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Abstract. In this article we establish that if the metric g of a compact almost Co-Kähler manifoldM2n+1

is a Ricci-Yamabe soliton whose potential vector field is point-wise collinear with the characteristic vector
field, then M2n+1 is a K-almost Co-Kähler manifold under certain condition, whereas in dimension three
the restriction is not required. It is proved that if a (2n+1)-dimensional (κ, µ)-almost Co-Kähler manifold
Mwith κ < 0 admits a Ricci-Yamabe soliton of gradient type, thenM is a N(κ)-almost Co-Kähler manifold.
We also show the non-existence of gradient Ricci-Yamabe structures with DΨ = (ζΨ)ζ on a compact (κ, µ)-
almost Co-Kähler manifold with κ < 0. Then we establish that in a Co-Kähler 3-manifoldM3 with gradient
Ricci-Yamabe solitons, the scalar curvature of the manifold is constant and also, either M3 is flat, or the
gradient of the potential function is collinear with the characteristic vector field ζ. Finally, we construct two
non-trivial examples to ensure the existence of such solitons.

1. Introduction

According to the famous Goldberg conjecture, any compact Einstein almost Co-Kähler manifold is
integrable in complex geometry and any compact Einstein almost Co-Kähler manifold is Co-Kähler, which
is the analogue of this conjecture in contact geometry. Co-Kähler manifolds are actually odd-dimensional
versions of Kähler manifolds and are one of the most significant research topics in contact geometry. So,
one might query if the Co-Kähler geometry framework contains a Goldberg-like conjecture. For Co-Kähler
manifolds, a conjecture like-wise Goldberg was recently derived in [5], stating that any compact Einstein K-
almost Co-Kähler manifold is Co-Kähler. Additionally, with an η-Einstein condition, Cappelletti-Montano
and Pastore [5] presented a necessary criterion for a compact K-almost Co-Kähler manifold to be Co-Kähler.

Recently, differential geometry of almost contact Riemannian manifolds has focused a lot on the Ricci-
Yamabe solitons, a scalar combination of the Yamabe and Ricci soliton. Consequently, it is a fascinating
subject to investigate the existence and classification of Ricci-Yamabe solitons on almost Co-Kähler mani-
folds. According to our awareness, the literature contains many findings regarding Riemannian manifolds
[12], spacetimes [18] and f (R)-gravity [9] with Ricci-Yamabe solitons, but there are just a few results in
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almost Co-Kähler manifolds. We want to fill this gap in this article and focus on investigating the almost
Co-Kähler manifolds that satisfy Ricci-Yamabe solitons.

Goldberg’s conjecture has so far only been verified for manifolds with non-negative scalar curvatures,
but its contact geometry analogue has been affirmed for manifolds with Killing characteristic vector fields
in [5]. Then, Wang [21] extended this result and established that

Theorem 1.1. A compact almost Co-Kähler manifold that admits a Ricci soliton is Ricci-flat and Co-Kähler if the
potential vector field is point-wise collinear with the characteristic vector field ζ.

In this article we generalize the above result by replacing Ricci solitons with Ricci-Yamabe solitons.
In recent years, many mathematicians have become fascinated with the theoretical rather analytical idea

of geometric flows like the Yamabe flow and the Ricci flow. Under the name Ricci-Yamabe map, Guler
and Crasmareanu [14] recently published the analysis of another geometric flow. This is also described
as the (α, β) type Ricci-Yamabe flow. Ricci-Yamabe flow represents a development of the metrics on the
Riemannian manifold proposed in [14] and defined as

∂
∂t
1(t) = −2αRic(t) + βR(t)1(t), 10 = 1(0), (1)

in which R is the scalar curvature, Ric indicates the Ricci tensor, and α, β ∈ R.
Because of the signs of the relevant scalars, α and β, Ricci-Yamabe flow can be thought of as Riemannian,

semi-Riemannian, or singular Riemannian flow. This wide range of choices may be useful in a physical,
or mathematical model, such as relativistic theories. Consequently, the constraint of the Ricci-Yamabe flow
soliton typically causes the Ricci-Yamabe soliton to emerge. Despite the fact that Yamabe and Ricci solitons
are equivalent in dimension 2, they are fundamentally different in higher dimensions, which served as even
another powerful motivation for beginning the study of Ricci-Yamabe solitons.

