
Filomat 38:2 (2024), 727–741
https://doi.org/10.2298/FIL2402727B

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. A mathematical approach to dealing with the problems of ambiguity and indeterminacy in
knowledge is called a rough set theory. It begins by using an equivalence relation to divide the universe
into parts. Numerous generalized rough set models have been developed and investigated to increase
their adaptability and extend their range of applications. In this context, we introduce new generalized
rough set models that are inspired by covering-based rough sets and ideals. In this paper, lower and
upper approximations of new types of covering rough sets based on j-neighborhoods, complementary
j-neighborhoods, and j-adhesions are defined via ideals. The main features of these approximations
are examined. The relationships among them are given by various examples and propositions. Some
comparisons between our methods and others’ methods such as Abd El-Monsef et al.’s method [2] and
Nawar et al.’s method [22] are given. A practical example is given to illustrate one of our methods is more
precise.

1. Introduction

The problems of ambiguity and uncertainty in the information system are vital in data analysis. There
are many new ways how to manage and perceive knowledge. One of them is the rough set theory. Rough set
theory was investigated by Pawlak [24, 25] as a mathematical approach that deals with uncertainty and the
vagueness of imprecise data. It has a wide variety of executions in modern-life fields such as biology, physics,
engineering, etc. The central idea in this theory is approximation operators which are characterized by
equivalence relations. Since these relations restrict the application areas, researchers replaced equivalence
relations with binary relations. Many extensions based on binary relations [17, 20, 21, 26, 30, 35] have been
made, and thus generalizations of Pawlak’s rough set theory have been obtained. Also, many researchers
introduced several types of generalization of Pawlak’s rough set theory using topological concepts.

Lin [19] and Yao [31] examined rough sets concerning neighborhood systems for the interpretation
of granules. Abd El-Monsef et al. [1] defined different neighborhood systems to approximate rough
sets and introduced new neighborhood systems which appear as a generalized type of neighborhood
spaces. Amer et al. [7] obtained new j-nearly approximations as mathematical instruments modifying and
generalizing the j-approximations in the j-neighborhood space. Atef et al. [8] generalized three types of
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rough set models hold on j-neighborhood space. They also introduced the notions of P j-neighbourhood
using j-neighborhoods and investigated their properties. Al-Shami et al. [4] introduced new types of
neighborhoods, namely E j-neighborhoods applying j-neighborhoods and also constructed approximations
based on a topology induced by them. They studied their relationships with N j-neighborhoods and E j-
neighborhoods. Al-Shami [5] defined and investigated C j-neighborhoods which depend on the inclusion
relations between j-neighborhoods and also introduced and studiedM j-neighborhoods [6] defined using
union relation Dai et al. [11].

The easing of the partition resulting from an equivalent relationship to a covering is another strategy.
Therefore, many extensions based on coverings [9, 27, 32–34, 36] have been made and thus generalizations
of Pawlak’s rough set theory have been obtained. Zhu [34] defined the covering approximation space and
gave a new definition of the neighborhood in this space. Thus, he presented new covering rough sets
based on this neighborhood. Abd El-Monsef et al. [2] introduced the generalized covering approximation
space as a generalization for covering approximation space defined j-neighborhoods for obtaining new
types of approximations here. Then, using j-neighborhoods, Nawar et al. [22] gave the definitions of
complementary j-neighborhoods and j-adhesions. Also, they constructed new covering rough sets based
on these neighborhoods.

The concept of ideal, which was initially introduced by Kuratowski [18], is one of the major research
areas in the field of mathematics. A non-empty collection of sets that is closed by the heredity condition and
finite additivity is known as an ideal. In recent years, interest in various ideal rough set models has risen
significantly. This approach has the benefit of increasing lower approximations while decreasing upper
approximations, which limits a concept’s vagueness (uncertainty) to uncertainty areas at their borders. As
a result, the accuracy measure is improved and the boundary region is minimized. The ideal can also
be thought of as a class of an object in an information system that has specific requirements and can be
researched to generate new granulations using information obtained from real-world problems. Firstly, the
idea of ideals with ”r”-neighborhoods were used by Kandil et al. [16] to expand Pawlak’s approximations.
They demonstrated that in contrast to Pawlak’s method [25], and Yao’s method [31] their results reduce
the boundary region. Later, many researchers have found the examination of this theory with ideals to be
interesting (see [10, 12–15, 23, 28]).

In this paper, the definitions of Iϱ j-approximations, IM j-approximations, and IP j-approximations
based on j-neighborhoods, complementary j-neighborhoods, and j-adhesions via ideals in generalized
covering approximation space are given respectively. Then, the basic properties of these approximations
are examined and many counterexamples are given to illustrate counter connections. In addition, the
relationships between these approximations are investigated and the best approximations are obtained
as IP j-approximations. Moreover, Iϱ j-approximations with j-approximations and IM j-approximations
with complementary j-approximations are compared and it is seen that our approximations have higher
accuracy measures. Finally, a real-life application is given in which IP j-approximations and adhesion
j-approximations are compared.

2. Preliminaries

Definition 2.1. [34] Let Σ be a domain of discourse and∁ be a family of subsets of Σ. If none subsets in∁ are empty
and
⋃
∁ = Σ, then ∁ is called a covering of Σ. The pair (Σ,∁) is called a covering approximation space.

