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Abstract. The Difference of Convex functions Algorithm (DCA) is used to solve nonconvex optimiza-
tion problems over a certain convex set, specifically quadratic programming ones, generally by finding
approximate solutions. DCA efficiency depends on two basic parameters that directly affect the speed
of its convergence towards the optimal solution. The first parameter is the selected decomposition and
the second is the assigned initial point. The aim of this study was to create a new algorithm that allows
overcoming the need for a pre-selected initial estimate of the DCA. To achieve this aim, we performed an
experimental study with 107 test problems using an implementation framework with MATLAB. Assess-
ment was based on key performance indicators: (a) the time required to reach the initial point and solution
and (b) the number of iterations. We selected three initial points, the first (xlin

0 ) is the minimum of the linear
part of the nonconvex quadratic problem (NCQP), the second (xcvx

0 ) is the approximate global minimum of
the convex part, and the third (xcve

0 ) is the approximate global minimum of the concave part. We compared
between the minimuma computed by DCA for each of the three initial estimates. The results demonstrated
clear advantage of the DCA algorithm with (xlin

0 ). Based on this outcome, we constructed a novel algorithm
called Initialized DCA (IDCA) that allows implementation of the DCA with the best initial estimate without
the requirement for a pre-determined initial point.

1. Introduction

Nonconvex quadratic programming (NCQP) is a problem that focuses on minimizing a nonconvex
quadratic function over a certain convex set. This problem covers a very important area in applied
mathematics, which is a part of nonlinear programming approach. The term ”convex” is not limited to
optimization, but also can extends beyond that to other disciplines of functional analysis, as shown in
[2, 3, 5]. Many practical problems can be formulated as quadratic programming (QP) problems, or at least
need quadratic programming methods to resolve them. We can cite logistic-transport [24], telecommuni-
cation [26], network security [7], bioinformatics [13], finance [11], management[23], mechanics [29], image
processing [8], petrochemistry [39], optimal control [40], inverse problems [15, 21], and support vector
machine [37] as examples of relevant applications of nonconvex programming.
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There exist several methods to solve nonconvex quadratic problems under particular conditions. For
difference of convex functions algorithms (DCA), quadratic functions are the simplest smooth DC functions
(functions that can be decomposed into two convex functions), whose derivatives are readily available and
easy to manipulate.

Quadratic programming is useful because any twice differentiable function can be approximated by a
quadratic function in the neighborhood of a given point. Moreover, quadratic problems are known to be
NP-hard [27, 35], which makes them one of the most interesting and challenging classes of optimization
problems.

Certain combinatorial optimization problems can also be studied as quadratic optimization problems
[38]. For instance, a 0 − 1 constraint of the form xi ∈ {0, 1} , i = 1, .., p can be written as quadratic constraints(∑p

i=1 xi (xi − 1) ≥ 0, 0 ≤ xi ≤ 1
)

[27]. The general quadratic problem consists of a quadratic objective function
and a set of linear inequality constraints, as shown below:

 min Q(x) =
1
2

xtQx + ctx
Ax ≤ b, x ≥ 0

(1)

Where c is a n-vector, b is a m-vector, A is a m × n matrix and Q is a n × n matrix.
Without any loss of generality, it may be assumed that Q is symmetric. If this is not the case, then it

can be converted to symmetric matrix by replacing Q with
Q +Qt

2
, which does not change the value of the

objective function Q(x). Similarly, any problem where the variables are not necessarily nonnegative can be
converted by a linear transformation to (1).

If the matrix Q is positive semidefinite or positive definite, then (1) becomes a convex optimization
problem. Since any local optimum is equivalent to the global optimum in convex problems, (1) can be
solved by any of the several algorithms for convex quadratic programming. In particular, it is well known
that convex quadratic problems belong to class P (the class of problems solvable in polynomial time).

When the matrix Q has eigenvalues of mixed signs, (1) presents the toughest quadratic optimization
problems. While many algorithms have been developed for the more particular cases of bilinear and
concave quadratic problems, few approaches have been proposed for global optimization of problem (1)
for the case of indefinite quadratic problems.

