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The MPWG inverse of third-order F-square tensors based on the
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Abstract. We define the T-MPWG inverse of third-order F-square tensors by using the T-core EP de-
composition of tensors via the T-product. Then, we present some characterizations and properties of
the T-MPWG inverse. Moreover, the Cayley-Hamilton theorem of the third-order tensors is extended to
T-MPWG inverses. Examples are also given to illustrate these results.

1. Introduction

A tensorA can be regarded as a multidimensional array of data, which takes the form:

A =
(
ai1i2···iN

)
∈ CI1×I2×···×IN .

The order of a tensor is the number of dimensions. For the given tensor A the order is N. In general, a
vector is a first-order tensor, and a matrix is considered a second-order tensor. Products of tensors include
Einstein products and T-products, etc.

Kilmer and Martin proposed the tensor T-product and used the discrete Fourier transform to transform
the tensor multiplication into the matrix multiplication for calculation in [6]. Jin, Bai, Benitez and Liu
defined the Moore-penrose inverse of tensors and derived an application to linear models in [4]. Miao, Qi
and Wei introduced T-Drazin inverse and its properties when an F-square tensor was not invertible with
T-product in [8]. Zhang introduced the weak group inverse, core inverse and core-EP inverse of tensors
based on the T-product in [17].

In [10], Wang, Liu and Jin defined the MP weak group inverse of a complex square matrix A with
Ind(A) = k, denoted as A†,WG. The MPWG inverse A†,WG of A is the unique matrix X ∈ Cn×n satisfying
XAX = X,AX = ADC and XA = A†ADA2. Moreover, it was proved that

A†,WG = A†AWOA
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where C is the weak core part of A with C = AAWOA. A† and AWO represent the Moore-Penrose inverse and
weak group inverse of A respectively.

In [10], Wang, Chen and Yan gave the polynomial equations of the core-EP inverse matrix A †O on complex
field by using the classical Cayley-Hamliton theorem. Furthermore, some properties of the characteristic
polynomials of A †O were derived. Liu and Wang also gave the Cayley-Hamliton theorem of the weak group
inverse AWO on complex field by using the core-EP decomposition in [7].

The work is organized as follows. In section 2, we provide some preliminaries. We introduce basic
definitions and properties of tensors firstly Then, we show the definitions of the T-Moore-Penrose inverse,
T-core EP inverse and T-weak group inverse. In section 3, we defined the MPWG inverse of the third-order
tensors based on T-product. Then, we prove that the MPWG inverse of an arbitrary tensorA exists and is
unique by using the technique of discrete Fourier transform. Then, we give some properties of the T-MPWG
inverse and some new representations by using the T-core EP decomposition. In section 4, we discuss the
relationships between the T-MPWG inverse and other known generalized inverses of tensors. Furthermore,
we present the limit expression of the MPWG inverse of the third-order tensors. Supplementary example is
given to illustrate the relationships. In section 5, we extend the Cayley-Hamliton theorem of the third-order
tensors to the T-MPWG inverse, and give some examples to illustrate.

2. Preliminaries

In this section, we mainly introduce the definitions, properties and operation rules of the third-order
tensors based on the T-product.

Let A ∈ Cm×n×p be a third-order tensor, we denote its frontal faces as A(k)
∈ Cm×n, k = 1, · · · , p. The

operations bcirc, unfold and fold are defined as follows [6]:

bcirc(A) :=


A(1) A(p) A(p−1)

· · · A(2)

A(2) A(1) A(p)
· · · A(3)

...
...

... · · ·
...

A(p) A(p−1) A(p−2)
· · · A(1)

, unfold(A) :=


A(1)

A(2)

...
A(p)

,
and fold (unfold(A)) := A, which means that fold is inverse operator of unfold. We can also define
the corresponding operation bcirc−1 : Cmp×np

→ Cm×n×p, which is the inverse operator of bcirc, such that
bcirc−1(bcirc(A)) = A.

On the basis of the above operators, the conjugate transpose of A is introduced in [8]. The conjugate
transposeA∗ is obtained by conjugate transposing each of the frontal slices and then reversing the order of
transposed frontal slices 2 through n:

A
∗ = fold





(A(1))∗

(A(p))∗

(A(p−1))∗

...
(A(2))∗




.

Definition 2.1. [8] LetA ∈ Cm×n×p be the third-order tensor.
(i) The T-range space ofA:

R(A) := Ran
((

FH
p ⊗ In

)
bcirc (A)

(
Fp ⊗ In

))
where Ran means the range space;
(ii) The T-null space ofA:

N(A) := Null
((

FH
p ⊗ In

)
bcirc (A)

(
Fp ⊗ In

))
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where Null represents the null space.

The following definitions are introduced in [8]:

Definition 2.2. [8] LetA ∈ Cm×n×p, B ∈ Cn×s×p be two complex tensors. Then, the T-productA∗B is an m× s× p
complex tensor defined by

A ∗ B := fold (bcirc(A)unfold(B)).

Definition 2.3. [8] LetA ∈ Cn×n×p. If there exists a tensor X ∈ Cn×n×p such that

(1)A∗X∗A = A, (2) X∗A∗X = X, (3) (A∗X)∗ = A∗X, (4) (X∗A)∗ = X∗A.

Then X is called the Moore-Penrose inverse of the tensorA and is denoted byA†.

