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Abstract. We study hyperbolic Ricci solitons on sequential warped products. The necessary conditions are
obtained for a hyperbolic Ricci soliton with the structure of a sequential warped product to be an Einstein
manifold when we consider the potential field as a Killing or a conformal vector field. Some physical
applications are also given.

1. Introduction

A semi-Riemannian manifold (M, 1) is said to be a Ricci soliton [17], if there exists a smooth vector field
X ∈ χ(M) satisfying the equation

Ric +
1
2
LX1 = λ1

for some constant λ and it is denoted by (M, 1,X, λ), where Ric and L denote the the Ricci tensor and Lie
derivative of (M, 1), respectively and the vector field X is called the potential vector field. Ricci solitons are
natural generalizations of Einstein manifolds.

A semi-Riemannian manifold (M, 1) is said to be a hyperbolic Ricci soliton (see [3] and [10]), if there exists
a smooth vector field X ∈ χ(M) satisfying the equation

Ric + λLX1 + (LX ◦ LX) 1 = µ1 (1)

for some constants λ and µ and it is denoted by (M, 1,X, λ, µ), where Ric and L denote the the Ricci tensor
and Lie derivative of (M, 1), respectively. If X vanishes identically, a hyperbolic Ricci soliton is an Einstein
manifold. If λ = 1

2 and X is 2-Killing i.e., (LX ◦ LX) 1 = 0, (see [23]), then a hyperbolic Ricci soliton is a Ricci
soliton.

In [4], O’Neill and Bishop defined the notion of a warped product manifold to construct manifolds
with negative curvature. It is known that warped products have important applications in both differential
geometry and physics. In general relativity, the main application of them is to model the spacetime. As
generalizations of warped product manifolds, doubly, multiply and sequential warped product manifolds
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have been defined and each of them has some different geometric and physical properties. For example see
([7], [26] and [27]). In the recent years many papers have been published in which Ricci solitons on warped
product manifolds or generalizations have been studied, for example see ([1], [5], [6], [8], [11], [13], [15],
[16], [18], [19], [21] and [22]). Furthermore, for recent studies about sequential warped products see also
([12], [14], [20], [24] and [25]). Moreover, recently, in [3], Azami and Fasihi-Ramandi studied hyperbolic
Ricci solitons on warped product manifolds (see also [10]). By a motivation from the above studies, as a
generalization of the paper [3], in this paper, we consider hyperbolic Ricci solitons on sequential warped
product manifolds.

2. Preliminaries

Let (Mi, 1i) be semi-Riemannian manifolds, 1 ≤ i ≤ 3, and f : M1 −→ R+, h : M1 × M2 −→ R+

be two smooth functions. The sequential warped product manifold M is the triple product manifold M =
(M1× f M2)×h M3 endowed with the metric tensor 1 = (11⊕ f 212)⊕h213 [7]. Here the functions f , h are called
the warping functions.

Throughout the paper, (M, 1) will be considered as a sequential warped product manifold, where
M =Mn = (Mn1

1 × f Mn2
2 )×h Mn3

3 with the metric 1 = (11⊕ f 212)⊕h213. The restriction of the warping function
h : M =M1 ×M2 −→ R to M1 × {0} is h1 = h|M1×{0}.

We use the notation ∇, ∇i; Ric, Rici; Hess, Hessi; L, Li for the Levi-Civita connections, Ricci tensors,
Hessians and Lie derivatives of M, and Mi, respectively. Hessian of M is denoted by Hess.

Firstly, we give the following lemmas on sequential warped product manifolds which will be necessary
to prove our results:

Lemma 2.1. [7] Let (M, 1) be a sequential warped product and Xi,Yi ∈ χ(Mi) for 1 ≤ i ≤ 3. Then

1. ∇X1 Y1 = ∇
1
X1

Y1,
2. ∇X1 X2 = ∇X2 X1 = X1(ln f )X2,
3. ∇X2 Y2 = ∇

2
X2

Y2 − f12(X2,Y2)∇1f ,
4. ∇X3 X1 = ∇X1 X3 = X1(lnh)X3,
5. ∇X2 X3 = ∇X3 X2 = X2(lnh)X3,
6. ∇X3 Y3 = ∇

3
X3

Y3 − h13(X3,Y3)∇h.

