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Abstract. In this article, algebraic characterisations of J-spaces and C-normal spaces are exhibited. The
concept of a Z-connected ideal in C(X) is presented and characterised using certain connected subsets of
X. We define the class of JC-spaces and characterise its members via Z-connected ideals. Two more classes
of ideals in C(X), namely the coz-free and F-free ideals, are instituted. These types of ideals are used to
establish conditions under which a given space is a strong J-space. We introduce the notion of a J-lattice
and show that the lattice, CL(X), of closed subsets of X is a J-lattice if and only if X is a J-space. A pointfree
topology exposition of J-lattices is also presented, with more attention to complete Boolean algebras.

1. Introduction

Michael formally introduced J-spaces in 2000, where he observed that one characterisation of these
spaces is reminiscent of one aspect of the Jordan Curve Theorem (see [9]). We recall that a space is called
a J-space if every binary closed cover with a compact intersection has a property that one member of the
cover must be compact. These spaces have since been studied by a few authors (for example, see Gao [5],
Manoussos [8], Mthethwa and Taherifar [11]). We underscore that spaces satisfying conditions which are
stronger than those defining J-spaces had already been examined by Nowiński’s in his 1972 paper without
a name (see [12]), and Michael refers to such spaces as “strong J-spaces”. A space X is called strong J-space
if for every compact K ⊆ X there is another compact L ⊆ X which contains K such that X ∖ L is connected.

Herein, we introduce JC-spaces, the class of topological spaces obtained by substituting compactness
with connectedness in the definition of a J-space. Connected spaces are JC-spaces. The fact that the converse
of the latter is not true is witnessed through the observation that if a space X can be expressed as a union
of two of its disjoint connected subsets, then it is a JC-space. In particular, we show that the remainder of
the real line in its Stone-Čech compactification is a disconnected JC-space.

Recall from [11] that a space X is C-normal if two disjoint closed connected subsets can be separated by
two disjoint open sets. This paper presents algebraic characterizations of J-spaces, JC-spaces, and C-normal
spaces. We are interested in characterizing these phenomena via some ideals in C(X).
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Let I be an ideal of C(X) and A ⊆ X. Then the set IC(A) consisting of all restrictions of functions in I from
X to A will be of utmost importance. We note that IC(A) is not necessarily an ideal in C(X); it is an ideal
precisely when A is a C-embedded subspace. An ideal in C(X) shall be called a Z-connected ideal if IC(A)
is contained in no principal generated by a proper idempotent. An ideal I in C(X) is called R-connected if
whenever J,K are two orthogonal ideals in C(X) and I + J + K is free, then either I + J or I + K is free. We
show that a space is C-normal if and only if any two Z-connected ideals whose sum is free have a product
that is not R-connected. Every Z-connected ideal in C(X) is R-connected. The converse of the latter is not
true. We also introduce two other classes of ideals in C(X), namely the F-free and the coz-free ideals. Several
properties and characterizations of F-free and coz-free ideals are established. More specifically, we show
that a space X is compact if and only if every ideal in C(X) is F-free. As one of our main results, we show
that a space X is a J-space if and only if any two orthogonal ideals in C(X) whose sum is F-free have a
property that at least one of them is F-free. A space X is a strong J-space (see [9]) if for every compact K ⊆ X
there is another compact L ⊆ X which contains K such that X ∖ L is connected. We show that a space X is a
strong J-space if and only if whenever I is a closed fixed F-free ideal in C(X), there exists an F-free ideal J in
C(X) such that J ⊆ I and J is a coz-free ideal. Again, in [9], a space X is a weak J-space if, whenever {A,B,K}
is a closed covering of X with K compact and A ∩ B = ∅, then A or B is compact. We show that a space X is
a weak J-space if and only if for every three orthogonal ideals I, J and L in C(X) such that I + J is free, and L
is F-free, either I or J is F-free.

As usual, we denote the support of a real-valued function f on X by cl(X∖Z( f )); where Z( f ) is the zero-set
of f . Taking a cue from [6], we denote the family of all functions in C(X) having compact support by CK(X).
Amongst other things, we show that CK(X) is F-free if and only if X is a non-compact locally compact space.
Other general results which appear to be of independent interest are distributed throughout the paper, one
of which is that a space X is connected if and only if for every two orthogonal ideals I, J in C(X) with I + J
free, either I or J is free.

We close the paper with a lattice-theoretic slant on J-spaces by introducing J-lattices. A glance at the
bounded distributive lattice of closed subsets of a space delivers a result which asserts that such a lattice is
a J-lattice if and only if the space is a J-space. Conditions under which the coframe of sublocales of a given
frame is a J-lattice are given.

We would like to refer the reader to [4] and [6] for basic concepts on topology and rings of continuous
maps that we use without defining them in this paper. Before we kick off, let us mention that, for
convenience, we shall impose the blanket assumption of Hausdorffness and complete regularity on all our
space, although some of our results are valid without these assumptions.

2. An algebraic characterisation of C-normal spaces

Before we proceed to our first result, a word on notation is in order: for a subset A of a space X and an
ideal I in C(X), the restriction of I to C(A) is denoted by IC(A), and it is given by:

IC(A) = { f |A : f ∈ I}.

We note that, in general, IC(A) need not be an ideal of C(A). We shall show that, for every ideal I of C(X),
IC(A) is an ideal of C(A) precisely when A is a C-embedded subspace of X; viz., for every 1 ∈ C(A) there is
some f ∈ C(X) such that 1 = f |A.

Proposition 2.1. Let A be a subspace of a space X. Then for every ideal I in C(X), IC(A) is an ideal of C(A) if and
only if A is a C-embedded subspace of X.

Proof. (=⇒) Let 1 ∈ C(A) and I = C(X). Since 1|A ∈ IC(A), by the hypothesis, 1.1 = 1 ∈ IC(A). So there exists
f ∈ C(X) such that 1 = f |A.

(⇐=) Define ϕ : C(X) → C(A) by ϕ( f ) = f |A. Since for two elements f , 1 ∈ C(X), we have f |A + 1|A =
( f + 1)|A and ( f1)|A = f |A.1|A, ϕ is a ring homomorphism. Now, A is C-embedded in X, so ϕ is onto. Thus,
for each ideal I in C(X), ϕ(I) = IC(A) is an ideal of C(A).
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Let us recall that an idempotent of a ring is proper if it is not equal to zero or one. As usual, ( f ) shall
denote the principal ideal generated by f ∈ C(X) and for an ideal I in C(X), we write Z[I] = {Z( f ) : f ∈ I}.
An ideal I in C(X) is fixed if

⋂
Z[I] is nonempty and free if

⋂
Z[I] is empty.