The cyclic matrix can be transformed into diagonal shape by the discrete Fourier transform. For the
cyclic matrix bcirc(A), in [1, 3], the authors used the discrete Fourier transform to transform it into diagonal
shape: letA ∈ Cn×n×p, then

bcirc(A) =
(
FH

p ⊗ In

)
Diag

(
A1,· · ·,Ap

) (
Fp ⊗ In

)
,

where Ai ∈ Cn×n, (i = 1, · · · , p). On the basis of block diagonal shape, T-rank and T-index was introduced in
[8]:

Definition 2.4. [8] LetA ∈ Cn×n×p.
(i) Let rankT(A) be the rank of the tensorA:

rankT(A) = rank (bcirc (A)) =
∑p

i=1 (rank (Ai)),

where rank (Ai) represents the rank of the matrix Ai, i = 1, . . . , p.
(ii) Let IndT(A) be the index of the tensorA:

IndT(A) = Ind (bcirc (A)) = max
1≤i≤p

(Ind (Ai)),

where Ind (Ai) is the smallest positive integer satisfying rank(Ak
i ) = rank(Ak+1

i ). Obviously, IndT(A) = 1 ⇔
Ind (Ai) = 1 for any i = 1, . . . , p⇔ rank (bcirc (A)) = rank

(
bcirc (A)2

)
.

Definition 2.5. [8] LetA ∈ Cn×n×p and IndT(A) = k. If there exists a tensor X ∈ Cn×n×p such that

(1k)Ak+1
∗X = Ak, (2) X∗A∗X = X, (5)A∗X = X∗A.

Then X is called the Drazin inverse of the tensorA, and is denoted byAD. In particular, when k = 1, X is called the
group inverse of the tensorA and is denoted byA#.

Definition 2.6. [9] LetA ∈ Cm×n×p. Then
(i) the tensorA is called EP ifA∗A† = A†∗A;
(ii) the tensorA is idempotent ifA2 = A;
(iii) the tensorA is tripotent ifA3 = A;
(iv) the tensorA is called Hermitian idempotent ifA2 = A = A∗;
(v) the tensorA is unitary ifA∗∗A = A∗A∗ = I.

Lemma 2.7. [9] LetA ∈ Cn×n×p and IndT(A) = k. If there exists a tensor X ∈ Cn×n×p satisfying

(1) X∗A∗X = X, (2) R(Ak) = R(X).

Then X is called the core-EP inverse of tensorA, and it is denoted asA †O. It’s also expressed as

X = (A)k
∗(A∗)k

∗

(
(A∗)k

∗A
k+1

)†
∗(A∗)k.

Lemma 2.8. [8] LetA ∈ Cn×n×p and IndT(A) = k. If there exists a tensor X ∈ Cn×n×p satisfying

(1)A∗X2 = X, (2)A∗X = A †O
∗A.

ThenX is called the weak group inverse ofA and is denoted asAWO . It’s also expressed asX = (A †O)2
∗A. In particular,

when IndT(A) = 1, X = A#.
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3. T-MPWG inverse

In this section, we introduce the MPWG inverse of the third-order tensors based on the T-product, and
give some characterizations and properties of it.

Lemma 3.1. [11, 12] LetA ∈ Cn×n×p. Then the following statements aboutAWO hold:
(i) AWO is an outer inverse ofA, that is,AWO

∗A∗A
WO = AWO ,

(ii) R (AWO) = R
(
A

k
)
,

(iii) AWO
∗A

k = Ak+1,
(iv) A∗AWO = Ak

∗B, for some tensor B,
(v) AWO = Ak

∗Z, for some tensorZ.

Theorem 3.2. LetA ∈ Cn×n×p and IndT(A) = k. Then the following system of equations

(1) X∗A∗X = X, (2)A∗X = AD
∗C, (3) X∗A = A†∗AWO

∗A
2

is consistent and its unique solution is the tensorX = A†∗AD
∗C, where C = A∗AWO

∗A is the weak core part of tensor
A.

Proof. Let

DFT(Circ(Unfold(A))) =


A1

. . .
Ap

,
then

DFT(Circ(Unfold(AD))) =


AD

1
. . .

AD
p

,

DFT(Circ(Unfold(A†))) =


A†1

. . .
A†p

,

DFT(Circ(Unfold(A †O))) =


A †O

1
. . .

A †O
p

,

DFT(Circ(Unfold(AWO))) =


AWO

1
. . .

AWO
p

.
Let

DFT(Circ(Unfold(X))) =


X1

. . .
Xp

.
We will check X = A†∗AD

∗C satisfies the there equations in the system.
Notice that

DFT(Circ(Unfold(X))) = DFT(Circ(Unfold(A†∗AD
∗C)))
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i.e. 
X1

. . .
Xp

 =

A†1AD

1 C1
. . .

A†pAD
p Cp

 ,Xi = A†i AD
i Ci, (i = 1, · · · , p)

where C = A∗AWO
∗A, then

DFT(Circ(Unfold(C))) = DFT(Circ(Unfold(A∗AWO
∗A))),

i.e. 
C1

. . .
Cp

 =

A1AWO

1 A1
. . .

ApAWO
p Ap

 ,Ci = AiAWO

i Ai, (i = 1, · · · , p).

By AAD = ADA and CADC = AAWOAADAAWOA = AAWOAAWOA = AAWOA = A, we can get

DFT(Circ(Unfold(X∗A∗X))) =


X1A1X1

. . .
XpApXp


=


(A†1AD

1 C1)A1(A†1AD
1 C1)

. . .
(A†pAD

p Cp)Ap(A†pAD
p Cp)


=


A†1AD

1 C1A1A†1AD
1 A1AWO

1 A1
. . .

A†pAD
p CpApA†pAD

p ApAWO
p Ap


=


A†1AD

1 C1AD
1 C1

. . .
A†pAD

p CpApCp


=


A†1AD

1 C1
. . .

A†pAD
p Cp


=


X1

. . .
Xp

 = DFT(Circ(Unfold(X))).