Lemma 2.2. [7] Let (M, 1) be a sequential warped product and Xi,Yi ∈ χ(Mi) for 1 ≤ i ≤ 3. Then

1. Ric(X1,Y1) = Ric1(X1,Y1) − n2
f Hess1f (X1,Y1) − n3

h Hessh(X1,Y1),

2. Ric(X2,Y2) = Ric2(X2,Y2) − f ♯12 (X2,Y2) − n3
h Hessh(X2,Y2),

3. Ric(X3,Y3) = Ric3(X3,Y3) − h♯13 (X3,Y3),

4. Ric(Xi,X j) = 0 when i , j, where f ♯ =
(

f∆1 f + (n2 − 1)
∥∥∥∇1f
∥∥∥2) and h♯ =

(
h∆h + (n3 − 1) ∥∇h∥2

)
.

Lemma 2.3. [7] Let (M, 1) be a sequential warped product manifold. A vector field X ∈ χ(M) satisfies the equation

(LX1)(Y,Z) =
(
L

1
X1
11

)
(Y1,Z1) + f 2

(
L

2
X2
12

)
(Y2,Z2) + h2

(
L

3
X3
13

)
(Y3,Z3)

+2 f X1( f )12(Y2,Z2) + 2h(X1 + X2)(h)13(Y3,Z3)

for Y,Z ∈ χ(M).

Proposition 2.4. Let (M, 1) be a sequential warped product manifold and Yi,Zi ∈ χ(Mi) for 1 ≤ i ≤ 3. Then

1. (LXLX1)(Y1,Z1) = (L1
X1
L

1
X1
11)(Y1,Z1),

2. (LXLX1)(Y2,Z2) = f 2(L2
X2
L

2
X2
12)(Y2,Z2) + 2X1( f 2)(L2

X2
12)(Y2,Z2) + X1(X1( f 2))12(Y2,Z2),
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3. (LXLX1)(Y3,Z3) = h2(L3
X3
L

3
X3
13)(Y3,Z3) + 2(X1(h2) + X2(h2))(L3

X3
13)(Y3,Z3)

+ [(X1 + X2)(X1 + X2)(h2)]13(Y3,Z3),
4. (LXLX1)(Yi,Z j) = 0, 1 ≤ i, j ≤ 3, i , j for every vector field X = X1 + X2 + X3 on M.

Proof. Let (M, 1) be a sequential warped product manifold. Using Lemma 2.1, we have

LXY1 = ∇XY1 − ∇Y1 X

= ∇X1 Y1 + ∇X2 Y1 + ∇X3 Y1 − ∇Y1 X1 − ∇Y1 X2 − ∇Y1 X3

= ∇1
X1

Y1 − ∇
1
Y1

X1 = L
1
X1

Y1,

LXY2 = ∇XY2 − ∇Y2 X

= ∇X1 Y2 + ∇X2 Y2 + ∇X3 Y2 − ∇Y2 X1 − ∇Y2 X2 − ∇Y2 X3

= ∇2
X2

Y2 − ∇
2
Y2

X2 = L
2
X2

Y2

and

LXY3 = ∇XY3 − ∇Y3 X

= ∇X1 Y3 + ∇X2 Y3 + ∇X3 Y3 − ∇Y3 X1 − ∇Y3 X2 − ∇Y3 X3

= ∇3
X3

Y3 − ∇
3
Y3

X3 = L
3
X3

Y3.

