Filomat 38:3 (2024), 769–777 https://doi.org/10.2298/FIL2403769C

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Further results on *I*-deferred statistical convergence

Chiranjib Choudhury^a, Shyamal Debnath^a, Ayhan Esi^{b,*}

^aDepartment of Mathematics, Tripura University (A Central University), Suryamaninagar-799022, Agartala, India ^bDepartment of Basic Eng. Sci.(Math.Sect), Malatya Turgut Ozal University, 44100, Malatya, Turkey

Abstract. For a non-empty set *X*, an ideal *I* represents a family of subsets of *X* that is closed under taking finite unions and subsets of its elements. Considering $X = \mathbb{N}$, in the present study, we set forth with the new notion of *I*-deferred statistical limit point, *I*-deferred statistical cluster point and study various properties of the newly introduced notion. For a real valued sequence $x = (x_n)$, we prove that every *I*-deferred statistical cluster point is an *I*-deferred statistical cluster point. Moreover, the collection of all *I*-deferred statistical cluster points of *x* is a closed subset of \mathbb{R} . We also introduce the notion of *I*-deferred statistical limit superior and inferior for real valued sequences and prove several interesting properties. In the end, we establish a necessary and sufficient condition under which a *I*-deferred statistically bounded real valued sequence is *I*-deferred statistically convergent.

1. Introduction

The notion of statistical convergence was first introduced by Fast [11] and Steinhaus [28] independently in the year 1951. Later on, it was further investigated and studied from the sequence space point of view by Fridy [12, 13], Šalát [22], and many others. For more details on statistical convergence, one may refer [14, 20] where one can find many more references.

In 2016, Küçükaslan and Yilmaztürk [17] introduced the notion of deferred statistical convergence as a generalization of statistical convergence. They used the notion of deferred Cesàro mean [1] to define such concept. Several investigations in this direction have been occurred due to Şengül et al. [27], and many others [7–10].

On the other hand, in 2001, the idea of I-convergence was developed by Kostyrko et al. [16] mainly as an extension of statistical convergence. They showed that many other known notions of convergence were a particular type of I-convergence by considering particular ideals. Consequently, this direction gradually gets more attention of the researchers and became one of the most active areas of research. Several investigations and extensions of I-convergence can be found from the works of Demirci [6], Kostyrko et al. [15], Lahiri and Das [18], Mohiuddine and Hazarika [19], Šalát et al. [23], Tripathy and Hazarika [29–31], and many others.

²⁰²⁰ Mathematics Subject Classification. Primary 40A35; Secondary 40A05.

Keywords. Deferred statistical convergence, Ideal, *I*-convergence, *I*-statistical convergence, *I*-deferred statistical convergence. Received: 24 May 2023; Revised: 05 August 2023; Accepted: 08 August 2023

Communicated by Eberhard Malkowsky

^{*} Corresponding author: Ayhan Esi

Email addresses: chiranjibchoudhury123@gmail.com, chiranjib.mathematics@tripurauniv.in (Chiranjib Choudhury), shyamalnitamath@gmail.com, debnathshyamal@tripurauniv.ac.in (Shyamal Debnath), ayhan.esi@ozal.edu.tr, aesi23@hotmail.com (Ayhan Esi)

Combining the notion of statistical convergence and I-convergence, in 2011, Das et al. [2] introduced the notion of I-statistical convergence. Later on, several investigations in this direction has been occurred due to Debnath and Rakshit [5], Mursaleen et al. [21], and many others. For an extensive view of I-statistical convergence, one may refer [3, 4, 24, 25].

Recently, Şengül et al. [26] extended the notion of I-statistical convergence to I- deferred statistical convergence using deferred density. Motivated by their work, in this paper, we introduce the notion of I-deferred statistical limit point, cluster point, limit superior, limit inferior and analyzed various properties of these concepts.

2. Definitions and Preliminaries

Definition 2.1. [12] If *K* is a subset of the positive integers \mathbb{N} , then K_n denotes the set $\{k \in K : k \le n\}$. The natural density of *K* is given by

$$d(K) = \lim_{n \to \infty} \frac{|K_n|}{n},$$

provided that the limit exists.

Definition 2.2. [12] A sequence $x = (x_n)$ is said to be statistically convergent to l if for every $\varepsilon > 0$, the set

$$A(\varepsilon) = \{n \in \mathbb{N} : |x_n - l| \ge \varepsilon\}$$

has natural density zero. *l* is called the statistical limit of the sequence (x_n) and symbolically, $st - \lim x = l$.

