an arbitrary real number if i = j, and is
zero if i , j. Then,

Dn(R) = {A =
(

ai j

)
|ai j ∈ R, ai j = 0 if i , j; i, j = 1, 2, . . . ,n}

is a subspace of Mn×n(R) = Mn(R) with respect to the operations of addition and scalar multiplication
defined on Mn(R). At the same time, the Hilbert-Schmidt inner product on Dn(R) and the Hilbert-Schmidt
norm induced by it become as

⟨A,B⟩ = tr(A∗B) = tr(AB)

and

∥A∥ =
√
⟨A,A⟩ =

√
tr(AA) =

( n∑
i=1

a2
ii

) 1
2 ,

respectively. Taking into account that every finite dimensional normed space is a Banach space, it follows
that (Dn(R), ∥.∥) is a Hilbert space and so it is a 2-uniformly smooth Banach space. For any A =

(
ai j

)
∈

Dn(R), we have A =
n
2∑

i=1
Ai(n−i+1), that is, every diagonal n × n matrix with real entries A ∈ Dn(R) can be

written as a linear combination of n
2 matrices Ai(n−i+1), where for each i ∈ {1, 2, . . . , n

2 }, Ai(n−i+1) is an n × n
matrix such that the (i, j)-entry equals to aii, (n − i + 1,n − i + 1)-entry equals to a(n−i+1)(n−i+1), and all other
entries equal to zero. For each i ∈ {1, 2, . . . , n

2 }, there are two real numbers bii and b(n−i+1)(n−i+1) such that
bii + b(n−i+1)(n−i+1) = aii and bii − b(n−i+1)(n−i+1) = a(n−i+1)(n−i+1). Then for each i ∈ {1, 2, . . . , n

2 }, we have

Ai(n−i+1) = biiNi(n−i+1) + b(n−i+1)(n−i+1)N′i(n−i+1),

where for each i ∈ {1, 2, . . . , n
2 }, Ni(n−i+1) is a diagonal n×n matrix such that the (i, i)-entry and (n−i+1,n−i+1)-

entry equal to 1 and all other entries equal to zero, and N′i(n−i+1) is a diagonal n × n matrix with the entries
1 and −1 at the places (i, i) and (n − i + 1,n − i + 1), respectively, and 0’s everywhere else. Hence the
set {Ni(n−i+1),N′i(n−i+1) : i = 1, 2, . . . , n

2 } spans the Hilbert space Dn(R). Taking Ei(n−i+1) := 1
√

2
Ni(n−i+1) and

E′i(n−i+1) := 1
√

2
N′i(n−i+1), for i = 1, 2, . . . , n

2 , it follows that the set B = {Ei(n−i+1),E′i(n−i+1) : i = 1, 2, . . . , n
2 } spans

also Dn(R). It can be easily seen that the set B is linearly independent and orthonormal and so B is an
orthonormal basis for Dn(R). Let the mappings M : Dn(R) → 2Dn(R), η : Dn(R) × Dn(R) → Dn(R) and
P : Dn(R)→ Dn(R) be defined by

M(A) =
{
Φ, A = Ek(n−k+1),
−A + Ek(n−k+1), A , Ek(n−k+1),

η(A,B) =
{
α(B − A), A,B , Ek(n−k+1),
0, otherwise,

and P(A) = βA + γEk(n−k+1), for all A,B ∈ Dn(R), where

Φ =
{
Ei(n−i+1) − Ek(n−k+1),E′i(n−i+1) − Ek(n−k+1) : i = 1, 2, . . . ,

n
2

}
,

α, β, γ ∈ R, β < 0 < α, k ∈ {1, 2, . . . , n
2 } are arbitrary but fixed, and 0 =

(
0i j

)
is the zero vector of the space

Dn(R), that is, the zero n × n matrix. Then for all A,B ∈ Dn(R), A , B , Ek(n−k+1), we yield

⟨M(A) −M(B), J2(A − B)⟩ = ⟨M(A) −M(B),A − B⟩
= ⟨−A + Ek(n−k+1) + B − Ek(n−k+1),A − B⟩

= ⟨B − A,A − B⟩ = −∥A − B∥2 = −
n∑

i=1

(aii − bii)2 < 0,
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i.e., M is not accretive and so M is not P-accretive.
For any A,B ∈ Dn(R), A , B , Ek(n−k+1), we have

⟨M(A) −M(B), J2(η(A,B))⟩ = ⟨M(A) −M(B), η(A,B)⟩
= ⟨−A + Ek(n−k+1) + B − Ek(n−k+1), α(B − A)⟩

= α⟨B − A,B − A⟩ = α∥B − A∥2 = α
n∑

i=1

(aii − bii)2 > 0.

Furthermore, for each of the cases, when A , B = Ek(n−k+1), B , A = Ek(n−k+1) and A = B = Ek(n−k+1), clearly
η(A,B) = 0 and we deduce that

⟨u − v, J2(η(A,B))⟩ = ⟨u − v, η(A,B)⟩ = 0, ∀u ∈M(A), v ∈M(B).

Hence, M is an η-accretive mapping. In the light of the fact that for all A ∈ Dn(R), A , Ek(n−k+1),

∥(I +M)(A)∥2 = ∥Ek(n−k+1)∥
2 = 1 > 0

and

∥(I +M)(Ek(n−k+1)) =
{
Ei(n−i+1),E′i(n−i+1) : i = 1, 2, . . . ,

n
2

}
= B,

where I is the identity mapping on E = Dn(R), we conclude that 0 < (I +M)(Dn(R)). Thus, I +M is not
surjective and so M is not a generalized m-accretive mapping. For any λ > 0 and A ∈ Dn(R), taking
B = 1

β−λA + γ+λλ−βEn(n−k+1) (λ , β, because β < 0), we have

(P + λM)(B) = (P + λM)( 1
β−λA + γ+λλ−βEn(n−k+1)) = A.

Thereby, for any λ > 0, the mapping P + λM is surjective and consequently M is a P-η-accretive mapping.

In the next example the fact that for given mappings P : E → E and η : E × E → E, a generalized
m-accretive mapping need not be P-η-accretive is illustrated.

Example 2.12. Let H2(C) be the set of all Hermitian matrices with complex entries. We recall that a square
matrix A is said to be Hermitian (or self-adjoint) if it is equal to its own Hermitian conjugate, i.e., A∗ = At = A.
In the light of the definition of a Hermitian 2 × 2 matrix, the condition A∗ = A implies that the 2 × 2 matrix

A =
(

a b
c d

)
is Hermitian if and only if a, d ∈ R and b = c̄. Hence,

H2(C) =
{ ( z x − iy

x + iy w

)
|x, y, z,w ∈ R

}
.

Then, H2(C) is a subspace of M2(C), the space of all 2 × 2 matrices with complex entries, with respect to
the operations of addition and scalar multiplication defined on M2(C), when M2(C) is considered as a real
vector space. In other words, H2(C) together with the mentioned operations is a vector space over R. By
introducing the scalar product on H2(C) as ⟨A,B⟩ := 1

2 tr(AB), for all A,B ∈ H2(C), it is easy to check that
⟨., .⟩ is an inner product, that is, (H2(C), ⟨., .⟩) is an inner product space. The inner product defined above
induces a norm on H2(C) as follows:

∥A∥ =
√
⟨A,A⟩ =

√
1
2

tr(AA) =

√
x2 + y2 +

1
2

(z2 + w2), ∀A ∈ H2(C).

The finite dimensional normed space (H2(C), ∥.∥) is a Hilbert space and so it is a 2-uniformly smooth Banach
space. Suppose that the mappings M,P : H2(C) → H2(C) and η : H2(C) × H2(C) → H2(C) are defined,
respectively, by

M(A) =M
( ( z1 x1 − iy1

x1 + iy1 w1

) )
=

(
α sin z1 x1 − iy1
x1 + iy1 β cos w1

)
,
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P(A) = P
( ( z1 x1 − iy1

x1 + iy1 w1

) )
=

(
ϱ cos z1 x2

1 − iy2
1

x2
1 + iy2

1 ξ sin w1

)
and

η(A,B) = η
( ( z1 x1 − iy1

x1 + iy1 w1

)
,

(
z2 x2 − iy2

x2 + iy2 w2

) )
=

(
γ(sin z1 − sin z2) x1 − x2 − i(y1 − y2)

x1 − x2 + i(y1 − y2) θ(cos w1 − cos w2)

)
,

for all A =
(

z1 x1 − iy1
x1 + iy1 w1

)
,B =

(
z2 x2 − iy2

x2 + iy2 w2

)
∈ H2(C), where ϱ and ξ are arbitrary real

constants and α, β, γ, θ are positive real constants. Then, for any A,B ∈ H2(C), we have

⟨M(A) −M(B), J2(η(A,B))⟩ = ⟨M(A) −M(B), η(A,B)⟩

=
〈 (

α(sin z1 − sin z2) x1 − x2 − i(y1 − y2)
x1 − x2 + i(y1 − y2) β(cos w1 − cos w2)

)
,(

γ(sin z1 − sin z2) x1 − x2 − i(y1 − y2)
x1 − x2 + i(y1 − y2) θ(cos w1 − cos w2)

) 〉
=
αγ

2
(sin z1 − sin z2)2 +

βθ

2
(cos w1 − cos w2)2 + (x1 − x2)2 + (y1 − y2)2

≥ 0,

Thereby, M is an η-accretive mapping.
Let us now define the functions f , 1, h : R→ R, respectively, as

f (t) = ϱ cos t + α sin t, 1(t) = β cos t + ξ sin t and h(t) = t2 + t, ∀t ∈ R.

Then, for any A =
(

z x − iy
x + iy w

)
∈ H2(C), yields

(P +M)(A) = (P +M)
( ( z x − iy

x + iy w

) )
=

(
f (z) h(x) − ih(y)

h(x) + ih(y) 1(w)

)
.

Since for arbitrary constants a, b ∈ R, −
√

a2 + b2 ≤ a cos t + b cos t ≤
√

a2 + b2, for all t ∈ R, it follows that

−

√
ϱ2 + α2 ≤ f (t) ≤

√
ϱ2 + α2 and −

√
β2 + ξ2 ≤ 1(t) ≤

√
β2 + ξ2, ∀t ∈ R.

Moreover, for each t ∈ R, we have h(t) = t2 + t = (t + 1
2 )2
−

1
4 ≥ −

1
4 . Consequently,

f (R) = [−
√
ϱ2 + α2,

√
ϱ2 + α2] , R, 1(R) = [−

√
β2 + ξ2,

√
β2 + ξ2] , R

and h(R) = [− 1
4 ,+∞) , R. These facts ensure that (P +M)(H2(C)) , H2(C), that is, P +M is not surjective,

and so M is not P-η-accretive.
Now, let λ be an arbitrary positive real constant and let the functions f̂ , 1̂, ĥ : R → R be defined,

respectively, as

f̂ (t) = t + λα sin t, 1̂(t) = t + λβ cos t and ĥ(t) = (1 + λ)t, ∀t ∈ R.

Then, for any A =
(

z x − iy
x + iy w

)
∈ H2(C), we obtain
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(I + λM)(A) = (I + λM)
( ( z x − iy

x + iy w

) )
=

 f̂ (z) ĥ(x) − îh(y)
ĥ(x) + îh(y) 1̂(w)

 ,
where I is the identity mapping on H2(C). In virtue of the fact that f̂ (R) = 1̂(R) = ĥ(R) = R, we conclude
that (I + λM)(H2(C)) = H2(C), that is, I + λM is a surjective mapping. Taking into account the arbitrariness
in the choice of λ > 0, it follows that M is a generalized m-accretive mapping.

Example 2.13. Assume that Mm×n(F) and Dn(R) are the same as in Example 2.11. Let the mappings
P1,P2,M : Dn(R)→ Dn(R) and η : Dn(R)×Dn(R)→ Dn(R) be defined, respectively, by P1(A) = P1(

(
ai j

)
) =(

a′i j

)
, P2(A) = P2(

(
ai j

)
) =

(
a′′i j

)
, M(A) = M(

(
ai j

)
) =

(
a′′′i j

)
and η(A,B) = η(

(
ai j

)
,
(

bi j

)
) =

(
ci j

)
for all A =

(
ai j

)
,B =

(
bi j

)
∈ Dn(R), where for each i, j ∈ {1, 2, . . . ,n},

a′i j =

{ γaii−1
γaii+1 − βa

k
ii, i = j,

0, i , j,
a′′i j =

{
ϱaq

ii, i = j,
0, i , j,

a′′′i j =

{
βak

ii, i = j,
0, i , j, and ci j =

{
αθςaiibii (al

ii − bl
ii), i = j,

0, i , j,

where α, β and γ are arbitrary positive real constants, ϱ and ς are two arbitrary real constants, k and l are
two arbitrary but fixed odd natural numbers, and q is an arbitrary but fixed even natural number such that
k > q. Then, for any A =

(
ai j

)
,B =

(
bi j

)
∈ Dn(R), we obtain

⟨M(A) −M(B), J2(η(A,B))⟩ = ⟨M(A) −M(B), η(A,B)⟩

= tr
( (

a′′′i j − b′′′i j

) (
ci j

) )
=

n∑
i=1

αβ(ak
ii − bk

ii)θ
ςaiibii (al

ii − bl
ii)

= αβ
n∑

i=1

(aii − bii)2θςaiibii

k∑
t=1

ak−t
ii bt−1

ii

l∑
j=1

al− j
ii b j−1

ii .