Definition 2.2. Let I be an ideal in C(X) and A =
⋂

Z[I]. We say that I is Z-connected if IC(A) is contained in
no principal ideal ( f ) for any proper idempotent f in C(A).

In [9], a subset A of a topological space X is called relatively connected in X if no open U ⊇ A in X has a
disjoint, open cover {U1,U2} with U1 ∩ A , ∅ and U2 ∩ A , ∅. Relatively connected subsets were further
studied in [11]. In the following definition, we introduce another class of ideals in C(X), which we shall
utilize to characterize relatively connected subsets and, subsequently, C-normal spaces.

Definition 2.3. An ideal I in C(X) is called R-connected if whenever J,K are two orthogonal ideals in C(X)
and I + J + K is free, then either I + J or I + K is free.

Lemma 2.4. The following statements hold.
1. An ideal I in C(X) is Z-connected if and only if

⋂
Z[I] is a connected subset of X.

2. An ideal I in C(X) is R-connected if and only if
⋂

Z[I] is a relatively connected subset of X.
3. Every Z-connected ideal in C(X) is an R-connected. The converse is not true.

Proof. (1) Suppose I is a Z-connected ideal in C(X). Put A =
⋂

Z[I]. Let G be a non-empty clopen subset in
A. Then G = Z( f ) for some proper idempotent f ∈ C(A). Thus for each 1 ∈ I, we have Z( f ) ⊆ Z(1|A). This
implies Z( f ) ⊆ intA Z(1|A). By [6, 1D.1], 1|A is a multiple of f . Thus IC(A) ⊆ ( f ), which is a contradiction since
I is a Z-connected. Conversely, if A =

⋂
Z[I] is connected, then the only idempotents in C(A) are 0 and 1,

by [6, 1B.4]. This implies that IC(A) is not contained in a principal ideal generated by a proper idempotent.
So I is a Z-connected ideal.

(2) Suppose I is an R-connected ideal and let A =
⋂

Z[I]. To show that A is relatively connected in X,
we use the equivalence of (1) and (5) in [11, Lemma 2.1]. So, consider two closed sets C,D in X such that
X = C ∪ D and C ∩ D ⊆ X ∖ A. Since X is a completely regular space, there are ideals J,K in C(X) such
that C =

⋂
Z[J] and D =

⋂
Z[K]. The equality X = C ∪ D implies JK = 0, and C ∩ D ⊆ X ∖ A implies⋂

Z[I]∩
⋂

Z[J]∩
⋂

Z[K] = ∅, hence
⋂

Z[I+ J+K] = ∅. Thus, we have that K, J are orthogonal and I+ J+K is
free. Hence I+ J or I+K is free, by the hypothesis. Let us assume that I+ J is free. Then A∩C =

⋂
Z[I+ J] = ∅,

i.e., C ⊆ X ∖ A. Hence A =
⋂

Z[I] is relatively connected, by [11, Lemmma 2.1]. For the converse, suppose⋂
Z[I] is relatively connected in X and let I + J + K be a free ideal where J,K are orthogonal ideals in C(X).

Then we have,⋂
Z[I] ∩

⋂
Z[J] ∩

⋂
Z[K] = ∅ and

⋂
Z[K] ∪

⋂
Z[J] = X.

Therefore
⋂

Z[J] ∩
⋂

Z[K] ⊆ X ∖ (
⋂

Z[I]). By the hypothesis and [11, Lemma 2.1],⋂
Z[J] ⊆ X ∖ (

⋂
Z[I]) or

⋂
Z[K] ⊆ X ∖ (

⋂
Z[I]).

This implies that⋂
Z[I + J] =

⋂
Z[J] ∩

⋂
Z[I] = ∅ or

⋂
Z[I + K] =

⋂
Z[K] ∩

⋂
Z[I] = ∅.

Hence either I + J or I + K is free.
(3) Since every connected subset is relatively connected in X, the result follows from (1) and (2). The

converse is not true since not every relatively connected subset is connected (e.g., see [9, Example 9.8]).

An easy direct consequence of part (1) of the above lemma is that the zero ideal in C(X) is Z-connected
if and only if X is a connected space.

The product of two Z-connected (resp., R-connected) ideals need not be a Z-connected (resp., R-
connected) ideal. Consider two principal ideals I = ( f ) and J = (1), where f , 1 ∈ C(R), Z( f ) = [0, 1]
and Z(1) = [2, 3]. Then by Lemma 2.4, I, J are two Z-connected ideals but IJ = ( f1) is not a Z-connected
(resp., R-connected) ideal. However, we have the following result:
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Proposition 2.5. If I, J are Z-connected (resp., R-connected) ideals where I+ J is a fixed ideal, then IJ is a Z-connected
(resp., R-connected) ideal.

Proof. Suppose I, J are Z-connected (resp., R-connected) ideals in C(X). By Lemma 2.4,
⋂

Z[I] and
⋂

Z[J]
are connected (resp., relatively connected). If I + J is a fixed ideal, then (

⋂
Z[I]) ∩ (

⋂
Z[J]) =

⋂
Z[I + J] , ∅.

Thus
⋂

Z[IJ] = (
⋂

Z[I]) ∪ (
⋂

Z[J]) is connected (resp., relatively connected). Hence IJ is a Z-connected
(resp., R-connected) ideal, by Lemma 2.4.

Recall from [11] that a space X is C-normal if any two disjoint closed connected subsets can be separated
by two disjoint open sets. We characterise this class of spaces using Z-connected ideals whose sum is free.

Theorem 2.6. The following statements are equivalent.

1. A space X is C-normal.
2. For any two Z-connected ideals I, J in C(X) where I + J is free, there are two orthogonal ideals I1, J1 in C(X)

such that I + I1 and J + J1 are free.
3. For any two Z-connected ideals I, J such that I + J is free, IJ is never R-connected.