Definition 2.3. [17] Let $p = \{p(n) : n \in \mathbb{N}\}$ and $q = \{q(n) : n \in \mathbb{N}\}$ denote the sequences of whole numbers satisfying

$$q(n) - p(n) \ge 1$$
 and $\lim_{n \to \infty} q(n) = \infty$.

A sequence $x = (x_n)$ is said to be deferred statistically convergent to l if for any $\varepsilon > 0$,

$$\lim_{n \to \infty} \frac{1}{(q(n) - p(n))} \left| \left\{ p(n) < k < q(n) : |x_k - l| \ge \varepsilon \right\} \right| = 0.$$

Symbolically, $DS_{p,q} \lim x = l \text{ or } \lim_{n \to \infty} x_n = l(DS_{p,q}).$

Definition 2.4. [16] A family $I \subset 2^X$ of subsets of a nonempty set X is said to be an ideal in X if and only if (i) $\emptyset \in I$ (ii) $A, B \in I$ implies $A \cup B \in I$ (Additive) and (iii) $A \in I, B \subset A$ implies $B \in I$ (Hereditary).

If $\forall x \in X$, $\{x\} \in I$ then I is said to be admissible. Also I is said to be non-trivial if $X \notin I$ and $I \neq \{\emptyset\}$.

Definition 2.5. [16] A family $\mathcal{F} \subset 2^X$ of subsets of a nonempty set X is said to be a filter in X if and only if (i) $\emptyset \notin \mathcal{F}$ (ii) $M, N \in \mathcal{F}$ implies $M \cap N \in \mathcal{F}$ and (iii) $M \in \mathcal{F}, N \supset M$ implies $N \in \mathcal{F}$.

If I is a proper non-trivial ideal in X, then

$$\mathcal{F}(I) = \{ M \subset X : \exists A \in I \text{ such that } M = X \setminus A \}$$

is a filter in *X*. It is called the filter associated with the ideal I.

Definition 2.6. [16] A sequence $x = (x_n)$ is said to be *I*-convergent to *l* if and only if for every $\varepsilon > 0$, the set

$$\{k \in \mathbb{N} : |x_n - l| \ge \varepsilon\}$$

belongs to *I*. The real number *l* is called the *I*-limit of the sequence $x = (x_n)$. Symbolically, $I - \lim x = l$.

Definition 2.7. [2] A sequence $x = (x_n)$ is said to be I-statistically convergent to l if and only if for every $\varepsilon > 0, \delta > 0$,

$$\left\{n \in \mathbb{N} : \frac{1}{n} |\{k \le n : |x_k - l| \ge \varepsilon\}| \ge \delta\right\} \in \mathcal{I}.$$

If a sequence $x = (x_n)$ is *I*-statistically convergent to *l*, then it is denoted by *I* - *st* - lim x = l.

Definition 2.8. [5] An element x_0 is said to be an I-statistical limit point of a sequence $x = (x_n)$ if there exists $M = \{m_1 < m_2 < \cdots < m_k < \cdots\} \subset \mathbb{N}$ such that $M \notin I$ and $st - \lim x_{m_k} = x_0$.

For a sequence $x = (x_n)$, the set of all I-statistical limit points is denoted by $I - S(\Lambda_x)$.

Definition 2.9. [21] An element x_0 is said to be an *I*-statistical cluster point of a sequence $x = (x_n)$ if for every $\varepsilon > 0$ and $\delta > 0$,

$$\left\{n \in \mathbb{N} : \frac{1}{n} \left| \{k \le n : |x_k - x_0| \ge \varepsilon\} \right| < \delta \right\} \notin \mathcal{I}.$$

For a sequence $x = (x_n)$, the set of all I-statistical cluster points is denoted by $I - S(\Gamma_x)$.

Definition 2.10. [21] A sequence $x = (x_n)$ is said to be *I*-statistically bounded (*I*-st bounded), if there exists a number B such that

$$\left\{n \in \mathbb{N} : \frac{1}{n} \left| \{k \le n : |x_k| > B\} \right| > \delta \right\} \in \mathcal{I}.$$

Definition 2.11. [21] Let $x = (x_n)$ be a real valued sequence. Then I-statistical limit superior of x is defined as

$$I - st \limsup x = \begin{cases} \sup B_x, & \text{if } B_x \neq \emptyset \\ -\infty, & \text{if } B_x = \emptyset \end{cases};$$

where B_x stands for the set

$$\left\{b \in \mathbb{R} : \left\{n \in \mathbb{N} : \frac{1}{n} |\{k \le n : x_k > b\}| > \delta\right\} \notin I\right\}.$$