Hence, from Lemma 2.3, we have

(LXLX1)(Y1,Z1) = LX((LX1)(Y1,Z1)) − (LX1)(LXY1,Z1) − (LX1)(Y1,LXZ1)

= LX((L1
X1
11)(Y1,Z1)) − (LX1)(L1

X1
Y1,Z1) − (LX1)(Y1,L

1
X1

Z1)

= L1
X1

((L1
X1
11)(Y1,Z1)) − (L1

X1
11)(L1

X1
Y1,Z1) − (L1

X1
11)(Y1,L

1
X1

Z1)

= (L1
X1
L

1
X1
11)(Y1,Z1),

(LXLX1)(Y2,Z2) = LX((LX1)(Y2,Z2)) − (LX1)(LXY2,Z2) − (LX1)(Y2,LXZ2)

= LX( f 2(L2
X2
12)(Y2,Z2) + X1( f 2)12(Y2,Z2)) − (LX1)(L2

X2
Y2,Z2) − (LX1)(Y2,L

2
X2

Z2)

= X1( f 2)(L2
X2
12)(Y2,Z2) + f 2

L
2
X2

((L2
X2
12)(Y2,Z2))

+X1(X1( f 2))12(Y2,Z2) + X1( f 2)L2
X2

(12(Y2,Z2))

− f 2(L2
X2
12)(L2

X2
Y2,Z2) − X1( f 2)12(L2

X2
Y2,Z2)

− f 2(L2
X2
12)(Y2,L

2
X2

Z2) − X1( f 2)12(Y2,L
2
X2

Z2)

= f 2(L2
X2
L

2
X2
12)(Y2,Z2) + 2X1( f 2)(L2

X2
12)(Y2,Z2) + X1(X1( f 2))12(Y2,Z2)

and

(LXLX1)(Y3,Z3) = LX((LX1)(Y3,Z3)) − (LX1)(LXY3,Z3) − (LX1)(Y3,LXZ3)

= LX(h2(L3
X3
13)(Y3,Z3) + X1(h2)13(Y3,Z3) + X2(h2)13(Y3,Z3))

−(LX1)(L3
X3

Y3,Z3) − (LX1)(Y3,L
3
X3

Z3)

= X1(h2)(L3
X3
13)(Y3,Z3) + X2(h2)(L3

X3
13)(Y3,Z3)

+h2
L

3
X3

((L3
X3
13)(Y3,Z3)) + X1(X1(h2))13(Y3,Z3) + X2(X1(h2))13(Y3,Z3)

+X1(h2)L3
X3

(13(Y3,Z3)) + X1(X2(h2))13(Y3,Z3) + X2(X2(h2))13(Y3,Z3)
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+X2(h2)L3
X3

(13(Y3,Z3)) − h2(L3
X3
13)(L3

X3
Y3,Z3)

−X1(h2)13(L3
X3

Y3,Z3) − X2(h2)13(L3
X3

Y3,Z3)

−h2(L3
X3
13)(Y3,L

3
X3

Z3) − X1(h2)13(Y3,L
3
X3

Z3) − X2(h2)13(Y3,L
3
X3

Z3)

= h2(L3
X3
L

3
X3
13)(Y3,Z3) + 2X1(h2)(L3

X3
13)(Y3,Z3)

+2X2(h2)(L3
X3
13)(Y3,Z3) + X1(X1(h2))13(Y3,Z3) + X2(X1(h2))13(Y3,Z3)

+X1(X2(h2))13(Y3,Z3) + X2(X2(h2))13(Y3,Z3).

Moreover,

(LXLX1)(Y1,Z2) = LX(LX1(Y1,Z2)) − (LX1)(LXY1,Z2) − (LX1)(Y1,LXZ2)

= −(LX1)(L1
X1

Y1,Z2) − (LX1)(Y1,L
2
X2

Z2) = 0

and similarly for 1 ≤ i, j ≤ 3 and i , j, we obtain (LXLX1)(Yi,Z j) = 0.

A vector field V on a Riemannian manifold (M, 1) is said to be conformal, if there exists a smooth function
f on M satisfying the equation LV1 = 2 f1. The function f is called the potential function of the conformal
vector field V. If f = 0, then V is called a Killing vector field.

3. Main Results

In this section, we examine the properties of hyperbolic Ricci solitons on sequential warped product
manifolds.