Proof. (1) =⇒ (2) Let I, J be two Z-connected ideals in C(X) such that I + J is a free ideal. Note that the sets
A =

⋂
Z[I] and B =

⋂
Z[J] are closed in X, and by Lemma 2.4, they are also connected subsets of X. But

I + J is free, so A ∩ B = ∅. By the hypothesis, there are two disjoint open sets U,V in X such that A ⊆ U
and B ⊆ V. By complete regularity of X, we can find two subsets { fα : α ∈ Λ} and {1α : α ∈ Γ} of C(X) such
that U =

⋃
α∈Λ(X ∖ Z( fα)) and V =

⋃
α∈Γ(X ∖ Z(1α)). Let I1 =< fα : α ∈ Λ > and J1 =< 1α : α ∈ Γ >. Then

I1 J1 = 0, since U ∩ V = ∅. Now, A ⊆ U implies
⋂

Z[I + I1] = (
⋂

Z[I]) ∩ (
⋂

Z[I1]) = ∅, and B ⊆ V implies⋂
Z[J + J1] = (

⋂
Z[J]) ∩ (

⋂
Z[J1]) = ∅. Thus I + I1 and J + J1 are free ideals in C(X).

(2) =⇒ (1) Let A,B be two disjoint closed connected subsets of X. Since X is a completely regular space,
by [6, Theorem 3.2], there are two ideals I, J in C(X) such that A =

⋂
Z[I] and B =

⋂
Z[J]. From the equality

A ∩ B = ∅, we get
⋂

Z[I + J] = (
⋂

Z[I]) ∩ (
⋂

Z[J]) = ∅. Thus, I + J is a free ideal. Lemma 2.4, together with
the fact that A and B are connected, implies that I and J are Z-connected in C(X). By the hypothesis, there
are two orthogonal ideals I1, J1 in C(X) such that I + I1 and J + J1 are free. Let U =

⋃
f∈I1

(X ∖ Z( f )) and
V =

⋃
1∈J1

(X ∖ Z(1)). Since I1 J1 = 0, then U ∩ V = ∅. But I + I1 and J + J1 are free, so A ∩ (
⋂

Z[I1]) = ∅ and
B ∩ (

⋂
Z[J1]) = ∅. Thus A ⊆ U and B ⊆ V.

(1) =⇒ (3) Let I, J be two Z-connected ideals in C(X) such that I + J is free. Then
⋂

Z[I] and
⋂

Z[J] are
connected subsets of X, and

⋂
Z[I]∩

⋂
Z[J] =

⋂
Z[I+J] = ∅. By [11, Proposition 2.8],

⋂
Z[IJ] =

⋂
Z[I]∪

⋂
Z[J]

is not relatively connected. Hence IJ is not an R-connected ideal, by Lemma 2.4.
(3) =⇒ (1) Let A,B be two disjoint closed connected subsets of X. Then, by [6, Theorem 3.2], there are

two ideals I, J in C(X) such that A =
⋂

Z[I] and B =
⋂

Z[J]. Hence
⋂

Z[I + J] =
⋂

Z[I]∩
⋂

Z[J] = A∩ B = ∅,
i.e., I + J is free. By the hypothesis, IJ is not an R-connected ideal. Hence A ∪ B =

⋂
Z[IJ] is not relatively

connected by Lemma 2.4. This implies that X is C-normal, by [11, Proposition 2.8].

3. JC-spaces

Given two orthogonal ideals I and J in C(X), such that I + J is Z-connected, under what conditions is
one of these ideals Z-connected? To answer this question, we introduce a new class of topological spaces
containing the class of connected spaces as a proper subclass.

Definition 3.1. We say that a space X is a JC-space if whenever X = A ∪ B, where A,B are closed subsets of
X and A ∩ B is connected, then A or B is connected.

Proposition 3.2. Every connected space is a JC-space.
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Proof. Suppose X is connected and let X = A ∪ B, where A,B are two closed subsets of X with A ∩ B
connected. Let us proceed by contradiction and suppose that, say, A is disconnected. Then we can write
A = A1 ∪ A2 for some disjoint closed sets A1,A2 in A. Since A is closed and A ∩ B is connected in X, then
A∩B is connected in A, and whence A∩B ⊆ A1 or A∩B ⊆ A2. Suppose A∩B ⊆ A2. Then X = A1 ∪ (A2 ∪B)
and A1 ∩ (A2 ∪ B) = ∅. But A1 and A2 ∪ B are closed subsets of X, which contradicts the connectedness of
X. Hence, A is connected. Similarly, we can show that B is connected.

From the proof of the previous proposition, we see that if a connected space X is the union of two of its
closed subsets with a connected intersection, then both of these two closed subsets are connected. This is
not true for disconnected spaces:

Example 3.3. Consider the rational numbers Q as a subspace of the real line Rwith the standard topology.
Put A = (−∞, 0] ∩ Q and B = [0,∞) ∩ Q. Then A and B are closed in Q with a connected intersection
A ∩ B = {0}, and Q = A ∪ B. However, neither A nor B is connected in Q. Thus, Q is not a JC-space.

The class of JC-spaces ought to be bigger than that of connected spaces. We shall use the following
result to produce an example of a disconnected JC-space.

Theorem 3.4. If a space X is a union of two disjoint connected subsets, then X is a JC-space.

Proof. Suppose X = U1 ∪U2 with U1 ∩U2 = ∅ where U1,U2 are connected subset of X. To show that X is a
JC-space, let X = A∪B, where A,B are closed subsets of X such that A∩B is connected. We need to show that
either A or B is connected, so suppose A = A1 ∪ A2 and B = B1 ∪ B2 for some disjoint closed subsets A1,A2
contained in A and disjoint closed subsets B1,B2 contained in B. Then we have X = (A1 ∪ A2) ∪ (B1 ∪ B2).
Since A ∩ B is connected in X, it is connected in A and B. Hence, A ∩ B ⊆ A1 or A ∩ B ⊆ A2, and similarly,
A ∩ B ⊆ B1 or A ∩ B ⊆ B2. We assume A ∩ B ⊆ A1 and A ∩ B ⊆ B1. Now, X = (A1 ∪ B1) ∪ (A2 ∪ B2), where
A1 ∪ B1 and A2 ∪ B2 are two disjoint closed subsets of X. Since U1,U2 are connected subsets of X, we must
have U1 ⊆ A1 ∪ B1 or U1 ⊆ A2 ∪ B2, and similarly, U2 ⊆ A1 ∪ B1 or U2 ⊆ A2 ∪ B2. Note that if we assume,
without loss of generality, that both U1,U2 are contained in A1 ∪B1, we must have A2 ∪B2 = ∅. This implies
that A2 = ∅ and B2 = ∅, and whence both A,B are connected. So we may assume that U1 ⊆ A1 ∪ B1 and
U2 ⊆ A2 ∪ B2. From this, we get U1 = A1 ∪ B1 and U2 = A2 ∪ B2, since U1,U2 are also disjoint. But U2 is
connected, so the equality U2 = A2 ∪ B2 implies that A2 = ∅ or B2 = ∅. Therefore A is connected, or B is
connected.