Definition 2.12. [21] Let $x = (x_n)$ be a real valued sequence. Then *I*-statistical limit inferior of *x* is defined as

$$I - st \liminf x = \begin{cases} \inf A_x, & \text{if } A_x \neq \emptyset \\ +\infty, & \text{if } A_x = \emptyset \end{cases};$$

where A_x stands for the set

$$\left\{a \in \mathbb{R} : \left\{n \in \mathbb{N} : \frac{1}{n} \left| \{k \le n : x_k < a\} \right| > \delta \right\} \notin I \right\}$$

Definition 2.13. [26] A sequence $x = (x_n)$ is said to be I-deferred statistically convergent (or $I - DS_{p,q}$ convergent) to l if for any $\varepsilon > 0$ and $\delta > 0$,

$$\left\{ n \in \mathbb{N} : \frac{1}{p(n) - q(n)} \left| \{ p(n) < k \le q(n) : |x_k - l| \ge \varepsilon \} \right| \ge \delta \right\} \in \mathcal{I}.$$

Symbolically, $I - DS_{p,q} \lim x = l$.

3. Main Results

The entire study is divided into two subsections. Throughout the subsections $p = \{p(n) : n \in \mathbb{N}\}$ and $q = \{q(n) : n \in \mathbb{N}\}$ will be used to denote the sequences of whole numbers satisfying $q(n) - p(n) \ge 1$ and $\lim_{n \to \infty} q(n) = \infty$. Also *I* stands for non-trivial admissible ideal of \mathbb{N} .

3.1. I-deferred statistical limit points, cluster points

Definition 3.1. A real number x_0 is said to be an I-deferred statistical limit point of a sequence $x = (x_n)$ if there exists a set $M = \{m_1 < m_2 < \cdots < m_k < \cdots\} \subset \mathbb{N}$ such that $M \notin I$ and $\lim_{m_k} x_{m_k} = x_0(DS_{p,q})$.

If we take p(n) = 0 and q(n) = n, then the above definition is turned to the definition of I – statistical limit point [20].

Definition 3.2. A real number x_0 is said to be an *I*-deferred statistical cluster point of a sequence $x = (x_n)$ if for every $\varepsilon > 0$ and $\delta > 0$,

$$\left\{n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \{p(n) < k \le q(n) : |x_k - x_0| \ge \varepsilon\} \right| < \delta \right\} \notin \mathcal{I}.$$

If we take p(n) = 0 and q(n) = n, then the above definition is turned to the definition of I – statistical cluster point [21].

Throughout the paper we will use $I - DS_{p,q}(\Lambda_x)$ and $I - DS_{p,q}(\Gamma_x)$ to denote the set of all I-deferred statistical limit points and I-deferred statistical cluster points of a sequence $x = (x_n)$.

Theorem 3.3. If $x = (x_n)$ is any sequence such that $I - DS_{p,q} \lim x = x_0$, then $I - DS_{p,q}(\Lambda_x) = \{x_0\}$.

Proof. Since $I - DS_{p,q} \lim x = x_0$, so for any $\varepsilon, \delta > 0$, the set

$$A = \left\{ n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \left\{ p(n) < k \le q(n) : |x_k - x_0| \ge \varepsilon \right\} \right| \ge \delta \right\} \in I.$$

$$\tag{1}$$

If possible suppose there exists $y_0 \in I - DS_{p,q}(\Lambda_x)$ with $x_0 \neq y_0$. Then there exists $M = \{m_1 < m_2 < \cdots < m_k < \cdots\} \subset \mathbb{N}$ such that $M \notin I$ and for every $\varepsilon > 0, \delta > 0$, the set

$$B = \left\{ n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \{ p(n) < k \le q(n) : |x_{m_k} - y_0| \ge \varepsilon \} \right| \ge \delta \right\}$$

is finite. Since *I* is admissible, so we have $\mathbb{N} \setminus C \in \mathcal{F}(I)$ where

$$C = \left\{ n \in M : \frac{1}{(q(n) - p(n))} \left| \left\{ p(n) < k \le q(n) : |x_k - y_0| \ge \varepsilon \right\} \right| \ge \delta \right\} \subseteq B.$$

Again from (1) we have, $\mathbb{N} \setminus D \in \mathcal{F}(I)$ where

$$D = \left\{ n \in M : \frac{1}{(q(n) - p(n))} \left| \{ p(n) < k \le q(n) : |x_k - x_0| \ge \varepsilon \} \right| \ge \delta \right\} \subseteq A.$$