Firstly, we have the following theorem:

Theorem 3.1. Let M = (M1 × f M2) ×h M3 be a sequential warped product equipped with the metric 1 = (11 ⊕

f 212) ⊕ h213. If (M, 1,X, λ, µ) is a hyperbolic Ricci soliton with potential vector field of the form X = X1 + X2 + X3,
where Xi ∈ χ(Mi) for 1 ≤ i ≤ 3, then

(i) (M1, 11, λX1 −
n2
2 ∇(ln f ) − n3

2 ∇(ln h1), 1, µ) is a hyperbolic Ricci soliton.

(ii) M2 is an Einstein manifold when X2 is a Killing vector field and Hessh = ψ1.
(iii) M3 is an Einstein manifold when X3 is a Killing vector field.

Proof. Let (M, 1,X, λ, µ) be a hyperbolic Ricci soliton. Then from (1), we have

Ric(Y,Z) + λ(LX1)(Y,Z) + (LX ◦ LX)1(Y,Z) = µ1(Y,Z)

for all vector fields Y,Z ∈ χ(M).
Let Y = Y1 and Z = Z1. From Lemma 2.2, Lemma 2.3 and Proposition 2.4, we have

Ric1(Y1,Z1) −
n2

f
Hess1 f (Y1,Z1) −

n3

h
Hessh(Y1,Z1) (2)

+λ(L1
X1
11)(Y1,Z1) + (L1

X1
◦ L

1
X1

)11(Y1,Z1) = µ11(Y1,Z1).

It is noted that

λ(L1
X1
11)(Y1,Z1) −

n2

f
Hess1 f (Y1,Z1) −

n3

h
Hessh(Y1,Z1)

= λ11(∇1
Y1

X1,Z1) −
n2

2 f
11(∇1

Y1
∇

1f ,Z1) −
n3

2h
11(∇1

Y1
∇

1h1,Z1)
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+λ11(Y1,∇
1
Z1

X1) −
n2

2 f
11(Y1,∇

1
Z1
∇

1f ) −
n3

2h
11(Y1,∇

1
Z1
∇

1h1)

= 11

(
∇

1
Y1

(λX1 −
n2

2
∇

1(ln f ) −
n3

2
∇

1(ln h1)),Z1

)
+11

(
Y1,∇

1
Z1

(λX1 −
n2

2
∇

1(ln f ) −
n3

2
∇

1(ln h1))
)

=
(
L

1
λX1−

n2
2 ∇

1(ln f )− n3
2 ∇

1(ln h1)
11

)
(Y1,Z1) .

So the equation (2) turns into

Ric1(Y1,Z1) +
(
L

1
λX1−

n2
2 ∇

1(ln f )− n3
2 ∇

1(ln h1)
11

)
(Y1,Z1) + (L1

X1
L

1
X1
11)(Y1,Z1) = µ11(Y1,Z1)

and therefore, (M1, 11, λX1 −
n2
2 ∇

1(ln f ) − n3
2 ∇

1(ln h1), 1, µ) is a hyperbolic Ricci soliton.
Now, let Y = Y2 and Z = Z2. Then

Ric2(Y2,Z2) − f ♯12(Y2,Z2) −
n3

h
Hessh(Y2,Z2) + λ f 2(L2

X2
12)(Y2,Z2)

+2λX1( f 2)12(Y2,Z2) + f 2(L2
X2
L

2
X2
12)(Y2,Z2) + 2X1( f 2)(L2

X2
12)(Y2,Z2)

+X1(X1( f 2))12(Y2,Z2) = µ f 212(Y2,Z2).

Here, if X2 is a Killing vector field and Hessh = ψ1, we get

Ric2(Y2,Z2) = (µ f 2 + f ♯ +
n3

h
ψ f 2
− 2λX1( f 2) − X1(X1( f 2)))12(Y2,Z2),

which implies that M2 is an Einstein manifold.
Finally, let Y = Y3 and Z = Z3. Then

Ric3(Y3,Z3) − h♯13(Y3,Z3) + λh2(L3
X3
13)(Y3,Z3) + 2λ(X1 + X2)(h2)13(Y3,Z3)

+h2(L3
X3
L

3
X3
13)(Y3,Z3) + 2(X1(h2) + X2(h2))(L3

X3
13)(Y3,Z3)

+((X1 + X2)(X1 + X2)(h2))13(Y3,Z3) = µh213(Y3,Z3),

which means that (M3, 13) is an Einstein manifold when X3 is a Killing vector field.
This completes the proof of the theorem.