In the following example, the real line is considered with the standard topology:

Example 3.5. (1) Consider the space X = (−∞, 0) ∪ (0,∞) as a subspace of R. Then X is a disconnected
JC-space, by Theorem 3.4.

(2) A disjoint union of three connected spaces need not be a JC-space. Consider X = (−3, 0)∪ (0, 1)∪ (1, 2)
as a subspace of R. Then X is not a JC-space since A = (−3, 0) ∪ (0, 1) and B = (0, 1) ∪ (1, 2) are two closed
subsets of X and A ∩ B = (0, 1) is connected, but neither A nor B is connected.

(3) Let R+ and R− denote the subspaces of R consisting of nonnegative and nonpositive real numbers
respectively. Consider βR, the Stone-Čech compactification ofR. By [6, 6.10.b], clβRR+∖R+ and clβRR−∖R−

are disjoint connected subsets of βR such that βR∖R = (clβRR+ ∖R+)∪ (clβRR− ∖R−). Hence, by Theorem
3.4, βR ∖R is a disconnected JC-space.

Recall from [4] that a continuous mapping f : X −→ Y is monotone if all fibers f−1(y) are connected.

Theorem 3.6. Let f : X→ Y be a monotone closed mapping from X onto Y. Then X is a JC-space if and only if Y is
a JC-space.

Proof. (=⇒) Let X be a JC-space and {A,B} be a closed cover for Y with A∩B connected. Then { f−1(A), f−1(B)}
is a closed cover for X and f−1(A)∩ f−1(B) is connected because f−1(A)∩ f−1(B) = f−1(A∩B) and f−1(A∩B) is
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connected, by [4, Theorem 6.1.29]. Thus f−1(A) or f−1(B) is connected. Hence A = f ( f−1(A)) or B = f ( f−1(B))
is connected. Thus Y is a JC-space.

(⇐=) Let {H,K} be a closed cover for X and H ∩ K be connected. Then { f (H), f (K)} is a closed cover for
Y, and f (H) ∩ f (K) = f (H ∩ K) by [9, Lemma 5.5], hence f (H) ∩ f (K) is connected in Y. Thus f (H) or f (K) is
connected in Y. Hence f−1( f (H)) or f−1( f (K)) is connected in X, by [4, Theorem 6.1.29]. To see that H or K
is connected, let {H1,H2} and {K1,K2} be two disjoint closed cover for H and K, respectively. Then we have

X = f−1( f (H)) ∪ f−1( f (K)) = H ∪ K = (H1 ∪H2) ∪ (K1 ∪ K2).

Since H ∩ K is a connected subset of H and K, then H ∩ K ⊆ H1 or H ∩ K ⊆ H2 and similarly, H ∩ K ⊆ K1
or H ∩ K ⊆ K2. Without loss of generality, suppose H ∩ K ⊆ H1 and H ∩ K ⊆ K1. Then H ∩ K ⊆ H1 ∪ K1
and {H1 ∪ K1,H2 ∪ K2} is a disjoint closed cover for X. By connectedness of f−1( f (H)), we have H1 ∪ H2 =
H ⊆ f−1( f (H)) ⊆ H1 ∪ K1 or H1 ∪ H2 = H ⊆ f−1( f (H)) ⊆ H2 ∪ K2. Thus H2 ⊆ K1 or H1 ⊆ K2. Hence
H2 ⊆ K1 ∩ (H2 ∪ K2) = ∅ or H1 ⊆ (H1 ∪ K1) ∩ K2 = ∅. Thus H is connected.

Corollary 3.7. Let Z be a connected space and Y be any space. Then Z×Y is a JC-space if and only if Y is a JC-space.

Proof. By Theorem 3.6, with X = Z × Y and f being the projection map f = πY : X→ Y.

Corollary 3.8. If f : X → Y is a monotone quotient mapping from X onto Y and X is a JC-space, then Y is a
JC-space.

Proof. The argument is similar to the one provided in the forward direction of Theorem 3.6, with [4, Theorem
6.1.28] being used instead of [4, Theorem 6.1.29].

We conclude this section by addressing the question that was discussed in the introduction of this
section:

Theorem 3.9. A space X is a JC-space if and only if for each two orthogonal ideals I, J in C(X) such that I + J is
Z-connected, either I or J is Z-connected.

Proof. (=⇒) Let X be a JC-space and I, J be two orthogonal ideals in C(X) such that I + J is Z-connected.
Then we have X =

⋂
Z[I]∪

⋂
Z[J], and since

⋂
Z[I]∩

⋂
Z[J] =

⋂
Z[I + J], we also have that

⋂
Z[I]∩

⋂
Z[J]

is connected. By the hypothesis,
⋂

Z[I] or
⋂

Z[J] is connected. Hence I or J is Z-connected, by Lemma 2.4.
(⇐=) Let X = A ∪ B, where A,B are two closed subsets of X such that A ∩ B is connected. Since X is a

completely regular space, there are two ideals I, J in C(X) such that A =
⋂

Z[I] and B =
⋂

Z[J]. The equality
X = A∪B implies IJ = 0 and the connectedness of A∩B implies that

⋂
Z[I+ J] =

⋂
Z[I]∩

⋂
Z[J] is connected

and hence I+ J is a Z-connected ideal in C(X). Therefore, by the hypothesis, I or J is Z-connected and hence
A or B is connected, by Lemma 2.4.

4. F-free ideals and J-spaces

We begin this section with the following definitions. The ideal generated by a subset H of functions in
C(X) is denoted by < H >.

Definition 4.1. (1) Let A =
⋃

f∈I(X ∖ Z( f )). The ideal I in C(X) is called a coz-free ideal if there is no proper
idempotent e ∈ C(A) such that < I|C(A) > + < e > is a free ideal in C(A).

(2) An ideal I in C(X) is called an F-free ideal if whenever I + J is free for some ideal J in C(X), then there
exists a finite subset H of J such that I+ < H > is a free ideal.