Therefore, X∗A∗X = X.
On the other hand,

DFT(Circ(Unfold(A∗X))) =


A1X1

. . .
ApXp


=


A1A†1AD

1 C1
. . .

ApA†pAD
p Cp


=


A1A†1AD

1 A1AWO

1 A1
. . .

ApA†pAD
p ApAWO

p Ap
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=


A1A†1A1AD

1 AWO

1 A1
. . .

ApA†pApAD
p AWO

p Ap


=


A1AD

1 AWO

1 A1
. . .

ApAD
p AWO

p Ap


=


AD

1 C1
. . .

AD
p Cp

 = DFT(Circ(Unfold(AD
∗C))).

Therefore,A∗X = AD
∗C.

From (v) in Lemma 3.1, for some tensorZ, we haveAWO = Ak
∗Z, AWO = AkZ, and because Ak+1AD = Ak,

then

DFT(Circ(Unfold(X∗A))) =


X1A1

. . .
XpAp


=


A†1AD

1 C1A1
. . .

A†pAD
p CpAp


=


A†1AD

1 A1AWO

1 A2
1
. . .

ApA†pAD
p ApAWO

p A2
p


=


A†1AD

1 A1Ak
1Z1A2

1
. . .

ApA†pAD
p ApAk

pZpA2
p


=


A†1Ak

1Z1A2
1
. . .

ApA†pAk
pZpA2

p


=


A†1AWO

1 A2
1
. . .

ApA†pAWO
p A2

p

 = DFT(Circ(Unfold(A†∗AWO
∗C))).

Therefore, X∗A = A†∗AWO
∗A

2.
Above all, X satisfies the three equations.
For the uniqueness, we assume that X1 and X2 are two solutions of the system. From

A∗X1 = A
D
∗C = A∗X2, X1∗A = A

†
∗A

WO
∗A

2 = X2∗A,

we have

X1 = (X1∗A)∗X1 = (X2∗A)∗X1 = X2∗(A∗X1) = X2∗A∗X2 = X2.

The uniqueness is proved.

Definition 3.3. LetA ∈ Cn×n×p with IndT(A) = k, and C be the weak core part ofA. The MPWG inverse of tensor
A, denoted asA†,WG, is defined to be the solution of the system in Theorem 3.2.

Theorem 3.4. LetA ∈ Cn×n×p with IndT(A) = k. Then
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A
†,WG = A†∗AWO

∗A.

Proof. Applying (v) in Lemma 3.1 and Theorem 3.2, we obtain

A
†,WG = A†∗AD

∗C = A†∗AD
∗A∗A

WO
∗A

= A†∗AD
∗A∗A

WO
∗A

= A†∗AD
∗A∗A

k
∗Z∗A

= A†∗Ak
∗Z∗A

= A†∗AWO
∗A

Let A ∈ Cn×n×p be a third-order tensor, and A(k) represents the kth frontal slice of tensor A. For the
simplicity of the discussion, let

A =
[
A(1)
|A(2)
| · · · |A(p)

]
.

Example 3.5. Let

A ∈ C2×2×2, A =
[
A(1)
|A(2)

]
,

where

A(1) =

[
1 1
0 0

]
, A(2) =

[
−1 1
0 0

]
.

Applying the discrete Fourier transform, we obtain

bcirc(A) =
(
FH

2 ⊗ I2

)
Diag (A1,A2) (F2 ⊗ I2),

where

A1 =

[
0 2
0 0

]
, A2 =

[
2 0
0 0

]
.

From the above, we can get Ind(A1) = 2, Ind(A2) = 1, so IndT(A) = 2. Besides,

A
† =

[
1
4 0 −

1
4 0

1
4 0 1

4 0

]
, A∗ =

[
−1 0 1 0
1 0 1 0

]
,

A
2 =

[
2 0 −2 0
0 0 0 0

]
, A3 =

[
4 0 −4 0
0 0 0 0

]
,

(A∗)2 = A∗∗A∗ = fold(bcirc(A∗)unfold(A∗)) =
[

2 0 −2 0
0 0 0 0

]
,

(A∗)2
∗A

3 =

[
16 0 −16 0
0 0 0 0

]
,
(
(A∗)2)∗A3

)†
=

[
1
64 0 −

1
64 0

0 0 0 0

]
,
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A
2
∗((A∗)2

∗A
3)† = fold

(
bcirc(A2)unfold((A∗)2

∗(A3))†
)

= fold




2 0 −2 0
0 0 0 0
−2 0 2 0
0 0 0 0




1
64 0
0 0
−

1
64 0
0 0


 =

[
1

16 0 −
1
16 0

0 0 0 0

]
,

A
†O = A2

∗((A∗)2
∗A

3)†∗(A∗)2 = fold
(
bcirc(A2

∗((A∗)2
∗A

3)†)unfold((A∗)2
)

= fold




1
16 0 −

1
16 0

0 0 0 0
−

1
16 0 1

16 0
0 0 0 0




2 0
0 0
−2 0
0 0


 =

[
1
4 0 −

1
4 0

0 0 0 0

]
,

A
WO = (A †O)2

∗A = fold
(
bcirc((A †O)2)unfold(A)

)
= fold




1
2 0 −

1
2 0

0 0 0 0
−

1
2 0 1

2 0
0 0 0 0




1 1
0 0
−1 1
0 0


 =

[
1 0 −1 0
0 0 0 0

]
,

A
WO
∗A = fold (bcirc(AWO)unfold(A))

= fold




1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0




1 1
0 0
−1 1
0 0


 =

[
2 0 −2 0
0 0 0 0

]
,

A
†,WG = A†∗AWO

∗A = fold
(
bcirc(A†)unfold(AWO

∗A)
)

= fold




1
4 0 −

1
4 0

1
4 0 1

4 0
−

1
4 0 1

4 0
1
4 0 1

4 0




2 0
0 0
−2 0
0 0


 =

[
1 0 −1 0
0 0 0 0

]
.