Clearly, $(\mathbb{N} \setminus C) \cap (\mathbb{N} \setminus D) \neq \emptyset$ since $(\mathbb{N} \setminus C) \cap (\mathbb{N} \setminus D) \in \mathcal{F}(I)$. Choose $s \in (\mathbb{N} \setminus C) \cap (\mathbb{N} \setminus D)$ and a particular $\varepsilon > 0$ satisfying $\varepsilon < |x_0 - y_0|$. Then the following inequations are true

$$\frac{1}{(q(s) - p(s))} \left| \left\{ p(s) < k \le q(s) : |x_k - y_0| \ge \frac{\varepsilon}{2} \right\} \right| < \delta$$

and

$$\frac{1}{(q(s) - p(s))} \left| \left\{ p(s) < k \le q(s) : |x_k - x_0| \ge \frac{\varepsilon}{2} \right\} \right| < \delta$$

Now choosing δ sufficiently small, we can ensure the existence of an element $\xi \in \mathbb{N}$ for which the following properties holds good

$$p(s) < \xi < q(s), |x_{\xi} - y_0| < \frac{\varepsilon}{2} \text{ and } |x_{\xi} - x_0| < \frac{\varepsilon}{2}.$$

But then

$$\varepsilon < |x_0 - y_0| \le |x_{\xi} - x_0| + |x_{\xi} - y_0| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$
, a contradiction.

Hence $I - DS_{p,q}(\Lambda_x) = \{x_0\}$. \Box

Theorem 3.4. For any sequence $x = (x_n)$, the set $I - DS_{p,q}(\Gamma_x)$ is a closed subset of \mathbb{R} .

Proof. Suppose $y_0 \in \overline{I - DS_{p,q}(\Gamma_x)}$. Then for any $\varepsilon > 0$,

$$I - DS_{p,q}(\Gamma_x) \cap (y_0 - \varepsilon, y_0 + \varepsilon) \neq \emptyset$$

Let $z_0 \in \mathcal{I} - DS_{p,q}(\Gamma_x) \cap (y_0 - \varepsilon, y_0 + \varepsilon)$ and put $\varepsilon_1 > 0$ in such a manner that

$$(z_0 - \varepsilon_1, z_0 + \varepsilon_1) \subseteq (y_0 - \varepsilon, y_0 + \varepsilon)$$

Then, the following inequation holds:

$$|\{p(n) < k \le q(n) : |x_k - z_0| \ge \varepsilon_1\}| \ge |\{p(n) < k \le q(n) : |x_k - y_0| \ge \varepsilon_1\}|.$$

As a consequence, for any $\delta > 0$, the set

$$\left\{ n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \{ p(n) < k \le q(n) : |x_k - y_0| \ge \varepsilon \} \right| < \delta \right\}$$

is a superset of the set

$$\left\{ n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \left\{ p(n) < k \le q(n) : |x_k - z_0| \ge \varepsilon_1 \right\} \right| < \delta \right\}$$

Now since $z_0 \in I - DS_{p,q}(\Gamma_x)$, we must have

$$A = \left\{ n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \left\{ p(n) < k \le q(n) : |x_k - y_0| \ge \varepsilon \right\} \right| < \delta \right\} \notin \mathcal{I}.$$

This completes the proof. \Box

Theorem 3.5. For any sequence $x = (x_n)$, $\mathcal{I} - DS_{p,q}(\Lambda_x) \subseteq \mathcal{I} - DS_{p,q}(\Gamma_x)$.

Proof. Let $x_0 \in I - DS_{p,q}(\Lambda_x)$. Then there exists a set $M = \{m_1 < m_2 < \cdots < m_k < \cdots\} \subset \mathbb{N}$ such that $M \notin I$ and

$$\lim_{n\to\infty}\frac{1}{(q(n)-p(n))}\left|\{p(n)< k\leq q(n): |x_{m_k}-x_0|\geq \varepsilon\}\right|=0.$$

Therefore for any $\delta > 0$, there exists $n_0 \in \mathbb{N}$ such that

$$\forall n > n_0, \ \frac{1}{(q(n) - p(n))} \left| \{ p(n) < k \le q(n) : |x_{m_k} - x_0| \ge \varepsilon \} \right| < \delta.$$

Let $A = \left\{ n \in \mathbb{N} : \frac{1}{(q(n)-p(n))} \left| \{ p(n) < k \le q(n) : |x_k - x_0| \ge \varepsilon \} \right| < \delta \right\}$. Then $A \supset M \setminus \{m_1, m_2, \cdots, m_{k_0}\}$ and eventually $A \notin I$ since I is admissible. Hence $x_0 \in I - DS_{p,q}(\Gamma_x)$. \Box

Theorem 3.6. Let $x = (x_n)$ and $y = (y_n)$ be two sequences such that $\{n \in \mathbb{N} : x_n \neq y_n\} \in I$. Then, (*i*) $I - DS_{p,q}(\Lambda_x) = I - DS_{p,q}(\Lambda_y)$ and (*ii*) $I - DS_{p,q}(\Gamma_x) = I - DS_{p,q}(\Gamma_y)$.