A Ricci-Yamabe soliton in a almost Co-Kähler manifoldM is described by

£V1 = −2αRic + (βR − 2λ)1, (2)

in which λ ∈ R and £ denotes the Lie-derivative. Here, V is called the potential vector field of the soliton.
Let V be the gradient ofΨ, a smooth function. Hence, the preceding idea is named gradient Ricci-Yamabe

soliton and (2) turns into

∇
2Ψ = −αRic − (λ −

1
2
βr)1, (3)

where ∇2Ψ indicates the Hessian ofΨ.
The Ricci-Yamabe soliton (or gradient Ricci-Yamabe soliton) is termed expanding if λ > 0, whereas

shrinking for λ < 0 and steady when λ = 0.
Recently, in almost Co-Kähler manifolds, several authors studied various type of solitons such as Ricci

([21], [22]) and Yamabe solitons [19], gradient Yamabe and gradient Einstein solitons[11], (m, ρ)-quasi-
Einstein solitons [10], cotton solitons [7], respectively.

According to our knowledge, the study of almost Co-Kähler manifolds with Ricci-Yamabe solitons is
still open. We decide to fill up this gap in this article and focus on characterizing the almost Co-Kähler
manifolds that satisfy the Ricci-Yamabe soliton. Also, with and without the assumption of compactness,
we study (κ, µ)-almost Co-Kähler manifolds admitting a gradient Ricci-Yamabe soliton. Next, we study the
gradient Ricci-Yamabe soliton on a 3-dimensional Co-Kähler manifold. Lastly, we establish the existence
of gradient Ricci-Yamabe solitons on almost Co-Kähler manifolds and Co-Kähler manifolds, respectively
by creating new examples.

2. Preliminaries

LetM2n+1 be an almost contact manifold with almost contact structure (φ, ζ, η), in which ζ indicates a
unit vector field, φ is a (1, 1)-tensor field and η denotes a 1-form satisfying:

φ2(E) = −E + η(E)ζ, η(ζ) = 1. (4)
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Equation (4) readily yields

φζ = 0, 1(E, ζ) = η(E), η(φX) = 0,

1(φE, φF) = 1(E,F) − η(E)η(F), (5)

1(φE,F) = −1(E, φF), 1(φE,E) = 0,

for all smooth vector fields E, F.
Let us define the 2-form Φ as:

Φ(E,F) = 1(E, φF),

for any E, F defined earlier.
An almost Co-Kähler manifold fulfills the conditions dΦ = 0 and dη = 0 [13]. In particular, an almost

Co-Kähler manifold is said to be a Co-Kähler manifold if it is normal, which is identical to ∇Φ = 0. An
almost Co-Kähler structure is called strictly almost Co-Kähler if it is not a Co-Kähler structure. According
to Blair [2], an almost cosymplectic manifold and an almost Co-Kähler manifold are the same.

Let M2n+1 be an almost Co-Kähler manifold. The operators h and ℓ in the manifold are described by
h = 1

2 £ζφ and l = K (., ζ)ζ in whichK is the curvature tensor, satisfy the subsequent relations( [16], [17]):

hφ + φh = 0, hζ = 0, tr h = tr h′ = 0, (6)

∇ζφ = 0, ∇ζ = h′, (7)

∇ζh = −h2φ − φℓ,

φℓφ − ℓ = 2h2, (8)

Ric(ζ, ζ) + tr h2 = 0. (9)

Any Co-Kähler manifold is a K-almost Co-Kähler manifold, as is well known, but the converse is usually
not true. Yet, in a 3-dimensional manifold, it is valid.

Lemma 2.1. [13] In dimension three, any almost Co-Kähler manifold is Co-Kähler if and only if ζ is Killing.

In a manifoldM3 of dimension three, the curvature tensorK can be described as

K (E,F)G = Ric(F,G)E − Ric(E,G)F + 1(F,G)QE − 1(E,G)QF

−
R

2
{1(F,G)E − 1(E,G)F} (10)

for any vector fields E,F,G.
In a 3-dimensional Co-Kähler manifold, we have[20]

QE =
R

2
E −
R

2
η(E)ζ, (11)

in which the Ricci operator Q is described by 1(QE,F) = Ric(E,F).