In the following, we will give some properties of the T-MPWG inverse of the tensorA ∈ Cn×n×p.

Lemma 3.6. [5] Let X ∈ Cn×n×p,B ∈ Cn×n×p, and C ∈ Cn×n×p be given tensors. Then
(i) R (X) ⊆ R (B) if and only if there existsU ∈ Cn×n×p such that X = B∗U.
(ii)N (C) ⊆ N (X) if and only if there existsV ∈ Cn×n×p such that X =V∗C.
(iii) R (X) ⊆ R (B) andN (C) ⊆ N (X) if and only if there existsU ∈ Cn×n×p such that X = B∗V∗C.

On the basis of the T-range space R(A) and T-null space N(A) of A, we introduce the orthogonal
complement space of the T-range space:

Definition 3.7. Let A ∈ Cn×n×p, R(A)⊥ represents the orthogonal complement space of R(A), that is, each tensor
X ∈ Cn×n×p can be uniquely represented as

X = Y +Z,Y ∈ R(A),Z ∈ R(A)⊥.

Lemma 3.8. LetA ∈ Cn×n×p. Then,

N(A) = R(A∗)⊥, N(A∗) = R(A)⊥.

Proof. For anyZ ∈ R(A∗)⊥,Y ∈ R(A∗),Y = A∗∗X, where X is arbitrary. Then,

Y
∗
∗Z = O ⇐⇒ (A∗∗X)∗∗Y = X∗∗A∗Z = O,

soA∗Z = O ⇐⇒Z ∈ N(A). Therefore,N(A) = R(A∗)⊥. N(A∗) = R(A)⊥ is similarly proved.
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Theorem 3.9. LetA ∈ Cn×n×p with IndT(A) = k. Then the following conditions are equivalent:
(i) X = A†,WG = A†∗AWO

∗A,
(ii) X = X∗AD

∗C, X∗Ak = A†∗Ak,
(iii)A†∗A∗X = X, A∗X = AWO

∗A,
(iv) X∗A† = A†∗Ak, X∗AWO

∗A = X,
(v) X = X∗AD

∗C, R (X) = R
(
A
†
A

k
)
,

(vi)A∗X = AD
∗C, R (X) = R (A∗).

Proof. That (i) implies all other items (ii)-(vi) can be checked directly.
(ii)⇒ (i) From (v) in Lemma 3.1, sinceAWO = Ak

∗Z, for some third-order tensorZ, it follows that

X = X∗AD
∗C = X∗AD

∗A∗A
WO
∗A = X∗AD

∗A∗A
k
∗Z∗A = X∗Ak

∗Z∗A = A†∗Ak
∗Z∗A = A†∗AWO

∗A.

(iii)⇒ (i) It’s obvious that X = A†∗A∗X = A†∗AWO
∗A.

(iv)⇒ (i) According to X∗Ak = A†∗Ak, we obtain

X = X∗AWO
∗A = X∗Ak

∗Z∗A = A†∗Ak
∗Z∗A = A†∗AWO

∗A.

(v)⇒ (ii) SinceA∗X is idempotent, it follows that

A∗X − (A∗X)2 = (A−A∗X∗A)∗X = 0,

so R
(
A
†
A

k
)
= R (X) ⊆ N(A−A∗X∗A). We have (A−A∗X∗A)∗A†∗Ak = 0. That is,

A∗A
†
∗A

k
−A∗X∗A∗A

†
∗A

k = 0⇒Ak = A∗X∗Ak.

Multiplying the last equality byA† from the left side, we getA†∗Ak = A†∗A∗X∗Ak.
From (I−A†∗A)∗A†∗Ak = 0, we have R (X) = R

(
A
†
∗A

k
)
⊆ N(I−A†∗A). Then (I−A†∗A)∗X = 0. i.e.

X = A†∗A∗X. Hence, X∗Ak = A†∗A∗X∗Ak = A†∗Ak.
Since R(I −A†∗A) ⊆ N((Ak)∗∗A2) = N(X), we have that X = A†∗A∗X, and hence, X∗Ak = A†∗Ak.

(vi)⇒ (i) Let X = A†,WG. From its definition, we haveA∗X = AD
∗C. Then,

A
†
∗A∗A

†,WG = A†∗A∗A†∗AWO
∗A = A†∗AWO

∗A = A†,WG.

We obtain that R(X) ⊆ R(A†∗A) = R(A∗).
In order to show that X is the unique solution to the system, we assume that both X1 and X2 satisfy the

equations. Then,

A∗X1 = A
D
∗C = A∗X2, R(X1) ⊆ R(A∗), R(X2) ⊆ R(A∗),

So we get that R(X1 − X2) ⊆ R(A∗).
Since A∗(X1 − X2) = 0, we obtain R(X1 − X2) ⊆ N(A) = R(A∗)⊥, Therefore, R(X1 − X2) ⊆ (R (A∗)⊥) ∩

R (A∗) = 0. Thus, X1 = X2.

Theorem 3.10. LetA ∈ Cn×n×p with IndT(A) = k. Then
(i) A†,WG = A†∗(A∗A †O

∗A)#
∗A,

(ii) A†,WG = A†∗(A †O)2
∗A

2 = A†∗(A2) †O
∗A

2,
(iii) A†,WG = A†∗Ak

∗(Ak+2) #O
∗A

2,
(iv) A†,WG = A†∗(Ak+2

∗(Ak)†)†∗A2.