Definition 2.2. [2] Let Σ , ∅ be a finite set and ϱ be a binary relation on Σ. Then, the right cover and the left cover
of Σ are defined as follows:

right cover: ∁r = {eϱ : ∀e ∈ Σ and Σ =
⋃

e∈Σ eϱ},
left cover: ∁l = {ϱe : ∀e ∈ Σ and Σ =

⋃
e∈Σ ϱe}.

The triple (Σ, ϱ,∁n) is called generalized covering approximation space (briefly, Gn-CAS) for n ∈ {r, l}.

Definition 2.3. [2] Let (Σ, ϱ,∁n) be a Gn-CAS for n ∈ {r, l}. Then, the j-neighborhoods N j(e) of e ∈ Σ for each
j ∈ J = {r, l, i,u} are defined as follows:
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r-neighborhood: Nr(e) =
⋂
{K ∈ ∁r : e ∈ K},

l-neighborhood: Nl(e) =
⋂
{K ∈ ∁l : e ∈ K},

i-neighborhood: Ni(e) = Nr(e) ∩Nl(e),
u-neighborhood: Nu(e) = Nr(e) ∪Nl(e).

Lemma 2.4. [2] Let (Σ, ϱ,∁n) be a Gn-CAS. Then, the following hold:
(1)N j(e) , ∅ for each e ∈ Σ and j ∈ J.
(2) e ∈ N j(e) for each e ∈ Σ and j ∈ J.
(3) If f ∈ N j(e) thenN j( f ) ⊆ N j(e) for e, f ∈ Σ and j ∈ {r, l, i}.
(4)N j(e) represent different coverings of Σ for each e ∈ Σ.

Lemma 2.5. [2] Let (Σ, ϱ,∁n) be a Gn-CAS. For each e ∈ Σ, the following hold:
(1)Ni(e) ⊆ Nr(e) ⊆ Nu(e),
(2)Ni(e) ⊆ Nl(e) ⊆ Nu(e).

Definition 2.6. [2] Let (Σ, ϱ,∁n) be a Gn-CAS, ∆ ⊆ Σ and j ∈ J. Then, the j-lower approximations, the j-upper
approximations, the j-boundary and the j-accuracy measure of ∆ are defined respectively as follows:

ϱ
j
(∆) = {e ∈ ∆ : N j(e) ⊆ ∆}, ϱ j(∆) = {e ∈ Σ : N j(e) ∩ ∆ , ∅},

B j(∆) = ϱ j(∆) \ ϱ
j
(∆) and δ j(∆) =

|ϱ
j
(∆)|

|ϱ j(∆)| , |ϱ j(∆)| , ∅.

Also, ∆ is called j-exact set if ϱ j(∆) = ϱ
j
(∆) = ∆. Otherwise, ∆ is called j-rough set.

Definition 2.7. [22] Let (Σ, ϱ,∁n) be a Gn-CAS for n ∈ {r, l}. Then, the complementary j-neighborhoodsM j(e) of
e ∈ Σ for each j ∈ J = {r, l, i,u} are defined as follows:

M j(e) = { f ∈ Σ : e ∈ N j( f )}.

Lemma 2.8. [22] Let (Σ, ϱ,∁n) be a Gn-CAS. Then, the following hold:
(1) e ∈ M j(e) for each e ∈ Σ and j ∈ J.
(2) If f ∈ M j(e) thenM j( f ) ⊆ M j(e) for any e, f ∈ Σ and j ∈ {r, l, i}.

Definition 2.9. [22] Let (Σ, ϱ,∁n) be a Gn-CAS, ∆ ⊆ Σ and j ∈ J. Then, the complementary j-lower approxima-
tions, the complementary j-upper approximations, the complementary j-boundary and the complementary j-accuracy
measure of ∆ are defined respectively as follows:

M j(∆) = {e ∈ ∆ :M j(e) ⊆ ∆},M j(∆) = {e ∈ Σ :M j(e) ∩ ∆ , ∅},

BM j(∆) =M j(∆) \M j(∆) and η j(∆) =
|M j(∆)|

|M j(∆)|
, |M j(∆)| , ∅.

Definition 2.10. [22] Let (Σ, ϱ,∁n) be a Gn-CAS for n ∈ {r, l}. Then, the j-adhesions P j(e) of e ∈ Σ for each
j ∈ J = {r, l, i,u} are defined as follows:

P j(e) = { f ∈ Σ : N j(e) = N j( f )}.

Lemma 2.11. [22] Let (Σ, ϱ,∁n) be a Gn-CAS. Then, for each e ∈ Σ and j ∈ J, the following hold:
(1) P j(e) ⊆ N j(e) .
(2) P j(e) ⊆ M j(e).

Definition 2.12. [22] Let (Σ, ϱ,∁n) be a Gn-CAS, ∆ ⊆ Σ and j ∈ J. Then, the adhesion j-lower approximations,
the adhesion j-upper approximations, the adhesion j-boundary and the adhesion j-accuracy measure of ∆ are defined
respectively as follows:

P j(∆) = {e ∈ ∆ : P j(e) ⊆ ∆}, P j(∆) = {e ∈ Σ : P j(e) ∩ ∆ , ∅},

BP j(∆) = P j(∆) \ P j(∆) and µ j(∆) =
|P j(∆)|

|P j(∆)|
, |P j(∆)| , ∅.
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3. New Approximation Operators Based on Different Neighborhoods via Ideals

In this section, new rough approximations based on three different neighborhoods and ideals are con-
structed inGn-CAS. Their basic properties are obtained and the relationships among them are investigated.
Also, the comparisons between these approximations and the previous ones in [2, 22] are discussed.

