Anisotropic nonlinear elliptic equations with variable exponents and two weighted first order terms

Mokhtar Naceri ${ }^{\text {a }}$
${ }^{a}$ ENS of Laghouat; Box 4033 Station post avenue of Martyrs, Laghouat, Algeria.

Abstract

This paper is devoted to studying the existence of distributional solutions for a boundary value problems associated to a class of anisotropic nonlinear elliptic equations with variable exponents characterized by two strictly positive- $W^{1, \vec{p} \cdot()}(\Omega)$ first order terms (the weight functions belong to the anisotropic variable exponents Sobolev space with zero boundary), and this is in bounded open Lipschitz domain (with Lipschitz boundary) of $\mathbb{R}^{N}(N \geq 2)$. The functional setting involves anisotropic varible exponents Lebesgue-Sobolev spaces.

1. Introduction

Let Ω be a bounded open set in $\mathbb{R}^{N}(N \geq 2)$ with Lipschitz boundary $\partial \Omega$.
Our goal is to prove the existence of distributional solution to the anisotropic nonlinear elliptic problems of the form

$$
\begin{align*}
-\sum_{i=1}^{N} D_{i}\left(A(x) \sigma_{i}\left(x, D_{i} u\right)\right)=-\sum_{i=1}^{N} D_{i}\left(B(x) u|u|^{p_{i}(x)-2}\right)+f(x), & \text { in } \Omega \tag{1}\\
u=0, & \text { on } \partial \Omega
\end{align*}
$$

Where,
-) f is in $L^{1}(\Omega)$, and $A(\cdot), B(\cdot)$ two strictly positive $W^{1, \vec{p}(\cdot)}(\Omega)$, such that

$$
\begin{equation*}
A(x) \geq \alpha \tag{2}
\end{equation*}
$$

where, $\alpha>0$.
-) $\sigma_{i}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}, i=1, \ldots, N$, are Carathéodory functions and satisfying;

[^0]a.e. $x \in \Omega$ and for all $\eta, \eta^{\prime} \in \mathbb{R}\left(\left(\eta, \eta^{\prime}\right) \neq(0,0)\right)$, the following :
\[

$$
\begin{align*}
& \sigma_{i}(x, \eta) \eta \geq c_{1}|\eta|^{p_{i}(x)}, \tag{3}\\
& \left|\sigma_{i}(x, \eta)\right| \leq c_{2}\left(\sum_{j=1}^{N}|\eta|^{p_{j}(x)}+|h|\right)^{1-\frac{1}{p_{i}(x)}}, \quad h \in L^{1}(\Omega) \tag{4}\\
& \left(\sigma_{i}(x, \eta)-\sigma_{i}\left(x, \eta^{\prime}\right)\right)\left(\eta-\eta^{\prime}\right) \geq\left\{\begin{array}{cl}
c_{3}\left|\eta-\eta^{\prime}\right| p_{i}(x) & \text { if } p_{i}(x) \geq 2 \\
c_{4} \frac{\left|\eta-\eta^{\prime}\right|^{\prime}}{\left(|\eta|+\left|\eta^{\prime}\right|\right)^{2-p_{i}(x)}}, & \text { if } 1<p_{i}(x)<2
\end{array}\right. \tag{5}
\end{align*}
$$
\]

where $c_{l}, l=1, \ldots, 4$ are positive constants.
This paper is concerned with the study of the existence results of distributional solutions concerning a class of anisotropic nonlinear elliptic equations with variable exponents and characterized by two first order terms with strictly positive $-W^{1, \vec{p}}(\cdot)(\Omega)$ coefficients where the weight functions belong to the anisotropic variable exponents Sobolev space with zero boundary, and the datum $f \in L^{1}(\Omega)$. The existence results of this type of equations with various data in the isotropic scalar case, is proven in [1-7]. The existence of distributional solutions for anisotropic nonlinear weighted elliptic equations with variable exponents it was studied in $[8,9]$.

The proof requires a priori estimates for a sequence of suitable approximate solutions $\left(u_{n}\right)$, which in turn is proving its existence by Leray-Schauder's fixed point Theorem. We then prove the boundedness of u_{n} in $\dot{W}^{1, \vec{p}(\cdot)}(\Omega)$ and the a.e. convergence of the partial derivatives $D_{i} u_{n}, i=1, \ldots, N$ in $\bar{\Omega}$, which can be turned into strong L^{1}-convergence. Equipped with this convergence we pass to the limit in the strong L^{1} sense in $A_{n}(x) \sigma_{i}\left(x, D_{i} u_{n}\right)$, and in $B_{n}(x) u_{n}\left|u_{n}\right|^{p_{i}(x)-2}$, and finally conclude that the approximate solutions u_{n} converge to the solution of (1).

The work has been organized in the following form:
Section 2 for some mathematical preliminaries, where here we reminded the isotropic and anisotropic variable exponent Lebesgue-Sobolev spaces, then some embedding theorems. The main theorem and its proof come in section 3 .

2. Preliminaries

In this section we need to provide some basics definitions and properties about isotropic and anisotropic variable exponent Lebesgue-Sobolev spaces (see [14-19]).

Let Ω be a bounded open subset of $\mathbb{R}^{N}(N \geq 2)$, we denote

$$
C_{+}(\bar{\Omega})=\left\{\text { continuous function } p(\cdot): \bar{\Omega} \longmapsto \mathbb{R} \text { such that } 1<p^{-} \leq p^{+}<\infty\right\},
$$

where

$$
p^{+}=\max _{x \in \bar{\Omega}} p(x) \quad \text { and } \quad p^{-}=\min _{x \in \bar{\Omega}} p(x) .
$$

We define the Lebesgue space with variable exponent $L^{p(\cdot)}(\Omega)$ by

$$
L^{p(\cdot)}(\Omega):=\left\{\text { measurable functions } u: \Omega \mapsto \mathbb{R} ; \rho_{p(\cdot)}(u)<\infty\right\}
$$

where

$$
\rho_{p(\cdot)}(u):=\int_{\Omega}|u(x)|^{p(x)} d x, \quad \text { the convex modular. }
$$

The space $L^{p(\cdot)}(\Omega)$ equipped with the norm

$$
\|f\|_{p(\cdot)}:=\|f\|_{L^{p(\cdot)}(\Omega)}=\inf \left\{\lambda>0 \mid \rho_{p(\cdot)}(f / \lambda) \leq 1\right\}
$$

becomes a Banach space. Moreover, is reflexive if $p^{-}>1$.
$L^{p^{\prime}(\cdot)}(\Omega)$ symbolize to the dual of $L^{p(\cdot)}(\Omega)$ where $\frac{1}{p(x)}+\frac{1}{p^{\prime}(x)}=1$.
$\forall u \in L^{p(\cdot)}(\Omega), \forall v \in L^{p^{\prime}(\cdot)}(\Omega)$ the Hölder type inequality:

$$
\left|\int_{\Omega} u v d x\right| \leq\left(\frac{1}{p^{-}}+\frac{1}{p^{\prime-}}\right)\|u\|_{p(\cdot)}\|v\|_{p^{\prime}(\cdot)} \leq 2\|u\|_{p(\cdot)}\|v\|_{p^{\prime}(\cdot)}
$$

holds true.
We define also the Banach space $W_{0}^{1, p(\cdot)}(\Omega)$ by

$$
W_{0}^{1, p(\cdot)}(\Omega):=\left\{f \in L^{p(\cdot)}(\Omega):|D f| \in L^{p(\cdot)}(\Omega) \text { and } f=0 \text { on } \partial \Omega\right\}
$$