Proof. Let

DFT(Circ(Unfold(A))) =


A1

. . .
Ap

,
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DFT(Circ(Unfold(A †O))) =


A †O

1
. . .

A †O
p

,

DFT(Circ(Unfold(AWO))) =


AWO

1
. . .

AWO
p

,
then

DFT(Circ(Unfold((A∗AWO
∗A)#))) =


(A1A †O

1 A1)#

. . .
(ApA †O

p Ap)#

.
From Theorem 3.8 and Theorem 3.9 in reference [12], we have AWO = (AA †OA)# = (A †O)2A = (A2) †OA =

Ak(Ak+2) #OA = (A2PAk )†A, i.e.

AWO

i = (AiA †O

i Ai)# = (A †O

i )2Ai = (A2
i ) †OAi = Ak

i (Ak+2
i ) #OAi = (A2

i PAk
i
)†Ai.

Then,

A
WO = (A∗AWO

∗A)# = (A †O)2
∗A = (A2) †O

∗A = Ak
∗(Ak+2) #O

∗A = (A2
∗A

k
∗(Ak)†)†∗A,

pre-multiplying the last equality byA† and post-multiplying byA, we obtainA†,WG = A†∗AWO
∗A.

So (i)-(iv) are established.

On the basis of the core-EP decomposition which was introduced in [11], Cong and Ma introduced the
core-EP decomposition of the third-order tensorsA ∈ Cn×n×p based on the T-product in [2]:

Lemma 3.11. [2] LetA ∈ Cn×n×p with IndT(A) = k, rankT(Ak) = p. ThenA can be decomposed asA = A1 +A2,

(1) rankT(A2
1) = rankT(A1); (2)Ak

2 = O; (3)A1
∗
∗A2 = A2∗A1 = O,

whereA1 is the core part with IndT(A1) = 1,A2 is EP. There exists a unitary tensorU ∈ Cn×n×p such that

A =U∗

[
T S

O N

]
∗U
∗,A1 =U∗

[
T S

O O

]
∗U
∗,A2 =U∗

[
O O

O N

]
∗U
∗,

where T ∈ Cr×r×p is singular, S ∈ Cr×(n−r)×p,N ∈ C(n−r)×(n−r)×p is nilpotent of index k, i.e. N k = 0.

Lemma 3.12. LetA ∈ Cn×n×p. Its T-core EP decomposition as above, then

(i)A† =U∗
[

T
∗
∗△ −T∗△∗S∗N†

(In−r −N
†
∗N)∗S∗∗△ N

†
− (In−r −N

†
∗N)∗S∗∗△∗S∗N†

]
∗U
∗,

(ii)AD =U∗

[
T
−1 (T k+1)−1

∗T̃

O O

]
∗U
∗,

(iii)A †O =U∗

[
T
−1
O

O O

]
∗U
∗,

(iv)AWO =U∗

[
T
−1
T
−2
∗S

O O

]
∗U
∗,

which can be expressed as the core-EP decomposition form, where
△ = [T ∗∗T + (In−r −N

†
∗N)∗S∗]−1, T̃ =

∑k−1
j=0 T

j
∗S∗N

k−1− j, and

DFT(Circ(Unfold(In−r))) =


I1
. . .

Ip

, Ii = In−r, (i = 1, · · · , p).
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Proof.

DFT(Circ(Unfold(A†))) =


A†1

. . .
A†p



=


U1

[
E1 F1
G1 H1

]
U∗1

. . .

Up

[
Ep Fp
Gp Hp

]
U∗p



=


U1

. . .
Up




[
E1 F1
G1 H1

]
. . . [

Ep Fp
Gp Hp

]

U
∗

1

U∗p


= DFT

(
Circ

(
Unfold

(
U∗

[
E F

G H

]
∗U
∗

)))
.

According to reference [11], we obtain

A† = U
[
E F
G H

]
U∗ = U

[
T∗△ −T△SN†

(In−r −N†N)S∗△ N† − (In−r −N†N)S∗△SN†

]
U∗,

so

A
† =U∗

[
T
∗
∗△ −T∗△∗S∗N†

(In−r −N
†
∗N)∗S∗∗△ N

†
− (In−r −N

†
∗N)∗S∗∗△∗S∗N†

]
∗U
∗,

where △ = [T ∗∗T + (In−r −N
†
∗N)∗S∗]−1.

Similarly,

DFT(Circ(Unfold(AD))) =


AD

1
. . .

AD
p


= DFT

(
Circ

(
Unfold

(
U∗

[
T
−1 (T k+1)−1

∗T̃

O O

]
∗U
∗

)))
so

A
D =U∗

[
T
−1 (T k+1)−1

∗T̃

O O

]
∗U
∗,

where T̃ =
∑k−1

j=0 T
j
∗S∗N

k−1− j. Furthermore,

DFT(Circ(Unfold(A †O))) =


A †O

1
. . .

A †O
p

 = DFT
(
Circ

(
Unfold

(
U∗

[
T
−1
O

O O

]
∗U
∗

)))
so

A
†O =U∗

[
T
−1
O

O O

]
∗U
∗.
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On the other hand,

DFT(Circ(Unfold(AWO))) =


AWO

1
. . .

AWO
p

 = DFT
(
Circ

(
Unfold

(
U∗

[
T
−1
T
−2
∗S

O O

]
∗U
∗

)))
.

Therefore,

A
WO =U∗

[
T
−1
T
−2
∗S

O O

]
∗U
∗.