Definition 3.1. Let (Σ, ϱ,∁n) be a Gn-CAS and I be an ideal on Σ. Then, the Iϱ
j
-lower approximations, Iϱ j-upper

approximations and Iδ j-accuracy measures of ∆ are defined respectively as follows for j ∈ J and ∆ ⊆ Σ.

Iϱ
j
(∆) = {e ∈ Σ : N j(e) \ ∆ ∈ I},

Iϱ j(∆) = {e ∈ Σ : N j(e) ∩ ∆ < I},

Iδ j(∆) =
|Iϱ

j
(∆)∩∆|

|Iϱ j(∆)∪∆| , ∆ , ∅.

Remark 3.2. Let (Σ, ϱ,∁n) be aGn-CAS. If I = {∅}, Iϱ
j
-lower and Iϱ j-upper approximations coincide with j-lower

and j-upper approximations.

Proposition 3.3. Let (Σ, ϱ,∁n) be a Gn-CAS with two ideals I,J ; j ∈ J and ∆1,∆2 ⊆ Σ.
(1) Iϱ

j
(Σ) = Σ and Iϱ j(∅) = ∅.

(2) ∆1 ⊆ ∆2 implies Iϱ
j
(∆1) ⊆ Iϱ

j
(∆2) and Iϱ j(∆1) ⊆ Iϱ j(∆2).

(3) Iϱ
j
(∆1) ∩ Iϱ

j
(∆2) = Iϱ

j
(∆1 ∩ ∆2) and Iϱ j(∆1) ∪ Iϱ j(∆2) = Iϱ j(∆1 ∪ ∆2).

(4) Iϱ
j
(∆c

1) = (Iϱ j(∆1))c and Iϱ j(∆
c
1) = (Iϱ

j
(∆1))c.

(5) Iϱ
j
(∆1) ∪ Iϱ

j
(∆2) ⊆ Iϱ

j
(∆1 ∪ ∆2) and Iϱ j(∆1 ∩ ∆2) ⊆ Iϱ j(∆1) ∩ Iϱ j(∆2).

(6) If ∆c
1 ∈ I, then Iϱ

j
(∆1) = Σ and if ∆1 ∈ I, then Iϱ j(∆1) = ∅.

(7) If I ⊆ J , then Iϱ
j
(∆1) ⊆ Jϱ

j
(∆1) and Jϱ j(∆1) ⊆ Iϱ j(∆1).

Proof. (1) For each e ∈ Σ, we have N j(e) \ Σ = ∅ ∈ I. Thus, Iϱ
j
(Σ) = Σ. Also, for each e ∈ Σ, we have

N j(e) ∩ ∅ = ∅ ∈ I. Then, Iϱ j(∅) = ∅.
(2) Suppose ∆1 ⊆ ∆2 and x ∈ Iϱ

j
(∆1). Then, we have N j(x) \ ∆1 ∈ I. By hypothesis, N j(x) \ ∆2 ∈ I. Thus,

x ∈ Iϱ
j
(∆2). The other part is proved similarly.

(3) Since ∆1 ∩ ∆2 ⊆ ∆1 and ∆1 ∩ ∆2 ⊆ ∆2, we have Iϱ
j
(∆1 ∩ ∆2) ⊆ Iϱ

j
(∆1) and Iϱ

j
(∆1 ∩ ∆2) ⊆ Iϱ

j
(∆2) by

(2). Thus, Iϱ
j
(∆1 ∩ ∆2) ⊆ Iϱ

j
(∆1) ∩ Iϱ

j
(∆2). Conversely, let x ∈ Iϱ

j
(∆1) ∩ Iϱ

j
(∆2). Then, N j(x) \ ∆1 ∈ I and

N j(x) \ ∆2 ∈ I. By the definition of ideal, we get (N j(x) \ ∆1) ∪ (N j(x) \ ∆2) = N j(x) \ (∆1 ∩ ∆2) ∈ I. Thus,
x ∈ Iϱ

j
(∆1 ∩ ∆2). The other part is proved similarly.

(4) Let x ∈ Iϱ
j
(∆c

1). Then, we have N j(x) \ ∆c
1 ∈ I. From here, we get N j(x) ∩ ∆1 ∈ I, that is x < Iϱ j(∆1). Thus,

x ∈ (Iϱ j(∆1))c. Conversely, we can prove similarly. The other part is proved similarly.
(5) The proofs are obvious by (2).
(6) Since N j(e) ∩ ∆c

1 ⊆ ∆
c
1 for each e ∈ Σ, we have N j(e) ∩ ∆c

1 ∈ I by the hypothesis. Thus, Iϱ
j
(∆1) = Σ. The other

proof is proved similarly.
(7) The proofs are clear by hypothesis.

The following example shows that the converse implications of Proposition 3.3(2) and the converse
inclusions of Proposition 3.3(5) are not true in general.