Proposition 2.2. In a almost Co-Kähler 3- manifold, we have

ζR = 0. (12)

Proof. From (11), we acquire

(∇EQ)F =
(ER)

2
[F − η(F)ζ]. (13)

Contracting E from the above equation, we get (12).
Hence the result.
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3. Ricci-Yamabe solitons on Almost Co-Kähler manifolds

On an almost Co-Kähler manifoldM2n+1(η, ζ, φ, 1), we acquire (£ζ1)(E,F) = 21(h′E,F), where we have
used the second equation of (7). From the previous expression we conclude that the Characteristic vector
field ζ is Killing if and only if h vanishes.

Definition 3.1. If the characteristic vector field ζ is Killing, an almost Co-Kähler manifold is referred to as a K-almost
Co-Kähler manifold.

On an almost Co-Kähler manifold, the distribution indicated by D is described by D = Kerη. Hence, an
almost Co-Kähler structure (1D, φD) onD can easily be obtained by using dΦ = 0 and (4), (5). In [16] Olszak
established that the almost Co-Kähler structure is integrable if and only if

(∇Eφ)F = 1(hE,F)ζ − η(F)hE, (14)

for all E,F, which entails that an almost Co-Kähler manifold is Co-Kähler if and only if it is K-almost
Co-Kähler, also the associated almost Co-Kähler structure is integrable. In [5], Cappelletti-Montano and
Pastore have given another characterization of Co-Kähler structure and deduced that

Theorem 3.2. Every Einstein compact K-almost Co-Kähler manifold is a Co-Kähler manifold.

Now, we generalize the Theorem 1.1 as follows:

Theorem 3.3. If the potential vector field is point-wise collinear with ζ, then a compact almost Co-Kähler manifold
admitting a Ricci-Yamabe soliton reduces to a K-almost Co-Kähler manifold, provided the scalar curvature remains
invariant under the characteristic vector field ζ.

Proof. For a non-zero smooth function ν, we suppose that the potential function V = νζ.
Hence, we get

∇EV = (Eν)ζ + νh′E, (15)

where equation (7) is used. Now, from equation (2), we acquire

ν1(∇Eζ,F) + (Eν)η(F) + ν1(∇Fζ,E) + (Fν)η(E)
= − 2αRic(E,F) − (2λ − βR)1(E,F),

which implies

2ν1(h′E,F) + (Eν)η(F) + (Fν)η(E)
= − 2αRic(E,F) − (2λ − βR)1(E,F).

(16)

The foregoing equation is equivalent to

2νh′E + (Eν)ζ + (Dν)η(E) = −2αQE − (2λ − βR)E, (17)

in which Dν indicates the gradient of ν.
Using tr h = tr h′ = 0 and putting E = F = ei in (16), where {ei} is an orthonormal basis and taking sum

over i (1 ≤ i ≤ 2n + 1) gives

(ζν) = [
2n + 1

2
β − α]R − (2n + 1)λ. (18)

Taking covariant Differentiation of (17) yields

2ν(∇Eh′)F + 2(Fν)h′E+∇F(Eν)ζ + (Eν)∇Fζ + η(E)∇FDν +Dν(∇Fη)E
= − 2α(∇FQ)E + β(FR)E.

(19)
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Contracting the preceding equation and using divζ = 0, we obtain

2νdiv(h′E) + 2((h′E)ν) + ζ(Eν)ζ + η(E)△ν

= − 2α(divQ)E − 2α
2n+1∑
i=1

1(Q∇ei E, ei) + β(ER),
(20)

in which △, the Laplacian operator is described by △ = div.D.
Putting E = ζ in the foregoing equation and using (6) and (7)

ζ(ζν) + △ν = −α(ζR) − 2αtrQh′ + β(ζR). (21)

Then, using (18) in (21) yields

△ν = 2αtrQh′ +
2n − 1

2
β(ζR). (22)

Again, substituting E by hE in the equation (17) infers that

2νh′2E + (h′Eν)ζ = −2αQh′E − (2λ − βR)h′E. (23)

