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Abstract. It was recently noted by Damnjanović et al. [MATCH Commun. Math. Comput. Chem. 90 (2023),
197–202] that the problem of finding a tree which minimises or maximises the Sombor index among all the
trees with a given degree sequence fits within the framework of results by Hua Wang from [Cent. Eur. J.
Math. 12 (2014), 1656–1663]. Here, we extend these results by providing an inverse for the aforementioned
theorem by Wang. In other words, for any fixed symmetric function f satisfying a monotonicity condition
that

f (x, a) + f (y, b) > f (y, a) + f (x, b) for any x > y and a > b,

we characterise precisely the set of all the trees minimising or maximising the sum f (deg x,deg y) over all
the adjacent pairs of vertices x and y, among the trees with a given degree sequence.

1. Introduction

Let TD denote the set of all trees on n vertices that have a fixed degree sequence D = (d1, d2, . . . , dn). For
a symmetric function f : N ×N→ R, and a tree T in TD, we write R f (T) for the sum

R f (T) =
∑
u∼v

f (degG(u),degG(v)). (1)

Such graph invariants are very natural in their own right, and are studied considerably in chemical graph
theory, where they are typically referred to as topological indices and are applied to describe a particular
structural property of a given graph of interest (see, for example, [3, 5–9, 11] and the references therein).
Some examples can be found in Table 1.
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R f f (x, y)

Randić index
1
√

xy

first Zagreb index x + y

second Zagreb index xy

second modified Zagreb index
1

xy

geometric–arithmetic index
2
√

xy
x + y

harmonic index
2

x + y

sum–connectivity index
1

√
x + y

atom–bond connectivity index
√

x + y − 2
xy

Sombor index
√

x2 + y2

Table 1: Some topological indices R f together with their corresponding functions f (x, y).

Actually, usually these functions f have a monotonicity property that we shall refer to as ‘positive
polarity’, which says that

f (x, a) + f (y, b) ≥ f (y, a) + f (x, b) for any x > y and a > b. (2)

We will also say that f satisfies ‘strict positive polarity’ if

f (x, a) + f (y, b) > f (y, a) + f (x, b) for any x > y and a > b. (3)

We mention in passing that positive polarity often arises because f is the restriction to N × N of a

function 1 : [1,+∞) × [1,+∞) → R such that the mixed second derivative
∂2 f
∂x ∂y

(x, y) exists and is positive

on (1,∞) × (1,∞). For such a 1 it is easy to check that the restriction f satisfies polarity, and this perhaps
explains why polarity is so frequently present.

It was recently noted by Damnjanović et al. [1] that the problem of finding a tree which minimises or
maximises the Sombor index among all the trees with a given degree sequence fits within the framework
of results by Hua Wang [10]. In an earlier paper, Wang investigated the positive polarity functions and
showed that the so-called greedy tree must maximize R f on TD, while an alternating greedy tree necessarily
minimizes it, for any such function f [10, Theorem 1.1]. The construction algorithms yielding the two
aforementioned types of trees are stated as follows.

Definition 1.1 (Greedy trees, Wang [10, Definition 2.1]). With given vertex degrees, the greedy tree is achieved
through the following “greedy algorithm”:

(i) Label the vertex with the largest degree as v (the root);

(ii) Label the neighbors of v as v1, v2, . . ., assign the largest degrees available to them such that deg(v1) ≥ deg(v2) ≥
· · · ;

(iii) Label the neighbors of v1 (except v) as v11, v12, . . . such that they take all the largest degrees available and that
deg(v11) ≥ deg(v12) ≥ · · · , then do the same for v2, v3, . . .;

(iv) Repeat (iii) for all the newly labeled vertices, always start with the neighbors of the labeled vertex with the
largest degree whose neighbors are not labeled yet.
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Definition 1.2 (Alternating greedy trees, Wang [10, Definition 3.1]). Given the nonincreasing degree sequence
(d1, d2, . . . , dm) of internal vertices, the alternating greedy tree is constructed through the following recursive algorithm:

(i) If m − 1 ≤ dm, then the alternating greedy tree is simply obtained by a tree rooted at r with dm children,
dm −m + 1 of which are leaves and the rest with degrees d1, . . . , dm−1;

(ii) Otherwise, m− 1 ≥ dm + 1. We produce a subtree T1 rooted at r with dm − 1 children with degrees d1, . . . , ddm−1 ;

(iii) Consider the alternating greedy tree S with degree sequence (ddm , . . . , dm−1), let v be a leaf with the smallest
neighbor degree. Identify the root of T1 with v.