endowed with the norm $\|f\|_{W_{0}^{1, p(\cdot)}(\Omega)}=\|D f\|_{p(\cdot)}$. Moreover, is reflexive and separable if $p(\cdot) \in C_{+}(\bar{\Omega})$. The following Lemma will be used later.
Lemma $2.1([15,16])$. If $\left(u_{n}\right), u \in L^{p(\cdot)}(\Omega)$, then the following relations hold
(i) $\|u\|_{p(\cdot)}<1$ (respectively $\left.=1,>1\right) \Longleftrightarrow \rho_{p(\cdot)}(u)<1($ respectively $=1,>1)$,
(ii) $\min \left(\rho_{p(\cdot)}(u)^{\frac{1}{p^{+}}}, \rho_{p(\cdot)}(u)^{\frac{1}{p^{-}}}\right) \leq\|u\|_{p(\cdot)} \leq \max \left(\rho_{p(\cdot)}(u)^{\frac{1}{p^{+}}}, \rho_{p(\cdot)}(u)^{\frac{1}{p^{-}}}\right)$,
(iii) $\min \left(\|u\|_{p(\cdot)}^{p^{-}},\|u\|_{p(\cdot)}^{p^{+}}\right) \leq \rho_{p(\cdot)}(u) \leq \max \left(\|u\|_{p(\cdot)}^{p^{-}}\|u\|_{p(\cdot)}^{p^{+}}\right)$,
(iv) $\|u\|_{p(\cdot)} \leq \rho_{p(\cdot)}(u)+1$,
(v) $\left\|u_{n}-u\right\|_{p(\cdot)} \rightarrow 0 \Longleftrightarrow \rho_{p(\cdot)}\left(u_{n}-u\right) \rightarrow 0$.

Now, we present the anisotropic Sobolev space with variable exponent which is used for the study of problems (1).
First of all, let $p_{i}(\cdot): \bar{\Omega} \rightarrow[1,+\infty)$ for all $i=1, \ldots, N$ be a continuous functions, we set $\forall x \in \bar{\Omega}$

$$
\begin{aligned}
& \vec{p}(\cdot)=\left(p_{1}(x), \ldots, p_{N}(x)\right), \quad p_{+}(x)=\max _{1 \leq i \leq N} p_{i}(x), p_{-}(x)=\min _{1 \leq i \leq N} p_{i}(x), \\
& \bar{p}(x)=\frac{N}{\sum_{i=1}^{N} \frac{1}{p_{i}(x)}}, \quad p_{+}(x)=\max _{1 \leq i \leq N} p_{i}(x), \\
& p_{+}^{+}=\max _{x \in \bar{\Omega}} p_{+}(x), \quad p_{-}(x)=\min _{1 \leq i \leq N} p_{i}(x), \\
& p_{-}^{-}=\min _{x \in \bar{\Omega}} p_{-}(x), \quad \bar{p}^{\star}(x)= \begin{cases}\frac{N \bar{p}(x)}{N-\bar{p}(x)}, & \text { for } \bar{p}(x)<N, \\
+\infty, & \text { for } \bar{p}(x) \geq N .\end{cases}
\end{aligned}
$$

The anisotropic variable exponent Sobolev space $W^{1, \vec{p}(\cdot)}(\Omega)$ is defined as follow

$$
W^{1, \vec{p} \cdot \cdot}(\Omega)=\left\{u \in L^{p_{+}(\cdot)}(\Omega), D_{i} u \in L^{p_{i}(\cdot)}(\Omega), i=1, \ldots, N\right\}
$$

which is Banach space with respect to the norm

$$
\|u\|_{W^{1, p()}(\Omega)}=\|u\|_{p_{+}(\cdot)}+\sum_{i=1}^{N}\left\|D_{i} u\right\|_{p_{i}(\cdot)} .
$$

We define the spaces $W_{0}^{1, \vec{p}(\cdot)}(\Omega)$ and $\overleftarrow{W}^{1, \vec{p}(\cdot)}(\Omega)$ as follow

$$
\begin{aligned}
& W_{0}^{1, \vec{p}(\cdot)}(\Omega)={\overline{C_{0}^{\infty}(\Omega)}}^{W^{1, \vec{p} \cdot(\cdot)}(\Omega)} \\
& \dot{W}^{1, \vec{p}(\cdot)}(\Omega)=W^{1, \vec{p}(\cdot)}(\Omega) \cap W_{0}^{1,1}(\Omega)
\end{aligned}
$$

Remark 2.2. ([13]) If Ω is a bounded open set with Lipschitz boundary $\partial \Omega$, then

$$
\dot{W}^{1, \vec{p}(\cdot)}(\Omega)=\left\{u \in W^{1, \vec{p}(\cdot)}(\Omega), u_{\mid \partial \Omega}=0\right\},
$$

where, $u_{\mid \partial \Omega}$ denotes the trace on $\partial \Omega$ of u in $W^{1,1}(\Omega)$.
We have the following embedding results.
Lemma 2.3 ($[13,14])$. Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain and $\vec{p}(\cdot) \in\left(C_{+}(\bar{\Omega})\right)^{N}$. If $r \in C_{+}(\bar{\Omega})$ and $\forall x \in \bar{\Omega}, r(x)<$ $\max \left(p_{+}(x), \bar{p}^{\star}(x)\right)$. Then the embedding

$$
\begin{equation*}
\dot{W}^{1, \vec{p}(\cdot)}(\Omega) \hookrightarrow L^{r \cdot()}(\Omega) \text { is compact. } \tag{6}
\end{equation*}
$$

Lemma 2.4 ($[13,14])$. Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain and $\vec{p}(\cdot) \in\left(C_{+}(\bar{\Omega})\right)^{N}$. Suppose that

$$
\begin{equation*}
\forall x \in \bar{\Omega}, p_{+}(x)<\bar{p}^{\star}(x) \tag{7}
\end{equation*}
$$

Then the following Poincaré-type inequality holds

$$
\begin{equation*}
\|u\|_{L^{p^{+(\cdot)}(\Omega)}} \leq C \sum_{i=1}^{N}\left\|D_{i} u\right\|_{L^{p_{i} \cdot()}(\Omega)}, \forall u \in \grave{W}^{1, \vec{p}(\cdot)}(\Omega) \tag{8}
\end{equation*}
$$

where C is a positive constant independent of u.
Thus $\sum_{i=1}^{N}\left\|D_{i} u\right\|_{L^{p_{i}(\cdot)}(\Omega)}$ is an equivalent norm on $\grave{W}^{1, \vec{p} \cdot()}(\Omega)$.
In this paper, we use the scalar truncation function $\mathcal{T}_{k}: \mathbb{R} \longrightarrow \mathbb{R}$ at levels $\pm k$ defined as for all $s \in \mathbb{R}$ as;

$$
\begin{equation*}
\mathcal{T}_{k}(s):=\max (-k, \min (k, s)) . \tag{9}
\end{equation*}
$$

In addition to this, we use the standard scalar truncation function $T_{t}: \mathbb{R} \longrightarrow \mathbb{R}$ (at height $t>0$) defined for all $s \in \mathbb{R}$ as;

$$
T_{t}(s)=\frac{1}{2}(|s+t|-|s-t|)= \begin{cases}s, & \text { if }|s| \leq t \tag{10}\\ \frac{s}{|s|} t, & \text { if }|s|>t\end{cases}
$$

We also need its derivative (see [10-12]);

$$
D T_{t}(s)= \begin{cases}1, & |s|<t \tag{11}\\ 0, & |s|>t\end{cases}
$$

We need further the following function defined for $s \in \mathbb{R}$ by

$$
G_{t}(s)= \begin{cases}0, & \text { if }|s| \leq t \\ s-t, & \text { if } s>t, \quad t>0 \\ s+t, & \text { if } s<-t\end{cases}
$$

as a test function in the approximate weak formulation.