Since for every finite subset { f1, f2, ..., fn} of C(X), we have
⋂n

i=1 Z( fi) = Z( f ), where f = f 2
1 + f 2

2 + ... + f 2
n .

We observe that an ideal I of C(X) is an F-free ideal if and only if whenever I + J is free for some ideal J of
C(X), then there exists an element f ∈ J such that I+ < f > is free.
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For trivial reasons, the zero ideal is coz-free, and every free ideal in C(X) is an F-free ideal. Recall that
for any A ⊆ X,MA = { f ∈ C(X) : A ⊆ Z( f )} is an ideal of C(X). For every finite subset H of X, the ideal MH is
an F-free ideal, and MH is not a free ideal. For another example of coz-free ideals, let x be an isolated point
in a space X. Then for the ideal MX∖{x}, we have

⋃
f∈MX∖{x}

(X ∖ Z( f )) = {x}. The next result not only tells us
that MX∖{x} is a coz-free ideal, but it is also instrumental for the remainder of this paper.

Lemma 4.2. The following statements hold.

1. An ideal I in C(X) is coz-free if and only if
⋃

f∈I(X ∖ Z( f )) is a connected subset of X.
2. An ideal I in C(X) is an F-free ideal if and only if

⋂
Z[I] is compact.

Proof. (1) For the forward direction, let A =
⋃

f∈I(X ∖ Z( f )) and 1 be a proper idempotent in C(A) such that
Z(1) ⊆ A. Then Z(1) ∩ (

⋂
f∈I Z( f )) = ∅. This implies Z(1) ∩ (

⋂
f∈I Z( f |A)) = ∅. Thus,

⋂
Z[< 1 > + < IC(A) >] =

Z(1) ∩ (
⋂

h∈I|C(A)
Z(h)) = ∅. Hence, < 1 > + < IC(A) > is a free ideal in C(A), which is a contradiction since I is

coz-free. Conversely, if the subset A =
⋃

f∈I(X ∖ Z( f )) is connected, then the only idempotents of C(A) are 0
and 1, by [6, 1.B.4]. Hence I is a coz-free ideal.

(2) Let I be an F-free ideal in C(X) and
⋂

Z[I] ⊆
⋃
α∈Γ(X ∖ Z( fα)), where each fα ∈ C(X) and Γ is any

index set. Put J =< fα : α ∈ Γ >. Then
⋂

Z[I + J] = (
⋂

Z[I]) ∩ (
⋂

Z[J]) = ∅. This shows that I + J is a
free ideal. By the hypothesis, there exists a finite subset H = {11, 12, ..., 1n} of J such that I+ < H > is free.
Thus (

⋂
Z[I]) ∩ (

⋂n
i=1 Z(1i)) = ∅. For each 1 ≤ i ≤ n there are finitely many elements of Γ, say αi

1, α
i
2, ..., α

i
mi

,
such that Z( fαi

1
) ∩ Z( fαi

2
) ∩ ... ∩ Z( fαi

mi
) ⊆ Z(1i). This implies that (

⋂
Z[I]) ∩ (

⋂n
i=1 Z( fαi

mi
) = ∅, and therefore⋂

Z[I] ⊆
⋃n

i=1(X ∖ Z( fαi
mi

)). For the converse, suppose that I + J is free for some ideal J in C(X). Then
(
⋂

Z[I]) ∩ (
⋂

Z[J]) =
⋂

Z[I + J] = ∅. This implies that
⋂

Z[I] ⊆
⋃

f∈J(X ∖ Z( f )). By the hypothesis, there
exists a finite subset H = { f1, f2, ..., fn} of J such that

⋂
Z[I] ⊆

⋃n
i=1(X ∖ Z( fi)). This implies

(
⋂

Z[I]) ∩ (
n⋂

i=1

Z( fi)) =
⋂

Z[I+ < H >] = ∅.

That is, I+ < H > is a free ideal.

The set L = {I : I is an F-free ideal of C(X)}partially ordered by set-inclusion, equipped with the following
operations:

I ∨ J = I + J and I ∧ J = I ∩ J,

is a lattice. This, and other properties of F-free ideals, are given in the result below:

Proposition 4.3. The following statements hold for the ring C(X).

1. The sum of two F-free ideals is an F-free ideal.
2. The product of two F-free ideals is an F-free ideal.
3. The intersection of two F-free ideals is an F-free ideal.
4. An ideal I is an F-free ideal if and only if

√
I is an F-free ideal.

5. If I ⊆ J and I is an F-free ideal, then so is J.

Proof. (1) Let I, J be two F-free ideals in C(X). Then
⋂

Z[I] and
⋂

Z[J] are two compact subsets of X, by
Lemma 4.2. So

⋂
Z[I + J] = (

⋂
Z[I]) ∩ (

⋂
Z[J]) is a compact subset in X. Thus, again by Lemma 4.2, I + J is

an F-free ideal.
(2) For two ideals I, J in C(X) we have⋂

Z[IJ] = (
⋂

Z[I]) ∪ (
⋂

Z[J]).

If I, J are F-free, then both
⋂

Z[I] and
⋂

Z[J] are compact, and so
⋂

Z[IJ] is compact, hence IJ is an F-free
ideal, by Lemma 4.2.
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(3) Let I, J be two F-free ideals in C(X). We always have⋂
Z[I ∩ J] = (

⋂
Z[I]) ∪ (

⋂
Z[J]).

By an argument similar to the one provided in part (2), we are done.
(4) This follows by Lemma 4.2 and by the fact that

⋂
Z[I] =

⋂
Z[
√

I].
(5) I ⊆ J implies

⋂
Z[J] ⊆

⋂
Z[I]. Since I is F-free,

⋂
Z[I] is compact by Lemma 4.2, so

⋂
Z[J] is also

compact. This implies that J is F-free.

Corollary 4.4. The following statements are equivalent.

1. Every ideal in C(X) is an F-free ideal.
2. Any intersection of F-free ideals in C(X) is an F-free ideal.
3. The space X is compact.

Proof. (1) =⇒ (2) This is trivial.
(2) =⇒ (3) Notice that every maximal ideal in C(X) is an F-free ideal. Since the zero ideal in C(X) is the

intersection of all maximal ideals, it follows that the zero ideal is an F-free ideal by the hypothesis. Hence
X =
⋂

Z[0] is compact, by Lemma 4.2.
(3) =⇒(1) The compactness of X and the fact that X =

⋂
Z[0] implies that the zero ideal is F-free, by

Lemma 4.2. Now let I be an ideal in C(X). Since 0 ⊆ I, I is an F-free ideal, by part (5) of Proposition 4.3.