Example 3.4. Let Σ = {℧1,℧2,℧3,℧4}, ϱ = {(℧1,℧1), (℧1,℧3), (℧1,℧4), (℧2,℧1), (℧2,℧3), (℧2,℧4), (℧3,℧1),
(℧3,℧2), (℧3,℧3), (℧4,℧1), (℧4,℧2), (℧4,℧3)} be a binary relation andI = {∅, {℧3}, {℧4}, {℧3,℧4}} be an ideal on
Σ. For∆1 = {℧2} and∆2 = {℧1}, we obtainIϱ

r
(∆1) = ∅,Iϱ

r
(∆2) = {℧1,℧3,℧4},Iϱr(∆1) = {℧2} andIϱr(∆2) = Σ.
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Thus, Iϱ
r
(∆1) ⊂ Iϱ

r
(∆2) and Iϱr(∆1) ⊂ Iϱr(∆2) but ∆1 ⊈ ∆2. Also, Iϱ

r
(∆1) ∪ Iϱ

r
(∆2) , Iϱ

r
(∆1 ∪ ∆2) = Σ and

Iϱr(∆1) ∩ Iϱr(∆2) , Iϱr(∆1 ∩ ∆2) = ∅.

Note that Iϱ
j
-lower and Iϱ j-upper approximation operators may not be provide all the properties of

j-approximation operators in [2].

Example 3.5. Consider Example 3.4. Then,
(1) Iϱl(Σ) = {℧1,℧2} , Σ and Iϱ

i
(∅) = {℧3,℧4} , ∅.

(2) Iϱ
r
({℧1}) = {℧1,℧3,℧4} ⊈ {℧1} and {℧2,℧3,℧4} ⊈ Iϱr({℧2,℧3,℧4}) = {℧2}.

(3) Iϱ
u
(Iϱ

u
({℧1,℧4})) = ∅ , Iϱ

u
({℧1,℧4}) = {℧3,℧4} and Iϱu(Iϱu({℧2})) = Σ , Iϱu({℧2}) = {℧1,℧2}.

Proposition 3.6. Let (Σ, ϱ,∁n) be a Gn-CAS with an ideal I and ∆ ⊆ Σ.
(1) Iϱ

u
(∆) ⊆ Iϱ

r
(∆) ⊆ Iϱ

i
(∆),

(2) Iϱ
u
(∆) ⊆ Iϱ

l
(∆) ⊆ Iϱ

i
(∆),

(3) Iϱi(∆) ⊆ Iϱr(∆) ⊆ Iϱu(∆),
(4) Iϱi(∆) ⊆ Iϱl(∆) ⊆ Iϱu(∆).

Proof. (1) and (2) Let x ∈ Iϱ
u
(∆). Then, Nu(x) \ ∆ ∈ I. From Lemma 2.5, Nr(x) \ ∆ ⊆ Nu(x) \ ∆ and

Nl(x) \ ∆ ⊆ Nu(x) \ ∆. By the definition of ideal, we have Nr(x) \ ∆ ∈ I and Nl(x) \ ∆ ∈ I. Thus, x ∈ Iϱ
r
(∆) and

x ∈ Iϱ
l
(∆). Also, sinceNi(x) \ ∆ ⊆ Nr(x) \ ∆ andNi(x) \ ∆ ⊆ Nl(x) \ ∆, we obtain x ∈ Iϱ

i
(∆).

(3) and (4) Let x ∈ Iϱi(∆). Then, we have Ni(x) ∩ ∆ < I. From Lemma 2.5, we get Ni(x) ∩ ∆ ⊆ Nr(x) ∩ ∆ and
Ni(x) ∩ ∆ ⊆ Nl(x) ∩ ∆. By the definition of ideal, Nr(x) ∩ ∆ < I and Nl(x) ∩ ∆ < I. Hence, x ∈ Iϱr(∆) and
x ∈ Iϱl(∆). Moreover, we haveNu(x) ∩ ∆ < I sinceNr(x) ⊆ Nu(x) andNl(x) ⊆ Nu(x). Thus, x ∈ Iϱu(∆).

Corollary 3.7. Let (Σ, ϱ,∁n) be a Gn-CAS with an ideal I and ∆ ⊆ Σ.
(1) Iδu(∆) ≤ Iδr(∆) ≤ Iδi(∆),
(2) Iδu(∆) ≤ Iδl(∆) ≤ Iδi(∆).

Remark 3.8. In Table 1, we calculate Iϱ
j
-lower approximations, Iϱ j-upper approximations and Iδ j-accuracy mea-

sures of all subsets of Σ for j ∈ J according to Example 3.4. In this way, we see that the highest Iδ j-accuracy measures
can be obtained for j = i.

Theorem 3.9. Let (Σ, ϱ,∁n) be a Gn-CAS with an ideal I and ∆ ⊆ Σ. For j ∈ J, the following hold:
(1) ϱ

j
(∆) ⊆ Iϱ

j
(∆),

(2) Iϱ j(∆) ⊆ ϱ j(∆).

Proof. (1) Let x ∈ ϱ
j
(∆). Then, we haveN j(x) ⊆ ∆ for x ∈ ∆ ⊆ Σ. Thus,N j(x) \ ∆ = ∅ ∈ I, that is, x ∈ Iϱ

j
(∆).

(2) Let x ∈ Iϱ j(∆). Then, we getN j(x) ∩ ∆ < I for x ∈ Σ. Hence,N j(x) ∩ ∆ , ∅, that is, x ∈ ϱ j(∆).

Corollary 3.10. Let (Σ, ϱ,∁n) be a Gn-CAS with an ideal I and ∆ ⊆ Σ. For j ∈ J, δ j(∆) ≤ Iδ j(∆).

Remark 3.11. Let Σ = {℧1,℧2,℧3}, ϱ = {(℧1,℧1), (℧1,℧2), (℧2,℧3), (℧3,℧1)} be a binary relation and I =
{∅, {℧1}} be an ideal on Σ. When lower approximations, upper approximations, and accuracy measures of all subsets
of Σ are calculated for j = r by using Abd El-Monsef et al.’s approach [2] and our approach, Iδr-accuracy measures
are higher than δr-accuracy measures as seen in Table 2.