Thanks to the fact that k and l are odd natural numbers, it can be easily seen that for each i ∈ {1, 2, . . . ,n},
k∑

t=1
ak−t

ii bt−1
ii ≥ 0 and

l∑
j=1

al− j
ii b j−1

ii ≥ 0. These facts imply that

⟨M(A) −M(B), J2(η(A,B))⟩ ≥ 0, ∀A,B ∈ Dn(R),

which means that M is an η-accretive mapping. Let the function f : R → R be defined by f (x) := γ
x
−1

γx+1 for

all x ∈ R. Then, for any A =
(

ai j

)
∈ Dn(R), we get

(P1 +M)(A) = (P1 +M)(
(

ai j

)
) =

(
a′i j + a′′′i j

)
=

(
âi j

)
,

where for each i, j ∈ {1, 2, . . . ,n},

âi j =

{ γaii−1
γaii+1 , i = j,
0, i , j,

=

{
f (aii), i = j,
0, i , j.

Taking into account that f (R) = (−1, 1), it follows that (P1+M)(Dn(R)) , Dn(R), i.e., P1+M is not surjective,
and so M is not a P1-η-accretive mapping. Now, let λ > 0 be an arbitrary real constant and let the function
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1 : R → R be a function defined by 1(x) := λβxk + ϱxq, for all x ∈ R. Then, for any A =
(

ai j

)
∈ Dn(R), we

yield

(P2 + λM)(A) = (P2 + λM)(
(

ai j

)
) =

(
a′′i j + λa′′′i j

)
=

(
ãi j

)
,

where for each i, j ∈ {1, 2, . . . ,n},

ãi j =

{
λβak

ii + ϱa
q
ii, i = j,

0, i , j, =
{
1(aii), i = j,
0, i , j.

Since q is an even natural number and k is an odd natural number such that k > q, it can be easily observed
that 1(R) = R, which guarantees that (P2 + λM)(Dn(R)) = Dn(R), that is, the mapping P2 + λM is surjective.
Since λ > 0 was arbitrary, we infer that M is a P2-accretive mapping.

It is significant to emphasize that if P = I, the identity mapping on E, then the definition of P-η-accretive
mapping is that of generalized m-accretive mapping. In fact, the class of P-η-accretive mappings has close
relation with that of generalized m-accretive mappings in the framework of Banach spaces. On the other
hand, invoking Example 2.11, for given mappings P : E → E and η : E × E → E, a P-η-accretive mapping
may not be generalized m-accretive. In the following assertion, the sufficient conditions for a P-η-accretive
mapping M to be generalized m-accretive are stated.

Lemma 2.14. [55, Theorem 3.1(a)] Let E be a real q-uniformly smooth Banach space, η : E × E → E be a vector-
valued mapping, P : E → E be a strictly η-accretive mapping, M : E → 2E be a P-η-accretive mapping, and let
x,u ∈ E be two given points. If ⟨u − v, Jq(η(x, y))⟩ ≥ 0 holds for all (y, v) ∈ Graph(M), then (x,u) ∈ Graph(M).

Regarding Example 2.12, for given mappings P : E → E and η : E × E → E, a generalized m-accretive
mapping need not be P-η-accretive. In the next theorem, the conditions under which for given mappings
P : E→ E and η : E × E→ E, every generalized m-accretive mapping is P-η-accretive are stated. Let us first
recall the following concepts.

Definition 2.15. Let E be a real q-uniformly smooth Banach space. A mapping P : E→ E is said to be coercive if

lim
∥x∥→+∞

⟨P(x), Jq(x)⟩
∥x∥

= +∞.

Definition 2.16. Let E be a real q-uniformly smooth Banach space and P : E→ E be a single-valued mapping. P is
said to be

(i) bounded, if P(A) is a bounded subset of E, for every bounded subset A of E.
(ii) hemi-continuous if for any fixed points x, y, z ∈ E, the function t 7−→ ⟨P(x + ty), Jq(z)⟩ is continuous at 0+.

Theorem 2.17. Let E be a real q-uniformly smooth Banach space, η : E × E → E be a vector-valued mapping, and
P : E → E be a bounded, coercive, hemi-continuous and η-accretive mapping. If M : E → 2E is a generalized
m-accretive mapping, then M is P-η-accretive.

Proof. Since the mapping P is bounded, coercive, hemi-continuous and η-accretive, using Theorem 3.1 of
Guo [28, P.401], we conclude that P + λM is surjective for every λ > 0, i.e., Range(P + λM)(E) = E holds for
every λ > 0. Therefore, M is a P-η-accretive mapping. This gives the desired result.

Theorem 2.18. Let E be a real q-uniformly smooth Banach space, η : E × E → E be a vector-valued mapping,
P : E → E be a strictly η-accretive mapping, and M : E → 2E be an η-accretive mapping. Then, the mapping
(P + λM)−1 : Range(P + λM)→ E is single-valued for every constant λ > 0.
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Proof. Choose constant λ > 0 and point u ∈ Range(P + λM) arbitrarily but fixed. Then for any x, y ∈
(P + λM)−1(u), we have u = (P + λM)(x) = (P + λM)(y), which implies that

λ−1(u − P(x)) ∈M(x) and λ−1(u − P(y)) ∈M(y).

Owing to the fact that M is η-accretive, we deduce that

0 ≤ ⟨λ−1(u − P(x)) − λ−1(u − P(y)), Jq(η(x, y))⟩ = λ−1
⟨P(x) − P(y), Jq(η(x, y))⟩.

Taking into account that the mapping P is strictly η-accretive, the preceding inequality implies that x = y
and so the mapping (P + λM)−1 is single-valued. The proof is completed.

As an immediate consequence of the last result, we obtain the following conclusion due to Kazmi and
Khan [40].

Lemma 2.19. [55, Theorem 3.1(b)] Let E be a real q-uniformly smooth Banach space, η : E × E → E be a vector-
valued mapping, P : E → E be a strictly η-accretive mapping, and M : E → 2E be a P-η-accretive mapping. Then,
the mapping (P + λM)−1 : E→ E is single-valued for every real constant λ > 0.

Based on Lemma 2.19, one can define the resolvent operator RP,η
M,λ associated with P, η,M and given

constant λ > 0 as follows.

Definition 2.20. [40, 55] Let E be a real q-uniformly smooth Banach space, η : E × E → E be a vector-valued
mapping, P : E → E be a strictly η-accretive mapping, M : E → 2E be a P-η-accretive mapping, and λ > 0 be an
arbitrary real constant. The resolvent operator RP,η

M,λ : E→ E associated with P, η,M and λ is defined by

RP,η
M,λ(u) = (P + λM)−1(u), ∀u ∈ E.

Before dealing with the most important result of this section due to Peng and Zhu [55], we need to recall
the following notion.

Definition 2.21. A vector-valued mapping η : E × E → E is said to be τ-Lipschitz continuous if there exists a
constant τ > 0 such that ∥η(x, y)∥ ≤ τ∥x − y∥, for all x, y ∈ E.

Lemma 2.22. [55, Lemma 2.4] Let E be a real q-uniformly smooth Banach space, η : E × E → E be a τ-Lipschitz
continuous mapping, P : E → E be a γ-strongly η-accretive mapping, M : E → 2E be a P-η-accretive mapping,
and λ > 0 be an arbitrary real constant. Then, the resolvent operator RP,η

M,λ : E → E is Lipschitz continuous with a

constant τ
q−1

γ , i.e.,

∥RP,η
M,λ(u) − RP,η

M,λ(v)∥ ≤
τq−1

γ
∥u − v∥, ∀u, v ∈ E.

3. Formulation of the Problem: Existence and Uniqueness of Solution

This section is devoted to the introduction of a new system of variational-like inclusions involving P-η-
accretive mappings in real q-uniformly smooth Banach spaces and establishing the existence and uniqueness
of a solution for the above mentioned system using the resolvent operator technique.

Let for each i ∈ {1, 2}, Ei be a real qi-uniformly smooth Banach space with a norm ∥.∥i and qi > 1,
Pi, fi, 1i : Ei → Ei, ηi : Ei × Ei → Ei, F : E1 × E2 → E1 and G : E1 × E2 → E2 be the nonlinear mappings.
Suppose further that M : E1 × E1 → 2E1 and N : E2 × E2 → 2E2 are two multi-valued nonlinear mappings
such that for each z ∈ E1, M(., z) : E1 → 2E1 is a P1-η1-accretive mapping with 11(E1) ∩ dom M(., z) , ∅, and
N(., t) : E2 → 2E2 is a P2-η2-accretive mapping for each t ∈ E2 with 12(E2) ∩ dom N(., t) , ∅. We consider the
problem of finding (x, y) ∈ E1 × E2 such that{

0 ∈ F(x, y − f2(y)) +M(11(x), x),
0 ∈ G(x − f1(x), y) +N(12(y), y), (1)
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which is called a system of generalized nonlinear variational-like inclusions (SGNVLI) with P-η-accretive map-
pings.

If for i = 1, 2, 1i ≡ Ii, the identity mapping on Ei, fi ≡ 0, M : E1 → 2E1 and N : E2 → 2E2 are two unvariate
multi-valued nonlinear mappings, then the SGNVLI (1) collapses to the problem of finding (x, y) ∈ E1 × E2
such that{

0 ∈ F(x, y) +M(x),
0 ∈ G(x, y) +N(y), (2)

which was introduced and studied by Peng and Zhu [55].

Remark 3.1. It is worth noting that for appropriate and suitable choices of the mappings Pi, ηi, fi, 1i,F,G,M,N
and the underlying spaces Ei (i = 1, 2), one can obtain many known classes of variational inequalities and
variational inclusions as special cases of the SGNVLI (1), see different problems considered and studied in
[23, 34, 51, 63, 64, 66] and the references therein.

The following conclusion which tells the SGNVLI (1) is equivalent to a fixed point problem gives a
characterization of the solution of the SGNVLI (1) and plays a crucial role in the sequel.

Lemma 3.2. Suppose that Ei,Pi, ηi, fi, 1i,F,G,M,N (i = 1, 2) are the same as in the SGNVLI (1) such that for each
i ∈ {1, 2}, Pi is a strictly ηi-accretive mapping with dom(Pi) ∩ 1i(Ei) , ∅. Then (x, y) ∈ E1 × E2 is a solution of the
SGNVLI (1) if and only if 11(x) = RP1,η1

M(.,x),λ[P1(11(x)) − λF(x, y − f2(y))],

12(y) = RP2,η2

N(.,y),ρ[P2(12(y)) − ρG(x − f1(x), y)],
(3)

where RP1,η1

M(.,x),λ = (P1 + λM(., x))−1, RP2,η2

N(.,y),ρ = (P2 + ρN(., y))−1, and λ, ρ > 0 are two constants.

Proof. The conclusions follow directly from Definition 2.20 and some simple arguments.

Before stating the main result of this section, we need to define the following special notions.

Definition 3.3. Let E be a real q-uniformly smooth Banach space. A mapping T : E→ E is said to be (ξ, ς)-relaxed
cocoercive if there exist two constants ξ, ς > 0 such that

⟨T(x) − T(y), Jq(x − y)⟩ ≥ −ξ∥T(x) − T(y)∥q + ς∥x − y∥q, ∀x, y ∈ E.