Proposition 4.5. The following statements hold.

(1) If I, J are two coz-free ideals in C(X) and IJ , 0, then I + J is a coz-free ideal.

(2) If I, J are two ideals in C(X) with I + J is coz-free, then IJ , 0.

(3) Every ideal in C(X) is coz-free if and only if every open set in X is connected and hence X is a connected space.

Proof. (1) Let I, J be coz-free ideals and IJ , 0. Then
⋃

f∈I(X ∖ Z( f )) and
⋃
1∈J(X ∖ Z(1)) be two connected

subsets of X. IJ , 0 implies that:⋃
f∈I

(X ∖ Z( f )) ∩
⋃
1∈J

(X ∖ Z(1)) , ∅.

Thus
⋃

f∈I(X∖Z( f ))∪
⋃
1∈J(X∖Z(1)) =

⋃
h∈I+J(X∖Z(h)) is connected. This shows that I+ J is a coz-free ideal.

(2) If IJ = 0, then
⋃

f∈I(X ∖ Z( f )) ∩
⋃
1∈J(X ∖ Z(1)) = ∅. This shows that

⋃
h∈I+J(X ∖ Z(h)) is a union of

two disjoint open sets, i.e., this is a disconnected subset. Hence I + J is not a coz-free ideal, which is a
contradiction.

(3) If A is an open subset of X, then there is an ideal I of C(X) such that A =
⋃

f∈I(X ∖ Z( f )). By the
hypothesis, A is connected. This implies X is connected. Conversely, let I be an ideal of C(X). Then⋃

f∈I(X ∖ Z( f )) is connected, by the hypothesis. Hence I is a coz-free ideal.

The connectedness of X in the above result does not imply that every ideal of C(X) is a coz-free ideal.
For, consider X = R with standard topology and f (x) = |x|. Then we have X ∖ Z( f ) = R ∖ {0} which is
disconnected. Hence the ideal I =< f > is not a coz-free ideal.

Using parts (1) and (2) of Proposition 4.5 to obtain the next result.

Corollary 4.6. The sum of two coz-free ideals in C(X) is coz-free if and only if they are not orthogonal.

Proposition 4.7. The following statements are equivalent.

1. The ideal CK(X) is an F-free ideal.
2. The space X is locally compact.
3. The ideal CK(X) is a free ideal.
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Proof. (1) =⇒ (2) By [1, Lemma 2.1],⋃
f∈CK(X)

(X ∖ Z( f )) = XL.

Thus,
⋂

Z[CK(X)] = X ∖ XL. By the hypothesis and Lemma 4.2, we have that X ∖ XL is compact. Thus we
must have X = XL, i.e., X is locally compact.

(2) =⇒ (3) If X is compact, then CK(X) = C(X), hence CK(X) is free. If X is a non-compact locally compact
space, then CK(X) is free, by [6, 4D.3].

(3) =⇒ (1) This is trivial.

Our next goal is to provide an algebraic characterization of J-spaces (resp., strong J-spaces) via F-free
ideals. But before we do this, let us remind the reader that an ideal I in C(X) is called closed fixed ideal if
I =
⋂

I⊆Mp
Mp. Also, for a subset A of X, MA =

⋂
p∈A Mp = { f ∈ C(X) : A ⊆ Z( f )}. If I is a closed fixed ideal

and A =
⋂

Z[I], we have that I = MA. Let us also point out that, for each closed subset A of X, MA is a
closed fixed ideal in C(X) since MA =

⋂
p∈A Mp.

Theorem 4.8. The following statements hold.

1. A space X is a J-space if and only if for any two orthogonal ideals I, J in C(X) where I + J is F-free, either I or J
is F-free.

2. A space X is a strong J-space if and only if whenever I is a closed fixed F-free ideal in C(X), there exists an F-free
ideal J in C(X) such that J ⊆ I and J is a coz-free ideal.

Proof. (1) Suppose that X is a J-space. Let I, J be ideals in C(X) such that IJ = 0 and I + J be F-free. Put
A =
⋂

Z[I] and B =
⋂

Z[J]. So, A and B are closed. Now, IJ = 0 implies that A∪B = X and A∩B =
⋂

Z[I+ J].
Since I + J is F-free, then A ∩ B is compact, by Lemma 4.2. By the hypothesis, A or B is compact. Again
by Lemma 4.2, I or J is F-free. For the reverse direction, let X = A ∪ B, where A,B are closed, and A ∩ B is
compact. Since X is a completely regular space, there are two ideals I, J in C(X) such that A =

⋂
Z[I] and

B =
⋂

Z[J]. The equality A ∪ B = X implies that
⋂

Z[IJ] = X, hence IJ = 0. By compactness of A ∩ B, we
have that

⋂
Z[I + J] is compact. Thus I + J is F-free. Hence, by the hypothesis, I or J is F-free. Thus, A or B

is compact, by Lemma 4.2.
(2) Suppose X is a strong J-space. Let I be a closed fixed and F-free ideal in C(X). Then A =

⋂
Z[I] is a

compact subset of X, by Lemma 4.2. We also have I = MA. Now, by the hypothesis, there exists a compact
subset L of X such that A ⊆ L and X ∖ L is connected. Since X is a Hausdorff space, L is a closed subset
of X. Now, observe that L =

⋂
Z[ML], therefore ML ⊆ MA = I. Let J = ML. The compactness of

⋂
Z[J]

implies that J is an F-free ideal. Also, X ∖ L =
⋃
1∈J(X ∖ Z(1)). Hence

⋃
1∈J(X ∖ Z(1)) is connected, and

therefore, the ideal J is coz-free, by Lemma 4.2. Conversely, let A be a compact subset of X. Then A is a
closed subset of Hausdorff space X, hence A =

⋂
Z[MA]. We know that MA is a closed fixed ideal which

is also an F-free ideal, by Lemma 4.2. So, by the hypothesis, there exists an F-free ideal J such that J ⊆ MA
and J is coz-free. Let B =

⋂
Z[J]. Then B is compact, by Lemma 4.2. Moreover, A =

⋂
Z[MA] ⊆

⋂
Z[J] = B.