3. Statement of Results

Definition 3.1. We say that u is a distributional solution for problem (1) if $u \in W_{0}^{1,1}(\Omega)$, and for all $\varphi \in C_{c}^{\infty}(\Omega)$,

$$
\sum_{i=1}^{N} \int_{\Omega} A(x) \sigma_{i}\left(x, D_{i} u\right) D_{i} \varphi d x=\int_{\Omega} B(x) u \sum_{i=1}^{N}|u|^{p_{i}(x)-2} D_{i} \varphi d x+\int_{\Omega} f(x) \varphi d x
$$

Our main result is the following.
Theorem 3.2. Let $p_{i}(\cdot)>1, i=1, \ldots, N$, are continuous functions on Ω such that (7) holds and $\bar{p}<N$, and let f is in $L^{1}(\Omega)$, and $A(\cdot), B(\cdot)$ two strictly positive $W^{1, \vec{p}}(\cdot)(\Omega)$ such that (2) holds. Let $\sigma_{i}, i=1, \ldots, N$ be Carathéodory functions satisfying (3), (4), (5). Then the problem (1) has at least one solution $u \in W^{1, \vec{p}(\cdot)}(\Omega)$ in the sense of distributions.

3.1. Approximate solutions

We are going to prove the existence of solution to problem (1).
We define

$$
\begin{equation*}
A_{n}(x)=\frac{A(x)}{1+\frac{A(x)}{n}}, B_{n}(x)=\frac{B(x)}{1+\frac{B(x)}{n}}, \quad f_{n}(x)=\frac{f(x)}{1+\frac{|f(x)|}{n}} \quad n \in \mathbf{N}^{*} . \tag{12}
\end{equation*}
$$

We must first notice that :
Since $\Theta(x)=\frac{x}{1+\frac{x}{n}}$ is increasing, we deduce by (2) that, for all $x \in \bar{\Omega}$

$$
\begin{equation*}
\frac{\alpha}{1+\alpha} \leq A_{n}(x) \leq n \tag{13}
\end{equation*}
$$

Lemma 3.3. Let $p_{i}(\cdot)>1, i=1, \ldots, N$, are continuous functions on Ω such that (7) holds and $\bar{p}<N$, and let f is in $L^{1}(\Omega)$, and $A(\cdot), B(\cdot)$ two strictly positive $\dot{W}^{1, \vec{p}}(\cdot)(\Omega)$ such that (2) holds. Let $\sigma_{i}, i=1, \ldots, N$ be Carathéodory functions satisfying (3), (4), (5).
Then, there exists at least one weak solution $u_{n} \in \dot{W}^{1, \vec{p}}(\cdot)(\Omega)$ to the approximated problems

$$
\begin{array}{r}
-\sum_{i=1}^{N} D_{i}\left(A_{n}(x) \sigma_{i}\left(x, D_{i} u_{n}\right)\right)=-\sum_{i=1}^{N} D_{i}\left(B_{n}(x) u_{n}\left|u_{n}\right|^{p_{i}(x)-2}\right)+f_{n}(x), \quad \text { in } \Omega \tag{14}\\
u_{n}=0,
\end{array} \begin{array}{r}
\text { on } \partial \Omega
\end{array}
$$

in the sense that

$$
\begin{equation*}
\sum_{i=1}^{N} \int_{\Omega} A_{n}(x) \sigma_{i}\left(x, D_{i} u_{n}\right) D_{i} \varphi d x=\int_{\Omega} B_{n}(x) u_{n} \sum_{i=1}^{N}\left|u_{n}\right|^{p_{i}(x)-2} D_{i} \varphi d x+\int_{\Omega} f_{n}(x) \varphi d x \tag{15}
\end{equation*}
$$

for every $\varphi \in \grave{W}^{1, \vec{p}(\cdot)}(\Omega) \cap L^{\infty}(\Omega)$.
Proof. This proof derived from Leray-Schauder fixed point Theorem.
We consider for $X=L^{P_{+}(\cdot)}(\Omega)$ the operator

$$
\begin{aligned}
& \psi: X \times[0,1] \longrightarrow X \\
& \quad\left(v_{n}, \delta\right) \longmapsto u_{n}=\psi\left(v_{n}, \delta\right)
\end{aligned}
$$

where u_{n} is the only weak solution of the problem

$$
\left\{\begin{array}{l}
-\sum_{i=1}^{N} D_{i}\left(A_{n}(x) \sigma_{i}\left(x, D_{i} u_{n}\right)\right)=\delta\left(f_{n}-\sum_{i=1}^{N} D_{i}\left(B_{n} v_{n}\left|v_{n}\right|^{p_{i}(x)-2}\right)\right) \text { in } \Omega \tag{16}\\
u_{n}=0 \text { on } \partial \Omega
\end{array}\right.
$$

verify, for all $\varphi \in \grave{W}^{1, \vec{p}(\cdot)}(\Omega)$, the weak formulation

$$
\begin{equation*}
\sum_{i=1}^{N} \int_{\Omega} A_{n} \sigma_{i}\left(x, D_{i} u_{n}\right) D_{i} \varphi d x=\delta\left(\int_{\Omega} f_{n} \varphi d x+\int_{\Omega} B_{n} v_{n} \sum_{i=1}^{N}\left|v_{n}\right|^{p_{i}(x)-2} D_{i} \varphi d x\right) \tag{17}
\end{equation*}
$$

The existence of the weak solution u of the problem (16) in $W^{1, \vec{p}}(\cdot)(\Omega)$ is directly produced by the main Theorem on pseudo-monotone operators. Let's prove the uniqueness of this solution.
Let $u_{1}, u_{2} \in \stackrel{\circ}{ }^{1, \vec{p}(\cdot)}(\Omega)$ be two weak solutions of (16). Considering the weak formulation of u_{1} and u_{2}, by choosing $\varphi=u_{1}-u_{2}$ as a test function, we have

$$
\begin{equation*}
\sum_{i=1}^{N} \int_{\Omega} A_{n} \sigma_{i}\left(x, D_{i} u_{1}\right) D_{i}\left(u_{1}-u_{2}\right) d x=\delta\left(\int_{\Omega} f_{n}\left(u_{1}-u_{2}\right) d x+\int_{\Omega} B_{n} v_{n} \sum_{i=1}^{N}\left|v_{n}\right|^{p_{i}(x)-2} D_{i}\left(u_{1}-u_{2}\right) d x\right), \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{N} \int_{\Omega} A_{n} \sigma_{i}\left(x, D_{i} u_{2}\right) D_{i}\left(u_{1}-u_{2}\right) d x=\delta\left(\int_{\Omega} f_{n}\left(u_{1}-u_{2}\right) d x+\int_{\Omega} B_{n} v_{n} \sum_{i=1}^{N}\left|v_{n}\right|^{p_{i}(x)-2} D_{i}\left(u_{1}-u_{2}\right) d x\right) . \tag{19}
\end{equation*}
$$

By subtracting (19) from (18), we get that

$$
\begin{equation*}
\sum_{i=1}^{N} \int_{\Omega} A_{n}\left(\sigma_{i}\left(x, D_{i} u_{1}\right)-\sigma_{i}\left(x, D_{i} u_{2}\right)\right) D_{i}\left(u_{1}-u_{2}\right) d x=0 . \tag{20}
\end{equation*}
$$

Putting for all $i=1, \ldots, N$,

$$
I_{i}=\int_{\Omega}\left(\sigma_{i}\left(x, D_{i} u_{1}\right)-\sigma_{i}\left(x, D_{i} u_{2}\right)\right)\left(D_{i} u_{1}-D_{i} u_{2}\right) d x
$$