According to the decomposition ofA† andAWO , we can easily get the following two inferences.

Corollary 3.13. LetA ∈ Cn×n×p. Then we have

A
†,WG = A†∗AWO

∗A =U∗

[
T
∗
∗△ −T

∗
∗△∗(T −1

∗S + T −2
∗S∗N)

(In−r −N
†
∗N)∗S∗∗△ (In−r −N

†
∗N)∗S∗∗△∗(T −1

∗S + T −2
∗S∗N)

]
∗U
∗,

where △ = [T ∗∗T + (In−r −N
†
∗N)∗S∗]−1, DFT(Circ(Unfold(In−r))) =


I1
. . .

Ip

, Ii = In−r, (i = 1, · · · , p).

Proof. SinceA†,WG = A†∗AWO
∗A, then

A
†,WG = bcirc−1

(
bcirc(A†,WG)

)
= bcirc−1

(
bcirc(A†∗AWO

∗A)
)

= bcirc−1

(FH
p ⊗ In)


A†1AWO

1 A1
. . .

A†pAWO
p Ap

 (Fp ⊗ In)


=U∗

[
T
∗
∗△ −T

∗
∗△∗(T −1

∗S + T −2
∗S∗N)

(In−r −N
†
∗N)∗S∗∗△ (In−r −N

†
∗N)∗S∗∗△∗(T −1

∗S + T −2
∗S∗N)

]
∗U
∗

where △ = [T ∗∗T + (In−r −N
†
∗N)∗S∗]−1.

Remark 3.14. Using the T-core EP decomposition, we can get that

A∗A
WO
∗A
† =U∗

[
T
−1
O

O O

]
∗U
∗ = A †O.

4. Relationships with other generalized inverses of tensors

In this section, we discuss the equivalence between the T-MPWG inverse and other known generalized
inverses of tensors by using the T-core EP decomposition.

Theorem 4.1. LetA ∈ Cn×n×p be a complex tensor with IndT(A) = k. Then
(i) A†,WG = A⇔ T 2 = Ir,S = O andN = O;
(ii) A†,WG = A∗ ⇔ T∗T ∗ = Ir,S = O andN = O;
(iii) A†,WG = PA = A∗A

†
⇔A is orthogonal and idempotent;

(iv) A†,WG = QA = A
†
∗A ⇔ T = Ir andN = O,

where DFT(Circ(Unfold(Ir))) =


I1
. . .

Ip

, Ii = Ir, (i = 1, · · · , p).
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Proof. Let

A
†,WG =U∗

[
T
∗
∗△ −T

∗
∗△∗(T −1

∗S + T −2
∗S∗N)

(In−r −N
†
∗N)∗S∗∗△ (In−r −N

†
∗N)∗S∗∗△∗(T −1

∗S + T −2
∗S∗N)

]
∗U
∗ =U∗

[
G1 G2
G3 G4

]
∗U
∗.

(i) A†,WG = A⇔

[
G1 G2
G3 G4

]
=

[
T S

O N

]
⇔ T

∗
∗△ = T ,S = S∗N†∗N ,N = O and T∗(T −1

∗S + T −2
∗S∗N) = S.

⇔ T
2 = Ir,S = O andN = O.

(ii) A†,WG = A∗ ⇔

[
G1 G2
G3 G4

]
=

[
T
∗
O

S
∗
N
∗

]
⇔ T

∗
∗△ = T ∗,T ∗∗(T −1

∗S + T −2
∗S∗N) = O,

(In−r −N
†
∗N)∗S∗∗△ = S∗ and S∗∗(T −1

∗S + T −2
∗S∗N) = N ∗.

⇔ △ = I,T −1
∗S + T −2

∗S∗N = O,S∗N†∗N = O,N ∗ = O
⇔ T∗T

∗ = Ir,S = O andN = O.
(iii) A†,WG = PA ⇔A

†,WG = A∗A†

⇔ T
∗
∗△ = Ir,T −1

∗S + T −2
∗S∗N = O,

(In−r −N
†
∗N)∗S∗∗△ = O and O = N∗N†.

From the reference [15],A is orthogonal and idempotent.
(iv) A†,WG = QA ⇔A

†,WG = A†∗A

⇔

[
G1 G2
G3 G4

]
=

[
T
∗
∗△∗T T

∗
∗△∗S − T

∗
∗△∗S∗N

†
∗N

(In−r −N
†
∗N)∗S∗∗△∗T N

†
∗N + (In−r −N

†
∗N)∗S∗∗△∗S∗(In−r −N

†
∗N)

]
⇔ T = Ir andN = O.

Remark 4.2. When the tensorA is EP, i.e. A∗A† = A†∗A, we have that

A
†,WG = A† = A# = A #O = AWO = A †O.

In [16], Yuan and Zuo pointed out the limit expressions for some important generalized inverses. We
extend it to tensors and obtain the limit expressions of the third-order tensors based on the T-product.

Lemma 4.3. [16] LetA ∈ Cn×n×p with IndT(A) = k. There existsA(2) satisfyingA(2)
∗A∗A

(2) = A(2), then

A
(2)
R(X∗Y),N(X∗Y) = lim

z→0
X∗ (z∗I +Y∗A∗X)−1

∗Y.

In [14],Wang and Liu pointed out the limit expressions of the MP inverse of the third-order tensors
based on the T-product.

Theorem 4.4. [14] LetA ∈ Cn×n×p with IndT(A) = k. Then

A
† = lim

z→0
A
∗
∗ (z∗I +A∗A∗)−1.