Most efforts to solve this difficult class of problems have focused on reducing the indefinite quadratic
problem to either a bilinear or a concave minimization problem [22]. However, there are a few algorithms
that directly solve this class. As a special case, if the problem (1) has box constraints: min Q(x) =

1
2

xtQx + ctx
xL
≤ x ≤ xU

(2)

Without loss of generality, we can consider xL = 0 and xU = 1.
This gives a direct relationship between box-constrained quadratic problems and one of the fundamental

problems of combinatorial optimization, namely, minimizing a quadratic function of 0 − 1 variables. In
1981, Hansen et al. [16] proposed the necessary conditions of optimality for problem (2).

A paper entitled “Globally solving nonconvex quadratic programming problems via completely posi-
tive programming” published by Jieqiu Chen and Samuel Burer in 2012 [9] introduced a global optimization
algorithm for quadratic programming problems. This algorithm combines two ideas from the literature;
finite branching based on the first-order KKT conditions and polyhedral semidefinite relaxations of com-
pletely positive (or copositive) programs. Through a series of computational experiments comparing the
algorithm with existing codes on a diverse set of test instances, the authors demonstrated that the algorithm
is an attractive choice for global resolution of nonconvex QP.

A very important approach is DCA, which plays the central role in the construction of local and
global approaches that are based on convex analysis and optimization. This is because most nonconvex
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optimization problems are reformulated as DC programs, especially nonconvex quadratic programming
problems.

DC functions have many important properties that were explored in the 1950s by Aleksandrov [4]
and Hartman [17]. One of the main properties is their stability relative to operations frequently used in
optimization. The DC algorithm was introduced in 1985 by P.D. Tao [32] for concave programming. It was
then widely developed by P. D. Tao [33, 34], L. T. Hoai An [18, 19].

This article builds on the work in [1]; where we proposed an experimental study with the 30 test
problems of Thaoi [36] to allow assessment of key performance indicators (convergence time and closeness
to the global minimum), having selected two initial points for DCA in the quadratic case. Instead, in
this work, we have examined three initial points for three different problem types along with Thaoi. This
resuted on up to 107 problem tests, which is supposed to reinforce the experiment credibility. Along with
that, we have considered the number of itterations as additional evaluation metric and we decomposed
the timing evaluation depending on the different steps of the problems resolution. Finally, based on the
obtained new results we have proposed an intialized variant of DCA algorithm.

This paper is organized as follows: In Section 2, we cover DCA theory. Section 3 we presents a possible
DC decomposition approach for quadratic functions. Section 4 is devoted to the presentation of our
proposed numerical method of comparison. The numerical results are presented and discussed in Section
5. Finally, we conclude the paper and offer some future directions in Section 6.

2. Difference of Convex Functions: Theory and Algorithm

DCA is an iterative method of local optimization based on local optimality and duality in DC program-
ming. This algorithm was introduced by Pham Dinh Tao in 1985 [32] and then extensively developed by
Pham Dinh Tao [32], Le Thi Hoai An et al. since 1994 [18, 19].

This approach is completely different from conventional sub-gradient methods in convex optimization.
It makes it possible to construct two sequences xk and yk, which are candidates for optimal solutions of the
primal and dual DC programs, respectively. The limits of the sequences xk and yk are generalized KKT
points of these programs, while

{
(1 − h)(xk)

}
and

{
(h∗ − 1∗)(yk)

}
are decreasing and tend to the same limit

β = (1 − h)(x∗) = (h∗ − 1∗)(y∗).
We have the following properties:

Property 2.1. The following elements are verified:

1. The sequences
{
(1(xk) − h(xk))

}
and
{
(1∗(xk) − h∗(xk))

}
decrease and tend to the same β limit that is greater than

or equal to the global optimal value α;
2. If (1 − h)(xk+1) = (1 − h)(xk) the algorithm stops at the iteration k + 1, and the point xk (resp. yk) is a critical

point of 1 − h (resp. h∗ − 1∗);
3. If the optimal value of the problem (Pdc) is finite and if the sequences xk and yk are bounded, then any adherence

value x∗ of the sequence
{
xk
}

(resp. y∗ of the sequence
{
yk
}
) is a critical point of 1 − h (resp. of h∗ − 1∗).

