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Abstract. We study equdistant parabolically Kähler spaces which are generalizations of classical and
hyperbolical Kähler spaces. We find the metric form of these spaces in a special system of coordinates.
We also find properties of these spaces under geodesic mappings including the projective corresponding
metric form.

1. Introduction

In the present paper we consider spaces which, by analogy with Kählerian and hyperbolic Kählerian
spaces, we will call parabolic Kählerian spaces Kn. Note that this class of spaces was introduced in [36]
when studying spaces over algebras. On the other hand, Sinyukov introduced equidistant spaces [31].
They are pseudo-Riemannian spaces in which concircular vector fields exist, defined by Yano [38]. These
vector fields first appear in the work of Brinkmann [4] in the study of conformal mappings of Einstein
spaces. As we know [29, 31], equidistant spaces of the basic type always admit geodesic mappings. The
problems shown above are studied in detail in [14]. Interesting problems about equidistant spaces, surfaces
of revolution and the existence of bifurcations of geodesics on them were studied in [6, 19, 22, 23].

We have constructed metrics of all equidistant basic type parabolic Kähler spaces which admit non-
trivial geodesic mappings. This is a continuation of the work [25], and extends the results obtained in
[10, 13] for Kähler and hyperbolic Kähler spaces.

Finally, we continue the detailed study of geodesic mappings of parabolically Kähler spaces, which are
necessarily equidistant. This property follows from more general results about geodesic mappings in [14]
for covariantly constant tensors. These studies are closely connected with works on geodesic and more
general mappings of special spaces with structures, for example [1–5, 7, 18, 20, 21, 31–35]. The works cited
above are mainly of a local character, global issues of (pseudo-) Riemannian manifolds were devoted to
articles [11, 12, 14–16, 24, 39, 41].
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2. Parabolic Kähler Spaces

By analogy with the definition of elliptically and hyperbolically Kähler spaces [13, 36, 41] we introduce
the notion of parabolic Kähler spaces:

Definition 2.1. An even-dimensional Riemannian space will be called a parabolic Kähler spaceKn if along with the
metric tensor 1 there exists a structure F satisfying the following conditions:

a) F2 = 0, b) 1(X,FX) = 0, c) ∇F = 0, d) rank F = m = n/2, (1)

where X is any vector fild and ∇ denotes the Levi-Civita connection inKn.

Taking into account the studies [36, p. 137] in the adapted coordinate system x in which the structure F
has the form

Fa+m
b = δa

b, Fa
b = Fa+m

b+m = Fa
b+m = 0, (2)

where a, b, c, · · · = 1, 2, . . . ,m; m = n/2; δh
i is the Kronecker symbol;

components of the metric tensor 1i j(x) and the Christoffel symbols Γh
ij(x) satisfy the relations:

1a b+m + 1a+m b = 0, 1a+m b+m = 0, (3)

Γa
bc = Γ

a+m
b c+m , Γ

a
b c+m = Γ

a
b+m c+m = Γ

a+m
b+m c+m = 0.

For the Christoffel symbols of the 1st kind in the adapted coordinate system the conditions are fulfilled

Γab c+m + Γa+m b c = 0, Γa+m b+m c = Γa b+m c+m = Γa+a b+m c+m = 0. (4)

Hence, on the basis of the definition of the Christoffel symbols of the 1st kind and properties of the
metric tensor (3) it is easy to find that in adapted coordinate system the following conditions are fulfilled:

∂c+m1a b+m = 0, (5)

∂a1b c+m + ∂b1c a+m + ∂c1a b+m = 0, (6)

∂a+m1b c − ∂b+m1a c − ∂a1b c+m + ∂b1a c+m = 0, (7)

where ∂i = ∂/∂xi.
It is easy to see that the Riemannian space, the metric tensor of which in some coordinate system satisfies

conditions (3), (5), (6) and (7), is a parabolic Kn space whose structure in this coordinate system is defined
by formulas (2).

Let us analyze conditions (5), (6), and (7). It follows from (5) that

1a b+m = 1a b+m(x1, x2, . . . , xm).

As shown in [36], it follows from (6) that the functions F (x1, x2, . . . , xm) satisfies

1a b+m = ∂bFa − ∂aFb .

