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Abstract. Discrete-time systems are sometimes used to explain natural phenomena that happen in non-
linear sciences. We study the periodicity, boundedness, oscillation, stability, and certain exact solutions
of nonlinear difference equations of generalized order in this paper. Using the standard iteration method,
exact solutions are obtained. Some well-known theorems are used to test the stability of the equilibrium
points. Some numerical examples are also provided to confirm the theoretical work’s validity. The numeri-
cal component is implemented with Wolfram Mathematica. The method presented may be simply applied
to other rational recursive issues.

In this research, we examine the qualitative behavior of rational recursive sequences provided that the
initial conditions are arbitrary real numbers. We examine the behavior of solutions on graphs according to
the state of their initial value

xn+1 =
xn−2xn−8xn−14

±xn−5xn−11 ± xn−2xn−5xn−8xn−11xn−14
.

1. Introduction

Differential equations are often used to describe some natural phenomena when the time is continuous.
However, some real life problems can be simply investigated using discrete-time equations [13, 26, 27, 29, 36].
Differential equations occur naturally in many nonlinear sciences, including ecology and economics. In
such cases, the state of a phenomenon at a specific point in time completely predicts its state after a year.
Dynamical systems theory is useful in discussing the behavior of some models without solving them.
Most natural phenomena are studied using difference equations. Some researchers studied biological,
economic, statistical, engineering, electrical, mechanical, thermal, physical, and nonlinear science problems
using recursive equations [7, 8]. For example, difference equations have been used to investigate the
size of a population, the drug in the blood system, and information transmission [14]. Furthermore, the
development of digital devices has strongly influenced the use of recursive equations as approximations for
ordinary and partial differential equations [28]. We get a difference equation when we discretize a specified
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differential equation. Euler’s scheme, for example, can be obtained by discretizing a first order differential
equation. Various scholars have extensively studied the qualitative behaviour of some recursive equations.
Scientists have especially explored the stability, periodicity, bifurcation, boundedness, and solutions of
several recursive equations. Some published papers are presented in this literature review. Almatrafi [3]
found precise solutions to sixth order recursive equations. Under particular conditions, the author analyzed
the stability of the critical points and the periodicity of the solutions. In [15], author examined the stability,
some analytic solutions for a sixth order difference problem. Furthermore, Elsayed et al. [16], analyzed
a twelfth order nonlinear difference equation of the periodicity, stability and solutions. More discussions
about difference equations can be seen in Refs. [1–37].

This article discusses the solutions, stability and periodicity of the difference equations,

xn+1 =
xn−2xn−8xn−14

±xn−5xn−11 ± xn−2xn−5xn−8xn−11xn−14
, (1)

where the initial values are arbitrary positive real numbers. We generate precise solutions through classical
iteration. Figures are produced to demonstrate numerical solutions.

Here, we display some basic definitions and some theorems which will be beneficial in our research.
Let I be some interval of real numbers and let f : Ik+1

→ I, be a continuously differentiable function. Then
for every set of initial conditions x−k, x−k+1, . . . , x0 ∈ I, the difference equation

xn+1 = f (xn, xn−1, . . . , xn−k), n = 0, 1, 2, . . . , (2)

has a unique solution {xn}
∞

n=−k [25].

Definition 1.1. (Equilibrium Point)
A point x ∈ I is called an equilibrium point of (2) if

x = f (x, x, . . . , x).

That is, xn = x for n ≥ 0, is a solution of (2), or equivalently, x is a fixed point of f .

Definition 1.2. (Stability)

(a) The equilibrium point x of (2) is called locally stable if for every ϵ > 0, there exists δ > 0 such that for
all x−k, x−k+1, ..., x−1, x0 ∈ I with

|x−k − x| + |x−k+1 − x| + ... + |x0 − x| < δ,

we have

|xn − x| < ϵ for all n ≥ k.