In the following theorem, we provide some conditions for a sequential warped product M = (M1 × f
M2) ×h M3 to be an Einstein manifold.

Theorem 3.2. Let M = (M1× f M2)×h M3 be a sequential warped product equipped with the metric 1 = (11⊕ f 212)⊕
h213 and (M, 1,X, λ, µ) a hyperbolic Ricci soliton. Then M is an Einstein manifold, if the following conditions hold:

(i) Xi are conformal vector fields on Mi with factor ρi, 1 ≤ i ≤ 3,
(ii) µ f 2

− λX1( f 2) − X1(X1( f 2)) − ρ2(λ f 2 + 2X1( f 2)) − f 2(X2(ρ2) + ρ2
2)

= f 2(µ − λρ1 − X1(ρ1) − ρ2
1)

and
(iii) µh2

− λX1(h2) − λX2(h2) − X1(X1(h2)) − X2(X1(h2)) − X1(X2(h2))
−X2(X2(h2)) − ρ3(λh2 + 2X1(h2) + 2X2(h2)) − h2(X3(ρ3) + ρ2

3)
= h2(µ − λρ1 − X1(ρ1) − ρ2

1).
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Proof. Since Xi are conformal vector fields on Mi with factorρi, 1 ≤ i ≤ 3, we haveL1
X1
11 = ρ111 ,L2

X2
12 = ρ212

and L3
X3
13 = ρ313. So we get

L
1
X1
L

1
X1
11 = L

1
X1

(ρ111) = (X1(ρ1) + ρ2
1)11,

L
2
X2
L

2
X2
12 = (X2(ρ2) + ρ2

2)12

and

L
3
X3
L

3
X3
13 = (X3(ρ3) + ρ2

3)13.

Now, since (M, 1,X, λ, µ) is a hyperbolic Ricci soliton, from (1), we have

Ric(Y1,Z1) + λ(L1
X1
11)(Y1,Z1) + (L1

X1
L

1
X1
11)(Y1,Z1) = µ11(Y1,Z1).

Hence we get

Ric(Y1,Z1) = (µ − λρ1 − X1(ρ1) − ρ2
1)11(Y1,Z1).

Similarly, we can write

Ric(Y2,Z2) = (µ f 2
− λX1( f 2) − X1(X1( f 2)) − ρ2(λ f 2 + 2X1( f 2)) − f 2(X2(ρ2) + ρ2

2))12(Y2,Z2)

and

Ric(Y3,Z3) = [µh2
− λX1(h2) − λX2(h2) − X1(X1(h2)) − X2(X1(h2)) − X1(X2(h2))

−X2(X2(h2)) − ρ3(λh2 + 2X1(h2) + 2X2(h2)) − h2(X3(ρ3) + ρ2
3)]13(Y3,Z3).

Therefore Ric(Y,Z) = (µ − λρ1 − X1(ρ1) − ρ2
1)1(Y,Z), which completes the proof.

Using Lemma 2.3 and Proposition 2.4, we can state the following theorem:

Theorem 3.3. Let M = (M1× f M2)×h M3 be a sequential warped product equipped with the metric 1 = (11⊕ f 212)⊕
h213 and (M, 1,X, λ, µ) a hyperbolic Ricci soliton. Then (M, 1,X, λ, µ) is Einstein if one of the following conditions
hold:

(i) X = X1 is a Killing vector field on M1 and{
λX1( f 2) + X1(X1( f 2)) = 0
λX1(h2) + X1(X1(h2)) = 0,

(ii) X = X2 is a Killing vector field on M2 and λX2(h2) + X2(X2(h2)) = 0,
(iii) X = X3 is a Killing vector field on M3,
(iv) Xi is a Killing vector field on Mi, i = 1, 2, 3 and{

λX1( f 2) + X1(X1( f 2)) = 0,
λX1(h2) + λX2(h2) + X1(X1(h2)) + X2(X1(h2)) + X1(X2(h2)) + X2(X2(h2)) = 0.