Then, By using (13), the fact that $\left(\sigma_{i}\left(x, D_{i} u_{1}\right)-\sigma_{i}\left(x, D_{i} u_{2}\right)\right)\left(D_{i} u_{1}-D_{i} u_{2}\right) \geq 0$ (due (5)), and (20), we get for all $i=1, \ldots, N$,

$$
\begin{equation*}
I_{i}=0 \tag{21}
\end{equation*}
$$

Right now, we put for all $i=1, \ldots, N$,

$$
\Omega_{i}^{1}=\left\{x \in \Omega, p_{i}(x) \geq 2\right\}, \text { and } \Omega_{i}^{2}=\left\{x \in \Omega, 1<p_{i}(x)<2\right\} .
$$

Then, By (5) we have, for all $i=1, \ldots, N$

$$
\begin{equation*}
I_{i} \geq c_{3} \int_{\Omega_{i}^{1}}\left|D_{i}\left(u_{1}-u_{2}\right)\right|^{p_{i}(x)} \tag{22}
\end{equation*}
$$

On the other hand, by Hölder inequality, (5), Lemma 2.1, and since $u_{1}, u_{2} \in \dot{W}^{1, \vec{p}(\cdot)}(\Omega)$, we have

$$
\begin{align*}
\left.\int_{\Omega_{i}^{2}} \mid D_{i}\left(u_{1}-u_{2}\right)\right)^{p_{i}(x)} d x \leq & 2\left\|\frac{\left.\mid D_{i}\left(u_{1}-u_{2}\right)\right)^{p_{i}(x)}}{\left(\left|D_{i} u_{1}\right|+\left|D_{i} u_{2}\right|\right)^{\frac{p_{i}(x)\left(2-p_{i}(x)\right.}{2}}}\right\|_{L^{\frac{2}{p_{i}(x)}}\left(\Omega_{i}^{2}\right)} \times\left\|\left(\left|D_{i} u_{1}\right|+\left|D_{i} u_{2}\right|\right)^{\frac{p_{i}(x)\left(2-p_{i}(x)\right.}{2}}\right\|_{L^{2-p_{i}(x)}\left(\Omega_{i}^{2}\right)} \\
\leq & 2 \max \left\{\left(\int_{\Omega_{i}^{2}} \frac{\left|D_{i}\left(u_{1}-u_{2}\right)\right|^{2}}{\left(\left|D_{i} u_{1}\right|+\left|D_{i} u_{2}\right|\right)^{2-p_{i}(x)}} d x\right)^{\frac{p_{i}^{-}}{2}},\left(\int_{\Omega_{i}^{2}} \frac{\left|D_{i}\left(u_{1}-u_{2}\right)\right|^{2}}{\left(\left|D_{i} u_{1}\right|+\left|D_{i} u_{2}\right|\right)^{2-p_{i}(x)}} d x\right)^{\frac{p_{i}^{+}}{2}}\right\} \\
& \times \max \left\{\left(\int_{\Omega^{2}}\left(\left|D_{i} u_{1}\right|+\left|D_{i} u_{2}\right|\right)^{p_{i}(x)} d x\right)^{\frac{2-p_{i}^{+}}{2}},\left(\int_{\Omega}\left(\left|D_{i} u_{1}\right|+\left|D_{i} u_{2}\right|\right)^{p_{i}(x)} d x\right)^{\frac{2-p_{i}^{-}}{2}}\right\} \\
\leq & 2 c \max \left\{\left(I_{i}\right)^{\frac{p_{i}^{-}}{2}},\left(I_{i}\right)^{\frac{p_{i}^{+}}{2}}\right\}\left(1+\rho_{p_{i}}\left(\left|D_{i} u_{1}\right|+\left|D_{i} u_{2}\right|\right)\right)^{\frac{2-p_{-}^{-}}{2}} \\
\leq & c^{\prime} \max \left\{\left(I_{i}\right)^{\frac{p_{i}^{-}}{2}},\left(I_{i}\right)^{\frac{p_{i}^{+}}{2}}\right\} . \tag{23}
\end{align*}
$$

By combining (22), (23), and (21), we obtain

$$
\begin{equation*}
\int_{\Omega}\left|D_{i}\left(u_{1}-u_{2}\right)\right|^{p_{i}(x)} d x=0, \quad i=1, \ldots, N \tag{24}
\end{equation*}
$$

Then, from (24) and (iii) of Lemma 2.1 we conclude that

$$
\begin{equation*}
\left\|D_{i}\left(u_{1}-u_{2}\right)\right\|_{p_{i}(\cdot)}=0, \quad i=1, \ldots, N \tag{25}
\end{equation*}
$$

By using (7) and (25) we get

$$
\begin{equation*}
\left\|u_{1}-u_{2}\right\|_{\vec{p}(\cdot)}=0, \quad i=1, \ldots, N . \tag{26}
\end{equation*}
$$

Then, (26) implies that $u_{1}=u_{2}$ and so the solution of (16) is unique.
It is clear that $\psi\left(v_{n}, 0\right)=0$ for all $v_{n} \in X$, because $u_{n}=0 \in L^{p_{+}}(\Omega)$ is the only weak solution of the problem

$$
\left\{\begin{array}{l}
-\sum_{i=1}^{N} D_{i}\left(A_{n}(x) \sigma_{i}\left(x, D_{i} u_{n}\right)\right)=0 \quad \text { in } \Omega \\
u_{n}=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

Now we'll give an estimate of the solution to the problem (16), for that taking $\varphi=u_{n}$ as test function in (17), and using (3), (13), (8), Hölder inequality, and Young's inequality we have

$$
\begin{equation*}
\frac{c_{1} \alpha}{1+\alpha} \sum_{i=1}^{N} \int_{\Omega}\left|D_{i} u_{n}\right|^{p_{i}(x)} d x \leq c\left\|f_{n}\right\|_{p_{i}^{\prime} \cdot()}\left\|u_{n}\right\|_{p_{i}(\cdot)}+n c^{\prime}\left(C(\varepsilon) \sum_{i=1}^{N} \int_{\Omega}\left|v_{n}\right|^{p_{i}(x)} d x+\varepsilon \sum_{i=1}^{N} \int_{\Omega}\left|D_{i} u_{n}\right|^{p_{i}(x)} d x\right) \tag{27}
\end{equation*}
$$

Choosing $\varepsilon=\frac{c_{1} \alpha}{2 n c^{\prime}(1+\alpha)}$ in (27) and using the boundedness of f_{n} in $L^{p_{i}^{\prime} \cdot()}(\Omega)$, the fact that $\rho_{p_{i}(\cdot)}\left(v_{n}\right) \leq|\Omega|+\rho_{p_{+}(\cdot)}\left(v_{n}\right)$, we obtain

$$
\begin{equation*}
\frac{c_{1} \alpha}{2(1+\alpha)} \sum_{i=1}^{N} \int_{\Omega}\left|D_{i} u_{n}\right|^{p_{i}(x)} d x \leq c(n)\left\|u_{n}\right\|_{p_{+}(\cdot)}+c^{\prime \prime} n N \rho_{p_{+}(\cdot)}\left(v_{n}\right)+c^{\prime}(n) \tag{28}
\end{equation*}
$$

Then, we have

$$
\begin{equation*}
\frac{c_{1} \alpha}{2(1+\alpha)} \sum_{i=1}^{N} \int_{\Omega}\left|D_{i} u_{n}\right|^{p_{i}(x)} d x \leq C(n)\left\|u_{n}\right\|_{\vec{p}(\cdot)}+C^{\prime}(n) \tag{29}
\end{equation*}
$$