(b) The equilibrium point x of (2) is called locally asymptotically stable if x is a locally stable solution of
(2) and there exists γ > 0, such that for all x−k, x−k+1, ..., x−1, x0 ∈ I with

|x−k − x| + |x−k+1 − x| + ... + |x0 − x| < γ,

we have

lim
n→∞

xn = x.

(c) The equilibrium point x of (2) is called a global attractor if for all x−k, x−k+1, ..., x−1, x0 ∈ I, we have

lim
n→∞

xn = x.
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(d) The equilibrium point x of (2) is called a global asymptotically stable if x is locally stable and x is also
a global attractor of (2).

(e) The equilibrium point x of (2) is called unstable if x is not locally stable.
The linearized equation of (2) about the equilibrium x is the linear difference equation

yn+1 =

k∑
i=0

∂ f (x, x, ..., x)
∂xn−i

yn−i.

Theorem 1.3. ([23]) Assume that p, q ∈ R and k ∈N0. Then

|p| + |q| < 1

is a sufficient condition for the asymptotic stability of the difference equation

xn+1 + pxn + qxn−k = 0, n ∈N0.

Remark 1.4. Theorem 1.3 can be easily extended to general linear equations of the form

xn+k + p1xn+k−1 + ... + pkxn = 0, n ∈N0, (3)

where, p1, p2, ..., pk ∈ R and k ∈N. Then (3) is asymptotically stable provided that

k∑
i=1

|pi| < 1.

2. First case

In this section, we give a specific form of the solutions of the difference equation below, provided that
the initial conditions are arbitrary real numbers.

xn+1 =
xn−2xn−8xn−14

xn−5xn−11 + xn−2xn−5xn−8xn−11xn−14
, (4)

where,

x−14 = T, x−13 = S, x−12 = R, x−11 = P, x−10 =M, x−9 = L, x−8 = J, x−7 = H, x−6 = G, (5)
x−5 = F, x−4 = E, x−3 = D, x−2 = C, x−1 = B, x0 = A.

Theorem 2.1. Let {xn}
∞

n=−14 be a solution of (4). Then,

x18n+1 =
CJT
∏n−1

i=0 (1 + (6i + 5)CJT)
FP
∏n

i=0(1 + (6i + 1)CJT)
, x18n+2 =

BHS
∏n−1

i=0 (1 + (6i + 5)BHS)
EM
∏n

i=0(1 + (6i + 1)BHS)
,

x18n+3 =
AGR

∏n−1
i=0 (1 + (6i + 5)AGR)

DL
∏n

i=0(1 + (6i + 1)AGR)
, x18n+4 =

T
∏n−1

i=0 (1 + (6i + 6)CJT)∏n
i=0(1 + (6i + 2)CJT)

,

x18n+5 =
S
∏n−1

i=0 (1 + (6i + 6)BHS)∏n
i=0(1 + (6i + 2)BHS)

, x18n+6 =
R
∏n−1

i=0 (1 + (6i + 6)AGR)∏n
i=0(1 + (6i + 2)AGR)

,

x18n+7 =
P
∏n

i=0(1 + (6i + 1)CJT)∏n
i=0(1 + (6i + 3)CJT)

, x18n+8 =
M
∏n

i=0(1 + (6i + 1)BHS)∏n
i=0(1 + (6i + 3)BHS)

,

x18n+9 =
L
∏n

i=0(1 + (6i + 1)AGR)∏n
i=0(1 + (6i + 3)AGR)

, x18n+10 =
J
∏n

i=0(1 + (6i + 2)CJT)∏n
i=0(1 + (6i + 4)CJT)

,

x18n+11 =
H
∏n

i=0(1 + (6i + 2)BHS)∏n
i=0(1 + (6i + 4)BHS)

, x18n+12 =
G
∏n

i=0(1 + (6i + 2)AGR)∏n
i=0(1 + (6i + 4)AGR)

,



D. Şimşek et al. / Filomat 38:3 (2024), 997–1008 1000

x18n+13 =
F
∏n

i=0(1 + (6i + 3)CJT)∏n
i=0(1 + (6i + 5)CJT)