Here, we note that the greedy tree is always uniquely determined up to isomorphism, while there might
exist more than one alternating greedy tree, given the fact that its construction algorithm is not deterministic.
It is also not difficult to observe that the same extremal problem for many other degree-based topological
indices can be considered analogously (see, for example, [4], and the references therein).

Our research is primarily motivated by Wang’s two algorithms and it is our central goal to extend
the said results by providing a way to construct the full solution set to the according extremal problems.
Bearing this in mind, we offer the following two non-deterministic tree construction algorithms that yield
an extremal TD tree for a given non-increasing degree sequence D = (d1, d2, . . . , dn) ∈Nn such that TD , ∅.

Algorithm 1.

(i) Add a new vertex, assign its desired degree value to d1 and assign its availability value to d1 as well.

(ii) For j = 2,n, repeat the following steps until an output tree is reached.

(1) Add a new vertex u and assign its desired degree and availability values both to d j.

(2) Let X be the set of all the vertices different from u that have a positive availability.

(3) Choose a vertex v from X so that this vertex has the greatest possible desired degree among all
the vertices from X.

(4) Add an edge whose endpoints are the vertices u and v and decrease the availabilities of these
two vertices by one.

Algorithm 2.

(i) For each j = 1,n, add some new vertex, assign its desired degree value to d j and assign its availability
value to d j as well.

(ii) Repeat the following steps until exactly n−1 edges have been added so that an output tree is reached.

(1) Let the set X comprise all the pairs (u, v) of vertices with positive availabilities such that:

(a) u has the minimum possible desired degree out of all the vertices that have a positive
availability;

(b) u and v do not belong to the same component and the sums of availabilities across the
respective components where u and v belong are not both equal to one, unless these are the
only two components.

(2) Choose an element of X, i.e. some (u0, v0) ∈ X, so that v0 has the greatest possible desired degree
among all the v vertices in the (u, v) pairs of X.

(3) Add an edge whose endpoints are the vertices u0 and v0 and decrease the availabilities of these
two vertices by one.
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It is worth pointing out that, provided TD , ∅, Algorithm 1 is clearly well defined. Also, after each
(ii) iteration from Algorithm 2, the total availabilities of all the components must always yield a valid tree
degree sequence, again due to TD , ∅. For this reason, it is not difficult to see that the corresponding set X
can never be empty. This observation assures us that Algorithm 2 is also well defined. We now present the
main result of the given paper in the form of the following theorem.

Theorem 1.3. For some n ∈ N, let D ∈ Nn be a non-increasing sequence of n integers such that TD , ∅ and let
f : N ×N→ R be a discrete symmetric function. We then have:

(i) If f is a strict positive polarity function, then a tree T ∈ TD attains the maximum R f value on TD if and only if
it is constructible by Algorithm 1 and it attains the minimum R f value on TD if and only if it is constructible
by Algorithm 2.

(ii) If f is a positive polarity function, then any tree constructible by Algorithm 1 attains the maximum R f value
on TD and any tree constructible by Algorithm 2 attains the minimum R f value on TD.

The remainder of the paper will focus on providing a full proof of Theorem 1.3. Its structure will
be organized as follows. Section 2 will serve to introduce certain preliminary remarks, as well as some
auxiliary construction-related terms for the purpose of making the rest of the proof more concise and easier
to follow. Afterwards, Sections 3 and 4 will be used to prove the validity of Algorithms 1 and 2, respectively.
Finally, Section 5 will finish the paper by disclosing a brief conclusion regarding all the newly obtained
results and will give some examples that elaborate how the given algorithms can be used.