On the other hand, we have $\sum_{i=1}^{N} \int_{\Omega}\left|D_{i} u_{n}\right|^{p_{i}(x)} d x \geq \sum_{i=1}^{N} \min \left\{\left\|D_{i} u_{n}\right\|_{p_{i}(x)}^{p_{i}^{-}},\left\|D_{i} u_{n}\right\|_{p_{i}(x)}^{p_{i}^{+}}\right\}$.
We define for all $i=1, \ldots, N ; \quad \xi_{i}=\left\{\begin{array}{ll}p_{+}^{+}, & \text {si }\left\|D_{i} u_{n}\right\|_{p_{i}(\cdot)}<1 \\ p_{-}^{-}, & \text {si }\left\|D_{i} u_{n}\right\|_{p_{i}(\cdot)} \geq 1\end{array}\right.$, we obtain

$$
\begin{aligned}
\sum_{i=1}^{N} \min \left\{\left\|D_{i} u_{n}\right\|_{p_{i}(.)}^{p_{i}^{-}},\left\|D_{i} u_{n}\right\|_{p_{i}(.)}^{p_{i}^{+}}\right\} & \geq \sum_{i=1}^{N}\left\|D_{i} u_{n}\right\|_{p_{i}(.)}^{\xi_{i}} \\
& \geq \sum_{i=1}^{N}\left\|D_{i} u_{n}\right\|_{p_{i}(.)}^{p_{-}^{-}}-\sum_{\left\{i, \xi_{i}=p_{+}^{+}\right\}}\left(\left\|D_{i} u_{n}\right\|_{p_{i}(.)}^{p_{-}^{-}}-\left\|D_{i} u_{n}\right\|_{p_{i}(.)}^{p_{+}^{+}}\right) \\
& \geq \sum_{i=1}^{N}\left\|D_{i} u_{n}\right\|_{p_{i(.)}}^{p_{-}^{-}}-\sum_{\left\{i, \xi_{i}=p_{+}^{+}\right\}}\left\|D_{i} u_{n}\right\|_{p_{i}(.)}^{p_{-}^{-}} \geq\left(\frac{1}{N} \sum_{i=1}^{N}\left\|D_{i} u_{n}\right\|_{p_{i}(.)}\right)^{p_{-}^{-}}-N .
\end{aligned}
$$

Then, we get

$$
\begin{equation*}
\sum_{i=1}^{N} \int_{\Omega}\left|D_{i} u_{n}\right|^{p_{i}(x)} d x \geq\left(\frac{1}{N}\left\|u_{n}\right\|_{\vec{p}(\cdot)}\right)^{p_{-}^{-}}-N . \tag{30}
\end{equation*}
$$

From (29) and (30), we conclude

$$
\begin{equation*}
\frac{c_{1} \alpha}{2(1+\alpha) N^{p_{-}^{-}}}\left\|u_{n}\right\|_{\vec{p}(\cdot)}^{p_{-}^{-}} \leq C(n)\left\|u_{n}\right\|_{\vec{p}(\cdot)}+C^{\prime \prime}(n) \tag{31}
\end{equation*}
$$

$\mathrm{Si}\left\|u_{n}\right\|_{\vec{p}(\cdot)} \leq 1$, we have

$$
\begin{equation*}
\left\|u_{n}\right\|_{\vec{p}(\cdot)} \leq 1 \tag{32}
\end{equation*}
$$

Si $\left\|u_{n}\right\|_{\vec{p}(\cdot)}>1$, from (31) we have

$$
\begin{equation*}
\left\|u_{n}\right\|_{\vec{p}}^{p_{-}^{p-1} \leq c(n)} \tag{33}
\end{equation*}
$$

Then, there exists $c^{\prime}(n)>0$ such that

$$
\begin{equation*}
\left\|u_{n}\right\|_{\vec{p}(\cdot)} \leq c^{\prime}(n) . \tag{34}
\end{equation*}
$$

Compactness of ψ : Let \tilde{B} be a bounded of $L^{p_{+}(\cdot)}(\Omega) \times[0,1]$. Thus \tilde{B} is contained in a product of the type $B \times[0,1]$ with B a bounded of $L^{p_{+} \cdot \cdot}(\Omega)$, which can be assumed to be a ball of center O and of radius $r>0$. For $u \in \psi(\tilde{B})$, we have, thanks to (34):

$$
\|u\|_{\vec{p}(\cdot)} \leq \rho
$$

For $u=\psi(v, \delta)$ with $(v, \delta) \in B \times[0,1]\left(\|v\|_{p_{+}(\cdot)} \leq r\right)$. This proves that ψ applies \tilde{B} in the closed ball of center O and radius ρ (ρ depend on n and r due (28)) in $W^{1, \vec{p}(\cdot)}(\Omega)$ and $W^{1, \vec{p}(\cdot)}(\Omega) \hookrightarrow L^{p_{+}(\cdot)}(\Omega)$ compactly due (7) and (6).
Let u_{n} be a sequence of elements of $\psi(\tilde{B})$, therefore $u_{n}=\psi\left(v_{n}, \delta_{n}\right)$ with $\left(v_{n}, \delta_{n}\right) \in \tilde{B}$. Since u_{n} remains in a bounded of $\dot{W}^{1, \vec{p}}(\cdot)(\Omega)$, it is possible to extract a sub-sequence which converges strongly to an element u of $L^{p_{+} \cdot()}(\Omega)$. This proves that $\overline{\psi(\tilde{B})}{ }^{L^{p+(\cdot)}(\Omega)}$ is compact. So ψ is compact.
Now, let's prove that; $\exists M>0$,

$$
\forall\left(v_{n}, \delta\right) \in X \times[0,1]: v_{n}=\psi\left(v_{n}, \delta\right) \Rightarrow\left\|v_{n}\right\|_{X} \leq M
$$

For that, we give the estimate of elements of $L^{p_{+}(\cdot)}(\Omega)$ such that $v_{n}=\psi\left(v_{n}, \delta\right)$, then we have,

$$
\begin{equation*}
\sum_{i=1}^{N} \int_{\Omega} A_{n} \sigma_{i}\left(x, D_{i} v_{n}\right) D_{i} \varphi d x=\delta\left(\int_{\Omega} f_{n} \varphi d x+\int_{\Omega} B_{n} v_{n} \sum_{i=1}^{N}\left|v_{n}\right|^{p_{i}(x)-2} D_{i} \varphi d x\right), \text { for all } \varphi \in \dot{W}^{1, \vec{p}(\cdot)}(\Omega) \tag{35}
\end{equation*}
$$

We use in the weak formulation (35) the test function $\varphi=v_{n}$, and use (3), (13), Young's inequality, the boundedness of f_{n} in $L^{p_{i}^{\prime} \cdot()}(\Omega)$, the fact that $\rho_{p_{i}(\cdot)}\left(v_{n}\right) \leq|\Omega|+\rho_{p_{+}(\cdot)}\left(v_{n}\right)$, we obtain for all $\varepsilon>0, \varepsilon^{\prime}>0$:

$$
\begin{align*}
& \frac{c_{1} \alpha}{1+\alpha} \sum_{i=1}^{N} \int_{\Omega}\left|D_{i} v_{n}\right|^{p_{i}(x)} d x \leq \int_{\Omega}\left|f_{n}\right|\left|v_{n}\right| d x+n \int_{\Omega} \sum_{i=1}^{N}\left|v_{n}\right|^{p_{i}(x)-1}\left|D_{i} v_{n}\right| d x \\
& \leq C\left(\varepsilon^{\prime}\right) \int_{\Omega}\left|f_{n}\right|^{p_{i}^{\prime}(x)} d x+\varepsilon^{\prime} \int_{\Omega}\left|v_{n}\right|^{p_{i}(x)} d x+n\left(C(\varepsilon) \sum_{i=1}^{N} \int_{\Omega}\left|v_{n}\right|^{p_{i}(x)} d x+\varepsilon \sum_{i=1}^{N} \int_{\Omega}\left|D_{i} v_{n}\right|^{p_{i}(x)} d x\right) \\
& \quad \leq C^{\prime}\left(\varepsilon^{\prime}\right)+\varepsilon^{\prime}\left(|\Omega|+\rho_{p_{+}(\cdot)}\left(v_{n}\right)\right)+n\left(N C(\varepsilon)\left(|\Omega|+\rho_{p_{+}(\cdot)}\left(v_{n}\right)\right)+\varepsilon \sum_{i=1}^{N} \int_{\Omega}\left|D_{i} v_{n}\right|^{p_{i}(x)} d x\right) \tag{36}
\end{align*}
$$