, x18n+14 =
E
∏n

i=0(1 + (6i + 3)BHS)∏n
i=0(1 + (6i + 5)BHS)

,

x18n+15 =
D
∏n

i=0(1 + (6i + 3)AGR)∏n
i=0(1 + (6i + 5)AGR)

, x18n+16 =
C
∏n

i=0(1 + (6i + 4)CJT)∏n
i=0(1 + (6i + 6)CJT)

,

x18n+17 =
B
∏n

i=0(1 + (6i + 4)BHS)∏n
i=0(1 + (6i + 6)BHS)

, x18n+18 =
A
∏n

i=0(1 + (6i + 4)AGR)∏n
i=0(1 + (6i + 6)AGR)

.

where, x0, . . . , x−14 defines as in (5).

Proof. The proof of each formula are carried out in similar way. So, we will demonstrate proof using one of
the formula. We will employ the mathematical induction method. For n = 0 results holds. Now suppose
that n > 0 and that our assumption holds for n − 1. That is,

x18n−17 =
CJT
∏n−2

i=0 (1 + (6i + 5)CJT)

FP
∏n−1

i=0 (1 + (6i + 1)CJT)
, x18n−16 =

BHS
∏n−2

i=0 (1 + (6i + 5)BHS)

EM
∏n−1

i=0 (1 + (6i + 1)BHS)
,

x18n−15 =
AGR

∏n−2
i=0 (1 + (6i + 5)AGR)

DL
∏n−1

i=0 (1 + (6i + 1)AGR)
, x18n−14 =

T
∏n−2

i=0 (1 + (6i + 6)CJT)∏n−1
i=0 (1 + (6i + 2)CJT)

,

x18n−13 =
S
∏n−2

i=0 (1 + (6i + 6)BHS)∏n−1
i=0 (1 + (6i + 2)BHS)

, x18n−12 =
R
∏n−2

i=0 (1 + (6i + 6)AGR)∏n−1
i=0 (1 + (6i + 2)AGR)

,

x18n−11 =
P
∏n−1

i=0 (1 + (6i + 1)CJT)∏n−1
i=0 (1 + (6i + 3)CJT)

, x18n−10 =
M
∏n−1

i=0 (1 + (6i + 1)BHS)∏n−1
i=0 (1 + (6i + 3)BHS)

,

x18n−9 =
L
∏n−1

i=0 (1 + (6i + 1)AGR)∏n−1
i=0 (1 + (6i + 3)AGR)

, x18n−8 =
J
∏n−1

i=0 (1 + (6i + 2)CJT)∏n−1
i=0 (1 + (6i + 4)CJT)

,

x18n−7 =
H
∏n−1

i=0 (1 + (6i + 2)BHS)∏n−1
i=0 (1 + (6i + 4)BHS)

, x18n−6 =
G
∏n−1

i=0 −1(1 + (6i + 2)AGR)∏n−1
i=0 (1 + (6i + 4)AGR)

,

x18n−5 =
F
∏n−1

i=0 (1 + (6i + 3)CJT)∏n−1
i=0 (1 + (6i + 5)CJT)

, x18n−4 =
E
∏n−1

i=0 (1 + (6i + 3)BHS)∏n−1
i=0 (1 + (6i + 5)BHS)

,

x18n−3 =
D
∏n−1

i=0 (1 + (6i + 3)AGR)∏n−1
i=0 (1 + (6i + 5)AGR)

, x18n−2 =
C
∏n−1

i=0 (1 + (6i + 4)CJT)∏n−1
i=0 (1 + (6i + 6)CJT)

,

x18n−1 =
B
∏n−1

i=0 (1 + (6i + 4)BHS)∏n−1
i=0 (1 + (6i + 6)BHS)

, x18n =
A
∏n−1

i=0 (1 + (6i + 4)AGR)∏n−1
i=0 (1 + (6i + 6)AGR)

.