Then formulas (7) take the following form:

∂a+m1b c − ∂b+m1a c − ∂acFb + ∂bcFa = 0. (8)

Let’s make equations with respect to the unknown functions Φa(x):

∂b+mΦa = 1a b − xc+m∂acFb.
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These equations are, by virtue of (8), completely integrable, hence they have a solution. Thus,

1a b = ∂b+mΦa + xc+m∂acFb. (9)

Since 1i j is a symmetric tensor, it follows from (9) that

∂b+mΦa − ∂a+mΦb + xc+m(∂acFb − ∂bcFa) = 0. (10)

Similarly, we make equations with respect to the unknown function Φ(x):

∂a+mΦ = Φa −
1
2

xb+mxc+m ∂bcFa .

These equations, by virtue of (10), are also completely integrable and have a solution. Thus, given the
latter and formulas (9), the components have the following representation:

1a b = ∂a+m b+mΦ + xc+m(∂acFb + ∂bcFa).

Finally, the following is proved

Theorem 2.2. The metric tensor of the parabolic Kähler space Kn has the following representation in the adapted
coordinate system:

a) 1a+m b+m = 0;

b) 1a b+m = ∂bFa − ∂aFb;

c) 1a b = ∂a+m b+mΦ + xc+m(∂acFb + ∂bcFa).

(11)

where Fa = Fa(x1, x2, . . . , xm) and Φa = Φa(x1, x2, . . . , xn).

However, the opposite is also true.

Theorem 2.3. For any functions Fa(x1, x2, . . . , xm) ∈ C2 and Φa(x1, x2, . . . , xn) ∈ C3 such that the matrix ∥1i j∥,
constructed using the formulas (11), is not degenerate, then 1i j defines the metric tensor of some parabolic Kn space
whose structure has the form (2).

The validity of Theorem 2.3 follows from the fact that the metric tensor of the form (11) satisfies conditions
(3), (5), (6), and (7).

Remark The regularity of 1i j in Theorem 2.2 follows from the fact that ∥1i j∥ is regular in any Riemannian
space. In Theorem 2.3 regularity must be required additionally. Since, for example, for Fa = 0, the tensor
1i j is obviously non regular.

In [36] it is shown that in some special adapted coordinate system the metric tensor Kn can be reduced
to a simpler form

a) 1a+m b+m = 0; b) 1a b+m = −1b a+m = const; c) 1a b = ∂a+m b+mΦ.

3. Analytic vector fields on parabolic Kähler spaces

A transformation of coordinates x′h = x′h(x) will be called analytic if it preserves the canonical form of
structure (2). In [36] it is shown that analytic transformations of adapted coordinates are only transforma-
tions of the form

x′a = x̃a(x1, x2, . . . , xm);

x′a+m = x̃a+m(x1, x2, . . . , xm) + xb+m∂bx̃a,
(12)

where x̃a and x̃a+m are functions of these variables such that det ∥∂ax̃b
∥ , 0.
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The vector field ξ is caled analytic, if the condition

LξF = 0, (13)

where Lξ is the Lie derivative in the direction of vector ξ.
Condition (13) can be written in the following form: ξα∇αFh

i +∇iξαFh
α−∇αξ

hFαi = 0. On the basis of (1c),
the analytic vector fields in parabolic Kähler space are characterized by the conditions

∇iξ
αFh

α − ∇αξ
hFαi = 0.

Considering these conditions in the adapted coordinate system, we obtain the following representation
of the components of the analytic vectors

ξa = ξ̃a(x1, x2, . . . , xm);

ξa+m = ξ̃a+m(x1, x2, . . . , xm) + xb+m∂bξ̃a.
(14)

Let us prove the following theorem.