Proof. If Xi is a Killing vector field on Mi, 1 ≤ i ≤ 3, then Li
Xi
1i = 0 and Li

Xi
L

i
Xi
1i = 0.

Assume that X = X1 and X1 is a Killing vector field on M1. Then we have

(LX11)(Y,Z) = (L1
X1
11)(Y1,Z1) + X1( f 2)12(Y2,Z2) + X1(h2)13(Y3,Z3)

= X1( f 2)12(Y2,Z2) + X1(h2)13(Y3,Z3)

and

(LX1LX11)(Y,Z) = (L1
X1
L

1
X1
11)(Y1,Z1)
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+X1(X1( f 2))12(Y2,Z2) + X1(X1(h2))13(Y3,Z3)

= X1(X1( f 2))12(Y2,Z2) + X1(X1(h2))13(Y3,Z3).

From the hypothesis, the hyperbolic Ricci soliton equation (1) turns into

µ1(Y,Z) = Ric(Y,Z) + λ(LX11)(Y,Z) + (LX1LX11)(Y,Z)

= Ric(Y,Z) + (λX1( f 2) + X1(X1( f 2)))12(Y2,Z2) + (λX1(h2) + X1(X1(h2)))13(Y3,Z3) = Ric(Y,Z),

which shows that M is an Einstein manifold.
Using the same pattern, it can be shown that M is Einstein for the remaining cases.

A vector field X on a Riemannian manifold (M, 1) is called Ricci bi-conformal [9], if it satisfies (LX1)(Y,Z) =
α1(Y,Z)+ βRic(Y,Z) and (LXRic)(Y,Z) = αRic(Y,Z)+ β1(Y,Z) for arbitrary non-zero smooth functions α and
β.

In [3], Azami and Fasihi-Ramandi proved that on the warped product manifolds, the hyperbolic Ricci
soliton with Ricci bi-conformal potential vector field is Einstein. Inspiring from this point of view, by a
similar proof of Theorem 2.13 given in [3], we obtain a similar result for the sequential warped product
manifolds as follows:

Theorem 3.4. Let M = (M1 × f M2) ×h M3 be a sequential warped product equipped with the metric 1 = (11 ⊕

f 212) ⊕ h213. If (M, 1,X, λ, µ) is a hyperbolic Ricci soliton with Ricci bi-conformal potential vector field X, then M is
an Einstein manifold or

1 + λβ + 2αβ + X(β) = 0, λα + X(α) + α2 + β2
− µ = 0.

4. Hyperbolic Ricci-Solitons on Sequential Warped Product Space-Times

In this section, we consider hyperbolic Ricci-solitons admitting sequential standard static space-times
and sequential generalized Robertson-Walker space-times.

Let (Mi, 1i) be semi-Riemannian manifolds, 1 ≤ i ≤ 2, and f : M1 −→ R+, h : M1 ×M2 −→ R+ two
smooth functions. The (n1 + n2 + 1)- dimensional sequential standard static space-time M is the triple product
manifold M = (M1 × f M2)×h I endowed with the metric tensor 1 = (11 ⊕ f 212)⊕ h2(−dt2). Here I is an open,
connected subinterval of R and dt2 is the usual Euclidean metric tensor on I [7].

By using of Lemma 2.3 and Proposition 2.4, it is easy to state the following Corollary:

Corollary 4.1. Let (M = (M1 × f M2) ×h I, 1) be a sequential standard static space-time and Yi,Zi ∈ χ(Mi) for
1 ≤ i ≤ 2. Then

1. (LXLX1)(Y1,Z1) = (L1
X1
L

1
X1
11)(Y1,Z1),

2. (LXLX1)(Y2,Z2) = f 2(L2
X2
L

2
X2
12)(Y2,Z2) + 2X1( f 2)(L2

X2
12)(Y2,Z2) + X1(X1( f 2))12(Y2,Z2),

3. (LXLX1)(∂t, ∂t) = −X1(X1(h2)) − X2(X1(h2)) −X1(X2(h2)) − X2(X2(h2)),
4. (LXLX1)(Yi,Z j) = 0, 1 ≤ i, j ≤ 2, i , j,
5. (LXLX1)(∂t,Y j) = 0, 1 ≤ i, j ≤ 2

for every vector field X = X1 + X2 + ∂t on M.