Now, using the main (4), one has

x18n+1 =
x18n−2x18n−8x18n−14

(x18n−5x18n−11)(1 + x18n−2x18n−8x18n−14)

=

C
∏n−1

i=0 (1+(6i+4)CJT)∏n−1
i=0 (1+(6i+6)CJT)

J
∏n−1

i=0 (1+(6i+2)CJT)∏n−1
i=0 (1+(6i+4)CJT)

T
∏n−2

i=0 (1+(6i+6)CJT)∏n−1
i=0 (1+(6i+2)CJT)(

F
∏n−1

i=0 (1+(6i+3)CJT)∏n−1
i=0 (1+(6i+5)CJT)

P
∏n−1

i=0 (1+(6i+1)CJT)∏n−1
i=0 (1+(6i+3)CJT)

) (
1 + C

∏n−1
i=0 (1+(6i+4)CJT)∏n−1

i=0 (1+(6i+6)CJT)
J
∏n−1

i=0 (1+(6i+2)CJT)∏n−1
i=0 (1+(6i+4)CJT)

T
∏n−2

i=0 (1+(6i+6)CJT)∏n−1
i=0 (1+(6i+2)CJT)

)
=

CJT
∏n−2

i=0 (1+(6i+6)CJT)∏n−1
i=0 (1+(6i+6)CJT)(

FP
∏n−1

i=0 (1+(6i+1)CJT)∏n−1
i=0 (1+(6i+5)CJT)

) (
1 + CJT

∏n−2
i=0 (1+(6i+6)CJT)∏n−1

i=0 (1+(6i+6)CJT)

) = CJT
∏n−2

i=0 (1+(6i+6)CJT)∏n−2
i=0 (1+(6i+6)CJT)(1+(6(n−1)+6)CJT)(

FP
∏n−1

i=0 (1+(6i+1)CJT)∏n−1
i=0 (1+(6i+5)CJT)

) (
1 + CJT

∏n−2
i=0 (1+(6i+6)CJT)∏n−2

i=0 (1+(6i+6)CJT)(1+(6(n−1)+6)CJT)

)
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=

CJT
1+6nCJT(

FP
∏n−1

i=0 (1+(6i+1)CJT)∏n−1
i=0 (1+(6i+5)CJT)

) (
1 + CJT

1+6nCJT

)
=

CJT
1+6nCJT

∏n−1
i=0 (1 + (6i + 5)CJT)

FP
∏n−1

i=0 (1 + (6i + 1)CJT)
(

1+6nCJT+CJT
1+6nCJT

)
=

CJT
∏n−1

i=0 (1 + (6i + 5)CJT)

FP
∏n−1

i=0 (1 + (6i + 1)CJT)(1 + (6n + 1)CJT)

=
CJT
∏n−1

i=0 (1 + (6i + 5)CJT)
FP
∏n

i=0(1 + (6i + 1)CJT)
.

Hence, we have

x18n+1 =
CJT
∏n−1

i=0 (1 + (6i + 5)CJT)
FP
∏n

i=0(1 + (6i + 1)CJT)
.

Similarly,

x18n+2 =
x18n−1x18n−7x18n−13

(x18n−4x18n−10)(1 + x18n−1x18n−7x18n−13)

=

B
∏n−1

i=0 (1+(6i+4)BHS)∏n−1
i=0 (1+(6i+6)BHS)

H
∏n−1

i=0 (1+(6i+2)BHS)∏n−1
i=0 (1+(6i+4)BHS)

S
∏n−2

i=0 (1+(6i+6)BHS)∏n−1
i=0 (1+(6i+2)BHS)(

E
∏n−1

i=0 (1+(6i+3)BHS)∏n−1
i=0 (1+(6i+5)BHS)

M
∏n−1

i=0 (1+(6i+1)BHS)∏n−1
i=0 (1+(6i+3)BHS)

) (
1 + B

∏n−1
i=0 (1+(6i+4)BHS)∏n−1

i=0 (1+(6i+6)BHS)
H
∏n−1

i=0 (1+(6i+2)BHS)∏n−1
i=0 (1+(6i+4)BHS)

S
∏n−2

i=0 (1+(6i+6)BHS)∏n−1
i=0 (1+(6i+2)BHS)