Since h′2 = h2 , using (6) the previous equation yields

νtrh2 + trQh′ = 0. (24)

Now, equations (22) and (24) together give

△ν = 2ανtrh2 +
2n − 1

2
β(ζR). (25)

Let the scalar curvature remain invariant under the characteristic vector field ζ and therefore we have

△ν2 = 2 ∥ Dν ∥2 +4α2ν2trh2. (26)

By hypothesisM is compact, thus we acquire∫
M

(2 ∥ Dν ∥2 +4α2ν2trh2)dM = 0, (27)

where the divergence theorem is used. Therefore, ν is constant and h is vanishing, since α is a non-zero
constant. Thus,M is a K-almost Co-Kähler manifold.

This ends the proof.

Now using Proposition 2.2, equation (25) reduces to

△ν2 = 2 ∥ Dν ∥2 +4α2ν2trh2.

Hence, like-wise the last part of the above proof, we obtain thatM is a K-almost Co-Kähler manifold.

Corollary 3.4. If the potential vector field is point-wise collinear with ζ, then a 3-dimensional compact almost
Co-Kähler manifold admitting a Ricci-Yamabe soliton reduces to a K-almost Co-Kähler manifold.

The Ricci-Yamabe soliton turns into a Ricci soliton for α = 1 and β = 0 [15]. Hence, equation (25) reduces
to

△ν2 = 2 ∥ Dν ∥2 +4ν2trh2.

Hence, similarly to the last part of the foregoing proof, we say thatM is a K-almost Co-Kähler manifold.
Also, from equation (17), we acquire thatM is an Einstein manifold, since β = 0, α = 1 and ν = constant.

Thus, using Theorem 3.2 we conclude thatM is a Co-Kähler manifold.

Corollary 3.5. If the potential vector field is point-wise collinear with ζ, then a compact almost Co-Kähler manifold
admitting a Ricci soliton reduces to a Co-Kähler manifold.

The above corollary was established by Wang [21].
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4. Gradient Ricci-Yamabe solitons on (κ, µ)-almost Co-Kähler manifolds

In contact metric manifoldsM, Blair et al. [4] established the concept of (κ, µ)-nullity distribution. If

K (E,F)ζ = κ[η(F)E − η(E)F] + µ[η(F)hE − η(E)hF], (28)

κ, µ ∈ R holds, thenM is named (κ, µ)-contact metric manifold. In this situation we say ζ ∈ (κ, µ)-nullity
distribution.

An almost Co-Kähler manifold M2n+1 is named a (κ, µ)-almost Co-Kähler manifold if ζ fulfills the
equation (28).

A (κ, µ)-almost Co-Kähler manifoldM2n+1 satisfies

h2E = κφ2E, (29)

Ric(E, ζ) = 2nκη(E) and Qζ = 2nκζ, (30)

Q is the (1,1) Ricci tensor described by 1(QE,F) = Ric(E,F). Equation (29) reflects that κ ≤ 0. Moreover,
κ = 0 if and only ifM2n+1 is a K-almost Co-Kähler manifold. The manifold is named N(κ)-almost Co-Kähler
manifold [8] if µ = 0. Any Co-Kähler manifold obeys (28) for k = µ = 0.

Lemma 4.1. [1] In a (κ, µ)-almost Co-Kähler manifoldM2n+1 with κ<0, the subsequent relations hold:

QE = µhE + 2nκη(E)ζ, (31)

(∇Eh)F − (∇Fh)E =κ[η(F)φE − η(E)φF + 21(φE,F)ζ]
+µ[η(F)φhE − η(E)φhF],

(32)

for any vector fields E, F.

Theorem 4.2. Let a (κ, µ)-almost Co-Kähler manifold M2n+1 with κ < 0 admit a gradient Ricci-Yamabe soliton.
Then, the manifoldM is a N(κ)-almost Co-Kähler manifold.