Theorem 3.1. For a given nonzero analytic vector field x in parabolic Kähler space there exists an adapted coordinate
system in which the components of this vector field have the following representation:

a) ξh = δh
1 or b) ξh = δh

1+m. (15)

Proof. Consider a nonzero analytic vector ξ satisfying conditions (13) in the adapted coordinate system of
parabolic Kähler space Kn. These conditions in the adapted coordinate system take the form (14). The
analytic transformation (12) transforms the components of ξh(x) according to the following law

ξ′h = ξα∂αx′h (16)

and ξ′h will have a structure similar to (14)

ξ′a = ξ̃′a(x1, x2, . . . , xm);

ξ′a+m = ξ̃′a+m(x1, x2, . . . , xm) + x′b+m∂′bξ̃
a,

where ∂′i = ∂/∂x′i.
Formulas (16) for h = a will take the form ξ̃′h = ξ̃α∂αx̃′h.
It is possible to find solutions x̃′a(x1, x2, . . . , xm) satisfying this condition, at ξ̃′a = e1 δa

1; e1 = 0, 1, with
det ∥∂bx̃a

∥ , 0. Then the transformation x′a = x̃a and x′a+m = xb+m∂bx̃a generates a nondegenerate analytic
transformation of coordinates x′h = x′h(x).

Therefore, we can assume that the adapted coordinate system x is given such that ξ̃a = e1δa
1, e1 = 0, 1.

Then the conditions (14) are simplified

ξa = e1δ
a
1 and ξa+m = ξ̃a+m.

Formulas (16), considering (12) and (14), look like

ξ′a = e1 ∂1x̃a, ξ′a+m = ξ̃b+m∂bx̃a+m + e1 ∂1x̃a+m. (17)

If e = 1, the coordinate transformation (12) at x̃a = xa and x̃a+m = −
∫
ξ̃a dx1 is a nondegenerate analytic

transformation, which (17) leads to the form ξ′h = δh
1, i.e. (15a).

If e1 = 0, we can find x̃a(x1, x2, . . . , xm), that satisfy (17) for ξ′a+m = δa+m
1+m. These functions give rise to a

regular analytic transformation leading vector ξ to the form (15b). The theorem is proved.
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4. Equidistant parabolic Kähler spaces

Since the structure of F is covariantly constant and F , const · Id, it follows from [8] that parabolic Kähler
spacesKn admitting geodesic mappings are equidistant.

A space is called equidistant if there exists a concircular vector field ξ which satisfies the conditions

∇ξ = ϱ · Id, (18)

where ϱ is a function [14, 31, 38]. If ϱ , 0, then it is called equidistant of the basic type. Equidistant spaces
of basic type always admit non-trivial geodesic mappings [14, 31].

Studying the integrability conditions (18), it is easy to see that in a parabolic Kähler spaceKn: ϱ = const.
After normalizing the vector ξ, we can assume that either ϱ = 0 or ϱ = 1.

Consider an equidistant parabolic Kähler space Kn of the basic type. Then, without loss of generality,
(18) will as ∇ξ = Id, in the coordinates

∇iξ
h = δh

i . (19)

Obviously, the concircular vector field ξ is analytic. Thus, we can choose an adapted coordinate system
in which

ξh = e1 δ
h
1 + e2 δ

h
1+m; e1, e2 = 0, 1; e1 + e2 = 1.

In this coordinate system the conditions (19) will be written as follows;

e1 Γ
h
1i + e2 Γ

h
1+m i = δ

h
i ;

omitting the index h using the metric tensor, we obtain

e1 Γ1ih + e2 Γ1+m ih = 1ih. (20)

We put i = a, j = b+m in (20), given (4), we find e1 Γ1a b+m = 1a b+m. Since |1a b+m| , 0 then e1 = 1 and hence
e2 = 0. Then (20) is simplified:

Γ1ih = 1ih.

The latter conditions can be written as follows:

∂11a b+m + ∂a11 b+m − ∂b+m11 a = 2 1a b+m; ∂11a b + ∂a11 b − ∂b11 a = 2 1a b . (21)

By putting a, b = 1 in (21), we find ∂1111 = 2 111, ∂1+m111 = 0. By integrating the latter, we get

111 = 4 exp(2x1) G, (22)

where G is a function independent of x1 and x1+m.
Given (21) b = 1 and a > 1, given (22), we obtain

11 a+m = 2 exp(2x1) ∂a+mG, and 11 a = 2 exp(2x1) ∂aG. (23)