The description of the DC algorithm is as follows:
Given x0

∈ X chosen in advance, the sequences {xk
} and {yk

} are defined by:

yk
∈ ∂h(xk), xk+1

∈ ∂1∗(yk). (3)

To construct the two sequences {xk
} and {yk

}, we define two convex programs (Dk) and (Pk), for k ≥ 1, as
following :

(Dk) xk
∈ ∂1∗(yk−1) −→ yk

∈ arg min
{
h∗(y) −

[
1∗(yk−1) +

〈
xk, y − yk−1

〉]
: y ∈ Y

}
= ∂h(xk). (4)
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(Pk) yk
∈ ∂h(yk) −→ xk+1

∈ arg min
{
1(x) −

[
h(xk) +

〈
yk, x − xk

〉]
: y ∈ X

}
= ∂h∗(yk). (5)

Then the point xk+1 (resp. yk) is an optimal solution of the program (Pk) (resp. (Dk)). We can easily
understand that (Pk) (resp. (Dk)) is a convex optimization problem obtained by replacing h (resp. 1∗) of
(Pdc) (resp. (Ddc)) by its affine minor hk(x) = h(xk) +

〈
yk, xk

〉
at neighborhood of xk with yk

∈ ∂h(xk) (resp.

1∗k(y) = 1∗(yk−1) +
〈
xk, yk−1

〉
near yk−1 with xk

∈ ∂1∗(yk−1)). Then we have the following simple diagram to
describe the DC algorithm:

xk
−→ yk

∈ ∂h(xk)
↙

xk+1
∈ ∂1∗(yk) −→ yk+1

∈ ∂h(xk+1)
(6)

The DC algorithm stops if at least one of the sequences
{
(1 − h)(xk)

}
,
{
(h∗ − 1∗)(xk)

}
,
{
xk
}
,
{
yk
}

converges.
In practice, we often use the following stop conditions:

1. (1 − h)(xk+1) − (1 − h)(xk) ≤ ε;
2. ∥xk+1

− xk
∥ ≤ ε.

To get a ε − optimal solution. Therefore, the DC algorithm can be described in Algorithm 1.

Algorithm 1 DC optimisation Algorithm

1: x0 given
2: k← 0
3: ε > 0 ▷ a defined precision
4: Step 1 : We calculate yk

∈ ∂h(xk)
5: Step 2 : We determine xk+1

∈ ∂1∗(yk), ▷ (in general,
by solving a convex optimization problem)

6: if x∗ = xk+1 is the optimal solution of the problem
then

7: stop ▷ the stopping condition is satisfied
8: else
9: k + +

10: goto Step 1 :
11: end if

2.1. Quadratic DCA
We consider the following nonconvex quadratic problem:

(QP)

 min f (x) =
1
2

xtQx + ctx,
x ∈ S = {x ∈ Rn : Ax ≤ b, x ≥ 0}

(7)

In this work, we apply DCA approach to solve quadratic programs under linear constraints.
Suppose that we have the decomposition f = 1 − h, (or using one of the existing methods for decompo-

sition, for example, the method prescribed in [6]). Where 1, h ∈ Conv(S) the set of all the convex functions
defined in S.

Therefore, we can write the DCA for Quadratic problems as Algorithm 2.
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Algorithm 2 DCA for Quadratic Functions

1: x0 given
2: k← 0
3: ε > 0 ▷ a defined precision
4: Step 1 : We calculate yk

∈ ∂h(xk) = ▽h(xk)
5: Step 2 : We determine xk+1

∈ ∂1∗(yk) ▷ by solving the
following convexe quadratic problem:

(Pc)
{
Min 1(x, y) −

〈
x, yk
〉

: x ∈ Ω
}

6: if | (1 − h)(xk+1) − (1 − h)(xk) |≤ ε or ∥xk+1
− xk
∥ ≤ ε then

7: stop ▷ the stopping condition is satisfied
8: else
9: k + +

10: goto Step 1 :
11: end if

3. Quadratic DC decomposition

The DC decomposition method is a computational approach that decomposes the objective function
into two convex functions. There are several decomposition methods for quadratic functions, but we will
focus on the conventional approch, which involves transforming the quadratic function to its canonical
form.