Proof. Let the (k, µ)-almost Co-Kähler manifoldM admit a gradient Ricci-Yamabe soliton. Therefore from
(3), we write

∇EDΨ = −αQE − (λ −
β

2
R)E. (33)

Covariant differentiation of (33) yields

∇F∇EDΨ = −α∇FQE − (λ −
β

2
R)∇FE +

β

2
(FR)E. (34)

We can write from (34)

∇E∇FDΨ = −α∇EQF − (λ −
β

2
R)∇EF +

β

2
(ER)F. (35)

Using (33), we infer

∇[E,F]DΨ = −αQ(∇EF − ∇FE) − (λ −
β

2
R)(∇EF − ∇FE). (36)

Making use of (34)-(36) and R = 2nk = constant, we acquire

K (E,F)DΨ = −α[(∇EQ)F − (∇FQ)E]. (37)
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Using (31) in (37) yields

K (E,F)DΨ = µ[(∇Fh)E − (∇Eh)F] (38)
+2nk{η(E)h′F − η(F)h′E}
+[(Fµ)hE − (Eµ)hF].

Making use of (32) in the foregoing equation, we obtain

K (E,F)DΨ = α{kµ[η(E)φF − η(F)φE + 21(E, φF)ζ] (39)
−µ2[η(E)h′F − η(F)h′E] + 2nk{η(E)h′F − η(F)h′E}
+[(Fµ)hE − (Eµ)hF].

Now, contracting equation (39) gives

S(F,DΨ) = −α(hFµ) = 0, since dµ ∧ η = 0. (40)

Equations (31) and (40) together reveal

µ(hE)Ψ+ 2nκη(E)(ζΨ) = 0. (41)

Replacing E by ζ in (41) yields

2nκ(ζΨ) = 0. (42)

Since κ < 0, from the foregoing equation we acquire (ζΨ) = 0. Hence from (41), we obtain µ(hE)Ψ = 0
which implies either µ , 0, or µ = 0.

If µ , 0, then (hE)Ψ = 0. Putting E = hE, we get

(h2E)Ψ = κ(φ2E)Ψ
= κ(E + η(E)ζ)Ψ
= 0. (43)

Since κ < 0 and (ζΨ) = 0, the foregoing equation gives EΨ = 0, that is,Ψ = constant. If we putΨ = constant
in (33), we get that the manifold is an Einstein manifold which contradicts (31).

If µ = 0, the (κ, µ)-almost Co-Kähler manifold reduces to a N(κ)-almost Co-Kähler manifold.
Hence the proof is finished.

Theorem 4.3. There does not exist gradient Ricci-Yamabe structures (1,Ψ, λ) with DΨ = (ζΨ)ζ on a compact
(κ, µ)-almost Co-Kähler manifold of dimension greater than three with κ < 0.

Proof. From (31), it follows that the scalar curvature R = 2nκ. Differentiating DΨ = (ζΨ)ζ along the
arbitrary vector field E, we get

∇EDΨ = (E(ζΨ))ζ + (ζΨ)h′E. (44)

By (31) and (56), equation (3) takes the form

2nκαη(E)η(F) + αµ1(hE,F) + (E(ζΨ))η(F) + (ζΨ)1(h′E,F)
= −(κβ − λ)1(E,F), (45)

for all vector fields E,F onM2n+1.
Replacing E by φE and F by φF, we obtain

αµ1(hE,F) + (ζΨ)1(h′E,F) = (κβ − λ)1(φE, φF)

Contracting the preceding equation, we get

λ = κβ. (46)
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Setting E = F = ζ in (58) and using (46), we have

2nκα + ζ(ζΨ) = 0. (47)

Again, contracting (56), we find

∆Ψ + ζ(ζΨ) = 0. (48)

where ∆ = −div D is the Laplacian operator.
Using (47) in (48), we obtain

∆Ψ = 2nκα

By divergence theorem

2nκ
∫
M

dM = 0.

Given thatM is orientable, dM represents the volume form of the manifold and is positive. As a result,
since κ < 0, the left hand side is negative. The aforementioned relation is therefore false.

This ends the proof.

5. Gradient Ricci-Yamabe solitons in dimension three

Let a Co-Kähler 3-manifold admit a gradient Ricci-Yamabe soliton. Therefore we write:

Theorem 5.1. If a Co-Kähler 3-manifold admits a gradient Ricci-Yamabe soliton, then the scalar curvature of the
manifold is constant. Also, the gradient of the potential function is collinear with the Reeb vector field ζ, or the
manifold is flat.