Proof. (i) Let $x_0 \in I - DS_{p,q}(\Lambda_x)$. Then there exists a set $M = \{m_1 < m_2 < \cdots < m_k < \cdots\} \subset \mathbb{N}$ such that $M \notin I$ and $\lim_{k \to \infty} x_{m_k} = x_0(DS_{p,q})$. Put $N = M \cap \{n \in \mathbb{N} : x_n = y_n\}$. Then since $M \notin I$, so we must have $N \notin I$. Suppose $N = \{n_1 < n_2 < \cdots < n_k < \cdots\}$. Then we must have $\lim_{k \to \infty} y_{n_k} = x_0(DS_{p,q})$ and therefore $x_0 \in I - DS_{p,q}(\Lambda_y)$. Thus the inclusion $I - DS_{p,q}(\Lambda_x) \subseteq I - DS_{p,q}(\Lambda_y)$ holds. By symmetry, we have $I - DS_{p,q}(\Lambda_y) \subseteq I - DS_{p,q}(\Lambda_x)$.

Hence $I - DS_{p,q}(\Lambda_x) = I - DS_{p,q}(\Lambda_y)$. (ii) Let $x_0 \in I - DS_{p,q}(\Gamma_x)$. So by definition for any $\varepsilon > 0$ and $\delta > 0$,

$$A = \left\{ n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \{ p(n) < k \le q(n) : |x_k - x_0| \ge \varepsilon \} \right| < \delta \right\} \notin I.$$

To complete the proof, it is enough to show that the set $B \notin I$ where

$$B = \left\{ n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \{ p(n) < k \le q(n) : |y_k - x_0| \ge \varepsilon \} \right| < \delta \right\}.$$

If possible let $B \in I$. Put $C = \{n \in \mathbb{N} : x_n = y_n\}$. Then by additivity of I, we have $(\mathbb{N} \setminus C) \cup B \in I$. But this leads us to the contradiction $A \in I$ because of the inclusion $A \subset B \cup (\mathbb{N} \setminus C)$. Hence we must have $B \notin I$ and the proof is complete. \Box

3.2. I-deferred statistical limit superior, limit inferior

In this subsection we introduce the notion of I-deferred statistical limit superior, limit inferior which are natural generalizations of *I*-statistical limit superior, limit inferior introduced by Mursaleen et al. [21].

Throughout this section, for a real sequence $x = (x_n)$, A_x and B_x will denote the sets

$$\left\{a \in \mathbb{R} : \left\{n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \left\{p(n) < k \le q(n) : x_k < a\right\}\right| > \delta\right\} \notin I\right\}$$
$$\left\{b \in \mathbb{R} : \left\{n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \left\{p(n) < k \le q(n) : x_k > b\right\}\right| > \delta\right\} \notin I\right\}$$

and

$$\left\{b \in \mathbb{R} : \left\{n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \{p(n) < k \le q(n) : x_k > b\} \right| > \delta \right\} \notin I\right\}$$

respectively.

Definition 3.7. Let $x = (x_n)$ be any real number sequence. Then I-deferred statistical limit superior of x is defined as

$$I - DS_{p,q} \limsup x = \begin{cases} \sup B_x, & \text{if } B_x \neq \emptyset \\ -\infty, & \text{if } B_x = \emptyset \end{cases}$$

Also I-deferred statistical limit inferior of x is defined as

$$I - DS_{p,q} \liminf x = \begin{cases} \inf A_x, & \text{if } A_x \neq \emptyset \\ +\infty, & \text{if } A_x = \emptyset \end{cases}$$

Remark 3.8. If we consider p(n) = 0 and q(n) = n, then the above definition coincides with the definition of Istatistical limit superior and limit inferior respectively introduced in [21].