)
=

BHS
∏n−2

i=0 (1+(6i+6)BHS)∏n−1
i=0 (1+(6i+6)BHS)(

EM
∏n−1

i=0 (1+(6i+1)BHS)∏n−1
i=0 (1+(6i+5)BHS)

) (
1 + BHS

∏n−2
i=0 (1+(6i+6)BHS)∏n−1

i=0 (1+(6i+6)BHS)

) = BHS
∏n−2

i=0 (1+(6i+6)BHS)∏n−2
i=0 (1+(6i+6)BHS)(1+(6(n−1)+6)BHS)(

EM
∏n−1

i=0 (1+(6i+1)BHS)∏n−1
i=0 (1+(6i+5)BHS)

) (
1 + BHS

∏n−2
i=0 (1+(6i+6)BHS)∏n−2

i=0 (1+(6i+6)BHS)(1+(6(n−1)+6)BHS)

)
=

BHS
1+6nBHS(

EM
∏n−1

i=0 (1+(6i+1)BHS)∏n−1
i=0 (1+(6i+5)BHS)

) (
1 + BHS

1+6nBHS

)
=

BHS
1+6nBHS

∏n−1
i=0 (1 + (6i + 5)BHS)

EM
∏n−1

i=0 (1 + (6i + 1)BHS)
(

1+6nBHS+BHS
1+6nBHS

)
=

BHS
∏n−1

i=0 (1 + (6i + 5)BHS)

EM
∏n−1

i=0 (1 + (6i + 1)BHS)(1 + (6n + 1)BHS)

=
BHS

∏n−1
i=0 (1 + (6i + 5)BHS)

EM
∏n

i=0(1 + (6i + 1)BHS)
.

Then, we have

x18n+2 =
BHS

∏n−1
i=0 (1 + (6i + 5)BHS)

EM
∏n

i=0(1 + (6i + 1)BHS)
.

Other relations can also be obtained in a similar way, and thus the proof is complete.

Theorem 2.2. The equation (4) has unique equilibrium point which is the number zero and this equilibrium isn’t
locally asymptotically stable. Also x is non hyperbolic.

Proof. If we use the definition (1.1), for the equilibriums of (4), we have

x =
x3

x2
+ x5 ,
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then

x3
+ x6

= x3, x6
= 0.

Thus the equilibrium point of equation (4), is x = 0.
Let f : (0,∞)5

→ (0,∞) be the function defined by

f (α, β, ϱ, η, ζ) =
αϱζ

βη(1 + αϱζ)
.

Therefore it follows that,

fα(α, β, ϱ, η, ζ) =
ζϱ

ηβ(1 + αϱζ)2 , fβ(α, β, ϱ, η, ζ) = −
αϱζ

ηβ2(1 + αϱζ)
, fϱ(α, β, ϱ, η, ζ) =

αζ

ηβ(1 + αϱζ)2 ,

fη(α, β, ϱ, η, ζ) = −
αϱζ

η2β(1 + αϱζ)
, fζ(α, β, ϱ, η, ζ) =

αϱ

ηβ(1 + αϱζ)2 .

fα(α, β, ϱ, η, ζ) =
ζϱ

ηβ(1 + αϱζ)2

fα(x, x, x, x, x) =
xx

xx(1 + xxx)2

=
x2

x2(1 + x3)2

=
1

(1 + x3)2

Equilibrium point x = 0 was found. Substituting this above, we get

fα(x, x, x, x, x) = 1.

Similarly way we can obtain

fβ(x, x, x, x, x) = −1, fϱ(x, x, x, x, x) = 1, fη(x, x, x, x, x) = −1, fζ(x, x, x, x, x) = 1.

It has been used from e) of the definition (1.2). The proof now follows by using Theorem 2.1.

To illustrate the results of this section, we now consider numerical examples which represent different
types of solutions to equation (4).