Definition 3.12. Let (Σ, ϱ,∁n) be a Gn-CAS and I be an ideal on Σ. Then, the IM j-lower approximations,

IM j-upper approximations and Iη j-accuracy measures of ∆ are defined respectively as follows for j ∈ J and ∆ ⊆ Σ.



O. Bedre Özbakir et al. / Filomat 38:2 (2024), 727–741 732
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Table 2: Comparison between Abd El-Monsef et al.’s approach [2] and our approach for j = r.

∆ Abd El-Monsef et al.’s approach our approach
ϱ

r
(∆) ϱr(∆) δr(∆) Iϱ

r
(∆) Iϱr(∆) Iδr(∆)

{℧1} {℧1} {℧1,℧2}
1
2 {℧1} ∅ 1

{℧2} ∅ {℧2} 0 {℧1,℧2} {℧2} 1
{℧3} {℧3} {℧3} 1 {℧1,℧3} {℧3} 1
{℧1,℧2} {℧1,℧2} {℧1,℧2} 1 {℧1,℧2} {℧2} 1
{℧1,℧3} {℧1,℧3} Σ 2

3 {℧1,℧3} {℧3} 1
{℧2,℧3} {℧3} {℧2,℧3}

1
2 Σ {℧2,℧3} 1

Σ Σ Σ 1 Σ {℧2,℧3} 1

IM j(∆) = {e ∈ Σ :M j(e) \ ∆ ∈ I},

IM j(∆) = {e ∈ Σ :M j(e) ∩ ∆ < I},

Iη j(∆) =
|IM j(∆)∩∆|

|IM j(∆)∪∆|
, ∆ , ∅.

Remark 3.13. Let (Σ, ϱ,∁n) be a Gn-CAS. If I = {∅}, IM j-lower and IM j-upper approximations coincide with
complementary j-lower and complementary j-upper approximations.

Proposition 3.14. Let (Σ, ϱ,∁n) be a Gn-CAS with two ideals I,J ; j ∈ J and ∆1,∆2 ⊆ Σ.
(1) IM j(Σ) = Σ and IM j(∅) = ∅.

(2) ∆1 ⊆ ∆2 implies IM j(∆1) ⊆ IM j(∆2) and IM j(∆1) ⊆ IM j(∆2).

(3) IM j(∆1) ∩ IM j(∆2) = IM j(∆1 ∩ ∆2) and IM j(∆1) ∪ IM j(∆2) = IM j(∆1 ∪ ∆2).

(4) IM j(∆
c
1) = (IM j(∆1))c and IM j(∆c

1) = (IM j(∆1))c.

(5) IM j(∆1) ∪ IM j(∆2) ⊆ IM j(∆1 ∪ ∆2) and IM j(∆1 ∩ ∆2) ⊆ IM j(∆1) ∩ IM j(∆2).

(6) If ∆c
1 ∈ I, then IM j(∆1) = Σ and if ∆1 ∈ I, then IM j(∆1) = ∅.

(7) If I ⊆ J , then IM j(∆1) ⊆ JM j(∆1) and JM j(∆1) ⊆ IM j(∆1).

Proof. Proofs are done similarly to the proofs of Proposition 3.3.

The following example shows that the converse implications of Proposition 3.14 (2) and the converse
inclusions of Proposition 3.14(5) are not true in general.

Example 3.15. Consider Example 3.4. For ∆1 = {℧1} and ∆2 = {℧2}, we obtain IMr(∆1) = {℧4}, IMr(∆2) =
{℧2,℧4}, IMr(∆1) = {℧1,℧3} and IMr(∆2) = {℧1,℧2,℧3}. Thus, IMr(∆1) ⊂ IMr(∆2) and IMr(∆1) ⊂
IMr(∆2) but ∆1 ⊈ ∆2. Also, IMr(∆1) ∪ IMr(∆2) , IMr(∆1 ∪ ∆2) = Σ and IMr(∆1) ∩ IMr(∆2) , IMr(∆1 ∩

∆2) = ∅.

Note that IM j-lower and IM j-upper approximation operators may not provide all the properties of
complementary j-approximation operators in [22].

Example 3.16. Consider Example 3.4. Then,
(1) IMr(Σ) = {℧1,℧2,℧3} , Σ and IMi(∅) = {℧3,℧4} , ∅.
(2) IMr({℧1}) = {℧4} ⊈ {℧1} and {℧1,℧4} ⊈ IMr({℧1,℧4}) = {℧1,℧3}.
(3) If we change the ideal as I = {∅, {℧2}} in Example 3.4, then IMu(IMu({℧1})) = ∅ , IMu({℧1}) = {℧2} and
IMu(IMu({℧1})) = Σ , IMu({℧1}) = {℧1,℧2,℧3}.
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Proposition 3.17. Let (Σ, ϱ,∁n) be a Gn-CAS with an ideal I and ∆ ⊆ Σ.
(1) IMu(∆) ⊆ IMr(∆) ⊆ IMi(∆),
(2) IMu(∆) ⊆ IMl(∆) ⊆ IMi(∆),
(3) IMi(∆) ⊆ IMr(∆) ⊆ IMu(∆),
(4) IMi(∆) ⊆ IMl(∆) ⊆ IMu(∆).