Applying Theorem 4.4 and the relationship between the T-MPWG inverse and the T-MP inverseA†,WG =
A
†
∗A

WO
∗A, we obtain the limit expression of the MPWG inverse of the tensor.

Lemma 4.5. LetA ∈ Cn×n×p with IndT(A) = k. Then

A
†,WG = A(2)

R(A†∗Ak),N((Ak)∗∗A2)
.

Proof. By the definition of MPWG inverse of matrix, Xi is an outer inverse of Ai, i.e.XiAiXi = Xi (i = 1, · · · , p).
From Xi = A†i AWO

i Ai,we have
X1A1X1

. . .
XpApXp

 =

X1

. . .
Xp

 =

A†1AWO

1 A1
. . .

A†pAWO
p Ap

.
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Hence,

DFT (Circ(Unfold(X∗A∗X))) = DFT (Circ(Unfold(X))).

Therefore,A†,WG = A†,WG
∗A∗A

†,WG.
Using the T-core EP decomposition, we haveA∗A†,WG = AWO

∗A. Then

N (AWO
∗A) ⊆ N(A†∗AWO

∗A) = N(A†,WG) ⊆ N(A∗A†,WG) = N(AWO
∗A),

N (AWO
∗A) ⊆ N(A∗AWO

∗A) = N(A †O
∗A

2) ⊆ N(A †O)2
∗A

2) = N(AWO
∗A),

soN(A†,WG) = N(AWO
∗A) = N(A †O). Hence,

X ∈ N(A†,WG)⇔A2
∗X ∈ N(A †O) = N((Ak)∗),

X ∈ N(A†,WG)⇔ X ∈ N((Ak)∗∗A2).

So we have

R(A†∗Ak) = R(A†,WG
∗A

k) ⊆ R(A†,WG) = R(A†∗AWO
∗A) = R(A†∗Ak

∗Z∗A) ⊆ R(A†∗Ak).

Therefore,

A
†,WG = A(2)

R(A†∗Ak),N((Ak)∗∗A2)
.

From Lemma 4.4, we can get

A
†,WG = A(2)

R(A†∗Ak),N((Ak)∗∗A2)
= A(2)

R(A†∗Ak∗(Ak)∗∗A2),N((Ak)∗∗A2∗A†∗Ak)
.

Theorem 4.6. LetA ∈ Cn×n×p with IndT(A) = k. Then

A
†,WG = lim

z→0
A
†
∗

(
z∗I +Ak

∗(Ak)∗∗A3
∗A
†
)−1
∗A

k
∗(Ak)∗∗A2.

Proof. Let X = A†,Y = Ak
∗(Ak)∗∗A2. Then from Lemma 4.4, we can get

A
†,WG = lim

z→0
X∗ (z∗I +Y∗A∗X)−1

∗Y

= lim
z→0
A
†
∗

(
z∗I +Ak

∗(Ak)∗∗A2
∗A∗A

†
)−1
∗A

k
∗(Ak)∗∗A2

= lim
z→0
A
†
∗

(
z∗I +Ak

∗(Ak)∗∗A3
∗A
†
)−1
∗A

k
∗(Ak)∗∗A2.

An example is given to illustrate the theorem:

Example 4.7. Consider the tensor

A ∈ C2×2×2, A =
[
A(1)
|A(2)

]
,

in Example 3.1, where

A(1) =

[
1 1
0 0

]
, A(2) =

[
−1 1
0 0

]
,

A1 =

[
0 2
0 0

]
, A2 =

[
2 0
0 0

]
.

Since IndT(A) = 2,
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A
† =

[
1
4 0 −

1
4 0

1
4 0 1

4 0

]
,A∗ =

[
−1 0 1 0
1 0 1 0

]
,A2 =

[
2 0 −2 0
0 0 0 0

]
,

A
3 =

[
4 0 −4 0
0 0 0 0

]
,A4 = A2

∗(A2)∗ =
[

8 0 −8 0
0 0 0 0

]
,

A
2
∗(A2)∗∗A3 =

[
64 0 −64 0
0 0 0 0

]
,A†,WG =

[
1 0 −1 0
0 0 0 0

]
,

A
2
∗(A2)∗∗A3

∗A
† = fold

(
bcirc(A2

∗(A2)∗∗A3)unfold(A†)
)

= fold




64 0 −64 0
0 0 0 0
−64 0 64 0

0 0 0 0




1
4 0
0 0
−

1
4 0

0 0


 =

[
32 0 −32 0
0 0 0 0

]
.

And

z∗I +A2
∗(A2)∗∗A3

∗A
† =

[
z 0 0 0
0 z 0 0

]
+

[
32 0 −32 0
0 0 0 0

]
=

[
z + 32 0 −32 0

0 z 0 0

]
,

(z∗I +A2
∗(A2)∗∗A3

∗A
†)−1 =

[ z+32
z(z+64) 0 32

z(z+64) 0
0 1

z 0 0

]
,

(z∗I +A2
∗(A2)∗∗A3

∗A
†)−1
∗A

2
∗(A2)∗∗A2 = fold

(
bcirc((z∗I +A2

∗(A2)∗∗A3
∗A
†)−1)unfold(A2

∗(A2)∗∗A2)
)

= fold




z+32
z(z+64) 0 32

z(z+64) 0
0 1

z 0 0
32

z(z+64) 0 z+32
z(z+64) 0

0 0 0 1
z




64 0
0 0
−64 0

0 0


 =

[
64

z+64 0 −
64

z+64 0
0 0 0 0

]
,

Therefore,

lim
z→0
A
†
∗

(
z∗I +Ak

∗(Ak)∗∗A3
∗A
†
)−1
∗A

k
∗(Ak)∗∗A2 =

[
1 0 −1 0
0 0 0 0

]
= A†,WG.