Definition 3.4. Let E be a real q-uniformly smooth Banach space and let F : E × E → E and T : E → E be the
mappings. For a given point (a, b) ∈ E × E, the mapping

(i) F(a, .) is said to be k-strongly accretive with respect to T (or T-strongly accretive with constant k) if there exists
a constant k > 0 such that

⟨F(a, x) − F(a, y), Jq(T(x) − T(y))⟩ ≥ k∥x − y∥q, ∀x, y ∈ E;

(ii) F(., b) is said to be r-strongly accretive with respect to T (or T-strongly accretive with constant r) if there exists
a constant r > 0 such that

⟨F(x, b) − F(y, b), Jq(T(x) − T(y))⟩ ≥ r∥x − y∥q, ∀x, y ∈ E;

(iii) F(a, .) is said to be ξ-Lipschitz continuous if there exists a constant ξ > 0 such that

∥F(a, x) − F(a, y)∥ ≤ ξ∥x − y∥, ∀x, y ∈ E;

(iv) F(., b) is said to be γ-Lipschitz continuous if there exists a constant γ > 0 such that

∥F(x, b) − F(y, b)∥ ≤ γ∥x − y∥, ∀x, y ∈ E.
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Theorem 3.5. Let for each i ∈ {1, 2}, Ei be a real qi-uniformly smooth Banach space with a norm ∥.∥i and qi > 1,
ηi : Ei ×Ei → Ei be τi-Lipschitz continuous and Pi : Ei → Ei be γi-strongly ηi-accretive and δi-Lipschitz continuous.
For i = 1, 2, suppose that fi : Ei → Ei is (ζi, ςi)-relaxed cocoercive and θi-Lipschitz continuous and 1i : Ei → Ei is
(σi, νi)-relaxed cocoercive and πi-Lipschitz continuous such that dom(Pi) ∩ 1i(Ei) , ∅. Let F : E1 × E2 → E1 and
G : E1 × E2 → E2 be two nonlinear mappings such that for any given point (a, b) ∈ E1 × E2, F(., b) is r1-strongly
accretive with respect to P1 ◦ 11 and s1-Lipschitz continuous, F(a, .) is ξ1-Lipschitz continuous, G(a, .) is r2-strongly
accretive with respect to P2 ◦ 12 and s2-Lipschitz continuous and G(., b) is ξ2-Lipschitz continuous. Assume that
M : E1 × E1 → 2E1 and N : E2 × E2 → 2E2 are two multi-valued nonlinear mappings such that for each z ∈ E1,
M(., z) : E1 → 2E1 is a P1-η1-accretive mapping with 11(E1)∩dom M(., z) , ∅, and for each t ∈ E2, N(., t) : E2 → 2E2

is a P2-η2-accretive mapping with 12(E2)∩dom N(., t) , ∅. Suppose further that there exist constantsµi > 0 (i = 1, 2)
such that

∥RP1,η1

M(.,u),λ(w) − RP1,η1

M(.,v),λ(w)∥ ≤ µ1∥u − v∥1, ∀u, v,w ∈ E1, (4)

∥RP2,η2

N(.,u),ρ(w) − RP2,η2

N(.,v),ρ(w)∥ ≤ µ2∥u − v∥2, ∀u, v,w ∈ E2. (5)

If there exist two constants λ, ρ > 0 such that

µ1 +
q1

√
1 − q1ν1 + (cq1 + q1σ1)πq1

1 +
τq1−1

1

γ1

q1

√
δq1

1 π
q1

1 − q1λr1 + λq1 cq1 sq1

1

+
ρξ2τ

q2−1
2

γ2

q1

√
1 − q1ς1 + (cq1 + q1ζ1)θq1

1 < 1,

(6)

and

µ2 +
q2

√
1 − q2ν2 + (cq2 + q2σ2)πq2

2 +
τq2−1

2

γ2

q1

√
δq2

2 π
q2

2 − q2ρr2 + ρq2 cq2 sq2

2

+
λξ1τ

q1−1
1

γ1

q2

√
1 − q2ς2 + (cq2 + q2ζ2)θq2

2 < 1,

(7)

where cq1 and cq2 are constants guaranteed by Lemma 2.4, and for the case when q1 and q2 are even natural numbers,
in addition to (6) and (7), the following conditions hold:

qiνi < 1 + (cqi + qiσi)π
qi

i , (i = 1, 2),
qiςi < 1 + (cqi + qiζi)θ

qi

i , (i = 1, 2),
q1λr1 < δ

q1

1 π
q1

1 + λ
q1 cq1 sq1

1 ,
q2ρr2 < δ

q2

2 π
q2

2 + ρ
q2 cq2 sq2

2 ,

(8)

then the SGNVLI (1) admits a unique solution.

Proof. For any given λ, ρ > 0, define the mappings Sλ : E1 × E2 → E1 and Tρ : E1 × E2 → E2, respectively, by

Sλ(x, y) = x − 11(x) + RP1,η1

M(.,x),λ[P1(11(x)) − λF(x, y − f2(y))] (9)

and

Tρ(x, y) = y − 12(y) + RP2,η2

N(.,y),ρ[P2(12(y)) − ρG(x − f1(x), y)], (10)
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for all (x, y) ∈ E1 × E2. By using (4), (9) and Lemma 2.22, for all (x, y), (x′, y′) ∈ E1 × E2, we obtain

∥Sλ(x, y) − Sλ(x′, y′)∥1 ≤ ∥x − x′ − (11(x) − 11(x′))∥1

+ ∥RP1,η1

M(.,x),λ[P1(11(x)) − λF(x, y − f2(y))]

− RP1,η1

M(.,x′),λ[P1(11(x′)) − λF(x′, y′ − f2(y′))]∥1

≤ ∥x − x′ − (11(x) − 11(x′))∥1

+ ∥RP1,η1

M(.,x),λ[P1(11(x)) − λF(x, y − f2(y))]

− RP1,η1

M(.,x′),λ[P1(11(x)) − λF(x, y − f2(y))]∥1

+ ∥RP1,η1

M(.,x′),λ[P1(11(x)) − λF(x, y − f2(y))]

− RP1,η1

M(.,x′),λ[P1(11(x′)) − λF(x′, y′ − f2(y′))]∥1

≤ ∥x − x′ − (11(x) − 11(x′))∥1 + µ1∥x − x′∥1

+
τq1−1

1

γ1

(
∥P1(11(x)) − P1(11(x′))

− λ(F(x, y − f2(y)) − F(x′, y − f2(y))∥1

(11)

+ λ∥F(x′, y − f2(y)) − F(x′, y′ − f2(y′))∥1
)
.

Thanks to Lemma 2.4, there exists a constant cq1 > 0 such that

∥x − x′ − (11(x) − 11(x′))∥q1

1 ≤ ∥x − x′∥q1

1 − q1⟨11(x) − 11(x′), Jq1 (x − x′)⟩

+ cq1∥11(x) − 11(x′)∥q1

1 .

Since 11 is (σ1, ν1)-relaxed cocoercive and π1-Lipschitz continuous, it follows that

∥x − x′ − (11(x) − 11(x′))∥q1

1 ≤ ∥x − x′∥q1

1 − q1ν1∥x − x′∥q1

1 + (cq1 + q1σ1)πq1

1 ∥x − x′∥q1

1

= (1 − q1ν1 + (cq1 + q1σ1)πq1

1 )∥x − x′∥q1

1 ,

which implies that

∥x − x′ − (11(x) − 11(x′))∥1 ≤
q1

√
1 − q1ν1 + (cq1 + q1σ1)πq1

1 ∥x − x′∥1. (12)

With the help of the assumptions and using Lemma 2.4, we get

∥P1(11(x)) − P1(11(x′)) − λ(F(x, y − f2(y)) − F(x′, y − f2(y)))∥q1

1

≤ ∥P1(11(x)) − P1(11(x′))∥q1

1 − q1λ⟨F(x, y − f2(y)) − F(x′, y − f2(y)),

Jq1 (P1(11(x)) − P1(11(x′)))⟩ + λq1 cq1∥F(x, y − f2(y)) − F(x′, y − f2(y))∥q1

1

≤ δq1

1 ∥11(x) − 11(x′)∥q1

1 − q1λr1∥x − x′∥q1

1 + λ
q1 cq1 sq1

1 ∥x − x′∥q1

1

≤ (δq1

1 π
q1

1 − q1λr1 + λ
q1 cq1 sq1

1 )∥x − x′∥q1

1 ,

from which we conclude that

∥P1(11(x)) − P1(11(x′)) − λ(F(x, y − f2(y)) − F(x′, y − f2(y)))∥1

≤
q1

√
δq1

1 π
q1

1 − q1λr1 + λq1 cq1 sq1

1 ∥x − x′∥1.
(13)

In the light of the assumptions, we yield

∥F(x′, y − f2(y)) − F(x′, y′ − f2(y′))∥1 ≤ ξ1∥y − y′ − ( f2(y) − f2(y′))∥2. (14)
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Using Lemma 2.4 and the assumptions, in a similar way to that of the proof of (12), one can deduce that

∥y − y′ − ( f2(y) − f2(y′))∥2 ≤
q2

√
1 − q2ς2 + (cq2 + q2ζ2)θq2

2 ∥y − y′∥2. (15)

Combining (11)–(15), we get

∥Sλ(x, y) − Sλ(x′, y′)∥1 ≤
q1

√
1 − q1ν1 + (cq1 + q1σ1)πq1

1 ∥x − x′∥1 + µ1∥x − x′∥1

+
τq1−1

1

γ1

(
q1

√
δq1

1 π
q1

1 − q1λr1 + λq1 cq1 sq1

1 ∥x − x′∥1

+ λξ1
q2

√
1 − q2ς2 + (cq2 + q2ζ2)θq2

2 ∥y − y′∥2
)

= φ1∥x − x′∥1 + ϑ1∥y − y′∥2,

(16)

where

φ1 = µ1 +
q1

√
1 − q1ν1 + (cq1 + q1σ1)πq1

1 +
τq1−1

1

γ1

q1

√
δq1

1 π
q1

1 − q1λr1 + λq1 cq1 sq1

1

and

ϑ1 =
λξ1τ

q1−1
1

γ1

q2

√
1 − q2ς2 + (cq2 + q2ζ2)θq2

2 .

Following the same argument, we can show that

∥Tρ(x, y) − Tρ(x′, y′)∥2 ≤ φ2∥x − x′∥1 + ϑ2∥y − y′∥2, (17)

where

ϑ2 = µ2 +
q2

√
1 − q2ν2 + (cq2 + q2σ2)πq2

2 +
τq2−1

2

γ2

q2

√
δq2

2 π
q2

2 − q2ρr2 + ρq2 cq2 sq2

2

and

φ2 =
ρξ2τ

q2−1
2

γ2

q1

√
1 − q1ς1 + (cq1 + q1ζ1)θq1

1 .

Let us define ∥.∥∗ on E1 × E2 by

∥(x, y)∥∗ = ∥x∥1 + ∥y∥2, ∀(x, y) ∈ E1 × E2. (18)

It can be easily seen that (E1×E2, ∥.∥∗) is a Banach space. For any λ, ρ > 0, define a mapping Qλ,ρ : E1×E2 →

E1 × E2 by

Qλ,ρ(x, y) = (Sλ(x, y),Tρ(x, y)), ∀(x, y) ∈ E1 × E2. (19)

Applying (16) and (17), we obtain

∥Sλ(x, y) − Sλ(x′, y′)∥1 + ∥Tρ(x, y) − Tρ(x′, y′)∥2
≤ (φ1 + φ2)∥x − x′∥1 + (ϑ1 + ϑ2)∥y − y′∥2
≤ k∥(x, y) − (x′, y′)∥∗,

(20)

where k = max{φ1 + φ2, ϑ1 + ϑ2}. By virtue of (6) and (7), we know that k ∈ (0, 1) and using (20) we infer
that Qλ,ρ is a contraction mapping. According to Banach fixed point theorem, there exists a unique point
(x∗, y∗) ∈ E1 × E2 such that Qλ,ρ(x∗, y∗) = (x∗, y∗). Employing (9), (10) and (19), it follows that 11(x∗) = RP1,η1

M(.,x∗),λ[P1(11(x∗)) − λF(x∗, y − f2(y∗))],

12(y∗) = RP2,η2

N(.,y∗),ρ[P2(12(y∗)) − ρG(x∗ − f1(x∗), y∗)].
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Now, Lemma 3.2 ensures that (x∗, y∗) is a unique solution of the SGNVLI (1). This completes the proof.

Corollary 3.6. [55, Theorem 4.1] Let E1 and E2 be real q-uniformly smooth Banach spaces. For i = 1, 2, let
ηi : Ei × Ei → Ei be Lipschitz continuous with constant τi, and Pi : Ei → Ei be strongly ηi-accretive and Lipschitz
continuous with constants γi and δi, respectively. Let F : E1 × E2 → E1 be a nonlinear operator such that for any
given (a, b) ∈ E1 ×E2, F(., b) is P1-strongly accretive and Lipschitz continuous with constants r1 and s1, respectively,
and F(a, .) is Lipschitz continuous with constant ξ1. Let G : E1 × E2 → E2 be a nonlinear operator such that for any
given (x, y) ∈ E1×E2, G(x, .) is P2-strongly accretive and Lipschitz continuous with constants r2 and s2, respectively,
and G(., y) is Lipschitz continuous with constant ξ2. Assume that M : E1 → 2E1 is a P1-η1-accretive operator and
N : E2 → 2E2 is a P2-η2-accretive operator. If there exist constants λ, ρ > 0 such that

τq−1
1

γ1

q
√
δq

1 − qλr1 + cqλqsq
1 +
ξ2ρτ

q−1
2

γ2
< 1, (21)

and

τq−1
2

γ2

q
√
δq

2 − qρr2 + cqρqsq
2 +
ξ1λτ

q−1
1

γ1
< 1, (22)

where cq is a constant guaranteed by Lemma 2.4, and for the case when q is an even natural number, in addition to
(21) and (22), the following conditions hold:

qλr1 < δ
q
1 + cqλ

qsq
1 and qρr2 ≤ δ

q
2 + cqρ

qsq
2, (23)

then the problem (2) admits a unique solution.

Proof. Since for i = 1, 2, 1i ≡ Ii, the identity mapping on Ei, it follows that for i = 1, 2, πi = 1 and

∥x − x′ − (11(x) − 11(x′))∥1 = ∥y − y′ − (12(y) − 12(y′))∥2 = 0.

In view of the assumptions, taking qi = q, fi ≡ 0 and µi = ζi = ςi = θi = 0 for i = 1, 2, (6) and (7) reduce to
(21) and (22), respectively. Now, the statement follows immediately using Theorem 3.5.

Remark 3.7. Let us emphasize that by a careful reading of the proof of Theorem 4.1 in [55], we found that
the conditions mentioned in the context of [55, Theorem 4.1] are not enough for guaranteeing the existence
of a unique solution for the problem (2). In fact, if q is an even natural number, then in addition to (21)
and (22), the conditions (23) must be also added to the context of [55, Theorem 4.1], as we have done in the
context of Corollary 3.6.