Proof. By virtue of (34)-(36) and (11), we acquire

K (E,F)DΨ = −α[
(FR)

2
(E − η(E)ζ) −

(ER)
2

(F − η(F)ζ)]

+
β

2
[(ER)F − (FR)E]. (49)

By contraction, we have

Ric(F,DΨ) = −
α
2

(FR) + β(FR). (50)

From (49), we easily infer

1(K (E,F)DΨ, ζ) = −
β

2
{(ER)η(F) − (FR)η(E)}.

In a Co-Kähler manifold we haveK (E,F)ζ = 0 and hence we obtain

β

2
{(ER)η(F) − (FR)η(E)} = 0. (51)

As β , 0, the foregoing equation yields

(ER)η(F) − (FR)η(E) = 0. (52)

From Proposition 2.2, we acquire ζR = 0 and hence the above equation gives ER = (ζR)η(E) = 0. Therefore,
R = constant.
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In view of (11) and (50) and using R = constant, we obtain

R

2
((FΨ) − (ζΨ)η(F)) = 0,

which entails either DΨ = (ζΨ)ζ or, R = 0. If R = 0, from equation (11) we conclude that the manifold is
Ricci flat. Therefore, (10) yields that the manifold is flat.

Hence the theorem is proved.

Since the scalar curvature R is constant, (11) yields that ∇Q = 0 and hence the equation (10) gives ∇K = 0,
in other words, it is a locally symmetric manifold. Therefore we get:

Corollary 5.2. If a Co-Kähler 3-manifold admits a Ricci-Yamabe soliton of gradient type, then the manifold becomes
locally symmetric.

We are aware of the following outcome due to Perrone (Proposition 3.1 of [17]) and Wang (Corollary 4.3 of
[23]):

Lemma 5.3. Any Co-Kähler 3-manifold (locally symmetric) is locally isometric to either a Euclidean spaceR3 which
is flat, or the Riemannian product of R and a Kähler surface with non-zero constant curvature.

Combining Corollary 5.2 and Lemma 5.3 provides

Corollary 5.4. Let a Co-Kähler 3-manifold admit a Ricci-Yamabe soliton of gradient type. Then the manifold is
locally isometric to either a Euclidean space R3 which is flat, or the Riemannian product of R and a Kähler surface
with non-zero constant curvature.

Let in a 3-dimensional Co-Kähler manifold the scalar curvature is non-zero. Hence, we have DΨ = (ζΨ)ζ.
Covariant differentiation along E yields

∇EDΨ = (E(ζΨ))ζ. (53)

Using (53) and (11) in the equation (3), we find

(E(ζΨ))ζ = −
αR
2

(E − η(E)ζ) + (λ −
β

2
R)E. (54)

Putting E = ζ in the above equation, we obtain

(ζ(ζΨ))ζ = (λ −
β

2
R)ζ,

that is,

ζ(ζΨ) = (λ −
β

2
R).

Contracting (54), we see that

ζ(ζΨ) = 3(λ −
β

2
R) − αR. (55)

The last two equations yield λ =
(
α+β

2

)
R. Thus we write:

Corollary 5.5. Let a Co-Kähler 3-manifold having non-zero scalar curvature admit a Ricci-Yamabe soliton of gradient
type. Then the soliton is steady, expanding, or shrinking according as

(
α+β

2

)
R = 0,

(
α+β

2

)
R < 0, or

(
α+β

2

)
R > 0.
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6. Examples

Example 6.1. LetM3 = {(u, v,w) ∈ R3 : w > 0}, where (u, v,w) are the standard co-ordinate of R3. OnM3, the
metric 1 is defined by

1 = du ⊗ du + dv ⊗ dv +
u2 + v2 + e−2w

4w
dw ⊗ dw −

v
√

w
du ⊗ dw −

u
√

w
dv ⊗ dw.

Let
δ1 =

∂
∂u
, δ2 =

∂
∂v
, δ3 = vew ∂

∂u
+ uew ∂

∂v
+ 2
√

wew ∂
∂w
.