Choosing $\varepsilon=\varepsilon_{0}=\frac{c_{1} \alpha}{2 n(1+\alpha)}$ in (36), we get

$$
\begin{equation*}
\frac{c_{1} \alpha}{2(1+\alpha)} \sum_{i=1}^{N} \int_{\Omega}\left|D_{i} v_{n}\right|^{p_{i}(x)} d x \leq\left(\varepsilon^{\prime}+n N C\left(\varepsilon_{0}\right)\right) \rho_{p_{+}(\cdot)}\left(v_{n}\right)+C^{\prime}\left(\varepsilon^{\prime}\right)+\left(\varepsilon^{\prime}+n N C\left(\varepsilon_{0}\right)\right)|\Omega| . \tag{37}
\end{equation*}
$$

Then, we obtain

$$
\begin{equation*}
\frac{c_{1} \alpha}{2(1+\alpha)} \sum_{i=1}^{N} \rho_{p_{i}(\cdot)}\left(D_{i} v_{n}\right) \leq\left(\varepsilon^{\prime}+n N C\left(\varepsilon_{0}\right)\right) \rho_{p_{+}(\cdot)}\left(v_{n}\right)+C^{\prime}\left(\varepsilon^{\prime}\right)+\left(\varepsilon^{\prime}+n N C\left(\varepsilon_{0}\right)\right)|\Omega| \tag{38}
\end{equation*}
$$

By using (iv) from Lemma 2.1, (8) (since (7)), the fact that $\rho_{p_{+}(\cdot)}\left(v_{n}\right)<+\infty$ (since $v_{n} \in L^{p_{+}(x)}(\Omega)$), and for any fixed choice of $\varepsilon^{\prime}>0$, we obtain

$$
\begin{equation*}
\left\|v_{n}\right\|_{\left.p_{+} \cdot \cdot\right)} \leq c(n) . \tag{39}
\end{equation*}
$$

It then follows from the Leray-Schauder's Theorem that the operator $\psi_{1}: X \longrightarrow X$ defined by $\psi_{1}(u)=\psi(u, 1)$ has a fixed point, which shows the existence of a solution of (14) in the sense of (15).

3.1.1. A priori estimates

Lemma 3.4. Let $\left\{u_{n}\right\} \subset \dot{W}^{1, \vec{p}}(\cdot)(\Omega)$ be the sequence of approximating solutions of (15). Assume f, A, B and $p_{i}, \sigma_{i}, i=1, \ldots, N$ be restricted as in Theorem 3.2. Then

$$
\begin{equation*}
u_{n} \text { is bounded in } \hat{W}^{1, \vec{p}(\cdot)}(\Omega) \tag{40}
\end{equation*}
$$

Proof. After chousing $\varphi=u_{n}$ in the weak formulation (15), and the same technique as in the proof of (39) we can get (37) (Of course with replacement v_{n} by u_{n}), and on the other hand with the use of (30), we obtain

$$
\begin{equation*}
\left\|u_{n}\right\|_{\vec{p}(\cdot)} \leq C(n) \tag{41}
\end{equation*}
$$

Lemma 3.5. Let $\left\{u_{n}\right\} \subset \grave{W}^{1, \vec{p}(\cdot)}(\Omega)$ be the sequence of approximating solutions of (15). Assume f, A, B and $p_{i}, \sigma_{i}, i=$ $1, \ldots, N$ be restricted as in Theorem 3.2. Then there exists a subsequence (still denoted $\left(u_{n}\right)$) and $u \in W^{1, \vec{p}} \cdot()(\Omega)$, such that

$$
\begin{equation*}
u_{n} \rightharpoonup u \quad \text { weakly in } \grave{W}^{1, \vec{p}(\cdot)}(\Omega) \text { and a.e in } \Omega, \tag{42}
\end{equation*}
$$

Hence, up to a further subsequence, for all $i=1, \ldots, N$

$$
\begin{equation*}
D_{i} u_{n} \longrightarrow D_{i} u \text { a.e. in } \bar{\Omega} \tag{43}
\end{equation*}
$$

Proof. From (41) the sequence $\left(u_{n}\right)$ is bounded in $\dot{W}^{1, \vec{p}(\cdot)}(\Omega)$.
So, there exists a function $u \in \dot{W}^{1, \vec{p}(\cdot)}(\Omega)$ and a subsequence (still denoted by $\left(u_{n}\right)$) where for them, we find that (42) is fulfilled.

Taking $T_{t}\left(u_{n}\right)$ as test function in (15) and using (3), (13), and Young inequality it follows that for any $\varepsilon>0$

$$
\begin{equation*}
\frac{c_{1} \alpha}{1+\alpha} \sum_{i=1}^{N} \int_{\Omega}\left|D_{i}\left(T_{t}\left(u_{n}\right)\right)\right|^{p_{i}(x)} d x \leq t\|f\|_{L^{1}(\Omega)}+C(\varepsilon)\left(1+t^{p_{+}^{+}}\right) \sum_{i=1}^{N} \int_{\Omega}\left|B_{n}\right|^{p_{i}^{\prime}(x)} d x+\varepsilon \sum_{i=1}^{N} \int_{\Omega}\left|D_{i}\left(T_{t}\left(u_{n}\right)\right)\right|^{p_{i}(x)} d x \tag{44}
\end{equation*}
$$

Thanks to (44) we deduce that for all $t>0$ and all $i=1, \ldots, N$

$$
\begin{equation*}
D_{i}\left(T_{t}\left(u_{n}\right)\right) \in L^{p_{i}(x)}(\Omega) \text { and } T_{t}\left(u_{n}\right) \rightharpoonup T_{t}(u) \quad \text { weakly in } \mathscr{W}^{1, \vec{p}(\cdot)}(\Omega) \tag{45}
\end{equation*}
$$

Now, let us define for all $i=1, \ldots, N$ and $t>0$ fixed

$$
I_{i, n}^{t}(x)=\left(\sigma_{i}\left(x, D_{i}\left(T_{t}\left(u_{n}\right)\right)\right)-\sigma_{i}\left(x, D_{i}\left(T_{t}(u)\right)\right)\right)\left(D_{i}\left(T_{t}\left(u_{n}\right)\right)-D_{i}\left(T_{t}(u)\right)\right)
$$

For $0<\theta<1,0<h<t$, and all $i=1, \ldots, N$, we can get

$$
\begin{align*}
\int_{\Omega}\left(I_{i, n}^{t}(x)\right)^{\theta} d x & =\int_{\left\{\left|T_{t}\left(u_{n}\right)-T_{t}(u)\right|>h\right\}}\left(I_{i, n}^{t}(x)\right)^{\theta} d x+\int_{\left\{\left|T_{t}\left(u_{n}\right)-T_{t}(u)\right| \leq h\right\}}\left(I_{i, n}^{t}(x)\right)^{\theta} d x \\
& \leq\left(\int_{\Omega} I_{i, n}^{t}(x) d x\right)^{\theta}\left|\left\{\left|T_{t}\left(u_{n}\right)-T_{t}(u)\right|>h\right\}\right|^{1-\theta} \\
& +\left(\int_{\left\{\left|\left|T_{t}\left(u_{n}\right)-T_{t}(u)\right| \leq h\right\}\right.} I_{i, n}^{t}(x) d x\right)^{\theta}|\Omega|^{1-\theta} \tag{46}
\end{align*}
$$