We use standard notation where for a graph G, the order is |G| and E(G) is its set of edges. Also, we will
consider all graphs to be undirected, finite and simple. Moreover, we shall implement degG(u) in order to
signify the degree of some vertex u from the graph G. Finally, it is worth pointing out that all results are
trivial for n = 1, so we will always assume that n ≥ 2.

2. Preliminaries

First of all, it is not difficult to demonstrate that the second claim stated in Theorem 1.3 quickly follows
from the first. Let f be an arbitrarily chosen positive polarity function and let D ∈ Nn be a non-increasing
degree sequence such that TD , ∅. For any x, y, a, b ∈N such that x > y and a > b, we have

(x − y)(a − b) > 0 =⇒ xa + yb > ya + xb,

which means that for any parameter t ∈ R, t > 0, the discrete symmetric function ft(x, y) = f (x, y) + txy is
surely a strict positive polarity function. According to the first statement from Theorem 1.3, we have that
any tree T0 ∈ TD constructible by Algorithm 1 certainly maximizes the R ft value on TD, for each t > 0. In
other words, we get

R ft (T0) ≥ R ft (T) (4)

for any T ∈ TD and t > 0. Since both sides of Eq. (4) can be viewed as linear functions in t, we are able to
simply plug in t→ 0+ in order to reach

R f (T0) ≥ R f (T),

as desired. An analogous argument can be made regarding the R f minimizing property of any tree
constructible by Algorithm 2. Bearing everything in mind, it becomes evident that in order to complete the
proof of Theorem 1.3, it is sufficient to prove just the first disclosed statement. For this reason, we shall deal
exclusively with strict positive polarity functions f in the remainder of the paper.

Algorithms 1 and 2 represent two tree construction mechanisms that both involve the simple addition
of vertices and edges in some particular order. Throughout both algorithms, each vertex is assigned
two property values: the desired degree, which signifies the degree that the vertex should have once the
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construction is completed, and the availability, which determines how many more edges should be incident
to the given vertex in order for its degree to match its desired degree, as needed. We will now define certain
construction-related auxiliary terms which we will rely on for the sake of making the proof of Theorem 1.3
easier to follow.

We shall refer to the ordered pair ((v0, v1, v2, . . . , vn−1), ( f1, f2, . . . , fn−1)) as a scheme of some tree T of order
n ∈N provided that this tree can be obtained via the following simple construction algorithm:

(1) Add the vertex v0.

(2) For each integer j = 1,n − 1, add the vertex v j and an edge whose endpoints are v j and the previously
added vertex f j.

Now, we will use the term positive availability vertex, or PA vertex for short, to denote a vertex whose
availability is greater than zero. If some PA vertex has the greatest desired degree among all the PA vertices,
we will then refer to this vertex as a strong positive availability vertex, or SPA vertex for short. Similarly, if a
PA vertex has the smallest desired degree among all the PA vertices, we will then call this vertex a weak
positive availability vertex, or WPA vertex for short.

For a given component, we will use the term total availability to refer to the sum of availabilities of all of its
vertices and we shall denote the total availability of some component C by t(C). We will consider a uniform
component to be a component such that all of its PA vertices have the same desired degree. Moreover, we
will use deg(C) to signify the desired degree of any PA vertex from the uniform component C. Furthermore,
a uniform component that has the total availability equal to one must necessarily have a single PA vertex,
and we will call such a component a cleaf. If a component is not uniform, but contains only SPA and WPA
vertices, we will then refer to it as a minimum–maximum mixed component, or MMM component for short.
Finally, a component that is neither uniform nor an MMM component shall be called a forbidden component.

In the rest of the paper, we will take D = (d1, d2, . . . , dn) ∈ Nn to be an arbitrarily chosen fixed non-
increasing sequence of n integers such that TD , ∅. Bearing in the mind all the newly introduced terms, it
is possible to reformulate Algorithms 1 and 2 in a more concise manner, as demonstrated below.

Algorithm 1.

(i) Add a new vertex and assign its desired degree and availability values to d1.

(ii) For j = 2,n, repeat the following steps until an output tree is reached.