Then, the vector fields δ1, δ2, δ3 are orthonormal with respect to the metric 1.
We also acquire

[δ1, δ2] = 0, [δ1, δ3] = ewδ2, [δ2, δ3] = ewδ1.

We define the 1-form η, the vector field ζ and (1-1)-tensor field φ by

η =
e−w

2
√

w
dw, ζ = δ3, φδ1 = δ2, φδ2 = −δ1, φδ3 = 0,

then it is simple to establish that the 1-form η and 2-formΦ are closed. Therefore,M3 is an almost Co-Kähler manifold.
Making Use of Koszul’s formula, we acquire

∇δ1δ1 = 0, ∇δ1δ2 = −ewδ3, ∇δ1δ3 = ewδ2,

∇δ2δ1 = −ewδ3, ∇δ2δ2 = 0, ∇δ2δ3 = ewδ1,

∇δ3δ1 = 0, ∇δ3δ2 = 0, ∇δ3δ3 = 0.

The components of the curvature tensorK are described by

K (δ1, δ2)δ1 = −e2wδ2, K (δ1, δ2)δ2 = e2wδ1, K (δ1, δ2)δ3 = 0,

K (δ1, δ3)δ1 = e2wδ3, K (δ1, δ3)δ2 = 2
√

we2wδ3,

K (δ1, δ3)δ3 = −e2wδ1 − 2
√

we2wδ2, K (δ2, δ3)δ1 = 2
√

we2wδ3,

K (δ2, δ3)δ2 = e2wδ3, K (δ2, δ3)δ3 = −2
√

we2wδ1 − e2wδ2.

Using the curvature tensor’s expression, we calculate the Ricci operator Q by

Qδ1 = −2
√

we2wδ2, Qδ2 = −2
√

we2wδ1, Qδ3 = −2e2wδ3. (56)

The tensor field h is described by

hδ1 = −ewδ1, hδ2 = ewδ2, hδ3 = 0. (57)

Suppose thatΨ = w. Then, DΨ = 2
√

wewδ3. By directed computation, we have
∇δ1 DΨ = 2

√
we2wδ2,

∇δ2 DΨ = 2
√

we2wδ1,

∇δ3 DΨ = 2e2w(1 + 2w)δ3.

(58)

From (3), we find that 
∇δ1 DΨ+ αQδ1 + (λ − β2R)δ1 = 0,
∇δ2 DΨ+ αQδ2 + (λ − β2R)δ2 = 0,
∇δ3 DΨ+ αQδ3 + (λ − β2R)δ3 = 0.

Therefore, using (56) and (58), we can easily verify that the foregoing equations are satisfied for α = 1, λ = β
2R.

Hence, the almost Co-Kähler manifoldM3 admits a gradient Ricci-Yamabe soliton.
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Example 6.2. Let the Riemannian metric 1 ofM = R3 is defined by

1 = du2 + dv2 + e2w(u2e2w + v2e2w + 1)dw2
− 2ve2wdu dw + 2ue2wdv dw.

We see that {δ1 =
∂
∂u , δ2 =

∂
∂v , δ3 = vew ∂

∂u − uew ∂
∂v + e−w ∂

∂w } is an orthonormal basis. Hence, [δ1, δ2] = 0,
[δ1, δ3] = −ewδ2, [δ2, δ3] = ewδ1. We set

η = ewdw, ζ = δ3, f = −
∂
∂u
⊗ dv +

∂
∂v
⊗ du − 2ue2w ∂

∂u
⊗ dw − ve2w ∂

∂v
⊗ dw.

The 2-form Φ is described by

Φ = −2du ∧ dv − 2ve2wdv ∧ dw + 2ue2wdw ∧ du.

M is an almost Co-Kähler manifold, since η andΦ are closed. As h = 0,M is a Co-Kähler manifold. The Riemannian
connection ∇ is described by

∇δ1δ1 = 0, ∇δ1δ2 = 0, ∇δ1δ3 = 0,

∇δ2δ1 = 0, ∇δ2δ2 = 0, ∇δ2δ3 = 0,

∇δ3δ1 = ewδ2, ∇δ3δ2 = −ewδ1, ∇δ3δ3 = 0.