Proof. Proofs are done similarly to the proofs of Proposition 3.6.

Corollary 3.18. Let (Σ, ϱ,∁n) be a Gn-CAS with an ideal I and ∆ ⊆ Σ.
(1) Iηu(∆) ≤ Iηr(∆) ≤ Iηi(∆),
(2) Iηu(∆) ≤ Iηl(∆) ≤ Iηi(∆).

Remark 3.19. In Table 3, we calculate IM j-lower approximations, IM j-upper approximations and Iη j-accuracy
measures of all subsets of Σ for j ∈ J according to Example 3.4. In this way, we see that the highest Iη j-accuracy
measures can be obtained for j = i.

Remark 3.20. Comparing Table 1 and Table 3 shows thatIϱ
j
-lower approximations andIM j-lower approximations,

Iϱ j-upper approximations and IM j-upper approximations, Iδ j-accuracy measures and Iη j-accuracy measures are
not comparable for j ∈ J.

Theorem 3.21. Let (Σ, ϱ,∁n) be a Gn-CAS with an ideal I and ∆ ⊆ Σ. For j ∈ J, the following hold:
(1)M j(∆) ⊆ IM j(∆),

(2) IM j(∆) ⊆ M j(∆).

Proof. Proofs are done similarly to the proofs of Theorem 3.9.

Corollary 3.22. Let (Σ, ϱ,∁n) be a Gn-CAS with an ideal I and ∆ ⊆ Σ. For j ∈ J, η j(∆) ≤ Iη j(∆).

Remark 3.23. Consider the example in the Remark 3.11 with the ideal I = {∅, {℧2}}. When lower approximations,
upper approximations, and accuracy measures of all subsets of Σ are calculated for j = r by using Nawar et al.’s
approach [22] and our approach, Iηr-accuracy measures are higher than ηr-accuracy measures as seen in Table 4.

Definition 3.24. Let (Σ, ϱ,∁n) be aGn-CAS andI be an ideal onΣ. Then, theIP j-lower approximations,IP j-upper
approximations and Iµ j-accuracy measures of ∆ are defined respectively as follows for j ∈ J and ∆ ⊆ Σ.

IP j(∆) = {e ∈ Σ : P j(e) \ ∆ ∈ I},

IP j(∆) = {e ∈ Σ : P j(e) ∩ ∆ < I},

Iµ j(∆) =
|IP j(∆)∩∆|

|IP j(∆)∪∆|
, ∆ , ∅.

Remark 3.25. Let (Σ, ϱ,∁n) be a Gn-CAS. If I = {∅}, IP j-lower and IP j-upper approximations coincide with
adhesion j-lower and adhesion j-upper approximations.

Proposition 3.26. Let (Σ, ϱ,∁n) be a Gn-CAS with two ideals I,J ; j ∈ J and ∆1,∆2 ⊆ Σ.
(1) IP j(Σ) = Σ and IP j(∅) = ∅.

(2) ∆1 ⊆ ∆2 implies IP j(∆1) ⊆ IP j(∆2) and IP j(∆1) ⊆ IP j(∆2).

(3) IP j(∆1) ∩ IP j(∆2) = IP j(∆1 ∩ ∆2) and IP j(∆1) ∪ IP j(∆2) = IP j(∆1 ∪ ∆2).

(4) IP j(∆
c
1) = (IP j(∆1))c and IP j(∆c

1) = (Iϱ
j
(∆1))c.

(5) IP j(∆1) ∪ IP j(∆2) ⊆ IP j(∆1 ∪ ∆2) and IP j(∆1 ∩ ∆2) ⊆ IP j(∆1) ∩ IP j(∆2).

(6) If ∆c
∈ I, then IP j(∆1) = Σ and if ∆1 ∈ I, then IP j(∆1) = ∅.

(7) If I ⊆ J , then IP j(∆1) ⊆ JP j(∆1) and JP j(∆1) ⊆ IP j(∆1).
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Table 4: Comparison between Nawar et al.’s approach [22] and our approach for j = r.

∆ Nawar et al.’s approach our approach
Mr(∆) Mr(∆) ηr(∆) IMr(∆) IMr(∆) Iηr(∆)

{℧1} ∅ {℧1} 0 {℧1,℧2} {℧1} 1
{℧2} {℧2} {℧1,℧2}

1
2 {℧2} ∅ 1

{℧3} {℧3} {℧3} 1 {℧2,℧3} {℧3} 1
{℧1,℧2} {℧1,℧2} {℧1,℧2} 1 {℧1,℧2} {℧1} 1
{℧1,℧3} {℧3} {℧1,℧3}

1
2 Σ {℧1,℧3} 1

{℧2,℧3} {℧2,℧3} Σ 2
3 {℧2,℧3} {℧3} 1

Σ Σ Σ 1 Σ {℧1,℧3} 1

Proof. Proofs are done similarly to the proofs of Proposition 3.3.

The following example shows that the converse implications of Proposition 3.26 (2) and the converse
inclusions of Proposition 3.26(5) are not true in general.