4. Variational Convergence and Iterative Algorithm

In this section, using the notions of graph convergence and the resolvent operator associated with a
P-η-accretive mapping, we first establish a new equivalence relationship between the graph convergence
of a sequence of P-η-accretive mappings and their associated resolvent operators, respectively, to a given
P-η-accretive mapping and its associated resolvent operator. Then, as an application of the obtained
equivalence formulation and the resolvent operator technique, a new iterative algorithm is constructed for
approximating a common element of the set of solutions of the SGNVLI (1) and the set of fixed points of an
({an}, {bn}, ϕ)-total uniformly L-Lipschitzian mapping.

Definition 4.1. [3, 9] Given multi-valued mappings Mn,M : E → 2E (n ≥ 0), the sequence {Mn}
∞

n=0 is said to be

graph-convergent to M, denoted by Mn
G
−→M, if for every point (x,u) ∈ Graph(M), there exists a sequence of points

(xn,un) ∈ Graph(Mn) such that xn → x and un → u as n→∞.
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Theorem 4.2. Let E be a real q-uniformly smooth Banach space, η : E × E → E be a vector-valued mapping,
P : E → E be a strictly η-accretive mapping and let M : E → 2E be a P-η-accretive mapping. Assume that for
each n ≥ 0, ηn : E × E → E is a τn-Lipschitz continuous mapping, Pn : E → E is a γn-strongly ηn-accretive and
δn-Lipschitz continuous mapping, and Mn : E → 2E is a Pn-ηn-accretive mapping. Suppose that lim

n→∞
Pn(x) = P(x)

for any x ∈ E, and the sequences {δn}
∞

n=0, {τn}
∞

n=0 and { 1
γn
}
∞

n=0 are bounded. Further, let {λn}
∞

n=0 be a sequence of

positive real constants convergent to a positive real constant λ. Then Mn
G
−→ M if and only if RPn,ηn

Mn,λn
(z)→ RP,η

M,λ(z),

for all z ∈ E, as n→∞, where for each n ≥ 0, RPn,ηn

Mn,λn
= (Pn + λnMn)−1 and RP,η

M,λ = (P + ρM)−1.

Proof. Suppose first that Mn
G
−→ M, and let z ∈ E be chosen arbitrarily but fixed. Since the mapping M

is P-η-accretive, it follows that (P + λM)(E) = E and so, there exists a point (x,u) ∈ Graph(M) such that
z = P(x) + λu. Invoking Definition 4.1, there exists a sequence {(xn,un)}∞n=0 ⊂ Graph(Mn) such that xn → x
and un → u, as n→∞. In the light of the facts that (x,u) ∈ Graph(M) and (xn,un) ∈ Graph(Mn) for all n ≥ 0,
we infer that

x = RP,η
M,λ[P(x) + λu] and xn = RPn,ηn

Mn,λn
[Pn(xn) + λnun], ∀n ≥ 0. (24)

Picking zn = Pn(xn) + λnun for each n ≥ 0, and by utilizing Lemma 2.22, (24) and with the help of the
assumptions, for each n ≥ 0, we obtain

∥RPn,ηn

Mn,λn
(z) − RP,η

M,λ(z)∥

≤ ∥RPn,ηn

Mn,λn
(z) − RPn,ηn

Mn,λn
(zn)∥ + ∥RPn,ηn

Mn,λn
(zn) − RP,η

M,λ(z)∥

≤
τq−1

n

γn
∥zn − z∥ + ∥RPn,ηn

Mn,λn
[Pn(xn) + λnun] − RP,η

M,λ[P(x) + λu]∥

≤
τq−1

n

γn
∥zn − z∥ + ∥xn − x∥

=
τq−1

n

γn
∥Pn(xn) + λnun − P(x) − λu∥ + ∥xn − x∥

≤
τq−1

n

δn
(∥Pn(xn) − P(x)∥ + ∥λnun − λu∥) + ∥xn − x∥

≤
τq−1

n

γn
(∥Pn(xn) − Pn(x)∥ + ∥Pn(x) − P(x)∥

+ ∥λnun − λnu∥ + ∥λnu − λu∥) + ∥xn − x∥

≤ (1 +
δnτ

q−1
n

γn
)∥xn − x∥ +

τq−1
n

γn
∥Pn(x) − P(x)∥

+
λnτ

q−1
n

γn
∥un − u∥ +

|λn − λ|τ
q−1
n

γn
∥u∥.

Taking into account that the sequences { 1
γn
}
∞

n=0 and {τn}
∞

n=0 are bounded and lim
n→∞
λn = λ, we conclude that

the sequence {λnτ
q−1
n
γn
}
∞

n=0 is also bounded. In the light of the assumptions, the right-hand side of the preceding

inequality tends to zero, as n→∞, which ensures that lim
n→∞

RPn,ηn

Mn,λn
(z) = RP,η

M,λ(z).

Converse, assume that for all z ∈ E we have lim
n→∞

RPn,ηn

Mn,λn
(z) = RP,η

M,λ(z). Then, for any (x,u) ∈ Graph(M),

we infer that x = RP,η
M,λ[P(x) + λu] and so RPn,ηn

Mn,λn
[P(x) + λu]→ x, as n→∞. Taking xn = RPn,ηn

Mn,λn
[P(x) + λu] for

each n ≥ 0, it follows that P(x) + λu ∈ (Pn + λnMn)(xn). Hence, for each n ≥ 0, we can choose un ∈ Mn(xn)
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such that P(x) + λu = Pn(xn) + λnun. Then, for each n ≥ 0, we have

∥λnun − λu∥ = ∥Pn(xn) − P(x)∥ ≤ ∥Pn(xn) − Pn(x)∥ + ∥Pn(x) − P(x)∥
≤ δn∥xn − x∥ + ∥Pn(x) − P(x)∥.

Owing to the fact that the sequence {δn}
∞

n=0 is bounded, lim
n→∞

xn = x and lim
n→∞

Pn(x) = P(x), it follows that
λnun → λu, as n→∞. Furthermore, for each n ≥ 0, yields

λ∥un − u∥ = ∥λun − λu∥ ≤ ∥λnun − λun∥ + ∥λnun − λu∥
= |λn − λ|∥un∥ + ∥λnun − λu∥.

The facts that λn → λ and λnun → λu, as n → ∞, imply that the right-hand side of the above inequality

approaches zero, as n → ∞. Accordingly, un → u, as n → ∞. Now, in view of Definition 4.1, Mn
G
−→ M.

This completes the proof.

Given a real normed space E with a norm ∥.∥, we recall that a nonlinear mapping T : E → E is
said to be nonexpansive if ∥T(x) − T(y)∥ ≤ ∥x − y∥ for all x, y ∈ E. Since the appearance of the notion
of nonexpansive mapping, due to the existence of a strong connection between monotone and accretive
operators, two classes of operators which arise actually in the theory of differential equations, and the class
of nonexpansive mappings, the fixed point theory of nonexpansive mappings has rapidly grown into an
important field of study in both pure and applied mathematics. It has become one of the most essential
tools in nonlinear functional analysis. For this reason, during the past few decades, many authors have
shown interest in extending the concept of nonexpansive mapping in the framework of different spaces,
and the study of the fixed point theory for generalized nonexpansive mappings has also attracted increasing
attention. In the next definition, some classes of them are recalled.

Definition 4.3. A nonlinear mapping T : E→ E is said to be

(i) L-Lipschitzian if there exists a constant L > 0 such that

∥T(x) − T(y)∥ ≤ L∥x − y∥, ∀x, y ∈ E;

(ii) uniformly L-Lipschitzian if there exists a constant L > 0 such that for each n ∈N,

∥Tn(x) − Tn(y)∥ ≤ L∥x − y∥, ∀x, y ∈ E;

(iii) asymptotically nonexpansive [26] if there exists a sequence {an} ⊂ (0,+∞) with lim
n→∞

an = 0 such that for each
n ∈N,

∥Tn(x) − Tn(y)∥ ≤ (1 + an)∥x − y∥, ∀x, y ∈ E.

Equivalently, we say that T is asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,+∞) with
lim
n→∞

kn = 1 such that for each n ∈N,

∥Tn(x) − Tn(y)∥ ≤ kn∥x − y∥, ∀x, y ∈ E;

(iv) total asymptotically nonexpansive (also referred to as ({an}, {bn}, ϕ)-total asymptotically nonexpansive) [2] if,
there exist nonnegative real sequences {an} and {bn} with an, bn → 0 as n → ∞ and a strictly increasing
continuous function ϕ : R+ → R+ with ϕ(0) = 0 such that for all x, y ∈ E,

∥Tn(x) − Tn(y)∥ ≤ ∥x − y∥ + anϕ(∥x − y∥) + bn, ∀n ∈N.

It is important to emphasize that every uniformly L-Lipschitzian mapping is L-Lipschitzian but the
converse need not be true. In fact, the class of uniformly L-Lipschitzian mappings is essentially wider than
the class of L-Lipschitzian mappings. This fact is illustrated in the next example.
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Example 4.4. Consider E = R with the Euclidean norm ∥.∥ = |.| and let the self-mapping T of E be defined
by

T(x) =
{
γ1x, if x ∈ (−∞, 0],
γ2x, if x ∈ [0,+∞),

where γ1, γ2 > 1 are arbitrary constants. Taking into account that

|T(x) − T(y)| =


|γ1x − γ1y| = γ1|x − y| < max{γ1, γ2}|x − y|, ∀x, y ∈ (−∞, 0],
|γ2x − γ2y| = γ2|x − y| < max{γ1, γ2}|x − y|, ∀x, y ∈ [0,+∞),
|γ1x − γ2y| < |max{γ1, γ2}x −max{γ1, γ2}y|

= max{γ1, γ2}|x − y|, ∀x ∈ (−∞, 0], y ∈ [0,+∞),

it follows that T is a max{γ1, γ2}-Lipschitzian mapping. But, in the light of the fact that γ1, γ2 > 1, for all
n ∈N\{1}, yields

|Tn(x) − Tn(y)| =
{
γn

1 |x − y| > γ1|x − y|, ∀x, y ∈ (−∞, 0],
γn

2 |x − y| > γ2|x − y|, ∀x, y ∈ [0,+∞).

If γ1 < γ2 then for all x, y ∈ [0,+∞), we have

|Tn(x) − Tn(y)| = γn
2 |x − y| > γ2|x − y| = max{γ1, γ2}|x − y|

and for the case when γ1 > γ2, for all x, y ∈ (−∞, 0], we get

|Tn(x) − Tn(y)| = γn
1 |x − y| > γ1|x − y| = max{γ1, γ2}|x − y|.

If γ1 = γ2, then for all x, y ∈ E and n ∈N\{1}, we obtain

|Tn(x) − Tn(y)| = γn
1 |x − y| = γn

2 |x − y| > γ2|x − y| = γ1|x − y| = max{γ1, γ2}|x − y|.

These facts imply that T is not a uniformly max{γ1, γ2}-Lipschitzian mapping.

It is significant to mention that every nonexpansive mapping is asymptotically nonexpansive with
an = 0 (or equivalently kn = 1) for all n ∈ N, but the converse is not true in general. The following
example illustrates that the class of asymptotically nonexpansive mappings contains properly the class of
nonexpansive mappings.

Example 4.5. For 1 ≤ p < ∞, consider

lp =
{
x = {xn}n∈N :

∞∑
n=1

|xn|
p < ∞, xn ∈ F = R or C

}
,

the classical space consisting of all p-power summable sequences, with the p-norm ∥.∥p defined on it by

∥x∥p =
( ∞∑

n=1

|xn|
p
) 1

p , ∀x = {xn}n∈N ∈ lp.

Moreover, assume that B denote the closed unit ball in the real Banach space lp and define the self-mapping
T of B by

T(x1, x2, x3, . . . ) = (0, 0, . . . , 0︸     ︷︷     ︸
m times

, |x1|
σ1 , 0, a2 sin |x2|

q1 , 0, a3|x3|
σ2 , 0, a4 sin |x4|

q2 , . . . , 0,

ak|xk|
σ k+1

2 , 0, ak+1 sin |xk+1|
q k+1

2 , 0, ak+2xk+2, 0, ak+3xk+3, . . . ),
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where k is an arbitrary but fixed odd natural number, m ≥ k + 1 is an arbitrary but fixed natural number,
σi, qi ∈ N\{1} (i = 1, 2, . . . , k+1

2 ) are arbitrary constants, and {ai}
∞

i=2 is a sequence of real numbers such that
0 < ai < 1 for each i ≥ 2 and

∞∏
i=1

a(2i−1)m+1 =

∞∏
i=1

a(2i−1−1)m+2i−1(2s−1)+1 =

∞∏
i=1

a(2i−1−1)m+2i−1(2̂s−2)+1 =
1
ϱ

for each s ∈ {1, 2, . . . , k+1
2 } and ŝ ∈ {2, 3, . . . , k+1

2 }, where ϱ = max{σi, qi : i = 1, 2, . . . , k+1
2 }. Indeed, the self-

mapping T of B is defined for all x = {xn}n∈N ∈ B by T(x) = T({xn})n∈N = x̂ = {̂xn}n∈N, where x̂i = 0 for all
1 ≤ i ≤ m, x̂m+1 = |x1|

σ1 , x̂m+2i = 0 for all i ∈N,

x̂m+2i−1 =

{
ai sin |xi|

q i
2 , if i ∈ {2r|r = 1, 2, . . . , k+1

2 },
ai|xi|

σ i+1
2 , if i ∈ {2t + 1|t = 1, 2, . . . , k−1

2 },

and x̂m+2k+ j = ak+ j+1
2

xk+ j+1
2

for all j ∈ {2ς + 1|ς ∈N}.