5. Cayley-Hamilton theorem of the T-MPWG inverse

In this section, we extend the Cayley-Hamilton theorem of the third-order tensors to the T-MPWG
inverse. If bcirc(A) can be Fourier block diagonalized as:

bcirc(A) =
(
FH

p ⊗ In

) 
A1

. . .
Ap

 (Fp ⊗ In

)
.

PAi (x) is the characteristic polynomial of the matrix Ai,

PAi (x) = det(sIn − Ai) = xn + ai,n−1xn−1 + · · · + ai,1x + ai,0,

where ai,0 = det(Ai), i = 1, · · · , p.
Firstly, we introduce the concept of the T-characteristic polynomial and Cayley-Hamilton theorem for

the tensorA ∈ Cn×n×p.

Definition 5.1. [8] LetA ∈ Cn×n×p be a complex tensor. Then the T-characteristic polynomial PT(x) of tensorA has
the expression:
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PT(x) := LCM
(
PA1 (x),PA2 (x), · · · ,PAp (x)

)
where LCM means the least common multipiler.

According to the above definition, let the T-characteristic polynomial ofA be of order t.

PT(x) = xt + bt−1xt−1 + · · · + b1x + b0.

Assuming that A ∈ Cn×n×p is singular, then there exists at least one matrix Ai (i = 1, · · · , p) in PAi (x) is
singular, i.e., there is at least one det(Ai) = 0. Therefore, b0 = 0.

Theorem 5.2. [8] LetA ∈ Cn×n×p be a complex tensor, and PT(x) be the T-characteristic polynomial ofA. ThenA
satisfies the T-characteristic polynomial PT(x), which PT(A) = O.

Lemma 5.3. [13] LetA ∈ Cn×n×p. The T-core EP decomposition is as

A =U∗

[
T S

O N

]
∗U
∗,

then

PT(A †O) = a1(A †O)n + a2(A †O)n−1 + · · · + an−1(A †O)2 +A †O = O.

Lemma 5.4. [7] LetA ∈ Cn×n×p. The T-core EP decomposition is as

A =U∗

[
T S

O N

]
∗U
∗,

then

PT(AWO) = a1(AWO)n + a2(AWO)n−1 + · · · + an−1(AWO)2 +AWO = O.

Theorem 5.5. Let A ∈ Cn×n×p with IndT(A) = k. The characteristic polynomial of the matrix Ai is PAi (s) =
det(sIn − Ai) = sn + ai,n−1sn−1 + · · · + ai,1s, then

PT(A†,WG) = a1(A†,WG)n
+ a2(A†,WG)n−1

+ · · · + an−1(A†,WG)2
+A†,WG = O.

A
†,WG

∈ Cn×n×p is the T-MPWG inverse ofA.

Proof. Since PT(A†,WG) is a tensor on Cn×n×p, we apply bcirc to it:

bcirc
(
PT(A†,WG)

)
= PT

(
bcirc(A†,WG)

)

= PT

(FH
p ⊗ In)


A†,WG

1
A†,WG

2
. . .

A†,WG
p

 (Fp ⊗ In)


= (FH

p ⊗ In)


PT(A†,WG

1 )
PT(A†,WG

2 )
. . .

PT(A†,WG
p )

 (Fp ⊗ In)

= (FH
p ⊗ In)


O

O
. . .

O

 (Fp ⊗ In) = O.

According to the literature [8], we obtain
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PT(A†,WG) = a1(A†,WG)n
+ a2(A†,WG)n−1

+ · · · + an−1(A†,WG)2
+A†,WG = O.

Here is an example to illustrate:

Example 5.6. Consider tensor

A ∈ C2×2×2,A =
[
A(1)
|A(2)

]
,

in Example 3.1, where

A(1) =

[
1 1
0 0

]
, A(2) =

[
−1 1
0 0

]
,

and

A
†,WG =

[
1 0 −1 0
0 0 0 0

]
.

Applying the discrete Fourier transform

bcirc(A†,WG) =
(
FH

2 ⊗ I2

)
Diag

(
A†,WG

1 ,A†,WG
2

)
(F2 ⊗ I2),

we obtain

A†,WG
1 =

[
1 1
0 0

]
, A†,WG

2 =

[
−1 −1
0 0

]
.

Thus

PA†,WG
1

(x) =
∣∣∣xE − A†,WG

1

∣∣∣ = ∣∣∣∣∣x − 1 −1
0 x

∣∣∣∣∣ = x2
− x,

PA†,WG
2

(x) =
∣∣∣xE − A†,WG

2

∣∣∣ = ∣∣∣∣∣x + 1 1
0 x

∣∣∣∣∣ = x2 + x,

so

PA†,WG
1

(
A†,WG

1

)
=

[
1 1
0 0

]2

−

[
1 1
0 0

]
= O,

PA†,WG
2

(
A†,WG

2

)
=

[
−1 −1
0 0

]2

−

[
−1 −1
0 0

]
= O.

Therefore

bcirc
(
PT(A†,WG)

)
= PT

(
bcirc(A†,WG)

)
= PT

(
(FH

2 ⊗ I2)
[
A†,WG

1
A†,WG

2

]
(F2 ⊗ I2)

)
= (FH

2 ⊗ I2)
[
PT(A†,WG

1 )
PT(A†,WG

2 )

]
(F2 ⊗ I2)

= (FH
2 ⊗ I2)

[
O

O

]
(F2 ⊗ I2) = O.

Hence, PT(A†,WG) = a1(A†,WG)2
+A†,WG = O.
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