3.1. Problem statement
A minimization problem of a quadratic function with linear constraints is presented in the following

standard form:

(Pm)
{

min f (x) = 1
2 xtQx + ctx,

Ax ≤ 0, x ≥ 0, (8)

where Q is an indefinite symmetric matrix (Q , 0). c and x, are vectors ofRn and A is a matrix of dimension
m × n, with rank(A) = m < n and b ∈ Rm

+ .
It is clear that without restricting the generalization we can limit the study to the following problem:

(Pm)
{

min f (x) =
∑n

i=1 αixi + βix2
i ,

Ax ≤ 0, x ≥ 0. (9)

i.e. the matrix Q for the problem (Pm) will be diagonal. This writing is called the canonical form of a
quadratic function, where αi, βi ∈ R.

We present a transformation method of (Pm) to its canonical form in the next subsection. For more
details about the canonical transformation methods we refer the reader to [6, 10, 20, 25, 38].

3.2. Writing a quadratic form in its canonical form
Some objective functions have two properties: the coefficients of x2

i |i=1,2,...,n are identical; and there is no
term involving xix j|i, j∈1,2,...,n. Therefore, the sets of levels for each objective function are spheres that can be
traced by inspection. It is not immediately obvious how the sets of levels should be drawn. The purpose of
this section is to show a method by which these sets can be drawn easily [20, 38]. The relevant mathematical
tools are the eigenvectors and the eigenvalues. For more information on these concepts, the reader can refer
to any of the many available linear algebra resources.
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Consider a general quadratic function of n variables:

f (x) =
1
2

xtQx + ctx, (10)

where x and c are vectors of Rn and Q is a square n order symmetric matrix.
Let S be the n×n-matrix whose columns are the eigenvectors of Q and let D be the n×n-diagonal matrix

of the corresponding eigenvalues. The property that defines S and D is:

QS = SD. (11)

An elementary property of eigenvectors is that they are orthogonal. The condition that they are also of
standard unity is:

StS = I, (12)

where I designates the n × n-identity matrix. By multiplying the left part of (11) by St and using (12) we
find:

StQS = D. (13)

Let x0 be the point which minimizes f . Being an unconstrained quadratic minimization problem, the
optimality conditions imply that the gradient of f at x0 must be zero. Let 1(x) be the gradient of f . By
writing f (x) explicitly in terms of the components of x, it is easy to see that:

1(x) = c +Qx. (14)

Since 1(x0) = 0, x0 is the solution of the linear equation

Qx0 = −c. (15)

We then introduce a change of variable y linked to x by

x = Sy + x0. (16)

Substituting this expression for x in (10):

f (x) = f (Sy + x0) (17)
= 1

2 (Sy + x0)tQ(Sy + x0) + ct(Sy + x0) (18)

= 1
2 yTStQSy + 1

2 x0QSy + 1
2 ytStQx0 +

1
2 x0Qx0 + ctSy + ctx0 (19)

= ( 1
2 x0Qx0 + ctx0) + ( 1

2 x0QSy + 1
2 ytStQx0 + ctSy) + ( 1

2 ytStQSy) (20)

= ( 1
2 x0Qx0 + ctx0) + (x0QSy + ctSy) + ( 1

2 ytStQSy) (21)

= f (x) = f (x0) + 1t(x0)Sy + 1
2 ytStQSy. (22)

We chose x0 such that 1(x0) = 0 . With this, (10) is simplified to:

f (x) = f (x0) +
1
2

ytDy. (23)

Since D is diagonal, (23) expresses the coordinates of f in y only in terms of y2
i , i = 1, ...,n. In particular, (23)

does not include any linear term in y and no mixed product terms yi, y j, i, j ∈ {1, . . . ,n}.
Using (16), it is easy to plot sets of levels for the coordinates f in y. In summary, the sets of levels for f

can be drawn using the following steps:

1. Calculate S and D by solving the problem of calculating the eigenvalues for Q;
2. Solve the system Qx0 = −c;
3. Draw the axes y j| j=1,2,...,n in the space xi|i=1,2,...,n by plotting the column vectors of S centered on x0.
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3.3. Decomposition
To write a decomposition of a quadratic form in its canonical form as a difference of two convex functions,

the quadratic terms are separated by the signs of the coefficients as follows:

f (x) =
∑n

i=1 αixi + βix2
i =
(∑
βi≥0 αixi + βix2

i

)
+
(∑
βi<0 αixi + βix2

i

)
(24)

=
(∑
βi≥0 αixi + βix2

i

)
−

(
−
∑
βi<0 αixi + βix2

i

)
(25)

= 1(x) − h(x). (26)

This method allows obtaining the DC decomposition for a quadratic form.
The principle of DCA is based on solving a convex quadratic problem on each iteration. To solve the

convex problem, there are several efficient methods.

4. Method

In order to obtain a good initial estimate (or at least an acceptable one) of the DC algorithms for
nonconvex quadratic problems, we propose three procedures as below:

Procedure 01: creating the DC initial estimate by minimizing the linear part of the quadratic function.
In order to obtain this point, we use SIMPLEX algorithm [12].

While problem (1) is the target quadratic problem, procedure 01 is based on solving the following sub
problem:{

arg min ctx
Ax ≤ b, x ≥ 0 (27)

We denote the solution of problem (27) by xlin
0 , then we have:

ctxlin
0 =

{
min ctx

Ax ≤ b, x ≥ 0 (28)

Procedure 02: to create the second initial point, we use the eigenvalues of Q to create f in its canonical
form, then we can separate the quadratic terms by the signs of the coefficients as follows:

f (x) =
∑n

i=1 αixi + βix2
i (29)

=
(∑
βi≥0 αixi + βix2

i

)
+
(∑
βi<0 αixi + βix2

i

)
(30)

= 1(x) + h(x). (31)

The second proposed initial point is xcvx
0 given by:

1(xcvx
0 ) =

{
min 1(x) =

∑
βi≥0 αixi + βix2

i
Ax ≤ b, x ≥ 0 (32)

Then,

xcvx
0 =

{
arg min 1(x) =

∑
βi≥0 αixi + βix2

i
Ax ≤ b, x ≥ 0 (33)

To reach this initial point, we use Interior-Point-Method integrated on Matlab under the function
quadprog.

Procedure 03: we follow the same process in Procedure 02 for the third initial point xcve
0 . After the

decomposition of the nonconvex quadratic function, we minimize the concave part as follows:

h(xcve
0 ) =

{
min h(x) =

∑
βi<0 αixi + βix2

i
Ax ≤ b, x ≥ 0 (34)
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Then,

xcve
0 =

{
arg min h(x) =

∑
βi<0 αixi + βix2

i
Ax ≤ b, x ≥ 0 (35)

To reach xcve
0 we used the commercial software CPLEX 12.81).

Remark 4.1. The proposed initial estimates xlin
0 , xcvx

0 and xcve
0 are feasible solutions of problem (1) (i.e. xlin

0 , xcvx
0

and xcve
0 belongs to the convex constraints set of the problem (1) because (1), (27), (32) and (34) have the same set of

constraints.

In order to compare the three procedures, we have developed an implementation using Matlab 2018a.
To reach the initial estimates, we used the following algorithms:

1. Simlex algorithm [12]: for solving the intermediate linear program, we used the simplex algorithm
integrated in Matlab under the function linprog2);

2. Interior-point algorithm [28]: the function quadprog3) implemented in Matlab.
3. Branch and bound algorithm [31]: the branch and bound global algorithm implemented in CPLEX12.8

(the function cplexqp4) with the parameters optimalitytarget and timelimit set to 3 and 10,800 s, re-
spectively);

4.1. Approach
We generated 107 test problems with different approaches, as detailed below in subsection 4.1.1.

- We compared the different estimates for the 107 test problems;
- The test problems were divided into four types under the names Rosen, Thoui, st, and ext;
- The dimensions of the 107 test problems were between 5 and 75;
- The number of constraints was between 1 and 50.