For a, b > 1 conditions (21) by virtue of (22) and (23) will take the form ∂11a b+m = 2 1a b+m and ∂11a b = 2 1a b.
From this it is easy to obtain that

1ab = exp(2x1) 1̃ab, 1a b+b = exp(2x1) 1̃a b+m. (24)

where 1̃ab and 1̃ab+m (a, b > 1) are functions independent of x1.
The metric tensor of the parabolic Kähler spaceKn must satisfy conditions (5), (6) and (7) in the adapted

coordinate system. Putting in (5) b = 1 and a, c > 1, we obtain ∂a+m b+mG = 0. It follows that

G = G0 +Ga xa+m (a > 1), (25)
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where G0,Ga are functions of variables x2, x3, . . . , xm.
Assuming in (6) c = 1 and a, c > 1, given (22), (23), (24), and (25), we obtain

1̃a b+m = −∂aGb + ∂bGa. (26)

Then by substituting a = 1 and b, c > 1 in (7) we make sure that 1̃bc do not depend on x1+m.
By substituting in (7) a, b, c > 1, we obtain the conditions

∂a+m1̃bc − ∂b+m1̃ac − ∂acGb + ∂bcGa = 0.

Solving them, it is easy to see that the general solution has the following form:

1̃ab = ∂a+m b+m H + xc+m (∂acGb + ∂bcGa), (27)

where a, b, c = 2, . . . ,m,H is a function that does not depend on x1 and x1+m.
Given (22), (23), (24), (25), (26), and (27), we obtain the following theorem.

Theorem 4.1. In any equidistant basic type parabolic Kähler spaceKn there exists a coordinate system in which the
structure F is expressed by formulas (2) and the nonzero components of the metric tensor g by formulas

a) 111 = 4 exp(2x1) G,

b) 11 a+m = 2 exp(2x1) ∂a+mG,

c) 11 a = 2 exp(2x1) ∂aG.

d) 1ab = exp(2x1) (∂a+m b+m H + xc+m (∂acGb + ∂bcGa)),

e) 1a b+m = exp(2x1) (−∂aGb + ∂bGa),

(28)

where a, b, c = 2, . . . ,m, m = n/2, G = G0 + Gcxc+m, G0 and Gc are functions that depend of x2, . . . , xm, H is a
function that does not depend on x1 and x1+m.

On the other hand, it is true

Theorem 4.2. Riemannian space, the metric tensor 1 of which has structure (31), for arbitrary functions G0 ∈

C3,Ga ∈ C2 andH ∈ C3 of the above variables, provided that det 1 , 0, is an equidistant basic type parabolic Kähler
spaceKn whose structure is defined by formulas (2).

The proof consists in checking if relations (3), (5), (6), (7) and (28) are fulfilled.
Remark The regularity of 1 in Theorem 4.1 follows from the fact that 1 is regular in any Riemannian space.
In Theorem 4.2, regularity must be required additionally, since e.g., forG0 = Ga = 0 the tensor 1 is obviously
non regular.

Coordinate transformation:

x′1 = x1, x′1+m = x1+m, x′a = x̃a, x′a+m = x̃a+m + xb+m∂bx̃a, (29)

where x̃a, x̃a+m are depends of x2, . . . , xm such that det ∥∂bx̃a+m
∥ , 0, a, b = 2, . . . ,m, m = n/2.

This transformation is analytic, i.e., it preserves the adapted coordinate systems, and moreover, it
preserves the canonicity of analytic vector fields (15).

It can be seen that with a suitable coordinate transformation (29) it is possible to simplify the components
of the metric tensor (28) so that

∂bGa − ∂aG = Cab, (30)

where Cab are constants some that Cab + Cba = 0 for a, b = 2, . . . ,m.
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From (29) it follows that there is a function h(x2, . . . , xm) such that

Ga = ∂ah + 1/2 Cab xb, (31)

for a, b = 2, . . . ,m.
Thus, in any equidistant basic-type parabolic Kähler space Kn there exists a more special coordinate

system in which the structure F is expressed by formulae (2) and the nonzero components of the metric
tensor 1 are expressed by formulae (28a-c) and

1ab = exp(2x1) ∂a+m b+mH , 1a b+m = exp(2x1) Cab ,

for a, b = 2, . . . ,m; G = G0 +Ga xa+m; Ga = ∂ah+ 1/2 Cabxb, Cab are constants some that Cab +Cba = 0, and G0, h
are functions of x2, . . . , xm andH is a function independ of x1, x1+m.