Then, it can be easily proved that for all x, y ∈ B,

∥T(x) − T(y)∥p =
(∣∣∣|x1|

σ1 − |y1|
σ1
∣∣∣p + k+1

2∑
i=2

ap
2i−1

∣∣∣|x2i−1|
σi − |y2i−1|

σi
∣∣∣p

+

k+1
2∑

i=1

ap
2i

∣∣∣ sin |x2i|
qi − sin |y2i|

qi
∣∣∣p + ∞∑

i=k+2

ap
i |xi − yi|

p
) 1

p

≤ max
{ σi∑

j=1

|x2i−1|
σi− j
|y2i−1|

j−1,

qi∑
ν=1

|x2i|
qi−ν|y2i|

ν−1, 1 :

i = 1, 2, . . . ,
k + 1

2

}
(
∞∑

i=1

|xi − yi|
p
) 1

p

= max
{ σi∑

j=1

|x2i−1|
σi− j
|y2i−1|

j−1,

qi∑
ν=1

|x2i|
qi−ν|y2i|

ν−1, 1 :

i = 1, 2, . . . ,
k + 1

2

}
∥x − y∥p.

(25)

Thanks to the fact that x, y ∈ B, we deduce that 0 ≤ |x2i−1|
σi− j, |x2i|

qi−ν, |y2i−1|
j−1, |y2i|

ν−1
≤ 1 for each j ∈

{1, 2, . . . , σi}, ν ∈ {1, 2, . . . , qi} and i ∈ {1, 2, . . . , k+1
2 }. This fact ensures that 0 ≤

σi∑
j=1
|x2i−1|

σi− j
|y2i−1|

j−1
≤ σi

and 0 ≤
qi∑
ν=1
|x2i|

qi−ν|y2i|
ν−1
≤ qi for each i ∈ {1, 2, . . . , k+1

2 }. Taking into account that σi, qi ∈ N\{1} for each

i ∈ {1, 2, . . . , k+1
2 }, it follows from (25) that for all x, y ∈ B,

∥T(x) − T(y)∥p ≤ ϱ∥x − y∥p = ∥x − y∥p + (ϱ − 1)∥x − y∥p. (26)

Thereby, the mapping T is Lipschitzian, but not nonexpansive.
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For all n ≥ 2 and x = {xn}n∈N ∈ B, we obtain

Tn(x) =
(

0, 0, . . . , 0︸     ︷︷     ︸
(2n−1)m times

,
n−1∏
i=1

a(2i−1)m+1|x1|
σ1 , 0, 0, . . . , 0︸     ︷︷     ︸

(2n−1) times

,
n∏

i=1

a(2i−1−1)m+2i−1+1 sin |x2|
q1 ,

0, 0, . . . , 0︸     ︷︷     ︸
(2n−1) times

,
n∏

i=1

a(2i−1−1)m+2i−1×2+1|x3|
σ2 , 0, 0, . . . , 0︸     ︷︷     ︸

(2n−1) times

,
n∏

i=1

a(2i−1−1)m+2i−1×3+1 sin |x4|
q2 ,

. . . , 0, 0, . . . , 0︸     ︷︷     ︸
(2n−1) times

,
n∏

i=1

a(2i−1−1)m+2i−1(k−1)+1|xk|
σ k+1

2 , 0, 0, . . . , 0︸     ︷︷     ︸
(2n−1) times

,

n∏
i=1

a(2i−1−1)m+2i−1k+1 sin |xk+1|
q k+1

2 , 0, 0, . . . , 0︸     ︷︷     ︸
(2n−1) times

,
n∏

i=1

a(2i−1−1)m+2i−1(k+1)+1xk+2,

0, 0, . . . , 0︸     ︷︷     ︸
(2n−1) times

,
n∏

i=1

a(2i−1−1)m+2i−1(k+2)+1xk+3, . . .
)
.

Then, for all x, y ∈ B and n ≥ 2, it is easy to yield that

∥Tn(x) − Tn(y)∥p =
(
(

n−1∏
i=1

a(2i−1)m+1)p
∣∣∣|x1|

σ1 − |y1|
σ1
∣∣∣p

+

k+1
2∑

s=1

( n∏
i=1

a(2i−1−1)m+2i−1(2s−1)+1

)p∣∣∣ sin |x2s|
qs − sin |y2s|

qs
∣∣∣p

+

k+1
2∑

ŝ=2

( n∏
i=1

a(2i−1−1)m+2i−1(2̂s−2)+1

)p∣∣∣|x2̂s−1|
σ̂s − |y2̂s−1|

σ̂s
∣∣∣p

+

∞∑
s̃=2

( n∏
i=1

a(2i−1−1)m+2i−1(k+̃s−1)+1

)p
|xk+̃s − yk+̃s|

p
) 1

p

≤

(
(ϱ

n−1∏
i=1

a(2i−1)m+1)p
|x1 − y1|

p

+

k+1
2∑

s=1

(
ϱ

n∏
i=1

a(2i−1−1)m+2i−1(2s−1)+1

)p
|x2s − y2s|

p

+

k+1
2∑

ŝ=2

(
ϱ

n∏
i=1

a(2i−1−1)m+2i−1(2̂s−2)+1

)p
|x2̂s−1 − y2̂s−1|

p

+

∞∑
s̃=2

( n∏
i=1

a(2i−1−1)m+2i−1(k+̃s−1)+1

)p
|xk+̃s − yk+̃s|

p
) 1

p .

(27)

Owing to the fact that ai ∈ (0, 1) for each i ≥ 2, we infer that 0 <
n∏

i=1
a(2i−1−1)m+2i−1(k+̃s−1)+1 < 1 for each n, s̃ ≥ 2.
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This fact together with (27) imply that for all x, y ∈ B and n ≥ 2,

∥Tn(x) − Tn(y)∥p ≤
(

max
{
(ϱ

n−1∏
i=1

a(2i−1)m+1)p, (ϱ
n∏

i=1

a(2i−1−1)m+2i−1(2s−1)+1)p,

(ϱ
n∏

i=1

a(2i−1−1)m+2i−1(2̂s−2)+1

)p
, 1 : s = 1, 2, . . . ,

k + 1
2

;

ŝ = 2, 3, . . . ,
k + 1

2

} ∞∑
r=1

|xr − yr|
p
) 1

p

= max
{
ϱ

n−1∏
i=1

a(2i−1)m+1, ϱ
n∏

i=1

a(2i−1−1)m+2i−1(2s−1)+1,

ϱ
n∏

i=1

a(2i−1−1)m+2i−1(2̂s−2)+1, 1 : s = 1, 2, . . . ,
k + 1

2
;

ŝ = 2, 3, . . . ,
k + 1

2

}
∥x − y∥p.

(28)

Since ai ∈ (0, 1) for each i ≥ 2, it follows that

0 <
n−1∏
i=1

a(2i−1)m+1,
n∏

i=1

a(2i−1−1)m+2i−1(2s−1)+1,
n∏

i=1

a(2i−1−1)m+2i−1(2̂s−2)+1 < 1

for each s ∈ {1, 2, . . . , k+1
2 }, ŝ ∈ {2, 3, . . . , k+1

2 } and n ≥ 2. Moreover, for each n ≥ 2, we yield

n−1∏
i=1

a(2i−1)m+1 = a(2n−1−1)m+1

n−2∏
i=1

a(2i−1)m+1 <
n−2∏
i=1

a(2i−1)m+1,

i.e.,
{ n−1∏

i=1
a(2i−1)m+1

}∞
n=2

is a decreasing sequence. By an argument analogous to the previous one, one can

show that for each s ∈ {1, 2, . . . , k+1
2 } and ŝ ∈ {2, 3, . . . , k+1

2 }, the sequences
{ n∏

i=1
a(2i−1−1)m+2i−1(2s−1)+1

}∞
n=2

and{ n∏
i=1

a(2i−1−1)m+2i−1(2̂s−2)+1

}∞
n=2

are also decreasing. Relying on the fact that

lim
n→∞

n−1∏
i=1

a(2i−1)m+1 = lim
n→∞

n∏
i=1

a(2i−1−1)m+2i−1(2s−1)+1

= lim
n→∞

n∏
i=1

a(2i−1−1)m+2i−1(2̂s−2)+1

=
1
ϱ

for each s ∈
{
1, 2, . . . , k+1

2

}
and ŝ ∈

{
2, 3, . . . , k+1

2

}
, we conclude that

1
ϱ
≤

n−1∏
i=1

a(2i−1)m+1,
n∏

i=1

a(2i−1−1)m+2i−1(2s−1)+1,
n∏

i=1

a(2i−1−1)m+2i−1(2̂s−2)+1 < 1,

for each n ≥ 2, s ∈
{
1, 2, . . . , k+1

2

}
and ŝ ∈

{
2, 3, . . . , k+1

2

}
, and so

1 ≤ ϱ
n−1∏
i=1

a(2i−1)m+1, ϱ
n∏

i=1

a(2i−1−1)m+2i−1(2s−1)+1, ϱ
n∏

i=1

a(2i−1−1)m+2i−1(2̂s−2)+1 < ϱ
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for each n ≥ 2, s ∈
{
1, 2, . . . , k+1

2

}
and ŝ ∈

{
2, 3, . . . , k+1

2

}
. In virtue of this fact and making use of (28), it follows

that for all x, y ∈ B and n ≥ 2,

∥Tn(x) − Tn(y)∥p ≤ max
{
ϱ

n−1∏
i=1

a(2i−1)m+1, ϱ
n∏

i=1

a(2i−1−1)m+2i−1(2s−1)+1,

ϱ
n∏

i=1

a(2i−1−1)m+2i−1(2̂s−2)+1, 1 : s = 1, 2, . . . ,
k + 1

2
;

ŝ = 2, 3, . . . ,
k + 1

2

}
∥x − y∥p

= ∥x − y∥p +max
{
ϱ

n−1∏
i=1

a(2i−1)m+1 − 1,

ϱ
n∏

i=1

a(2i−1−1)m+2i−1(2s−1)+1 − 1,

ϱ
n∏

i=1

a(2i−1−1)m+2i−1(2̂s−2)+1 − 1 : s = 1, 2, . . . ,
k + 1

2
;

ŝ = 2, 3, . . . ,
k + 1

2

}
∥x − y∥p.

(29)

Taking γ1 = ϱ − 1 and

γn = max
{
ϱ

n−1∏
i=1

a(2i−1)m+1 − 1, ϱ
n∏

i=1

a(2i−1−1)m+2i−1(2s−1)+1 − 1,

ϱ
n∏

i=1

a(2i−1−1)m+2i−1(2̂s−2)+1 − 1 : s = 1, 2, . . . ,
k + 1

2
; ŝ = 2, 3, . . . ,

k + 1
2

}
for each n ≥ 2, we have γn → 0 as n→∞. Employing (26) and (29), for all x, y ∈ B and n ∈N, we get

∥Tn(x) − Tn(y)∥p ≤ ∥x − y∥p + γn∥x − y∥p = (1 + γn)∥x − y∥p,

which means that T is an asymptotically nonexpansive mapping.

In recent years, many efforts have also been made to present further interesting generalizations of
nonexpansive mappings and asymptotically nonexpansive mappings. In this direction, with the goal of
presenting a unifying framework for generalized nonexpansive mappings appeared in the literature and
verifying a general convergence theorem applicable to all these classes of nonlinear mappings, the concept
of total uniformly L-Lipschitzian mapping was initially introduced by Kiziltunc and Purtas [44] as an
extension of total asymptotically nonexpansive mapping as follows.

Definition 4.6. [44] A nonlinear mapping T : E→ E is said to be total uniformly L-Lipschitzian (or ({an}, {bn}, ϕ)-
total uniformly L-Lipschitzian) if, there exist a constant L > 0, nonnegative real sequences {an} and {bn} with
an, bn → 0 as n → ∞ and strictly increasing continuous function ϕ : R+ → R+ with ϕ(0) = 0 such that for each
n ∈N,

∥Tn(x) − Tn(y)∥ ≤ L[∥x − y∥ + anϕ(∥x − y∥) + bn], ∀x, y ∈ E.