Example 3.27. Consider the Example 3.4.
(1) For ∆1 = {℧2} and ∆2 = {℧3}, we obtain IPr(∆1) = {℧2,℧4}, IPr(∆2) = {℧4}, IPr(∆1) = {℧2} and
IPr(∆2) = ∅. Thus, IPr(∆2) ⊂ IPr(∆1) and IPr(∆2) ⊂ IPr(∆1) but ∆2 ⊈ ∆1.
(2) For ∆1 = {℧1} and ∆2 = {℧2}, we get IPl(∆1)= IPl(∆2) = {℧3,℧4}. Hence, IPl(∆1) ∪ IPl(∆2) , IPl(∆1 ∪

∆2) = Σ.
(3) For ∆1 = {℧1,℧3,℧4} and ∆2 = {℧2,℧3,℧4}, we have IPl(∆1)= IPl(∆2) = {℧1,℧2}. Then, IPl(∆1) ∩
IPl(∆2) , IPl(∆1 ∩ ∆2) = ∅.

Note that IP j-lower and IP j-upper approximation operators may not provide all the properties of
adhesion j-approximation operators in [22].

Example 3.28. Consider Example 3.4. Then,
(1) IPl(Σ) = {℧1,℧2} , Σ and IPr(∅) = {℧4} , ∅.
(2) IPr({℧1}) = {℧1,℧3,℧4} ⊈ {℧1} and {℧2,℧3,℧4} ⊈ IPr({℧2,℧3,℧4}) = {℧2}.

Proposition 3.29. Let (Σ, ϱ,∁n) be a Gn-CAS with an ideal I and ∆ ⊆ Σ.
(1) IPu(∆) ⊆ IPr(∆) ⊆ IPi(∆),
(2) IPu(∆) ⊆ IPl(∆) ⊆ IPi(∆),
(3) IPi(∆) ⊆ IPr(∆) ⊆ IPu(∆),
(4) IPi(∆) ⊆ IPl(∆) ⊆ IPu(∆).

Proof. Proofs are done similarly to the proofs of Proposition 3.6.

Corollary 3.30. Let (Σ, ϱ,∁n) be a Gn-CAS with an ideal I and ∆ ⊆ Σ.
(1) Iµu(∆) ≤ Iµr(∆) ≤ Iµi(∆),
(2) Iµu(∆) ≤ Iµl(∆) ≤ Iµi(∆).

Remark 3.31. In Table 5, we calculate IP j-lower approximations, IP j-upper approximations and Iµ j-accuracy
measures of all subsets of Σ for j ∈ J according to Example 3.4. In this way, we see that the highest Iµ j-accuracy
measures can be obtained for j = i.
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Theorem 3.32. Let (Σ, ϱ,∁n) be a Gn-CAS with an ideal I and ∆ ⊆ Σ For j ∈ J, the following hold:
(1) P j(∆) ⊆ IP j(∆),

(2) IP j(∆) ⊆ P j(∆).

Proof. Proofs are done similarly to the proofs of Theorem 3.9.

Example 3.33. LetΣ = {℧1,℧2,℧3,℧4}, ϱ = {(℧1,℧1), (℧1,℧3), (℧1,℧4), (℧2,℧1), (℧2,℧3), (℧2,℧4), (℧3,℧1),
(℧3,℧2), (℧3,℧4), (℧4,℧1), (℧4,℧4) } be a binary relation and I = {∅, {℧1}, {℧4}, {℧1,℧4}} be an ideal on Σ. For
∆ = {℧1}, we obtain IPr(∆) = {℧1,℧4}, Pr(∆) = ∅, Pr(∆) = {℧1,℧4}, IPr(∆) = ∅. Thus Pr(∆) , IPr(∆) and
IPr(∆) , Pr(∆).

Corollary 3.34. Let (Σ, ϱ,∁n) be a Gn-CAS with an ideal I and ∆ ⊆ Σ For j ∈ J, µ j(∆) ≤ Iµ j(∆).

Theorem 3.35. Let (Σ, ϱ,∁n) be a Gn-CAS with an ideal I and ∆ ⊆ Σ For j ∈ J, the following hold:
(1) Iϱ

j
(∆) ⊆ IP j(∆),

(2) IM j(∆) ⊆ IP j(∆),

(3) IP j(∆) ⊆ Iϱ j(∆),

(4) IP j(∆) ⊆ IM j(∆).

Proof. (1) Let e ∈ Iϱ
j
(∆). ThenN j(e) \ ∆ ∈ I. By the Lemma 2.11, P j(e) \ ∆ ∈ I. Hence e ∈ IP j(∆). So we obtain

Iϱ
j
(∆) ⊆ IP j(∆).

(2) The proof is similar to that of (1).
(3) Let e ∈ IP j(∆). Then P j(e) ∩ ∆ < I. By the Lemma 2.11, N j(e) ∩ ∆ < I. Hence e ∈ Iϱ j(∆). So we obtain

IP j(∆) ⊆ Iϱ j(∆).
(4) The proof is similar to that of (3).

The following example shows that we may not replace by equality relation in Theorem 3.35.

Example 3.36. Consider the Example 3.4.
(1) For ∆ = {℧2,℧4}, we obtain IPr(∆) = {℧2,℧4} and Iϱ

r
(∆) = ∅. Thus, IPr(∆) , Iϱ

r
(∆).

(2) For ∆ = {℧1}, we have IPr(∆) = {℧1,℧3} and Iϱr(∆) = Σ. Hence, IPr(∆) , Iϱr(∆).
(3) For ∆ = {℧1,℧3,℧4}, we get IPr(∆) = {℧1,℧3,℧4} and IMr(∆) = {℧4}. From here, IPr(∆) , IMr(∆).
(4) For ∆ = {℧2}, we obtain IPr(∆) = {℧2} and IMr(∆) = {℧1,℧2,℧3}. Then, IPr(∆) , IMr(∆).