To assess the effect of the selection of the initial point selection method on DCA efficiency, we considered
the following approaches:

1. Linear initial point xlin
0 : resulting from the minimization of the linear part of the objective function.

2. Convex initial point xcvx
0 : resulting from the minimization of the convex part of the objective function.

3. Concave initial point xcve
0 : resulting from the minimization of the concave part of the objective

function.

For each initial point, we took as evaluation metrics:

1. CPU cooled time while getting the initial point.
2. The whole CPU cooled time to find the solution, including that of the initial point and that of the

DCA procedure.
3. The effected number of iterations of the DCA algorithm.

We have studied each evaluation metric in function of the following variable parameters:

1. Problem dimension: the size of the vector c in (1).
2. Number of constraints: the size of the vector b in (1).
3. Problem type: Thoai, Rosen, ext, and st.

The test problems used in the experimental study of this paper can be downloaded here5). We did not
use these initial test problems. Instead, based on them, we generated new sets of test problems to meet the
study’s requirements, as demonstrated below.

1)https://www.ibm.com/support/pages/cplex-optimization-studio-v128
2)https://www.mathworks.com/help/optim/ug/linprog.html
3)https://www.mathworks.com/help/optim/ug/quadprog.html
4)https://www.ibm.com/docs/en/icos/12.7.1.0?topic=apis-cplex-matlab-toolbox
5)https://drive.google.com/drive/folders/1zG4YcRXvzXDg6Aifph8sf3t2tBOKjbtR

https://www.ibm.com/support/pages/cplex-optimization-studio-v128
https://www.mathworks.com/help/optim/ug/linprog.html
https://www.mathworks.com/help/optim/ug/quadprog.html
https://www.ibm.com/docs/en/icos/12.7.1.0?topic=apis-cplex-matlab-toolbox
https://drive.google.com/drive/folders/1zG4YcRXvzXDg6Aifph8sf3t2tBOKjbtR
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4.1.1. Generation of test problems
We performed the experiments on a set of 107 test problems where:

1. The test problems are divided into four types: Thoai, Rosen, ext and st; each type is generated using
a different approach;

2. We generated decomposed quadratic functions as g and h separately in order to avoid calculating the
eigenvalues and eigenvectors for the decomposition method described in 3.3 (especially in the case
of large dimensions; n > 40);

3. We generated the concave part of the target quadratic problems using the algorithm of Rosen [30],
Thaoi [36], and Globallib [14] (for st and ext problems);

4. The type of the test problem is characterized by the concave part, where we consider these concave
problems as the initial basis for the nonconvex test problems;

5. After generating the concave part, we generated the convex part according to the dimension of the
concave subproblems;

6. We generated the convex part by creating a random n × n − matrix A, according to the dimension of
the concave subproblem. Then, we calculated the matrix positive defined A × At, which represents
the quadratic matrix of the convex part;

7. We created a random vector with the same dimension of the generated test problem which is consid-
ered as the linear part of the convex part of the decomposed test problems.

4.1.2. Environment
We carried out the tests on a personal computer with 8 GB random access memory capacity. The

computer had an i5-7200U Intel(R) Core(TM) processor, with 4 cores each working between 2.50GHz and
2.70GHz frequency, operated with Windows 10. The work was conducted in Matlab2018a environment.

5. Results and Discussion

Following procedures described in Section 4, we obtained the results shown in the figures below. Fig.1
presents the effect of dimension on the time required to reach the initial point (Fig.1a), the time to reach
the solution (Fig.1b), the time to reach both points (Fig.1c), and also on the number of performed iterations
during the procedure of resolving the problem (Fig.1d).

A similar description can be used for (Fig.2) and (Fig.3), but instead of dimension, these two figures
cover the number of constraints and problem type, respectively.
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(a) (b)

(c) (d)

Figure 1: The effect of problem dimension on the time required to reach the initial point (a), time to reach
the solution (b), the combined time (c), and the number of performed iterations during the procedure of
resolving the problem (d).
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(a) (b)

(c) (d)

Figure 2: The effect of the number of constraints on the time required to reach the initial point (a), time to
reach the solution (b), the combined time (c), and the number of performed iterations during the procedure
of resolving the problem (d).
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(a) (b)

(c) (d)

Figure 3: The effect of the type of problem on the time required to reach the initial point (a), time to reach
the solution (b), the combined time (c), and the number of performed iterations during the procedure of
resolving the problem (d).