Example 2.3. Suppose that,

x−14 = 1.06, x−13 = 1.07, x−12 = 1.08, x−11 = 1.09, x−10 = 1.1, x−9 = 1.11, x−8 = 1.12,
x−7 = 1.13, x−6 = 1.14, x−5 = 1.15, x−4 = 1.16, x−3 = 1.17, x−2 = 1.18, x−1 = 1.19,
x0 = 1.2.

According to the above initial conditions, figure 1 was obtained. Figure 1 shows the dynamic behavior of
(4).

Example 2.4. Assume that,

x−14 = 1.6, x−13 = 3, x−12 = 2, x−11 = 1.09, x−10 = 1.1, x−9 = 1.11, x−8 = 1.12,
x−7 = 1.9, x−6 = 1.14, x−5 = 1.15, x−4 = 1.16, x−3 = 1.17, x−2 = 1.18, x−1 = 1.19,
x0 = 1.2.

According to the above initial conditions, figure 2 was obtained. Figure 2 shows the dynamic behavior of
(4).
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Figure 1: Example 2.3
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Figure 2: Example 2.4

3. Second case

In this part, we give a specific form of the solutions of the difference equation below, provided that the
initial conditions are arbitrary real numbers,

xn+1 =
xn−2xn−8xn−14

xn−5xn−11 − xn−2xn−5xn−8xn−11xn−14
. (6)

where, x0, . . . , x−14 defines as in (5).

Theorem 3.1. Let {xn}
∞

n=−14 be a solution of equation (6). Then,

x18n+1 =
−CJT

∏n−1
i=0 (−1 + (6i + 5)CJT)

FP
∏n

i=0(−1 + (6i + 1)CJT)
, x18n+2 =

−BHS
∏n−1

i=0 (−1 + (6i + 5)BHS)
EM
∏n

i=0(−1 + (6i + 1)BHS)
,

x18n+3 =
−AGR

∏n−1
i=0 (−1 + (6i + 5)AGR)

DL
∏n

i=0(−1 + (6i + 1)AGR)
, x18n+4 =

−T
∏n−1

i=0 (−1 + (6i + 6)CJT)∏n
i=0(−1 + (6i + 2)CJT)

,

x18n+5 =
−S
∏n−1

i=0 (−1 + (6i + 6)BHS)∏n
i=0(−1 + (6i + 2)BHS)

, x18n+6 =
−R
∏n−1

i=0 (−1 + (6i + 6)AGR)∏n
i=0(−1 + (6i + 2)AGR)

,

x18n+7 =
P
∏n

i=0(−1 + (6i + 1)CJT)∏n
i=0(−1 + 6i + 3)CJT)

, x18n+8 =
M
∏n

i=0(−1 + (6i + 1)BHS)∏n
i=0(−1 + (6i + 3)BHS)

,

x18n+9 =
L
∏n

i=0(−1 + (6i + 1)AGR)∏n
i=0(−1 + (6i + 3)AGR)

, x18n+10 =
J
∏n

i=0(−1 + (6i + 2)CJT)∏n
i=0(−1 + (6i + 4)CJT)

,

x18n+11 =
H
∏n

i=0(−1 + (6i + 2)BHS)∏n
i=0(−1 + (6i + 4)BHS)

, x18n+12 =
G
∏n

i=0(−1 + (6i + 2)AGR)∏n
i=0(−1 + (6i + 4)AGR)

,

x18n+13 =
F
∏n

i=0(−1 + (6i + 3)CJT)∏n
i=0(1 + (6i + 5)CJT)

, x18n+14 =
E
∏n

i=0(−1 + (6i + 3)BHS)∏n
i=0(−1 + (6i + 5)BHS)

,

x18n+15 =
D
∏n

i=0(−1 + (6i + 3)AGR)∏n
i=0(−1 + (6i + 5)AGR)

, x18n+16 =
C
∏n

i=0(−1 + (6i + 4)CJT)∏n
i=0(−1 + (6i + 6)CJT)

,

x18n+17 =
B
∏n

i=0(−1 + (6i + 4)BHS)∏n
i=0(−1 + (6i + 6)BHS)

, x18n+18 =
A
∏n

i=0(−1 + (6i + 4)AGR)∏n
i=0(−1 + (6i + 6)AGR)

,

holds.