Theorem 3.9. For any real number sequence $x = (x_n)$, if $\alpha = I - DS_{p,q} \liminf x$ is finite then for any $\varepsilon > 0$,

$$\left\{ n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \{ p(n) < k \le q(n) : x_k < \alpha + \varepsilon \} \right| > \delta \right\} \notin \mathbb{R}$$

and

$$\left\{n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \{p(n) < k \le q(n) : x_k < \alpha - \varepsilon\} \right| > \delta \right\} \in I.$$

Similarly, if $\beta = I - DS_{p,q} \limsup x$ is finite then for any $\varepsilon > 0$,

$$\left\{ n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \left\{ p(n) < k \le q(n) : x_k > \beta - \varepsilon \right\} \right| > \delta \right\} \notin \mathcal{I}$$

and

$$n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \left\{ p(n) < k \le q(n) : x_k > \beta + \varepsilon \right\} \right| > \delta \right\} \in \mathcal{I}$$

Proof. Proof is trivial and therefore is omitted. \Box

Theorem 3.10. For any real number sequence $x = (x_n)$, $I - DS_{p,q} \liminf x \le I - DS_{p,q} \limsup x$.

Proof. **Case-I:** If $I - DS_{p,q} \limsup x = \infty$, then there is nothing to prove.

Case-II: If $I - DS_{p,q} \limsup x = -\infty$, then we have $B_x = \emptyset$. So for every $b \in \mathbb{R}$,

$$\left\{ n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \{ p(n) < k \le q(n) : x_k > b \} \right| > \delta \right\} \in \mathcal{I}$$

which immediately implies,

$$\left\{n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \left\{p(n) < k \le q(n) : x_k > b\right\} \right| < \delta \right\} \in \mathcal{F}(I).$$

i.e.,
$$\left\{n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \left\{p(n) < k \le q(n) : x_k < b\right\} \right| > \delta \right\} \in \mathcal{F}(I).$$

In other words,

$$\forall a \in \mathbb{R}, \left\{ n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \{ p(n) < k \le q(n) : x_k < a \} \right| > \delta \right\} \notin I$$

Therefore we have $A_x = \mathbb{R}$ and hence $\mathcal{I} - DS_{p,q} \liminf x = -\infty$.

Case-III: If $-\infty < I - DS_{p,q}$ lim sup $x < \infty$, then suppose $\beta = I - DS_{p,q}$ lim sup x and $\alpha = I - DS_{p,q}$ lim inf x. Then by Theorem 3.9, for any $\varepsilon > 0$ and $\delta > 0$,

$$\left\{ n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \{ p(n) < k \le q(n) : x_k > \beta + \varepsilon \} \right| > \delta \right\} \in I.$$

Which implies,

$$\left\{ n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \left\{ p(n) < k \le q(n) : x_k < \beta + \varepsilon \right\} \right| > \delta \right\} \in \mathcal{F}(I).$$

i.e.,
$$\left\{ n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \left\{ p(n) < k \le q(n) : x_k < \beta + \varepsilon \right\} \right| > \delta \right\} \notin I.$$

So we have $\beta + \varepsilon \in A_x$. Now since ε was arbitrary and $\alpha = \inf A_x$, so we must have $\alpha < \beta + \varepsilon$. Hence $\alpha \le \beta$ and the proof is complete. \Box

Definition 3.11. A sequence $x = (x_n)$ is said to be $I - DS_{p,q}$ bounded if there exists a number B such that for every $\delta > 0$,

$$\left\{n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \{p(n) < k \le q(n) : |x_k| > B\} \right| > \delta \right\} \in \mathcal{I}$$

Note that, for p(n) = 0 and q(n) = n, the above definition turns to the definition of *I*-st boundedness [21].

Remark 3.12. If a sequence is $I - DS_{p,q}$ bounded then $I - DS_{p,q} \liminf x$ and $I - DS_{p,q} \limsup x$ are finite.

Theorem 3.13. An $I - DS_{p,q}$ bounded sequence is $I - DS_{p,q}$ convergent iff $I - DS_{p,q}$ lim inf $x = I - DS_{p,q}$ lim sup x.

Proof. Suppose $\alpha = I - DS_{p,q} \liminf x$ and $\beta = I - DS_{p,q} \limsup x$. Let $I - DS_{p,q} \limsup x = l$. Then for all $\varepsilon > 0$ and $\delta > 0$,

$$\left\{ n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \left\{ p(n) < k \le q(n) : |x_k - l| \ge \varepsilon \right\} \right| \ge \delta \right\} \in I.$$

i.e.,
$$\left\{ n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \left\{ p(n) < k \le q(n) : x_k > l + \varepsilon \right\} \right| \ge \delta \right\} \in I.$$

Which implies $\beta \leq l$. Also we have,

$$\left\{n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \left\{ p(n) < k \le q(n) : x_k < l - \varepsilon \right\} \right| \ge \delta \right\} \in \mathcal{I},$$

which yields $l \le \alpha$ and hence we have $\beta \le \alpha$. But by Theorem 3.10, we have $\beta \ge \alpha$, so we must have $\alpha = \beta$ i.e, $I - DS_{p,q} \liminf x = I - DS_{p,q} \limsup x$.