5. Geodesic mappings of parabolically Kähler spaces

The mapping of Riemannian space Vn onto Riemannian space Vn is called geodesic if any geodesic on
Vn is mapped into a geodesic on Vn. We consider general questions and the case when the structures of
the corresponding spaces are preserved under geodesic mapping. We prove

Theorem 5.1. m-parabolic Kähler spacesKn do not admit non-trivial geodesic mappings to each other, provided the
structural affinor is preserved.

This result is derived from more general reasoning and is similar to the previously proved properties of
Kähler spaces with respect to geodesic mappings obtained by Yano, Nagano [40, 42], and W. Westlake [37].

Proof. Let m-parabolic Kähler spaces Kn with structure F admit geodesic mapping f onto m-parabolic
Kähler spaces Kn with structure F̄ and structures pereserves, i.e. F̄ = F. Then in common coordinates x
respective mapping f satifies the Levi-Civita equations Γ̄h

ij = Γ
h
ij + δ

h
iψ j + δh

jψi, where ψi are components

of linear form ψ, Γh
ij and Γ̄h

ij are components of connections Kn and Kn, respectively. The assumption that

structures are preserved implies ∇̄F = ∇F, in coordinates ∂ jFh
i + Fαi Γ̄

h
α j − Fh

αΓ̄
α
i j = ∂ jFh

i + Fαi Γ
h
α j − Fh

αΓ
α
i j.

After substitution the Levi-Civita equation we obtain

Fαi ψα δ
h
j − ψiFh

j = 0.

By analysing this expression, we can see that ψi = 0. Thus, the geodesic mapping is trivial. The theorem is
therefore proved by contradiction.

Finaly, we show that m-parabolic Kähler spacesKn admit geodesic mappings if there exists a convergent
vector field in them. This result follows from the more general results of Mikeš [8] in his study of the
Sinyukov equations of geodesic mappings. These equations have the form [30, 31], see [14]:

∇kai j = λi1 jk + λ j1ik,

where ai j are components of a regular symmetric tensor and λi are components of gradient vector, which are
connected to Levi-Civita equations by conditions ai j = exp(−ψ) 1̄αβ1αi 1β j and λi = − exp(−ψ) 1̄αβ1αi ψβ, here
1̄i j are components of matrix, which is inverse of metric tensor of (pseudo-) Riemannian space Vn which
geodesically corresponds to the (pseudo-) Riemannian spaceVn. If λi = 0, then the mapping is trivial.

Since ∇F = 0, it follows from [8], see [14], that ∇ jλi = µ 1i j, µ = const. Thus the vector λi is concircular,
and even convergent in the sense of P.A. Shirokov [28].

If there exists a non-constant convergent vector field inKn, thenKn can be related to a coordinate system
y such that

ds2 = e (dy1)2 + (y1)2 ds̃2,
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where e = ±1, ds̃2 is a metric of an m-parabolic Sasaki space.
This space geodesically corresponds to a two-parametric family of Riemannian spacesVn with metric

ds̄2 =
αe

(1 + β(y1)2)2 (dy1)2 +
α

1 + β(y1)2 (y1)2 ds̃2,

where α, β are constants such that α , 0 and 1 + β(y1)2 , 0.
The mapping will be nontrivial at β , 0 and at spaces Vn need not to be parabolically Kähler spaces.

On the other hand, these spaces are parabolically almost Hermitian with structure F. We can show that the
formulas for the structure F are valid F2 = 0 and 1̄(X,FX) = 0, for any tangent vector field.

The above solution corresponds to the following solution of the Sinyukov equation when we put

ai j = α 1i j + βλi λ j.
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[20] M.Z. Petrović, Holomorphically projective mappings between generalized hyperbolic Kähler spaces, J. Math. Anal. Appl. 447:1

(2017), 435–451.
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