Proof. The proof is similar to the proof of Theorem 2.1 and therefore it will be omitted.

Theorem 3.2. The equation (6) has a unique equilibrium point x = 0, which is not locally asymptotically stable.
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Proof. The proof is similar to the proof Theorem 2.2 and there it will be omitted.

For confirming the outcomes of this section, we take into consideration mathematical instances which
stand for various kind of solutions to (6).

Example 3.3. Suppose that,

x−14 = 1.6, x−13 = 3, x−12 = 2, x−11 = 1.09, x−10 = 3.1, x−9 = 2.3, x−8 = 1.12,
x−7 = 1.9, x−6 = 1.14, x−5 = 1.15, x−4 = 1.16, x−3 = 1.17, x−2 = 2.7, x−1 = 1.3,
x0 = 3.5.

According to the above initial conditions, figure 3 was obtained. Figure 3 shows the dynamic behavior
of (6).

Example 3.4. We consider,

x−14 = 1.6, x−13 = 3, x−12 = 6, x−11 = 1.09, x−10 = 3.1, x−9 = 2.3, x−8 = 1.12,
x−7 = 5.5, x−6 = 1.14, x−5 = 1.15, x−4 = 6.16, x−3 = 1.17, x−2 = 2.7, x−1 = 1.3,
x0 = 3.5.

According to the above initial conditions, figure 4 was obtained. Figure 4 shows the dynamic behavior
of (6).
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Figure 3: Example 3.3
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Figure 4: Example 3.4

4. Third case

In this case, we give a specific form of the solutions of the difference equation below, provided that the
initial conditions are arbitrary real numbers,

xn+1 =
xn−2xn−8xn−14

−xn−5xn−11 + xn−2xn−5xn−8xn−11xn−14
, (7)

where, x0, . . . , x−14 defines as in (5).

Theorem 4.1. Let {xn}
∞

n=−14 be a solution of equation (7). Then every solution of equation (7) for, n = 0, 1, 2, ...

x18n+1 =
CJT

FP(−1 + CJT)
, x18n+2 =

BHS
EM(−1 + BHS)

, x18n+3 =
AGR

DL(−1 + AGR)
,

x18n+4 = T, x18n+5 = S, x18n+6 = R, x18n+7 = P, x18n+8 =M, x18n+9 = L,
x18n+10 = J, x18n+11 = H, x18n+12 = G, x18n+13 = F, x18n+14 = E, x18n+15 = D,
x18n+16 = C, x18n+17 = B, x18n+18 = A,

solutions have 18 periods.
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Proof. The proof of each formula are carried out in similar way. So, we will demonstrate proof using one
of the formula. We will employ the mathematical induction method. For n = 0, the result holds. Now
suppose that n > 0 and that our assumption holds for n − 1. That is;

x18n−17 =
CJT

FP(−1 + CJT)
, x18n−16 =

BHS
EM(−1 + BHS)

, x18n−15 =
AGR

DL(−1 + AGR)
,

x18n−14 = T, x18n−13 = S, x18n−12 = R, x18n−11 = P, x18n−10 =M, x18n−9 = L,
x18n−8 = J, x18n−7 = H, x18n−6 = G, x18n−5 = F, x18n−4 = E, x18n−3 = D,
x18n−2 = C, x18n−1 = B, x18n = A.

Now, it follows from (7) that

x18n+1 =
x18n−2x18n−8x18n−14

−x18n−5x18n−11 + x18n−2x18n−5x18n−8x18n−11x18n−14
=

CJT
FP(−1 + CJT)

,

x18n+2 =
x18n−1x18n−7x18n−13

−x18n−4x18n−10 + x18n−1x18n−4x18n−7x18n−10x18n−13
=

BHS
EM(−1 + BHS)

Similarly, we can easily obtain the other relations. Thus, the proof is completed.