It should be remarked that for given nonnegative real sequences {an} and {bn} and a strictly increas-
ing continuous function ϕ : R+ → R+, an ({an}, {bn}, ϕ)-total asymptotically nonexpansive mapping is
({an}, {bn}, ϕ)-total uniformly L-Lipschitzian with L = 1, but the converse is not true in general. The follow-
ing example shows that the class of total uniformly L-Lipschitzian mappings is more general than the class
of total asymptotically nonexpansive mappings.
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Example 4.7. Let E = R endowed with the Euclidean norm ∥.∥ = |.| and let the self-mapping T of E be
defined by

T(x) =


1
γ , if x ∈ [0, α) ∪ (α, β],
γ, if x = α,
0, if x ∈ (−∞, 0) ∪ (β,+∞),

where α > 0 and α+
√

α2+4
2 < γ ≤ β are arbitrary real constants such that αγ > 1. Since the mapping T is

discontinuous at the points x = 0, α, β, it follows that T is not Lipschitzian and so it is not an asymptotically
nonexpansive mapping. Take an =

δ
n and bn =

α
σn for each n ∈ N, where δ > 0 and σ > 1 are arbitrary

constants. Let us now define the function ϕ : R+ → R+ by ϕ(t) = λtk for all t ∈ R+, where k ∈ N and

λ ∈ (0, σ
k(γ2
−αγ−1)

αkβδ(σ−1)k

)
are arbitrary constants. Taking x = α and y = ασ , we have T(x) = γ and T(y) = 1

γ . The fact

that 0 < λ < σ
k(γ2
−αγ−1)

αkβδ(σ−1)k implies that

|T(x) − T(y)| = γ −
1
γ
> α +

δλ(σ − 1)kαk

σk

=
(σ − 1)α
σ

+
δλ(σ − 1)kαk

σk
+
α
σ

= |x − y| + δλ|x − y|k +
α
σ

= |x − y| + a1ϕ(|x − y|) + b1,

from which we conclude that T is not a ({ δn }, {
α
σn }, ϕ)-total asymptotically nonexpansive mapping. However,

for all x, y ∈ E, yields

|T(x) − T(y)| ≤ γ ≤
σγ

α
(|x − y| + δλ|x − y|k +

α
σ

)

=
σγ

α
(|x − y| + a1ϕ(|x − y|) + b1)

(30)

and for all n ≥ 2,

|Tn(x) − Tn(y)| <
σγ

α
(|x − y| +

δλ
n
|x − y|k +

α
σn )

=
σγ

α
(|x − y| + anϕ(|x − y|) + bn),

(31)

because of Tn(z) = 1
γ for all z ∈ E and n ≥ 2.

Therefore, making use of (30) and (31), it follows that T is a ({ δn }, {
α
σn }, ϕ)-total uniformly σγα -Lipschitzian

mapping.

Lemma 4.8. Suppose that, for each i ∈
{
1, 2}, Ei is a real Banach space with a norm ∥.∥i, and let Si : Ei → Ei be an(

{an,i}
∞

n=1, {bn,i}
∞

n=1, ϕi

)
-total uniformly Li-Lipschitzian mapping. Assume further that Q and ϕ are self-mappings of

E1 × E2 and R+, respectively, defined by

Q(x1, x2) = (S1x1,S2x2), ∀(x1, x2) ∈ E1 × E2 (32)

and

ϕ(t) = max{ϕ1(t), ϕ2(t)}, ∀t ∈ R+. (33)

Then Q is an
(
{an,1 + an,2}

∞

n=1, {bn,1 + bn,2}
∞

n=1, ϕ
)
-total uniformly max{L1,L2}-Lipschitzian mapping.
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Proof. Taking into account that for each i ∈ {1, 2}, Si is an
(
{an,i}

∞

n=1, {bn,i}
∞

n=1, ϕi

)
-total uniformly L-Lipschitzian

mapping and ϕi : R+ → R+ is a strictly increasing function, for all (x1, x2), (y1, y2) ∈ E1 × E2 and n ∈ N,
yields

∥Qn(x1, x2) −Qn(y1, y2)∥∗ = ∥(Sn
1x1,Sn

2x2) − (Sn
1 y1,Sn

2 y2)∥∗
= ∥(Sn

1x1 − Sn
1 y1,Sn

2x2 − Sn
2 y2)∥∗

= ∥Sn
1x1 − Sn

1 y1∥1 + ∥Sn
2x2 − Sn

2 y2∥2

≤ L1(∥x1 − y1∥1 + an,1ϕ1(∥x1 − y1∥1) + bn,1)
+ L2(∥x2 − y2∥2 + an,2ϕ2(∥x2 − y2∥2) + bn,2)

≤ max{L1,L2}
(
∥x1 − y1∥1 + ∥x2 − y2∥2

+ an,1ϕ1(∥x1 − y1∥1) + an,2ϕ2(∥x2 − y2∥2) + bn,1 + bn,2

)
≤ max{L1,L2}

(
∥x1 − y1∥1 + ∥x2 − y2∥2

+ an,1ϕ1(∥x1 − y1∥1 + ∥x2 − y2∥2) + an,2ϕ2(∥x1 − y1∥1

+ ∥x2 − y2∥2) + bn,1 + bn,2

)
≤ max{L1,L2}

(
∥(x1, x2) − (y1, y2)∥∗

+ (an,1 + an,2)ϕ(∥(x1, x2) − (y1, y2)∥∗) + bn,1 + bn,2

)
,

where ∥.∥∗ is a norm defined on E1×E2 as in (18). This fact implies that Q is an
(
{an,1+an,2}

∞

n=1, {bn,1+bn,2}
∞

n=1, ϕ
)
-

total uniformly max{L1,L2}-Lipschitzian mapping. The proof is completed.

Let for each i ∈ {1, 2}, Ei be a real qi-uniformly smooth Banach space with qi > 1 and the norm ∥.∥i,
and Si : Ei → Ei be an ({an,i}

∞

n=1, {bn,i}
∞

n=1, ϕi)-total uniformly Li-Lipschitzian mapping. Suppose further that
Q is a self-mapping of E1 × E2 defined as (32). Denote by Fix(Si) (i = 1, 2) and Fix(Q) the sets of all the
fixed points of Si (i = 1, 2) and Q, respectively. At the same time, denote by ΩSGNVLI the set of all the
solutions of the SGNVLI (1) where for each i ∈ {1, 2}, the nonlinear mapping Pi is strictly ηi-accretive with
dom(Pi) ∩ 1i(Ei) , ∅. Making use of (32), we conclude that for any (x1, x2) ∈ E1 × E2, (x1, x2) ∈ Fix(Q) if and
only if xi ∈ Fix(Si) for each i ∈ {1, 2}, that is, Fix(Q) = Fix(S1,S2) = Fix(S1)×Fix(S2). If (̂x, ŷ) ∈ Fix(Q)∩ΩSGNVLI,
then utilizing Lemma 3.2, it can be easily seen that for each n ∈N,

x̂ = Sn
1 x̂ = x̂ − 11 (̂x) + RP1,η1

M(.,̂x),λ
[P1(11 (̂x)) − λF(̂x, ŷ − f2(ŷ))]

= Sn
1

(̂
x − 11 (̂x) + RP1,η1

M(.,̂x),λ
[P1(11 (̂x)) − λF(̂x, ŷ − f2(ŷ))]

)
,

ŷ = Sn
2 ŷ = ŷ − 12(ŷ) + RP2,η2

N(.,̂y),ρ
[P2(12(ŷ)) − ρG(̂x − f1 (̂x), ŷ)]

= Sn
2

(
ŷ − 12(ŷ) + RP2,η2

N(.,̂y),ρ
[P2(12(ŷ)) − ρG(̂x − f1 (̂x), ŷ)]

)
.

(34)

The fixed point formulation (34) enables us to construct the following iterative algorithm for finding a
common element of the two sets of Fix(Q) = Fix(S1,S2) and ΩSGNVLI.

Algorithm 4.9. Let Ei, fi, 1i,F,G (i = 1, 2) be the same as in the SGNVLI (1). Assume that for each n ≥ 0 and
i ∈ {1, 2}, ηn,i : Ei × Ei → Ei and Pn,i : Ei → Ei are nonlinear mappings such that for each n ≥ 0 and i ∈ {1, 2},
Pn,i is a strictly ηn,i-accretive mapping with dom(Pn,i) ∩ 1i(Ei) , ∅. Let for all n ≥ 0, Mn : E1 × E1 → 2E1 and
Nn : E2 × E2 → 2E2 be any multi-valued nonlinear mappings such that for all z ∈ E1 and n ≥ 0, Mn(., z) : E1 → 2E1

is a Pn,1-ηn,1-accretive mapping with 11(E1) ∩ dom Mn(., z) , ∅, and for all t ∈ E2 and n ≥ 0, Nn(., t) : E2 → 2E2 is
a Pn,2-ηn,2-accretive mapping with 12(E2) ∩ dom Nn(., t) , ∅. Suppose further that for each i ∈ {1, 2}, Si : Ei → Ei
is an ({an,i}

∞

n=0, {bn,i}
∞

n=0, ϕi)-total uniformly Li-Lipschitzian mapping. For any given (x0, y0) ∈ E1 × E2, define the



J. Balooee, S. Al-Homidan / Filomat 38:2 (2024), 669–704 695

iterative sequence {(xn, yn)}∞n=0 in E1 × E2 in the following way:
xn+1 = αnxn + (1 − αn)Sn

1

(
xn − 11(xn) + RPn,1,ηn,1

Mn(.,xn),λn
[Pn,1(11(xn))

−λnF(xn, yn − f2(yn))]
)
+ (1 − αn)en + ln,

yn+1 = αnyn + (1 − αn)Sn
2

(
yn − 12(yn) + RPn,2,ηn,2

Nn(.,yn),ρn
[Pn,2(12(yn))

−ρnG(xn − f1(xn), yn)]
)
+ (1 − αn)ên + l̂n,

(35)

where n = 0, 1, 2, . . . ; λn, ρn > 0 are constants, {αn}
∞

n=0 is a sequence in [0, 1) such that
∞∑

n=0
(1 − αn) = ∞, and

{en}
∞

n=0, {ln}∞n=0 and {ên}
∞

n=0, {l̂n}∞n=0 are four sequences in E1 and E2, respectively, to take into account a possible inexact
computation of the resolvent operator point satisfying the following conditions:

en = e′n + e′′n , ên = ê′n + ê′′n ;
lim
n→∞
∥(e′n, ê′n)∥∗ = 0;

∞∑
n=0
∥(e′′n , ê′′n )∥∗ < ∞,

∞∑
n=0
∥(ln, l̂n)∥∗ < ∞.

(36)

Let {(un, vn)}∞n=0 be any sequence in E1 × E2 and define {ϵn}∞n=0 by

ϵn = ∥(un+1 − vn+1) − (Ln,Dn)∥∗,
Ln = αnun + (1 − αn)Sn

1

(
un − 11(un) + RPn,1,ηn,1

Mn(.,un),λn
[Pn,1(11(un))

−λnF(un, vn − f2(vn))]
)
+ (1 − αn)en + ln,

Dn = αnvn + (1 − αn)Sn
2

(
vn − 12(vn) + RPn,2,ηn,2

Nn(.,vn),ρn
[Pn,2(12(vn))

−ρnG(un − f1(un), vn)]
)
+ (1 − αn)ên + l̂n.

(37)

In the case where for each i ∈ {1, 2}, Si ≡ Ii, the identity mapping on Ei, then Algorithm 4.9 reduces to
the following algorithm.

Algorithm 4.10. Assume that Ei,Pn,i, ηn,i, fi, 1i,Mn,Nn,F,G (i = 1, 2 and n ≥ 0) are the same as in Algorithm 4.9.
For any given (x0, y0) × E1 × E2, compute the iterative sequence {(xn, yn)}∞n=0 in E1 × E2 by the iterative schemes

xn+1 = αnxn + (1 − αn)
(
xn − 11(xn) + RPn,1,ηn,1

Mn(.,xn),λn
[Pn,1(11(xn))

−λnF(xn, yn − f2(yn))]
)
+ (1 − αn)en + ln,

yn+1 = αnyn + (1 − αn)
(
yn − 12(yn) + RPn,2,ηn,2

Nn(.,yn),ρn
[Pn,2(12(yn))

−ρnG(xn − f1(xn), yn)]
)
+ (1 − αn)ên + l̂n,

where n = 0, 1, 2 . . . ; and λn, ρn, {αn}
∞

n=0, {en}
∞

n=0, {ln}
∞

n=0, {ên}
∞

n=0, {l̂n}
∞

n=0 are the same as in Algorithm 4.9. Let
{(un, vn)}∞n=0 be any sequence in E1 × E2 and define {̂ϵn}∞n=0 by

ϵ̂n = ∥(un+1 − vn+1) − (̂Ln, D̂n)∥∗,
L̂n = αnun + (1 − αn)

(
un − 11(un) + RPn,1,ηn,1

Mn(.,un),λn
[Pn,1(11(un))

−λnF(un, vn − f2(vn))]
)
+ (1 − αn)en + ln,

D̂n = αnvn + (1 − αn)
(
vn − 12(vn) + RPn,2,ηn,2

Nn(.,vn),ρn
[Pn,2(12(vn))

−ρnG(un − f1(un), vn)]
)
+ (1 − αn)ên + l̂n.

(38)

5. An Application

In this section, as an application of the notion of graph convergence for P-η-accretive mapping, the
strong convergence of the iterative sequence generated by Algorithm 4.9 to a common element of the two
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setsΩSGNVLI and Fix(Q), where Q is a self-mapping of E1×E2 defined by (32), under some suitable conditions
is proved. In the meanwhile, the stability of the iterative sequence generated by Algorithm 4.9 is verified.
Before dealing with the convergence analysis of our proposed iterative algorithm, we need to recall the
following notion and lemma.

Definition 5.1. For i = 1, 2, let Ei be a real Banach space and T be a self-mapping of E1 × E2. Suppose that
(x0, y0) ∈ E1 × E2 and (xn+1, yn+1) = f (T, xn, yn) defines an iterative procedure which yields a sequence of points
{(xn, yn)}∞n=0 in E1 × E2. Assume that Fix(T) = {(x, y) ∈ E1 × E2 : (x, y) = T(x, y)} , ∅ and {(xn, yn)}∞n=0
converges to some (x∗, y∗) ∈ Fix(T). Further, let {(zn,wn)}∞n=0 be an arbitrary sequence in E1 × E2 and ϵn =
∥(zn+1,wn+1) − f (T, zn,wn)∥ for each n ≥ 0. If lim

n→∞
ϵn = 0 implies that lim

n→∞
(zn,wn) = (x∗, y∗), then the iterative

procedure defined by (xn+1, yn+1) = f (T, xn, yn) is said to be T-stable or stable with respect to T.