Now, X ∖ B =
⋃
1∈J(X ∖ Z(1)). But J is a coz-free ideal, therefore X ∖ B is a connected subset of X, by Lemma

4.2. Thus X is a strong J-space.

Recall from [9] that a space X is a weak J-space if, whenever {A,B,K} is a closed covering of X with K
compact and A ∩ B = ∅, then A or B is compact. Like J-spaces and strong J-spaces, weak J-spaces can be
characterised via F-free ideals. The details of the latter are provided in part (1) of the next result, while part
(2) contains an independent result that characterises connectedness in terms of free ideals:

Theorem 4.9. The following statements hold.

1. A space X is a weak J-space if and only if for each three orthogonal ideals I, J and L in C(X) with I + J free and
L is F-free, either I or J is F-free.
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2. A space X is connected if and only if for each two orthogonal ideals I, J in C(X) with I + J free, either I or J is
free.

Proof. (1) Suppose X is a weak J-space. Let I, J and L be three ideals in C(X) such that IJL = 0, I + J is free
and L is F-free. We have that X =

⋂
Z[IJL] =

⋂
Z[I] ∪

⋂
Z[J] ∪

⋂
Z[L],

⋂
Z[I] ∩

⋂
Z[J] = ∅ and

⋂
Z[L] is

compact (the latter follow by Lemma 4.2). Therefore
⋂

Z[I] or
⋂

Z[J] is compact, by the hypothesis. Thus
I or J is F-compact, by Lemma 4.2. For the converse, let X = A ∪ B ∪ K, where A,B are two disjoint closed
subsets of X, and K is compact (K is also closed since X is Hausdorff). By complete regularity of X, then
there are three ideals I, J and L in C(X) such that A =

⋂
Z[I], B =

⋂
Z[J] and K =

⋂
Z[L]. Since A and B

are disjoint, we have
⋂

Z[I + J] = ∅ and hence I + J is a free ideal. The compactness of K implies that L is
an F-free ideal, by Lemma 4.2. By the hypothesis, either I or J is an F-free ideal. Hence A or B is compact,
again by Lemma 4.2.

(2) Let X be connected and I, J be two orthogonal ideals in C(X) such that I+J is free. Then
⋂

Z[I]∩
⋂

Z[J] =⋂
Z[I + J] = ∅. The equality IJ = 0 implies that

⋂
Z[I] ∪

⋂
Z[J] = X. By the hypothesis, we must have⋂

Z[I] = ∅ or
⋂

Z[J] = ∅, i.e., I or J is free. Conversely, suppose that X = A ∪ B, where A,B are two disjoint
closed subsets of X. By complete regularity of X, there are two ideals I, J in C(X) such that A =

⋂
Z[I] and

B =
⋂

Z[J]. Thus X =
⋂

Z[IJ]. We now have, IJ = 0, and
⋂

Z[I + J] = A ∩ B = ∅. By the hypothesis, either I
or J is free. That is, A = ∅ or B = ∅. So, X is a connected space.

5. J-lattices

In this section, all the considered lattices are complete and therefore bounded. We shall denote the top
element of a lattice by 1 and the bottom element by 0.

Definition 5.1. Let L be a complete lattice. An element a ∈ L is called F-compact if whenever a ∧ (
∧

S) = 0
for some S ⊆ L, then there exists a finite F ⊆ S such that a ∧ (

∧
F) = 0.

Recall that an element a in a lattice L is compact if whenever a ≤
∨

A for some A ⊆ L, we can find a finite
A0 ⊆ A such that a ≤

∨
A0.A complement of a, is an element b with the property that a∨ b = 1 and a∧ b = 0.

Recall that a Boolean algebra, B, is a distributive lattice where all elements have complements. Complements
are not unique in general. However, in a Boolean algebra, they are. A frame L is a complete lattice which
satisfies the infinite distributive law:

x ∧
∨

S =
∨
{x ∧ s : s ∈ S}

for every x ∈ L and every S ⊆ L. In a frame L, an element need not have a complement. A coframe L is a
complete lattice satisfying infinite distributive law:

x ∨
∧

S =
∧
{x ∨ s : s ∈ S, }

for every x ∈ L and every S ⊆ L. For each a ∈ L we have the pseudocomplement a∗ of a, given by a∗ =
∨
{x ∈ L :

x∧ a = 0}. Thus, a∧ y = 0⇐⇒ a ≤ y∗. In any distributive lattice (in particular, frames), each complement is a
pseudocomplement and, therefore, uniquely determined. A Heyting algebra is a bounded meet-semilattice
equipped with a binary relation “→ ” (called the Heyting operation) satisfying:

c ≤ a→ b if and only if c ∧ a ≤ b.

Any Boolean algebra is a Heyting algebra. Frames are precisely the complete Heyting algebras. In any
Heyting algebra L,we always have the first De Morgan law:

(
∨
s∈S

s)∗ =
∧
s∈S

s∗
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whenever
∨
s∈S

s exists for S ⊆ L. For a Boolean algebra B, one also has the second De Morgan law:

(
∧
s∈S

s)∗ =
∨
s∈S

s∗

whenever
∨
s∈S

s exists for S ⊆ B. Moreover, in a Boolean algebra B, a∗∗ = a for all a ∈ B. For the proofs of all

the facts mentioned above, see, for example, [13, Appendix I]

Proposition 5.2. In a Boolean algebra B, an element is compact if and only if it is F-compact.

Proof. (=⇒) If a ∈ B is compact and a ∧ (
∧

S) = 0 for some S ⊆ B, then a ≤ (
∧

S)∗ = (
∧
s∈S

s)∗ =
∨
s∈S

s∗. By

compactness of a, there exists some finite S0 ⊆ S such that a ≤
∨

s∈S0

s∗ = (
∧

s∈S0

s)∗. Thus, a ∧ (
∧

s∈S0

s) = 0.

(⇐=) Let a ∈ B be F-compact. Suppose a ≤
∨

S for some S ⊆ B. Then a∧ (
∨

S)∗ = 0. That is, a∧ (
∧
s∈S

s∗) = 0,

and by F-compactness of a, we have a ∧ (
∧

s∈S0

s∗) = 0 for some finite S0 ⊆ S. Hence, a ≤ (
∧

s∈S0

s∗)∗ =
∨

s∈S0

s∗∗ =∨
s∈S0

s.

A Boolean frame is a frame that is also a Boolean algebra. We immediately have:

Corollary 5.3. In a Boolean frame L, an element is compact if and only if it is F-compact.