(1) Add a new vertex u and assign its desired degree and availability values both to d j.

(2) For an arbitrarily chosen SPA vertex v , u, add an edge whose endpoints are the vertices u and
v and decrease the availabilities of these two vertices by one.

Algorithm 2.

(i) For each j = 1,n, add some new vertex and assign its desired degree and availability values to d j.

(ii) Repeat the following steps until exactly n−1 edges have been added so that an output tree is reached.

(1) Let the set X comprise all the pairs (u, v) of PA vertices from distinct components such that u is
a WPA vertex and the total availabilities of the respective components where u and v belong are
not both equal to one, unless these are the only two components.

(2) Choose an element of X, i.e. some (u0, v0) ∈ X, so that v0 has the greatest possible desired degree
among all the v vertices in the (u, v) pairs of X.

(3) Add an edge whose endpoints are the vertices u0 and v0 and decrease the availabilities of these
two vertices by one.
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3. Validity of Algorithm 1

In this section, we will consider an arbitrary strict positive polarity function f and prove that each tree
maximizing R f on TD must be constructible by Algorithm 1. Afterwards, we will swiftly demonstrate the
converse as well — that each tree constructible by Algorithm 1 surely attains the maximimum R f value on
TD.

To begin, we point out that each tree surely has at least one scheme (see, for example, [2, Corollary 1.5.2]).
However, it becomes convenient to notice that the trees that attain the maximum R f value on TD always
possess very specific schemes. Our immediate goal shall be to elaborate on this fact and provide a result
that will later be used while proving the extremal property of Algorithm 1. We start with the following
auxiliary lemma regarding the degrees of vertices that lie on an arbitrary path.

Lemma 3.1. Let T ∈ TD be a tree that attains the maximum R f value on TD and let u and v be two of its arbitrarily
chosen vertices. For any vertex w that lies on the path from u to v, we necessarily have

degT(w) ≥ min(degT(u),degT(v)).

Proof. We shall prove the lemma by contradiction. Let P be the (u, v)-path in T and suppose that there
does lie a vertex on P whose degree is below min(degT(u),degT(v)). It is straightforward to see that
degT(u),degT(v) ≥ 2 must hold. For this reason, we can construct a non-trivial path Q from v to some leaf t
so that this path is entirely disjoint with P, except for the vertex v.

Now, let p1 denote the first vertex on the path P whose degree is lower than min(degT(u),degT(v)), and
let p0 be the vertex on this path before it. Similarly, let q1 be the first vertex on Q whose degree is below
min(degT(u),degT(v)), and let q0 be the vertex on this path before it. Taking everything into consideration,
we obtain a (p0, q1)-path as depicted in Figure 1 that will be of further interest.

u p0 p1 v q0 q1 t

Figure 1: The obtained (p0, q1)-path in T, alongside the vertices u and t.

It is clear that the tree T satisfies

p0 ∼ p1, q0 ∼ q1, p0 / q0, p1 / q1.

Bearing this in mind, we can remove the edges p0p1 and q0q1 from T and add the edges p0q0 and p1q1 in
order to obtain another tree T1 whose vertices have the same degrees as in T. Hence, T1 ∈ TD. Furthermore,
R f (T) and R f (T1) will have the same summands in Eq. (1) except for those that correspond to the deleted
and newly added edges. This immediately implies

R f (T1) − R f (T) = f (degT(p0),degT(q0)) + f (degT(p1),degT(q1))
− f (degT(p0),degT(p1)) − f (degT(q0),degT(q1)).

(5)

However, we know that

degT(p0),degT(q0) ≥ min(degT(u),degT(v)), degT(p1),degT(q1) < min(degT(u),degT(v)),

which swifty leads us to

f (degT(p0),degT(q0)) + f (degT(q1),degT(p1)) > f (degT(q1),degT(q0)) + f (degT(p0),degT(p1))

by virtue of Eq. (3). Now, Eq. (5) tells us that R f (T1) − R f (T) > 0 must hold, which is impossible since the
tree T attains the maximum R f value on TD. Hence, we obtain a contradiction.