Then, we can write

$$
\begin{equation*}
\int_{\Omega}\left(I_{i, n}^{t}(x)\right)^{\theta} d x \leq J_{1}+J_{2} \tag{47}
\end{equation*}
$$

Where,

$$
\begin{aligned}
& J_{1}=\left(\int_{\Omega} I_{i, n}^{t}(x) d x\right)^{\theta}\left|\left\{\left|T_{t}\left(u_{n}\right)-T_{t}(u)\right|>h\right\}\right|^{1-\theta} \\
& J_{2}=\left(\int_{\left\{\left|T_{t}\left(u_{n}\right)-T_{t}(u)\right| \leq h\right\}} I_{i, n}^{t}(x) d x\right)^{\theta}|\Omega|^{1-\theta}
\end{aligned}
$$

For every fixed h, thanks to (45), and the convergence in measure of $T_{t}\left(u_{n}\right)$, we can get

$$
\begin{equation*}
\lim _{n \longrightarrow+\infty} J_{1}=0 \tag{48}
\end{equation*}
$$

Now, choosing $T_{h}\left(u_{n}-T_{t}(u)\right)$ (with $0<h<t$) as test function in (15) and using (3), (13), we obtain

$$
\begin{align*}
& \sum_{i=1}^{N} \int_{\Omega} \sigma_{i}\left(x, D_{i}\left(T_{t}\left(u_{n}\right)\right)\right) D_{i}\left(T_{h}\left(T_{t}\left(u_{n}\right)-T_{t}(u)\right)\right) d x-\sum_{i=1}^{N} \int_{\left\{\left|u_{n}-T_{t}(u)\right|<h\right\}} \sigma_{i}\left(x, D_{i}\left(G_{t}\left(u_{n}\right)\right)\right) D_{i}\left(T_{t}(u)\right) d x \\
& \quad \leq c h+c^{\prime} \sum_{i=1}^{N} \int_{\Omega} B_{n} u_{n}\left|u_{n}\right|^{p_{i}(x)-2} D_{i}\left(T_{h}\left(u_{n}-T_{t}(u)\right)\right) d x \tag{49}
\end{align*}
$$

Then, using (49) and the fact that $I_{i, n}^{t}(x) \geq 0$ (since (5)), we deduce

$$
\begin{align*}
0 \leq \sum_{i=1}^{N} \int_{\left\{\left|\left|T_{t}\left(u_{n}\right)-T_{t}(u)\right| \leq h\right\}\right.} I_{i, n}^{t}(x) d x & =\sum_{i=1}^{N} \int_{\Omega}\left(\sigma_{i}\left(x, D_{i}\left(T_{t}\left(u_{n}\right)\right)\right)-\sigma_{i}\left(x, D_{i}\left(T_{t}(u)\right)\right)\right) D_{i}\left(T_{h}\left(T_{t}\left(u_{n}\right)-T_{t}(u)\right)\right) d x \\
& \leq c h+c^{\prime} \sum_{i=1}^{N} \int_{\Omega} B_{n} u_{n}\left|u_{n}\right|^{p_{i}(x)-2} D_{i}\left(T_{h}\left(u_{n}-T_{t}(u)\right)\right) d x \\
& +\sum_{i=1}^{N} \int_{\left\{\left|u_{n}\right|>t\right\} \cap\left\{\left|u_{n}-T_{t}(u)\right|<h\right\}} \sigma_{i}\left(x, D_{i} u_{n}\right) D_{i}\left(T_{t}(u)\right) d x \\
& -\sum_{i=1}^{N} \int_{\Omega} \sigma_{i}\left(x, D_{i}\left(T_{t}(u)\right)\right) D_{i}\left(T_{h}\left(T_{t}\left(u_{n}\right)-T_{t}(u)\right)\right) d x . \tag{50}
\end{align*}
$$

By noticing that $\left\{\left|u_{n}-T_{t}(u)\right|<h\right\} \subset\left\{\left|u_{n}\right| \leq h+t\right\} \subset\left\{\left|u_{n}\right| \leq 2 t\right\}$, and that $\left(\sigma_{i}\left(x, D_{i}\left(T_{2 t}\left(u_{n}\right)\right)\right)\right)$ is bounded in $L^{p_{i}^{\prime}(x)}(\Omega)$, and (45), we can pass to the limit with respect to n in (50) when $n \longrightarrow+\infty$, we get

$$
\begin{align*}
\limsup _{n \rightarrow+\infty} \sum_{i=1}^{N} \int_{\left\{\left|T_{t}\left(u_{n}\right)-T_{t}(u)\right| \leq h\right\}} I_{i, n}^{t}(x) d x & \leq c h+c^{\prime} \sum_{i=1}^{N} \int_{\Omega} B u|u|^{p_{i}(x)-2} D_{i}\left(T_{h}\left(G_{t}(u)\right)\right) d x \\
& +\sum_{i=1}^{N} \int_{\{t<|u|<t+h\}} \tau_{t} D_{i}\left(T_{t}(u)\right) \tag{51}
\end{align*}
$$

where $\tau_{t} \in L^{p_{i}^{\prime}(x)}(\Omega)$ is the weak limit of $\sigma_{i}\left(x, D_{i}\left(T_{2 t}\left(u_{n}\right)\right)\right)$.
After letting $h \longrightarrow 0$ in (51), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} J_{2}=0 \tag{52}
\end{equation*}
$$

We combine (47), (48), (52), and using (5), we get

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{\Omega}\left(I_{i, n}^{t}(x)\right)^{\theta} d x=0 \tag{53}
\end{equation*}
$$

From (53) we deduce, like in [1], that: for every $t>0$ and every $i=1, \ldots, N$

$$
\begin{equation*}
D_{i}\left(T_{t}\left(u_{n}\right)\right) \longrightarrow D_{i}\left(T_{t}(u)\right), \text { almost everywhere in } \bar{\Omega} \tag{54}
\end{equation*}
$$

And through the results obtained in [2] we can get (43).
Lemma 3.6. Let $A(\cdot), B(\cdot)$ are in $\dot{W}^{1, \vec{p}}(\cdot)(\Omega)$, and $A_{n}(\cdot), B_{n}$ de (\cdot) be defined in (12). Then $A_{n}(\cdot), B_{n}$ de (\cdot) are bounded in $W^{1, \vec{p}}(\cdot)(\Omega)$ and

$$
\begin{align*}
& A_{n} \longrightarrow A, \text { Strongly in } \mathfrak{K}^{1, \vec{p}(\cdot)}(\Omega) \tag{55}\\
& B_{n} \longrightarrow B, \text { Strongly in } \mathfrak{W}^{1, \vec{p}(\cdot)}(\Omega) \tag{56}
\end{align*}
$$

Proof. Since, for all $x \in \bar{\Omega}$

$$
D_{i} A_{n}(x)=\frac{D_{i} A(x)}{\left(1+\frac{A(x)}{n}\right)^{2}}, i=1, \ldots, N
$$

we have that $\left|D_{i} A_{n}(x)\right| \leq\left|D_{i} A(x)\right|$, and therefore $A_{n}(\cdot) \in \dot{W}^{1, \vec{p}}(\cdot)(\Omega)$, due to $0<A_{n}(x) \leq A(x)$, we obtain that, A_{n} is bounded in $\dot{W}^{1, \vec{p}(\cdot)}(\Omega)$, and (55). In a similar way we get the boundedness of B_{n} in $\dot{W}^{1, \vec{p}}(\cdot)(\Omega)$ and (56).