Remark 5.4. Note that in both directions of the proof on the previous proposition, we used the fact that our
ambient lattice is a Boolean one. The fact that, in general, elements of a lattice may not all be complemented
alerts us that F-compactness and compactness of elements may be distinct notions in non-Boolean lattices.

Example 5.5. (1) Let X be a set. Then the power set P(X) ordered by set inclusion, having joins as unions
and meets as intersections, is a Boolean algebra (the complement of an element of P(X) is precisely the
set-theoretic complement). So, F-compact elements of P(X) are compact.

(2) Let L be a frame. The Boolenisation of L is the set B(L) = {a ∈ L : a∗∗ = a}. It is a Boolean algebra, with
the same meets as in L, and the joins are given by a ⊔ b = (a∗ ∧ b∗)∗. Thus, F-compact elements are compact
in this lattice.

(3) Let L be a frame. A sublocale of a frame L is a subset S of L such that S is closed under arbitrary
meets, and for each x ∈ L and each s ∈ S, x→ s ∈ S. The lattice S(L) of all sublocales of L is a coframe under
inclusion (see [13, Theorem III.3.2.1]). Here, meets are precisely the intersections, O = {1} is the bottom
element, and L is the top element of S(L). The joins are defined by the formula:∨

i∈I

Si = {
∧

A : A ⊆
⋃
i∈I

Si}

for any {Si}i∈I ⊆ S(L). In general, S(L) is not a Bolean algebra. Hence, its compact elements need not be
F-compact.

Let CL(X) be the lattice of closed subsets of topological spaces X, ordered by set-inclusion. Then CL(X) is
a bounded distributive lattice with X as its largest element and ∅ as its smallest element. It may be needless
to mention here, but that CL(X) is a coframe. Moreover, we have the following quick result:

Proposition 5.6. Let X be a topological space. Then A ∈ CL(X) is F-compact if and only if A is a compact subset of
X.

Proof. Let C = {Ci : i ∈ I} be an arbitrary collection of closed subsets of X. Note that A ∈ CL(X) is F-compact

if and only if A ∩ (
⋂
C) = ∅ implies that A ∩ (

n⋂
i=1

Ci) = ∅ for some finite collection {Ci}
n
1=1 ⊆ C. This is

equivalent to saying that, A ∈ CL(X) is F-compact if and only if A ⊆
⋃

(X ∖ Ci) implies that A ⊆
⋃

(X ∖ Ci)
for some finite {Ci}

n
1=1 ⊆ C. Thus, A ∈ CL(X) is F-compact if and only if A is a compact subset of X.
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Let us return to J-spaces. Note that a pointfree enunciation of the concept of a J-space is (see [10]):

A frame L is a J-frame if and only whenever L = S ∨ T where S and T are closed sublocales of L with
S ∩ T compact, then S or T is compact.

One immediately has that:

A Hausdorff space X is a J-space if and only if OX is a J-frame.

Note that the joins and meets in the pointfree enunciation of a J-space are taken in the lattice S(L). To attain
some level of generality, let us re-state this definition for any lattice, modulo replacing “compact” with
“F-compact”:

Definition 5.7. A lattice L is called a J-lattice if whenever a∨ b = 1 in L and a∧ b is F-compact, then a or b is
F-compact.

Proposition 5.8. CL(X) is a J-lattice if and only if X is a J-space.

Proof. (=⇒) Suppose CL(X) is a J-lattice. Proposition 5.6 says that F-compact elements in CL(X) are closed
compact subsets in X. Let X = A∪B, where A,B are closed and A∩B is compact. Then A∩B is an F-compact
element in CL(X). So by the hypothesis, A or B is F-compact. This implies A or B is a compact subset of X.

(⇐=) Let X be a J-space and suppose that A∪B = X in CL(X) and A∩B is F-compact. So A,B are closed,
and since A∩B is F-compact, A∩B is compact by Proposition 5.6. So by the hypothesis, A or B is a compact
subset of X. This implies A or B is F-compact in CL(X). Thus, CL(X) is a J-lattice.

Example 5.9. Let X be a J-space (for example, the set of all nonnegative real numbersR+ with the standard
topology, see [9]). Then CL(X) is a J-lattice

A space X is said to be scattered if for every non-empty closed set A there is an isolated point a ∈ A, and
an open U ∋ a such that U ∩ A = {a}. One speaks of a frame L as being scattered if S(L) is also a frame. In
general (even when L = OX), the coframe S(L) is not a Boolean algebra. However, if X is a TD-space, then
X is scattered if and only if S(OX) is a Boolean algebra (see [3, Theorem 2.4.2]). The localic counterpart of
the latter was observed in [3], that is, a frame L is scattered if and only if S(L) is a Boolean algebra.

Proposition 5.10. Let L be a scattered frame. Then, L is a J-frame if and only if S(L) is a J-lattice.

Proof. (=⇒) Suppose L is a J-frame. Let S,T ∈ S(L) and suppose that S∨T = L where S∩T is F-compact. By
scatteredness of L, we have that S(L) is a Boolean algebra. Therefore S ∩ T is compact, by Proposition 5.2.
Since L is a J-frame, then S or T is compact. Thus, by Proposition 5.2 again, S or T is an F-compact element
of S(L).

(⇐=) Follows similarly.

Not all scattered spaces are Hausdorff (the Sierpiński space is a typical counter-example). The scattered
Hausdorff spaces (for example, all countable compact Hausdorff spaces, see [7, Corollary 10]) are useful
in our setting. The fact that any compact Hausdorff space is a J-space (see [9]) is important for our next
example:

Example 5.11. Consider the frame OX, where X is any scattered Hausdorff space which is a J-space (e.g.,
the countable compact Hausdorff spaces). Since any Hausdorff space is a TD-space, the scatteredness of X
implies that S(OX) is a Boolean algebra. This implies that OX is a scattered frame. Since X is a J-space,
then OX is also a J-frame. Hence, S(OX) is a J-lattice by the previous proposition.

Remark 5.12. (1) It is noteworthy that all examples of J-lattices provided herein arise from J-spaces. It
would be good to get some examples of J-lattices that do not arise this way.

(2) In view of Proposition 5.2, compactness and F-compactness may not coincide for lattices which are
not Boolean. Hence, exploring examples and properties of non-Boolean lattices with the “J-lattice property”
may be an interesting avenue. The dual lattice of a J-lattice may also be worth studying for independent
interest.

We intend to pursue (1) and (2) of this remark elsewhere.
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