Remark 5.2. Some stability results of the iteration procedures for variational inequalities and variational
inclusions have been established by various authors, see, for example, [1, 3, 9, 12, 34, 35, 38, 39, 41, 49, 50].

Lemma 5.3. Let {an}, {bn} and {cn} be three nonnegative real sequences satisfying the following conditions: there
exists a natural number n0 such that

an+1 ≤ (1 − tn)an + bntn + cn, ∀n ≥ n0,

where tn ∈ [0, 1],
∞∑

n=0
tn = ∞, lim

n→∞
bn = 0 and

∞∑
n=0

cn < ∞.

Then lim
n→∞

an = 0.

Proof. The proof follows directly from Lemma 2 in [48].

Theorem 5.4. For i = 1, 2, let Ei, ηi,Pi, fi, 1i,F,G,M and N (i = 1, 2) be the same as in Theorem 3.5 and let all the
conditions of Theorem 3.5 hold. Suppose that ηn,i,Pn,i,Mn and Nn (n ≥ 0 and i = 1, 2) are the same as in Algorithm
4.9. Assume that for each i ∈ {1, 2}, Si : Ei → Ei is an ({an,i}

∞

n=0, {bn,i}
∞

n=0, ϕi)-total uniformly Li-Lipschitzian mapping
and Q is a self-mpping of E1 × E2 defined by (32) such that Fix(Q) ∩ ΩSGNVLI , ∅. Assume further that for each
n ≥ 0 and i ∈ {1, 2},

(i) ηn,i is τn,i-Lipschitz continuous;
(ii) Pn,i is γn,i-strongly ηn,i-accretive and δn,i-Lipschitz continuous;

(iii) lim
n→∞

Pn,i(xi) = Pi(xi) for each xi ∈ Ei, Mn(., z) G
−→M(., z) and Nn(., t) G

−→ N(., t) for any (z, t) ∈ E1 × E2;

(iv) there exist constants µn,i > 0 such that

∥RPn,1,ηn,1

Mn(.,u),λn
(w) − RPn,1,ηn,1

Mn(.,v),λn
(w)∥ ≤ µn,1∥u − v∥, ∀u, v,w ∈ E1, (39)

∥RPn,2,ηn,2

Nn(.,u),ρn
(w) − RPn,2,ηn,2

Nn(.,v),ρn
(w)∥ ≤ µn,2∥u − v∥, ∀u, v,w ∈ E2; (40)

(v) γn,i → γi, τn,i → τi and δn,i → δi as n→∞;
(vi) there exist constants µi, λ, ρ > 0 (i = 1, 2) satisfying (5)–(8) such that µn,i → µi, λn → λ and ρn → ρ as

n→∞;
(vii) Li(k + 1) < 2 where k is the same as in (20).

Then,

(1) the iterative sequence {(xn, yn)}∞n=0 generated by Algorithm 4.9 converges strongly to the only element (x, y) of
Fix(Q) ∩ΩSGNVLI.

(2) If, in addition, there exists a constant α > 0 such that α + αn ≤ 1 for each n ≥ 0, then lim
n→∞

(un, vn) = (x, y) if
and only if lim

n→∞
ϵn = 0, where {(un, vn)}∞n=0 is any sequence in E1 × E2 satisfying (38).
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Proof. Since all the conditions of Theorem 3.5 hold, it ensures the existence of a unique solution (x, y) ∈ E1×E2
for the SGNVLI (1). According to Lemma 3.2, we have x = x − 11(x) + RP1,η1

M(.,x),λ[P1(11(x)) − λF(x, y − f2(y))],

y = y − 12(y) + RP2,η2

N(.,y),ρ[P2(12(y)) − ρG(x − f1(x), y)].
(41)

Taking into account that ΩSGNVLI is a singleton set and Fix(Q) ∩ΩSGNVLI , ∅, it follows that x ∈ Fix(S1) and
y ∈ Fix(S2). Thereby, in the light of this fact and making use of (41), for each n ≥ 0, we can write x = αnx + (1 − αn)Sn

1

(
x − 11(x) + RP1,η1

M(.,x),λ[P1(11(x)) − λF(x, y − f2(y))]
)
,

y = αny + (1 − αn)Sn
2

(
y − 12(y) + RP2,η2

N(.,y),ρ[P2(12(y)) − ρG(x − f1(x), y)]
)
.

(42)

Using (35), (39), (42), Lemma 2.22, we yield

∥xn+1 − x∥1 ≤ αn∥xn − x∥1 + (1 − αn)∥Sn
1

(
xn − 11(xn)

+ RPn,1,ηn,1

Mn(.,xn),λn
[Pn,1(11(xn)) − λnF(xn, yn − f2(yn))]

)
− Sn

1

(
x − 11(x) + RP1,η1

M(.,x),λ[P1(11(x)) − λF(x, y − f2(y))]
)
∥1

+ (1 − αn)∥en∥1 + ∥ln∥1

≤ αn∥xn − x∥1 + (1 − αn)L1

(
∥xn − 11(xn)

+ RPn,1,ηn,1

Mn(.,xn),λn
[Pn,1(11(xn)) − λnF(xn, yn − f2(yn))]

− (x − 11(x) + RP1,η1

M(.,x),λ[P1(11(x)) − λF(x, y − f2(y))]
)
∥1

+ an,1ϕ1

(
∥xn − 11(xn) + RPn,1,ηn,1

Mn(.,xn),λn
[Pn,1(11(xn)) − λnF(xn, yn − f2(yn))]

− (x − 11(x) + RP1,η1

M(.,x),λ[P1(11(x)) − λF(x, y − f2(y))]
)
∥1

)
+ bn,1

)
+ (1 − αn)∥en∥1 + ∥ln∥1

≤ αn∥xn − x∥1 + (1 − αn)L1

(
∥xn − x − (11(xn) − 11(x))∥1

+ ∥RPn,1,ηn,1

Mn(.,xn),λn
[Pn,1(11(xn)) − λnF(xn, yn − f2(yn))]

− RP1,η1

M(.,x),λ[P1(11(x)) − λF(x, y − f2(y))]∥1

+ an,1ϕ1

(
∥xn − x − (11(xn) − 11(x))∥1

+ ∥RPn,1,ηn,1

Mn(.,xn),λn
[Pn,1(11(xn)) − λnF(xn, yn − f2(yn))]

− RP1,η1

M(.,x),λ[P1(11(x)) − λF(x, y − f2(y))]∥1
)
+ bn,1

)
+ (1 − αn)(∥e′n∥1 + ∥e

′′

n ∥1) + ∥ln∥1

≤ αn∥xn − x∥ + (1 − αn)L1

(
∥xn − x − (11(xn) − 11(x))∥1

+ ∥RPn,1,ηn,1

Mn(.,xn),λn
[Pn,1(11(xn)) − λnF(xn, yn − f2(yn))]

− RPn,1,ηn,1

Mn(.,xn),λn
[P1(11(x)) − λF(x, y − f2(y))]∥1

+ ∥RPn,1,ηn,1

Mn(.,xn),λn
[P1(11(x)) − λF(x, y − f2(y))] − RPn,1,ηn,1

Mn(.,x),λn
[P1(11(x)) − λF(x, y − f2(y))]∥1

+ ∥Ψ(n)∥1 + an,1ϕ1

(
∥xn − x − (11(xn) − 11(x))∥1

+ ∥RPn,1,ηn,1

Mn(.,xn),λn
[Pn,1(11(xn)) − λnF(xn, yn − f2(yn))]
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− RPn,1,ηn,1

Mn(.,xn),λn
[P1(11(x)) − λF(x, y − f2(y))]∥1

+ ∥RPn,1,ηn,1

Mn(.,xn),λn
[P1(11(x)) − λF(x, y − f2(y))] − RPn,1,ηn,1

Mn(.,x),λn
[P1(11(x)) − λF(x, y − f2(y))]∥1

+ ∥Ψ(n)∥1
)
+ bn,1

)
+ (1 − αn)∥e′n∥1 + ∥e

′′

n ∥1 + ∥ln∥1

≤ αn∥xn − x∥1 + (1 − αn)L1

(
∥xn − x − (11(xn) − 11(x))∥1

+
τq1−1

n,1

γn,1
∥Pn,1(11(xn)) − P1(11(x)) − (λnF(xn, yn − f2(yn))

− λF(x, y − f2(y)))∥1 + µn,1∥xn − x∥1 + ∥Ψ(n)∥1 + an,1ϕ1

(
∥xn − x − (11(xn) − 11(x))∥1

+
τq1−1

n,1

γn,1
∥Pn,1(11(xn)) − P1(11(x)) − (λnF(xn, yn − f2(yn)) − λF(x, y − f2(y)))∥1

+ µn,1∥xn − x∥1 + ∥Ψ(n)∥1
)
+ bn,1

)
+ (1 − αn)∥e′n∥1 + ∥e

′′

n ∥1 + ∥ln∥1

≤ αn∥xn − x∥1 + (1 − αn)L1

(
∥xn − x − (11(xn) − 11(x))∥1

+
τq1−1

n,1

γn,1
∥Pn,1(11(xn)) − Pn,1(11(x)) − λn

(
F(xn, yn − f2(yn)) − F(x, y − f2(y)))∥1

+ ∥Pn,1(11(x)) − P1(11(x))∥1 + |λn − λ|∥F(x, y − f2(y))∥1
)

+ µn,1∥xn − x∥1 + ∥Ψ(n)∥1 + an,1ϕ1

(
∥xn − x − (11(xn) − 11(x))∥1

+
τq1−1

n,1

γn,1
∥Pn,1(11(xn)) − Pn,1(11(x)) − λn

(
F(xn, yn − f2(yn)) − F(x, y − f2(y)))∥1

+ ∥Pn,1(11(x)) − P1(11(x))∥1 + |λn − λ|∥F(x, y − f2(y))∥1
)

+ µn,1∥xn − x∥1 + ∥Ψ(n)∥1
)
+ bn,1

)
+ (1 − αn)∥e′n∥1 + ∥e

′′

n ∥1 + ∥ln∥1

≤ αn∥xn − x∥1 + (1 − αn)L1

(
∥xn − x − (11(xn) − 11(x))∥1

+
τq1−1

n,1

γn,1

(
∥Pn,1(11(xn)) − Pn,1(11(x)) − λn

(
F(xn, yn − f2(yn)) − F(x, yn − f2(yn)))∥1

+ λn∥F(x, yn − f2(yn)) − F(x, y − f2(y))∥1

+ ∥Pn,1(11(x)) − P1(11(x))∥1 + |λn − λ|∥F(x, y − f2(y))∥1
)

+ µn,1∥xn − x∥1 + ∥Ψ(n)∥1 + an,1ϕ1(∥xn − x − (11(xn) − 11(x))∥1

+
τq1−1

n,1

γn,1

(
∥Pn,1(11(xn)) − Pn,1(11(x)) − λn

(
F(xn, yn − f2(yn)) − F(x, yn − f2(yn))∥1

+ λn∥F(x, yn − f2(yn)) − F(x, y − f2(y))∥1 + ∥Pn,1(11(x)) − P1(11(x))∥1

+ |λn − λ∥F(x, y − f2(y))∥1
)
+ µn,1∥xn − x∥1 + ∥Ψ(n)∥1

)
+ bn,1

)
+ (1 − αn)∥e′n∥1 + ∥e

′′

n ∥1 + ∥ln∥1

≤ αn∥xn − x∥1 + (1 − αn)L1

(
φ1(n)∥xn − x∥1 + ϑ1(n)∥yn − y∥2

+ ∆(n) + ∥Ψ(n)∥1 + an,1ϕ1

(
φ1(n)∥xn − x∥1 + ϑ1(n)∥yn − y∥2

+ ∆(n) + ∥Ψ(n)∥1
)
+ bn,1

)
+ (1 − αn)∥e′n∥1 + ∥e

′′

n ∥1 + ∥ln∥1,

(43)
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where for each n ≥ 0,

φ1(n) = µn,1 +
q1

√
1 − q1ν1 + (cq1 + q1σ1)πq1

1 +
τq1−1

n,1

γn,1

q1

√
δq1

n,1π
q1

1 − q1λnr1 + λ
q1
n cq1 sq1

1 ,

ϑ1(n) =
λnξ1τ

q1−1
n,1

γn,1

q2

√
1 − q2ς2 + (cq2 + q2ζ2)θq2

2 ,

∆(n) =
τq1−1

n,1

γn,1

(
∥Pn,1(11(x)) − P1(11(x))∥1 + |λn − λ|∥F(x, y − f2(y))∥1

)
,

Ψ(n) = RPn,1,ηn,1

Mn(.,x),λn
[P1(11(x)) − λF(x, y − f2(y))] − RP1,η1

M(.,x),λ[P1(11(x)) − λF(x, y − f2(y))].