Now we consider a hyperbolic Ricci soliton with the structure of the sequential standard static space-
times. By using Theorem 3.1, the following result can be given:

Theorem 4.2. Let M = (M1 × f M2) ×h I be a sequential standard static space-time equipped with the metric
1 = (11 ⊕ f 212) ⊕ h2(−dt2). If (M, 1,X, λ, µ) is a hyperbolic Ricci soliton with X = X1 + X2 + ∂t, where Xi ∈ χ(Mi)
for 1 ≤ i ≤ 2 and ∂t ∈ χ(I), then
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(i) (M1, 11, λX1 −
n2
2 ∇(ln f ) − 1

2∇(ln h1), 1, µ) is a hyperbolic Ricci soliton.
(ii) M2 is an Einstein manifold when X2 a Killing vector field and Hessh = ψ1.

(iii) µh2 = λ(X1 + X2)(h2) + X1(X1(h2)) + X2(X1(h2)) + X1(X2(h2)) + X2(X2(h2)) − h∆h.

Proof. Let (M, 1,X, λ, µ) be a hyperbolic Ricci soliton with the structure of the sequential warped product.
Then from (1), for Y,Z ∈ χ(M), the equation

Ric(Y,Z) + λ(LX1)(Y,Z) + (LXLX1)(Y,Z) = µ1(Y,Z) (3)

is satisfied. In the equation (3), using Lemma 2.2, Lemma 2.3 and Corollary 4.1 for vector fields Y = Y1+Y2+∂t

and Z = Z1 + Z2 + ∂t, we get

Ric1(Y1,Z1) −
n2

f
Hess1 f (Y1,Z1) −

1
h

Hessh(Y1,Z1) (4)

+λ(L1
X1
11)(Y1,Z1) + (L1

X1
L

1
X1
11)(Y1,Z1) = µ11(Y1,Z1),

Ric2(Y2,Z2) − f ♯12(Y2,Z2) −
1
h

Hessh(Y2,Z2) + λ f 2
L

2
X2
12(Y2,Z2) (5)

+λX1( f 2)12(Y2,Z2) + (L2
X2
L

2
X2
12)(Y2,Z2) + 2X1( f 2)(L2

X2
12)(Y2,Z2)

+X1(X1( f 2))12(Y2,Z2) = µ f 212(Y2,Z2)

and

h∆h − λ(X1 + X2)(h) − X1(X1(h2)) − X2(X1(h2)) − X1(X2(h2)) − X2(X2(h2)) = −µh2,

which imply (iii).
In the equation (4), by following the same pattern as in the Theorem 3.1, we arrive that (M1, 11, λX1 −

n2
2 ∇(ln f )− 1

2∇(ln h1), 1, µ) is a hyperbolic Ricci soliton. Moreover, in the equation (5), if X2 is a Killing vector
field and Hessh = ψ1, we obtain that M2 is an Einstein manifold, which completes the proof.

Now we consider a hyperbolic Ricci soliton with the structure of the sequential generalized Robertson-
Walker space-times. Firstly, we give the definition of the sequential generalized Robertson-Walker space-
time.

Let (Mi, 1i) be semi-Riemannian manifolds, 2 ≤ i ≤ 3, and f : I −→ R+, h : I ×M2 −→ R+ two smooth
functions. The (n2 + n3 + 1)-dimensional sequential generalized Robertson-Walker space-time M is the triple
product manifold M = I × f M2 ×h M3 endowed with the metric tensor 1 = (−dt2

⊕ f 212) ⊕ h213. Here I is an
open, connected subinterval of R and dt2 is the usual Euclidean metric tensor on I [7].

By using of Lemma 2.3 and Proposition 2.4, it is easy to state the following Corollary:

Corollary 4.3. Let (M = (I × f M2) ×h M3, 1) be a sequential standard static space-time and Yi,Zi ∈ χ(Mi) for
2 ≤ i ≤ 3. Then

1. (LXLX1)(∂t, ∂t) = 0,
2.