Based on Fig.1, the concave approach is the slowest to reach the initial point and generally takes an
expanding form proportional to the increase in dimension. This is likely because of the branch and cut
algorithm that takes a long time to find the minimum of concave quadratic problem, especially in the case
of high dimensions. On the other hand, the linear approach performed generally better than the convex
one (notice the logscale). This could be explained by the efficiency of the SIMPLEX algorithm to calculate
xlin

0 .
In Fig.1b, we note the overlap of the three approaches (except at dimension 30 for the convex approach,

which we consider as an outlier).
The most practical measure is the overall time of resolution, which is presented in Fig.1c. We see the

large increase in resolution time of the concave method with the increase in dimension.
Contrary to the concave approach, the dimension seems to have no effect on the resolution time of

convex and linear approaches; the two curves are almost overlapped. The number of iterations in the three
approaches is almost the same and seems to have no correlation with the problem dimension.

Surprisingly, the three approaches had a similar behavior as a function of the number of constraints as
the number of dimensions (Fig.2). We may explain this trend as a proposition that the DCA of the three
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initial estimates are close to each other (so the initial time to find the initial estimate is the most important).
In Fig.3a, we notice different timing behavior for the approaches with each problem type. The most

important observation is the irrational results of the concave approach with Rosen and Thaoi problem
types. These long times with the two problems are caused by the large dimensions and the number of the
constraints of Rosen and Thaoi problems.

The solution time was similar with the three methods for all problems and varied from one problem to
another with st showing the best results.

For the general solution time, we see that the linear approach did the best except with st type, where the
concave approach outperformed the linear one. The number of iterations with each approach were similar
for each problem type.

A clear observation is that the best initial estimate for the DCA according to all the criteria used in this
paper is xlin

0 . Therefore, we came up with a new algorithm that we called Initialized Difference of Convex
Functions Algorithm (IDCA). This algorithm allows us to calculate the minimum of a nonconvex quadratic
problem with a convex constraint set using a DC algorithm, without the need of the initial point, since
IDCA calculates the best initial point for DCA. The IDCA is described below 3

Algorithm 3 Initialized DC Algorithm

1: insert the objective function f (x) =
1
2

xtQx + ctx
and the convex constraint set Ω

2: calculate xlin
0 by solving the linear optimization

problem (27): ar1minx∈Ω ctx
3: x0 = xlin

0
4: k← 0
5: ε > 0 ▷ a defined precision
6: Step 1 : We calculate yk

∈ ∂h(xk) = ▽h(xk)
7: Step 2 : We determine xk+1

∈ ∂1∗(yk) ▷ by solving
the following convexe quadratic problem:

(Pc)
{
Min 1(x, y) −

〈
x, yk
〉

: x ∈ Ω
}

8: if | (1 − h)(xk+1) − (1 − h)(xk) |≤ ε or ∥xk+1
− xk
∥ ≤ ε

then
9: stop ▷ the stopping condition is satisfied

10: else
11: k + +
12: goto Step 1 :
13: end if

6. Conclusion

From the performed tests, we have the following observations:

- The entire solution time with the concave approach increased dramatically with the problem dimen-
sion and number of constraints. It is clearly not an optimal choice for high configurations;

- The problem dimension and number of constraints have no clear effect on the iteration number of
problem resolution (in the cases we explored);

- The linear approach performs best with ext, Rosen and Thaoi problem types, and the convex approach
performs best for st;

- The concave approach takes a long time with the Rosen and Thaoi types of problem due to the
relatively large dimensions and constraints number of these problem types;
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- The best initial estimate for the DCA according to all of the criteria used in this paper is xlin
0 ;

- We developed a new algorithm, Initialized Difference of Convex Functions Algorithm (IDCA 3), which
allows us to calculate the minimum of a nonconvex quadratic problem with a convex constraint set
using DC algorithm (without the need for determination of the initial estimate).

As a future direction, it is recommended to compare the new IDCA against existing DC decomposition
methods in order to create a complete evaluation of these algorithms.
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