For the converse part, suppose $\alpha = \hat{\beta}$ and define $l = \alpha$. Now for any $\varepsilon > 0, \delta > 0$, from Theorem 3.9, we obtain

$$\left\{ n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \left\{ p(n) < k \le q(n) : x_k > l + \frac{\varepsilon}{2} \right\} \right| > \delta \right\} \in \mathcal{I}$$

and

$$\left\{ n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \left\{ p(n) < k \le q(n) : x_k < l - \frac{\varepsilon}{2} \right\} \right| > \delta \right\} \in \mathcal{I}.$$

This immediately implies that, $I - DS_{p,q} \lim x = l$. \Box

Theorem 3.14. Suppose $x = (x_n)$ and $y = (y_n)$ be two $I - DS_{p,q}$ bounded sequences. Then,

(i) $I - DS_{p,q} \limsup(x + y) \le I - DS_{p,q} \limsup x + I - DS_{p,q} \limsup y$. (ii) $I - DS_{p,q} \limsup (x + y) \ge I - DS_{p,q} \limsup (x + I) - DS_{p,q} \limsup y$.

Proof. Let $\beta_1 = I - DS_{p,q} \limsup x$ and $\beta_2 = I - DS_{p,q} \limsup y$. Then for every $\varepsilon > 0$, $\delta > 0$, we have

$$P = \left\{ n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \left\{ p(n) < k \le q(n) : x_k > \beta_1 + \frac{\varepsilon}{2} \right\} \right| > \delta \right\} \in \mathcal{I}$$

and

$$Q = \left\{ n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \left\{ p(n) < k \le q(n) : y_k > \beta_2 + \frac{\varepsilon}{2} \right\} \right| > \delta \right\} \in I.$$

Now as the inclusion

$$\left\{n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \left\{p(n) < k \le q(n) : x_k + y_k > \beta_1 + \beta_2 + \varepsilon\right\} \right| > \delta \right\} \subset P \cup Q$$

is true, we must have,

$$\left\{n \in \mathbb{N} : \frac{1}{(q(n)-p(n))} \left| \{p(n) < k \le q(n) : x_k + y_k > \beta_1 + \beta_2 + \varepsilon\} \right| > \delta \right\} \in \mathcal{I}.$$

If $c \in B_{x+y}$, then

$$\left\{n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \left\{p(n) < k \le q(n) : x_k + y_k > c\right\} \right| > \delta \right\} \notin I.$$

We claim that $c < \beta_1 + \beta_2 + \varepsilon$. For if $c \ge \beta_1 + \beta_2 + \varepsilon$, then the inclusion

$$\left\{ n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \left\{ p(n) < k \le q(n) : x_k + y_k > \beta_1 + \beta_2 + \varepsilon \right\} \right| > \delta \right\}$$

$$\supseteq \left\{ n \in \mathbb{N} : \frac{1}{(q(n) - p(n))} \left| \left\{ p(n) < k \le q(n) : x_k + y_k > c \right\} \right| > \delta \right\}$$

leads us to the contradiction that

$$\left\{n \in \mathbb{N} : \frac{1}{(q(n)-p(n))} \left| \{p(n) < k \le q(n) : x_k + y_k > c\} \right| > \delta \right\} \in \mathcal{I}.$$

Hence, we must have $c < \beta_1 + \beta_2 + \varepsilon$. As this is true for every $c \in B_{x+y}$, so $I - DS_{p,q} \limsup (x+y) = \sup B_{x+y} < \varepsilon$ $\beta_1 + \beta_2 + \varepsilon$. Now as $\varepsilon > 0$ was arbitrary, so $I - DS_{p,q} \limsup (x + y) \le I - DS_{p,q} \limsup x + I - DS_{p,q} \limsup y$. (ii) The proof is analogous to that of (i) and so is omitted. \Box

4. Acknowledgements

The authors thank the anonymous referees for their constructive suggestions to improve the quality of the paper. The first author is grateful to the **University Grants Commission**, **India** for their fellowships funding under the **UGC-SRF** scheme (F. No. 16-6(DEC. 2018)/2019(NET/CSIR)) during the preparation of this paper.