In a similar way to that of proof of (43), employing (35), (40), (42), Lemma 2.22 and the assumptions, one
can show that

∥yn+1 − y∥2 ≤ αn∥yn − y∥2 + (1 − αn)L2

(
φ2(n)∥xn − x∥1 + ϑ2(n)∥yn − y∥2

+ Υ(n) + ∥Φ(n)∥2 + an,2ϕ2

(
φ2(n)∥xn − x∥1 + ϑ2(n)∥yn − y∥2

+ Υ(n) + ∥Φ(n)∥2
)
+ bn,2

)
+ (1 − αn)∥ê′n∥2 + ∥ê

′′

n ∥2 + ∥l̂n∥2,

(44)

where for each n ≥ 0,

ϑ2(n) = µn,2 +
q2

√
1 − q2ν2 + (cq2 + q2σ2)πq2

2 +
τq2−1

n,2

γn,2

q2

√
δq2

n,2π
q2

2 − q2ρnr2 + ρ
q2
n cq2 sq2

2 ,

φ2(n) =
ρnξ2τ

q2−1
n,2

γn,2

q1

√
1 − q1ς1 + (cq1 + q1ς1)θq1

1 ,

Υ(n) =
τq2−1

n,2

γn,2

(
∥Pn,2(12(y)) − P2(12(y))∥2 + |ρn − ρ|∥G(x − f1(x), y)∥2

)
,

Φ(n) = RPn,2,ηn,2

Nn(.,y),ρn
[P2(12(y)) − ρG(x − f1(x), y)] − RP2,η2

N(.,y),ρ[P2(12(y)) − ρG(x − f1(x), y)].

Letting L = max{L1,L2} and making use of (43) and (44), we derive that

∥(xn+1, yn+1) − (x, y)∥∗ = ∥xn+1 − x∥1 + ∥yn+1 − y∥2

≤ αn(∥xn − x∥1 + ∥yn − y∥2) + (1 − αn)L
(
(φ1(n) + φ2(n))∥xn − x∥1

+ (ϑ1(n) + ϑ2(n))∥yn − y∥2 + ∆(n) + Υ(n) + ∥Ψ(n)∥1

+ ∥Φ(n)∥2 + an,1ϕ1

(
φ1(n)∥xn − x∥1 + ϑ1(n)∥yn − y∥2

+ ∆(n) + ∥Ψ(n)∥1
)
+ an,2ϕ2

(
φ2(n)∥xn − x∥1

+ ϑ2(n)∥yn − y∥2 + Υ(n) + ∥Φ(n)∥2
)
+ bn,1 + bn,2

)
+ (1 − αn)(∥e′n∥1 + ∥ê

′

n∥2) + ∥e′′n ∥1 + ∥ê
′′

n ∥2 + ∥ln∥1 + ∥l̂n∥2
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≤ αn

(
∥xn − x∥1 + ∥yn − y∥2) + (1 − αn)L

(
k(n)(∥xn − x∥1

+ ∥yn − y∥2) + ∆(n) + Υ(n) + ∥Ψ(n)∥1 + ∥Φ(n)∥2
+ an,1ϕ(k(n)(∥xn − x∥1 + ∥yn − y∥2) + ∆(n) + ∥Ψ(n)∥1)

+ an,2ϕ
(
k(n)(∥xn − x∥1 + ∥yn − y∥2) + Υ(n) + ∥Φ(n)∥2

)
+ bn,1 + bn,2

)
+ (1 − αn)(∥e′n∥1 + ∥ê

′

n∥2) + ∥e′′n ∥1 + ∥ê
′′

n ∥2 + ∥ln∥1 + ∥l̂n∥2

= αn∥(xn, yn) − (x, y)∥∗ + (1 − αn)L
(
k(n)∥(xn, yn) − (x, y)∥∗ + ∆(n) + Υ(n)

+ ∥(Ψ(n),Φ(n))∥∗ + an,1ϕ
(
k(n)∥(xn, yn) − (x, y)∥∗ + ∆(n) + ∥Ψ(n)∥1

)
+ an,2ϕ

(
k(n)∥(xn, yn) − (x, y)∥∗ + Υ(n) + ∥Φ(n)∥2

)
+ bn,1 + bn,2

)
+ (1 − αn)∥(e′n, ê

′

n)∥∗ + ∥(e′′n , ê
′′

n )∥∗ + ∥(ln, l̂n)∥∗
= αn∥(xn, yn) − (x, y)∥∗ + (1 − αn)Lk(n)∥(xn, yn) − (x, y)∥∗

+ (1 − αn)L
(
Γ(n) + an,1ϕ

(
k(n)∥(xn, yn) − (x, y)∥∗ + Γ1(n)

)
+ an,2ϕ(k(n)∥(xn, yn) − (x, y)∥∗ + Γ2(n)

)
+ bn,1 + bn,2

)
+ (1 − αn)∥(e′n, ê

′

n)∥∗ + ∥(e′′n , ê
′′

n )∥∗ + ∥(ln, l̂n)∥∗,

(45)

where ϕ is a self-mapping of R+ defined by (33), and for each n ≥ 0,

k(n) = {φ1(n) + φ2(n), ϑ1(n) + ϑ2(n)},
Γ1(n) = ∆(n) + ∥Ψ(n)∥1,
Γ2(n) = Υ(n) + ∥Φ(n)∥2,
Γ(n) = Γ1(n) + Γ2(n) = ∆(n) + Υ(n) + ∥(Ψ(n),Φ(n))∥∗.

Clearly, k(n) → k = max{φ1 + φ2, ϑ1 + ϑ2} as n → ∞, where φ1, φ2, ϑ1, ϑ2 are the same as in (16) and (17).
Then for k̂ = k+1

2 ∈ (k, 1), there exists n0 ≥ 1 such that k(n) < k̂ for all n ≥ n0. Accordingly, from (45) it follows
that for all n ≥ n0,

∥(xn+1, yn+1) − (x, y)∥∗ ≤ αn∥(xn, yn) − (x, y)∥∗ + (1 − αn)L̂k∥(xn, yn) − (x, y)∥∗

+ (1 − αn)L
(
Γ(n) + an,1ϕ(̂k∥(xn, yn) − (x, y)∥∗ + Γ1(n)

)
+ an,2ϕ(k̂∥(xn, yn) − (x, y)∥∗ + Γ2(n)) + bn,1 + bn,2

)
+ (1 − αn)∥(e′n, ê

′

n)∥∗ + ∥(e′′n , ê
′′

n )∥∗ + ∥(ln, l̂n)∥∗

=
(
1 − (1 − L̂k)(1 − αn)

)
∥(xn, yn) − (x, y)∥∗

+ (1 − Lk̂)(1 − αn)
Θ(n)

1 − Lk̂
+ ∥(e′′n , ê

′′

n )∥∗ + ∥(ln, l̂n)∥∗,

(46)

where,

Θ(n) = L
(
Γ(n) + an,1ϕ(̂k∥(xn, yn) − (x, y)∥∗ + Γ1(n)

)
+ an,2ϕ(̂k∥(xn, yn) − (x, y)∥∗

+ Γ2(n)) + bn,1 + bn,2

)
+ ∥(e′n, ê

′

n)∥∗.

The condition Li(k + 1) < 2 (i = 1, 2) implies that L̂k < 1. Theorem 4.2 ensures that ∥Ψ(n)∥1, ∥Φ(n)∥2 → 0
as n → ∞ and so ∥(Ψ(n),Φ(n))∥∗ → 0 as n → ∞. Since lim

n→∞
Pn,i(xi) = Pi(xi) for each xi ∈ Ei and i ∈ {1, 2},

lim
n→∞
λn = λ and lim

n→∞
ρn = ρ, we infer that lim

n→∞
∆(n) = 0 and lim

n→∞
Υ(n) = 0 as n → ∞. Consequently,

Γ1(n),Γ2(n),Γ(n) → 0 as n → ∞. Taking into account that lim
n→∞

an,i = lim
n→∞

bn,i = 0 for i = 1, 2, thanks to
(36) we note that all the conditions of Lemma 5.3 are satisfied. Now, lemma 5.3 and (46) guarantee that
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(xn+1, yn+1) → (x, y) as n → ∞. Therefore, the iterative sequence {(xn, yn)}∞n=0 generated by Algorithm 4.9
converges strongly to the unique solution of the SGNVLI (1), that is, the only element of Fix(Q) ∩ΩSGNVLI.

We now prove the conclusion (2). By (38), we obtain

∥(un+1, vn+1) − (x, y)∥∗ ≤ ∥(un+1, vn+1) − (Ln,Dn)∥∗ + ∥(Ln,Dn) − (x, y)∥∗
= ϵn + ∥Ln − x∥1 + ∥Dn − y∥2.

(47)

By following similar arguments as in the proof of (43) and (44) with suitable modifications, we obtain

∥Ln − x∥1 ≤ αn∥un − x∥1 + (1 − αn)L1

(
φ1(n)∥un − x∥1 + ϑ1(n)∥vn − y∥2

+ ∆(n) + ∥Ψ(n)∥1 + an,1ϕ1

(
φ1(n)∥un − u∥1 + ϑ1(n)∥vn − y∥2

+ ∆(n) + ∥Ψ(n)∥1
)
+ bn,1

)
+ (1 − αn)∥e′n∥1 + ∥e

′′

n ∥1 + ∥ln∥1

(48)

and

∥Dn − y∥2 ≤ αn∥vn − y∥2 + (1 − αn)L2

(
φ2(n)∥un − x∥1 + ϑ2(n)∥vn − y∥2 + Υ(n)

+ ∥Φ(n)∥2 + an,2ϕ2(φ2(n)∥un − x∥1 + ϑ2(n)∥vn − y∥2

+ Υ(n) + ∥Φ(n)∥∥2) + bn,2

)
+ (1 − αn)∥ê′n∥2 + ∥ê

′′

n ∥2 + ∥l̂n∥2,

(49)

where for all n ≥ 0, φ1(n), ϑ1(n) are the same as in (43) and φ2(n), ϑ2(n) are the same as in (44). Since
0 < α ≤ 1 − αn for all n ≥ 0, making use of (47)–(49), as the proof of (46), we can conclude that

∥(un+1, vn+1) − (x, y)∥∗ ≤ (1 − (1 − L̂k)(1 − αn))∥(un, vn) − (x, y)∥∗

+ (1 − L̂k)(1 − αn)
Λ(n)

1 − L̂k
+ ∥(e′′n , ê

′′

n )∥∗ + ∥(ln, l̂n)∥∗,
(50)

where

Λ(n) = L
(
Γ(n) + an,1ϕ(̂k∥(un, vn) − (x, y)∥∗ + Γ1(n)

)
+ an,2ϕ(̂k∥(un, vn) − (x, y)∥∗

+ Γ2(n)) + bn,1 + bn,2

)
+ ∥(e′n, ê

′

n)∥∗ +
ϵn
α
.

Suppose that lim
n→∞
ϵn = 0. Then it follows from (36), (50) and Lemma 5.3 that lim

n→∞
(un, vn) = (x, y).

Conversely, assume that lim
n→∞

(un, vn) = (x, y). With the help of (48) and (49), we have

ϵn = ∥(un+1, vn+1) − (Ln,Dn)∥∗
≤ ∥(un+1, vn+1) − (x, y)∥∗ + ∥(Ln,Dn) − (x, y)∥∗

≤ ∥(un+1, vn+1) − (x, y)∥∗ + (1 − (1 − L̂k)(1 − αn))∥(un, vn) − (x, y)∥∗

+ (1 − L̂k)(1 − αn)
ω(n)

1 − L̂k
+ ∥(e′′n , ê

′′

n )∥∗ + ∥(ln, l̂n)∥∗,

(51)

where

ω(n) = L
(
Γ(n) + an,1ϕ(̂k∥(un, vn) − (x, y)∥∗ + Γ1(n)

)
+ an,2ϕ(̂k∥(un, vn) − (x, y)∥∗

+ Γ2(n)) + bn,1 + bn,2

)
+ ∥(e′n, ê

′

n)∥∗.

Obviously, (36) implies that lim
n→∞
∥(e′′n , ê′′n )∥∗ = lim

n→∞
∥(ln, l̂n)∥∗ = 0. Now, the facts that lim

n→∞
an,i = lim

n→∞
bn,i = 0 for

i = 1, 2 and lim
n→∞
∥(e′n, ê′n)∥∗ = lim

n→∞
Γ(n) = 0 ensure that the right-hand side of (51) tends to zero as n→∞. The

proof is finished.

Taking Si ≡ Ii, the identity mapping on Ei, we obtain the following corollary as a direct consequence of
Theorem 5.4 immediately.
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Corollary 5.5. Suppose that Ei, ηi, ηn,i,Pi,Pn,i, fi, 1i,Mn,M,Nn,N,F and G (n ≥ 0 and i = 1, 2) are the same as in
Theorem 5.4 and let conditions (i)–(vii) of Theorem 5.4 hold. Then

(1) the iterative sequence {(xn, yn)}∞n=0 generated by Algorithm 4.10 converges strongly to the unique
solution (x, y) of the SGNVLI (1).

(2) If, in addition, there exists a constant α > 0 such that α+αn ≤ 1 for each n ≥ 0, then lim
n→∞

(un, vn) = (x, y)

if and only if lim
n→∞
ϵ̂n = 0, where {(un, vn)}∞n=0 is any sequence in E1 × E2 defined by (38).
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