Corollary 3.37. Let (Σ, ϱ,∁n) be a Gn-CAS with an ideal I and ∆ ⊆ Σ For j ∈ J, Iδ j(∆) ≤ Iµ j(∆) and Iη j(∆) ≤
Iµ j(∆).

Remark 3.38. Comparing Table 1,Table 3 and Table 5 shows thatIµ j-accuracy measures are higher thanIδ j-accuracy
measures and Iη j-accuracy measures.

4. An Application

The main purpose of this section is to present a simple practice example to compare Nawar et al’s ap-
proach and one of our approaches. We use Walczak’s example in Chemistry. LetΣ={℧1,℧2,℧3,℧4,℧5,℧6,℧7}

be seven amino acids represented in terms of five attributes: a1=PIE, a2=PIF, a3=SAC=surface area,
a4=MR=molecular refractivity, a5=Vol=molecular volume [29].
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Table 6: Quantitative attributes of seven amino acids

a1 a2 a3 a4 a5

℧1 1.85 2.25 -2.70 401.80 5.7550
℧2 0 0 0 224.9 1.6620
℧3 0.15 0.13 -0.25 337.20 3.8560
℧4 0.23 0.31 -0.55 254.20 2.1260
℧5 0.71 1.22 -1.60 295.10 3.0540
℧6 0.89 0.96 -1.70 377.80 4.9710
℧7 0.17 0.26 -0.58 282.9 2.7480

Example 4.1. Consider Table 6 containing data about 7 amino acids.
We have five relations described as ϱm = {(℧i,℧ j) : |℧i(am) −℧ j(am)| ≤ σm

2 , i, j = 1, ...7,m = 1, ..., 5} where σm
represents the standard of the quantitative attributes am, m=1...5. and we compute ℧iϱ=

⋂
℧ jϱm, m = 1, .., 5. Thus,

we can get the r-neighborhoods of all elements using Definition 2.3, as follows: Nr(℧1) = {℧1}, Nr(℧2) = {℧2},
Nr(℧3) = {℧3}, Nr(℧4) = {℧4,℧7}, Nr(℧5) = {℧5}, Nr(℧6) = {℧6}, Nr(℧7) = {℧4,℧7}. Then Pr(℧4)=
Pr(℧7) = {℧4,℧7}, Pr(℧1) = {℧1}, Pr(℧2) = {℧2}, Pr(℧3) = {℧3}, Pr(℧5) = {℧5} and Pr(℧6) = {℧6} . Then
taking the ideal I = {∅, {℧4}, {℧7}, {℧4,℧7}}. We get Table 7.

Table 7: Comparisons between Nawar et al’s approach [22] approach and our approach

∆ Nawar et al’s approach [22] our approach
lower app. upper app accuracy lower app. upper app accuracy

{℧4} ∅ {℧4,℧7} 0 {℧4,℧7} ∅ 1
{℧1,℧4} {℧1} {℧1,℧4,℧7}

1
3 {℧4,℧7} {℧1} 1

{℧2,℧6} {℧2,℧6} {℧2,℧6} 1 {℧2,℧6,℧4,℧7} {℧4,℧7} 1
{℧6,℧7} {℧6} {℧4,℧6,℧7}

1
3 {℧6,℧7} {℧6} 1

{℧3,℧5,℧7} {℧3,℧5} {℧3,℧4,℧5,℧7}
1
2 {℧3,℧4,℧5,℧6,℧7} {℧3,℧5} 1

{℧1,℧2,℧3,℧4} {℧1,℧2,℧3} {℧1,℧2,℧3,℧4,℧7}
3
5 {℧1,℧2,℧3,℧4,℧7} {℧1,℧2,℧3} 1

{℧1,℧3,℧4,℧5,℧6} {℧1,℧3,℧5,℧6} {℧1,℧3,℧4,℧5,℧6,℧7}
2
3 Σ {℧1,℧3,℧5,℧6} 1

From this practical example, the accuracy measures of our approach are higher than Nawar’s approach [22]. Hence,
these approaches are very useful in rough set theory.

5. Conclusion

The problem of managing and perceiving knowledge is a crucial issue in the area of information systems.
There are many new ways how to manage and perceive knowledge. One of them is the rough set theory.
Rough set theory was investigated by Pawlak as a mathematical approach that deals with uncertainty
and the vagueness of imprecise data. It has a wide variety of executions in modern life fields such as
biology, chemistry, engineering, etc. The central idea in this theory is approximation operators, which are
characterized by equivalence classes. However, the equivalence relations are limited to theoretical and
practical viewpoints. Therefore, many researchers introduced several types of generalization of Pawlak’s
rough set theory using topological concepts and they are constructed based on the concept of coverings and
the ideals. In this work, we defined new types of lower and upper approximations using j-neighborhoods,
complementary j-neighborhoods, and j-adhesions via ideals in generalized covering approximation space.
Then, we gave some of their basic characteristics and showed that the best accuracy measures are obtained
in case j = i. Besides, we compared these approximations both with each other and with the two previously
proposed approximations. We supported all the results we obtained with various examples and tables. In
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future studies,
(1) Search how the suggested methods can be used in other application areas.
(2) Study new approaches can be obtained by using different types of neighborhoods in generalized covering
approximation spaces.
(3) Investigate these concepts and results presented here to soft covering rough sets and fuzzy covering
rough sets by using soft set, fuzzy set, and ideals.
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