References

- [1] R.P. Agnew, On deferred Cesàro means, Ann. of Math. 33(3) (1932) 413-421.
- [2] P. Das, E. Savaş, S. Ghosal, On generalizations of certain summability methods using ideals, Appl. Math. Lett. 24(4) (2011) 1509–1514.
- [3] S. Debnath, C. Choudhury, On I-statistically φ-convergence, Proyecciones 40(3) (2021) 593–604.
- [4] S. Debnath, J. Debnath, On *I*-statistically convergent sequence spaces defined by sequences of Orlicz functions using matrix transformation, Proyecciones 33(3) (2014) 277–285.
- [5] S. Debnath, D. Rakshit, On *I*-statistical convergence, Iran. J. Math. Sci. Inform. 13(2) (2018) 101–109.
- [6] K. Demirci, I-limit superior and limit inferior, Math. Commun. 6(2) (2001) 165-172.
- [7] M. Et, On some generalized deferred Cesàro means of order β , Math. Methods Appl. Sci. 44(9) (2021) 7433-7441.
- [8] M. Et, V.K. Bhardwaj, S. Gupta, On deferred statistical boundedness of order α, Commun. Stat.-Theory Methods 51(24) (2022) 8786-8798.
- [9] M. Et, M Çinar, HS Kandemir, Deferred statistical convergence of order α in metric spaces, AIMS Math. 5(4) (2020) 3731-3740.
- [10] M. Et, M.C. Yilmazer, On deferred statistical convergence of sequences of sets, AIMS Math. 5(3) (2020) 2143-2152.
- [11] H. Fast, Sur la convergence statistique, Colloq. Math. 2(3-4) (1951) 241–244.
- [12] J.A. Fridy, On statistical convergence, Analysis 5(4) (1985) 301-313.
- [13] J.A. Fridy, Statistical limit points, Proc. Amer. Math. Soc. 118(4) (1993) 1187-1192.
- [14] J.A. Fridy, C. Orhan, Statistical limit superior and limit inferior, Proc. Amer. Math. Soc. 125(12) (1997) 3625–3631.
- [15] P. Kostyrko, M. Macaj, T. Šalát, M. Sleziak, *I*-convergence and extremal *I*-limit points, Math. Slovaca 55(4) (2005) 443-464.
- [16] P. Kostyrko, T. Šalát, W. Wilczynski, *I*-convergence, Real Anal. Exch. 26(2) (2000-2001) 669–686.
- [17] M. Küçükaslan, M. Yilmaztürk, On deferred statistical convergence of sequences, Kyungpook Math. J. 56(2) (2016) 357–366.
- [18] B.K. Lahiri, P. Das, Further results on *I*-limit superior and limit inferior, Math. Commun. 8 (2003) 151–156.
- [19] S.A. Mohiuddine, B. Hazarika, Some classes of ideal convergent sequences and generalized difference matrix operator, Filomat 31(6) (2017) 1827–1834.
- [20] M. Mursaleen, Q. M. Danish Lohani, Statistical limit superior and inferior in probabilistic normed spaces, Filomat 25(3) (2011) 55–67.
- [21] M. Mursaleen, S. Debnath, D. Rakshit, On *I*-statistical limit superior and *I*-statistical limit inferior, Filomat 31(7) (2017) 2103–2108.
- [22] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30(2) (1980) 139–150.
- [23] T. Šalát, B.C. Tripathy, M. Ziman, On some properties of *I*-convergence, Tatra Mt. Math. Publ. 28(2) (2004) 274–286.
- [24] E. Savaş, I_{λ} -Statistically convergent functions of order α , Filomat 31(2) (2017) 523–528.
- [25] E. Savaş, P. Das, On *I*-statistically pre-Cauchy sequences, Taiwanese J. Math. 18(1) (2014) 115–126.
- [26] H. Şengül, M. Et, M. Işık, On *I*-deferred statistical convergence, AIP Conference Proceedings 2086, 030041 (2019).
- [27] H. Şengül, M. Et, M. Işık, On *I*-deferred statistical convergence of order *α*, Filomat 33(9) (2019) 2833–2840.
- [28] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951) 73–74.
- [29] B.C. Tripathy, B. Hazarika, Paranorm I-convergent sequence spaces, Math. Slovaca 59(4) (2009) 485-494.
- [30] B.C. Tripathy, B. Hazarika, I-monotonic and I-convergent sequences, Kyungpook Math. J. 51(2) (2011) 233-239.
- [31] B.C. Tripathy, B. Hazarika, Some I-convergent sequence spaces defined by Orlicz functions, Acta Math. Appl. Sin. Engl. Ser. 27(1) (2011) 149-154.