From above we see thatK (E,F)G = 0 for all E,F,G ∈ χ(M). Therefore, Ric = 0 and R = 0.
SupposeΨ = ew. Thus DΨ = δ3. Hence, ∇EDΨ = 0 for any E ∈ χ(M). Using this result in (3), we acquire

αQδ1 + (λ − β2R)δ1 = 0,
αQδ2 + (λ − β2R)δ2 = 0,
αQδ3 + (λ − β2R)δ3 = 0.

Hence, the above equations are satisfied for λ = −α, sinceR = 0. Thus, the Co-Kähler manifoldM3 admits a gradient
Ricci-Yamabe soliton.
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[4] Blair, D. E., Koufogiorgos, T. and Papantoniou, B. J., Contact metric manifolds satisfying a nullity condition, Israel J. of Math. 91

(1995), 189-214.
[5] Pastore, A.M. and Cappelletti-Montano, B., Einstein-like conditions and cosymplectic geometry, J. Adv. Math. Stud. 3 (2) (2010), 27-40.
[6] Catino G. and Mazzieri L., Gradient Einstein solitons, Nonlinear Analysis, 132 (2016), 66-94.
[7] Chen, X. M., Cotton solitons on almost co-Kahler 3-manifolds, Quaestiones Mathematicae 44 (2021), 1055–1075.
[8] Dacko, P., On almost cosymplectic manifolds with the structure vector field ζ belonging to the k-nullity distribution, Balkan J. Geom.

Appl., 5 (2000), 47-60.
[9] De, K., De, U.C., Ricci-Yamabe solitons in f (R)-gravity, International Electronic Journal of Geometry, 16 (1) (2023), 334-342.

[10] De, K. Khan, M.N. and De, U.C., almost Co-Kähler manifolds and (m, ρ)-quasi-Einstein solitons Chaos, Solitons and Fractals, 167
(2023), 113050.

[11] De, U.C. Chaubey, S.K. and Suh, Y.J., A note on almost co-Kahler manifolds, Int. J. Geom. Methods Mod. Phys. 17 (2020), 2050153.
doi: 10.1142/S0219887820501534

[12] De, U.C., Sardar, A. and De, K., Ricci-Yamabe solitons and 3-dimensional Riemannian manifolds, Turk J. Math. 46 (2022), 1078-1088.



Y.J. Suh et al. / Filomat 38:23 (2024), 8069–8080 8080

[13] Goldberg, S. I. and Yano. K, Integrability of almost cosymplectic structures, Pacific J. Math, 31 (1969), 373-382.
[14] Guler, S. and Crasmareanu, M., Ricci-Yamabe maps for Riemannian flow and their volume variation and volume entropy, Turk. J. Math.,

43 (2019), 2631-2641.
[15] Hamilton, R.S., The Ricci flow on surfaces, Mathematics and general relativity, 71 (1998), 237-262.
[16] Olszak, Z., On almost cosymplectic manifolds with Kählerian leaves, Tensor (N.S.), 46 (1987), 117-124.
[17] Perrone, D., Classification of homogeneous almost cosymplectic three-manifolds, Diff. Geom. Appl., 30 (2012), 49-58.
[18] Siddiqi, M. D. and De, U. C., Relativistic perfect fluid spacetimes and Ricci-Yamabe solitons, Letters Math. Phys., 112

(2022).https://doi.org/10.1007/s11005-021-01493-z
[19] Suh, Y. J. and De, U. C., Yamabe solitons and Ricci solitons on almost Co-Kähler manifolds, Canadian Math. Bull., 62 (2019), 653-661.
[20] Wang, Y. and Liu, X., Three-dimensional almost Co-Kähler manifolds with harmonic Reeb vector fields, Rev. Un. Mat. Argentina, 58

(2017), 307-317.
[21] Wang, Y., A generalization of Goldberg conjecture for Co-Kähler manifolds, Mediterr. J. Math., 13 (2016), 2679-2690.
[22] Wang, Y., Ricci solitons on almost Co-Kähler manifolds, Candian Math. Bull., 62 (2019), 912-922.
[23] Wang, W., A class of three dimensional almost Co-Kähler manifold, Palestine J. Math. 6 (2017), 111-118.