Theorem 4.2. The equation (7) has three equilibrium points which are 0,± 3√2, and these equilibrium points are not
locally asymptotically stable.

Proof. The proof is the same as the proof of Theorem 2.2 and hence is omitted.

Example 4.3. Suppose that,

x−14 = 1.6, x−13 = 2.5, x−12 = 2, x−11 = 1.09, x−10 = 3.1, x−9 = 2.8, x−8 = 1.12,
x−7 = 3.1, x−6 = 1.14, x−5 = 1.15, x−4 = 3.16, x−3 = 1.17, x−2 = 2.7, x−1 = 1.3,
x0 = 3.2.

According to the above initial conditions, figure 5 was obtained. Figure 5 shows the dynamic behavior
of (7).

Example 4.4. Assume that,

x−14 = 3.6, x−13 = 2.5, x−12 = 2, x−11 = 1.09, x−10 = 3.1, x−9 = 2.8, x−8 = 1.12,
x−7 = 3.1, x−6 = 1.14, x−5 = 1.15, x−4 = 3.16, x−3 = 2.17, x−2 = 1.75, x−1 = 1.32,
x0 = 3.2.

According to the above initial conditions, figure 6 was obtained. Figure 6 shows the dynamic behavior
of (7).
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Figure 6: Example 4.4

5. Fourth case

In this section, we give a specific form of the solutions of the difference equation below, provided that
the initial conditions are arbitrary real numbers,

xn+1 =
xn−2xn−8xn−14

−xn−5xn−11 − xn−2xn−5xn−8xn−11xn−14
, (8)

where, x0, . . . , x−14 defines as in (5).

Theorem 5.1. Let {xn}
∞

n=−14 be a solution of (8). Then every solution of (8) for, n = 0, 1, 2, ...

x18n+1 =
−CJT

FP(1 + CJT)
, x18n+2 =

−BHS
EM(1 + BHS)

, x18n+3 =
−AGR

DL(1 + AGR)
,

x18n+4 = T, x18n+5 = S, x18n+6 = R, x18n+7 = P, x18n+8 =M, x18n+9 = L,
x18n+10 = J, x18n+11 = H, x18n+12 = G, x18n+13 = F, x18n+14 = E, x18n+15 = D,
x18n+16 = C, x18n+17 = B, x18n+18 = A,

have 18 periods.

Proof. The proof is the same as the proof of Theorem 4.1 and hence is omitted.

Theorem 5.2. The equation (8) has three equilibrium point which are 0,± 3√
−2 and this equilibrium points is not

locally asymptotically stable.

Proof. The proof is the same as the proof of Theorem 2.2 and hence is omitted.

Example 5.3. Assume that,

x−14 = 3, x−13 = 3.2, x−12 = 3.4, x−11 = 1.6, x−10 = 3.7, x−9 = 2.8, x−8 = 2.5, x−7 = 2.7,
x−6 = 1.3, x−5 = 1.19, x−4 = 1.2, x−3 = 1.45, x−2 = 1.56, x−1 = 1.6, x0 = 1.5.

According to the above initial conditions, figure 7 was obtained. Figure 7 shows the dynamic behavior
of (8).

Example 5.4. Suppose that,

x−14 = 3, x−13 = 3.2, x−12 = 3.4, x−11 = 1.6, x−10 = 3.7, x−9 = 2.8, x−8 = 2.5, x−7 = 2.7,
x−6 = 1.3, x−5 = 1.19, x−4 = 1.2, x−3 = 2.7, x−2 = 4.7, x−1 = 4.1, x0 = 1.9.

According to the above initial conditions, figure 8 was obtained. Figure 8 shows the dynamic behavior
of (8).
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Figure 7: Example 5.3
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Figure 8: Example 5.4

6. Conclusion

We study the behavior of the difference equation

xn+1 =
xn−2xn−8xn−14

±xn−5xn−11 ± xn−2xn−5xn−8xn−11xn−14
,

where the initials are positive real numbers. Local stability is discussed. Moreover, we get the solution of
some special cases. Finally, some numerical examples are given.
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