(LXLX1)(Y2,Z2) = f 2(L2
X2
L

2
X2
12)(Y2,Z2) + 2 f ˙f (L2

X2
12)(Y2,Z2) + ∂t(∂t( f 2))12(Y2,Z2),

3.

(LXLX1)(Y3,Z3) = h2(L3
X3
L

3
X3
13)(Y3,Z3) + 2(2 f ˙f + X2(h2))(L3

X3
13)(Y3,Z3)

+∂t(∂t(h2))13(Y3,Z3) + X2(∂t(h2))13(Y3,Z3) + ∂t(X2(h2))13(Y3,Z3) + X2(X2(h2))13(Y3,Z3),
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4. (LXLX1)(Yi,Z j) = 0, 2 ≤ i, j ≤ 3, i , j,
5. (LXLX1)(∂t,Y j) = 0, 2 ≤ i, j ≤ 3

for every vector field X = ∂t + X1 + X2 on M.

We give the following theorem as an application of Theorem 3.1.

Theorem 4.4. Let M = (I × f M2) ×h M3 be a sequential generalized Robertson-Walker space-time. Assume that
(M, 1,X, λ, µ) is a hyperbolic Ricci soliton with X = ∂t+X2+X3 on M,where Xi ∈ χ(Mi) for 2 ≤ i ≤ 3 and ∂t ∈ χ(I).
Then

(i) −
n2

f
f̈ −

n3

h
∂2h
∂t2 = µ,

(ii) (M2, 12) is Einstein when Hessh = ψ1 and X2 is Killing on M2.
(iii) (M3, 13) is Einstein when X3 is Killing on M3.

Proof. Assume that (M, 1,X, λ, µ) is a hyperbolic Ricci soliton with the structure of the generalized Robertson-
Walker space-time M = (I × f M2)×h M3. By Lemma 2.2, Lemma 2.3 and Corollary 4.3, the proof is clear.

Now, we give the following result for gradient hyperbolic Ricci soliton with the structure of the gener-
alized Robertson-Walker space-time.

Theorem 4.5. Let (M = (I× f M2)×hM3, 1) be a sequential generalized Robertson-Walker space-time and (M, 1,∇u, λ, µ)
a hyperbolic Ricci soliton, where

u =
∫ t

a
f (r)dr for some constant a ∈ I,

then M is an Einstein manifold with factor (µ − 2λ ˙f − 2 f f̈ − 4 ˙f 2)1.

Proof. Suppose that X = ∇u. Then X = f (t)∂t.
Let {∂t, ∂1, ∂2, . . . , ∂n2 , ∂n2+1, . . . , ∂n2+n3 } be an orthonormal basis for χ(M). Using the proof of Theorem 4.7 in
[2], we have

(LXLX1)(Y,Z) = LX((LX1)(Y,Z)) − (LX1)(LXY,Z) − (LX1)(Y,LXZ)

= 2LX( ˙f1(Y,Z)) − 2 ˙f1(LXY,Z) − 2 ˙f1(Y,LXZ)

= 2(X( ˙f ))1(Y,Z) + 2 ˙f (LX1)(Y,Z) = (2 f f̈ + 4 ˙f 2)1(Y,Z)

Therefore, Ric = (µ − λ ˙f − 2 f f̈ − 4 ˙f 2)1 is satisfied. This completes the proof.
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[8] U. C. De, C. A. Mantica, S. Shenawy, B. Ünal, Ricci solitons on singly warped product manifolds and applications, J. Geom. Phys. 166

(2021), Paper No. 104257, 10pp.
[9] U. C. De, A. Sardar, A. Sarkar, Some conformal vector fields and conformal Ricci solitons on N(k)- contact metric manifolds, AUT J. Math.

Computing 2 (2021), 61-71.
[10] H. Faraji, S. Azami, G. Fasihi-Ramandi, Three dimensional homogeneous hyperbolic Ricci solitons, J. Nonlinear Math. Phys. 30 (2023),

135–155.
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