3.2. Proof of the Theorem 3.2 :

From (4) and (40), we get for all $i=1, \ldots, N$

$$
\begin{aligned}
\int_{\Omega}\left|\sigma_{i}\left(x, D_{i} u_{n}\right)\right|^{p_{i}^{\prime}(\cdot)} d x & \leq\left(1+c_{2}^{p_{+}^{\prime+}}\right) \int_{\Omega}\left(\sum_{j=1}^{N}\left|D_{i} u_{n}\right|^{p_{j}(x)}+|h|\right) d x \\
& \leq\left(1+c_{2}^{p_{+}^{\prime+}}\right) \int_{\Omega}\left(N \sum_{j=1}^{N}\left|D_{j} u_{n}\right|^{p_{j}^{(x)}}+|h|\right) d x \leq C\left\|u_{n}\right\|_{\vec{p} \cdot \cdot)}^{p_{+}^{+}}+C^{\prime} \leq C^{\prime \prime} .
\end{aligned}
$$

And therefore

$$
\begin{equation*}
\sigma_{i}\left(x, D_{i} u_{n}\right) \text { is bounded in } L^{p_{i}^{\prime}(\cdot)}(\Omega), \quad i=1, \ldots, N . \tag{57}
\end{equation*}
$$

By (43) and (57) we have, for all $i=1, \ldots, N$

$$
\begin{equation*}
\sigma_{i}\left(x, D_{i} u_{n}\right) \rightharpoonup \sigma_{i}\left(x, D_{i} u\right) \quad \text { weakly in } L^{p_{i}^{\prime}(\cdot)}(\Omega), p_{i}^{\prime}(\cdot)=\frac{p_{i}(\cdot)}{p_{i}(\cdot)-1} \tag{58}
\end{equation*}
$$

Now, we have

$$
\int_{\Omega}\left(\left|u_{n}\right|^{p_{i} \cdot(\cdot)-1}\right)^{p_{i}^{\prime}(\cdot)} d x=\int_{\Omega}\left|u_{n}\right|^{p_{i}(\cdot)} d x \leq C .
$$

Then, we obtain

$$
\begin{equation*}
\left(u_{n}\left|u_{n}\right|^{p_{i}(\cdot)-2}\right) \text { is bounded in } L^{p_{i}^{\prime} \cdot()}(\Omega), \quad i=1, \ldots, N . \tag{59}
\end{equation*}
$$

By (42) and (59) we have, for all $i=1, \ldots, N$

$$
\begin{equation*}
u_{n}\left|u_{n}\right|^{p_{i}(\cdot)-2} \rightharpoonup u|u|^{p_{i}(\cdot)-2} \quad \text { weakly in } L^{p_{i}^{\prime} \cdot()}(\Omega) \tag{60}
\end{equation*}
$$

Then, from (58), (60), (55), and (56), we can pass to the limit in the weak formulation (15). This proves Theorem 3.2.

References

[1] L. Boccardo, Some nonlinear Dirichlet problems in $L^{1}(\Omega)$ involving lower order terms in divergence form, Progress in elliptic and parabolic partial differential equations (Capri, 1994) Pitman Res. Notes Math. Ser. 350 (1996) 43-57.
[2] A. Porretta, Some remarks on the regularity of solutions for a class of elliptic equations with measure data, Huston J. Math. 26 (2000) 183-213.
[3] S. Buccheri, Gradient estimates for nonlinear elliptic equations with first order terms. manuscripta math. 165, 191-225 (2021)
[4] M.F. Betta, A. Mercaldo, F. Murat, M.M. Porzio, Existence and uniqueness results for nonlinear elliptic problems with a lower order term and measure data. C. R. Acad. Sci. Paris Sér. I 334 (2002), 757-762.
[5] M.F. Betta, A. Mercaldo, F. Murat, M.M. Porzio,Uniqueness of renormalized solutions to nonlinear elliptic equations with lower order term and right-hand side in $L^{1}(\Omega)$. ESAIM Control Optim. Calc. Var. 8 (2002), 239-272 (special issue dedicated to the memory of Jacques-Louis Lions).
[6] M.F. Betta, A. Mercaldo, F. Murat, M.M. Porzio, Existence of renormalized solutions to nonlinear elliptic equations with a lower-order term and righthand side a measure. J. Math. Pures Appl. 82 (2003), 90-124.
[7] M.F. Betta, A. Mercaldo, F. Murat, M.M. Porzio, Uniqueness results for nonlinear elliptic equations with a lower order term. Nonlinear Anal. 63 (2005) 153-170.
[8] M. Naceri, Existence results for anisotropic nonlinear weighted elliptic equations with variable exponents and L^{1} data, Proceedings of the Romanian Academy Series A-Mathematics Physics Technical Sciences Information Science, 23 (4), pp. 337-346, 2022.
[9] M. Naceri, Anisotropic nonlinear weighted elliptic equations with variable exponents, Georgian Mathematical Journal, vol. 30, no. 2, 2023, pp. 277-285.
[10] M. Naceri, F. Mokhtari, Anisotropic nonlinear elliptic systems with variable exponents and degenerate coercivity, Appl. Anal. 100(11), 2347-2367 (2021).
[11] M. Naceri, M.B. Benboubker, Distributional solutions of anisotropic nonlinear elliptic systems with variable exponents: existence and regularity, Advances in Operator Theory. 7(2), 1-34 (2022).
[12] M. Naceri, Anisotropic nonlinear elliptic systems with variable exponents, degenerate coercivity and $L^{q}(\cdot)$ data, Ann. Acad. Rom. Sci. Ser. Math. Appl. 14(1-2/2022):107-140.
[13] X. Fan, Anisotropic variable exponent Sobolev spaces and $\vec{p}(x)$-Laplacian equations. Complex Var Elliptic Equ., 56 (2011), 623-642.
[14] X. Fan, D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{1, p(x)}(\Omega)$. J. Math. Anal. Appl., 263 (2001), 424-446.
[15] D. Cruz-Uribe, A. Fiorenza, M. Ruzhansky, J. Wirth, Variable Lebesgue Spaces and Hyperbolic Systems. Advanced Courses in Mathematics - CRM Barcelona. Birkhäuser, Basel, 2014.
[16] L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics. Springer.vol. 2017, New York (2011).
[17] A. Aberqi, J. Bennouna, O. Benslimane, M.A. Ragusa, On p(z)-Laplacian System Involving Critical Nonlinearities, Journal of Function Spaces, vol.2022, art.n.6685771, (2022).
[18] B. Aharrouch, A. Aberqi, J. Bennouna, Existence and regularity of solutions to unilateral nonlinear elliptic equation in Marcinkiewicz space with variable exponent, Filomat, 37 (17), 5785-5797, (2022).
[19] N.C. Eddine, P.D. Nguyen, M.A. Ragusa, Existence and multiplicity of solutions for a class of critical anisotropic elliptic equations of Schrodinger-Kirchhoff-type, Mathematical Methods in the Applied Sciences, doi: 10.1002/mma.9474, (2023).

[^0]: 2020 Mathematics Subject Classification. Primary 35J60, 35J66 ; Secondary 35J67.
 Keywords. Nonlinear elliptic Equations; Anisotropic Sobolev spaces; Variable exponents; Distributional solution; Weighted first order terms; Existence.

 Received: 22 March 2023; Revised: 02 August 2023; Accepted: 04 August 2023
 Communicated by Maria Alessandra Ragusa
 Email address: nasrimokhtar@gmail.com (Mokhtar Naceri)