Now, by taking into consideration Lemma 3.1, we are able to formulate and prove the next lemma
regarding the constructibility of trees that attain the maximum R f value.
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Lemma 3.2. If T ∈ TD is a tree that attains the maximum R f value on TD, then this tree surely has a scheme
((v0, v1, v2, . . . , vn−1), ( f1, f2, . . . , fn−1)) such that

• for each j = 0,n − 1, we have degT(v j) = d j+1;

• for all the 1 ≤ j < h ≤ n − 1 such that degT(v j) = degT(vh), the condition degT( f j) ≥ degT( fh) must hold.

Proof. Lemma 3.1 tells us that, for each j = min D,max D, the subgraph of T induced by the set of vertices
whose degree is at least j must be a tree. From here, we quickly conclude that we can construct T by
simply constructing its subtree induced by the vertices of degree max D, then extending this subtree to the
subtree induced by the vertices of degree at least max D − 1, and so on, until we obtain T itself. Thus, the
tree T necessarily possesses a scheme C′ = ((v′0, v

′

1, v
′

2, . . . , v
′

n−1), ( f ′1 , f ′2 , . . . , f ′n−1)) such that the degrees of the
vertices v′0, v

′

1, v
′

2, . . . , v
′

n−1 appear in non-increasing order. This promptly implies degT(v′j) = d j+1 for each

j = 0,n − 1.
We have obtained a scheme C′ that satisfies the first condition given in the lemma. In order to finalize

the proof, we will explain how this scheme can be modified so that the second condition surely holds as
well. First of all, it is easy to check that the second condition necessarily holds for the vertices of degree
max D, hence it becomes sufficient to show that, for any β, min D ≤ β < max D, the addition of vertices
of degree β within the scheme C′ can be permuted in some manner so that the second condition becomes
satisfied.

The key observation to make is that while T is constructed via the algorithm dictated by C′, each vertex
of degree β is surely connected to a vertex of degree at least β upon being added. Moreover, each vertex of
degree β that is connected to a vertex of degree greater than β can certainly freely be reordered among all
the vertices of degree β. In other words, this vertex can be added before or after any other vertex of degree
β, given the fact that its initial neighbor is definitely present to begin with. This directly means that we can
reorder the addition of all the vertices of degree β so that we first add those whose initial neighbor has the
greatest possible degree, then those whose initial neighbor has the second greatest degree, and so on, until
we add the vertices of degree β whose initial neighbor also has the degree β, and which cannot freely be
reordered. By applying the said transformation on C′ for each possible β, min D ≤ β < max D, we obtain a
scheme C that truly satisfies both criteria given in the lemma, which completes the proof.

By implementing Lemma 3.2, we can immediately prove one half of the desired extremal property of
Algorithm 1. This result is disclosed within the following lemma.

Lemma 3.3. Any tree that attains the maximum R f value on TD must be constructible by Algorithm 1.

Proof. Let T be any such tree. It is clear that this tree must have a scheme C that satisfies the criteria
stated in Lemma 3.2. Now, while T is being constructed via the algorithm dictated by C, suppose that
there exists a vertex v such that, upon being added, it is not adjacent to a pre-existing SPA vertex. Let p
be such a pre-existing vertex and let q be the vertex that v gets connected to instead. Due to the criteria
imposed on C by virtue of Lemma 3.2, we see that none of the vertices of degree degT(v) that are added
after v can be adjacent to p either, which means that the vertex p necessarily has a neighbor u in T such
that degT(u) < degT(v). Taking everything into consideration, we obtain that the tree T bears a structure as
demonstrated in Figure 2.

u p q v

Figure 2: The structure of the tree T.

It is obvious that the tree T satisfies

u ∼ p, v ∼ q, u / q, v / p.
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If we remove the edges up and vq from T and add the edges uq and vp, we get another tree T1 whose vertices
have the same degrees as in T. For this reason, we have T1 ∈ TD. Using the same logic as in the proof of
Lemma 3.1, it is easy to show that

R f (T1) − R f (T) = f (degT(u),degT(q)) + f (degT(v),degT(p))
− f (degT(u),degT(p)) − f (degT(v),degT(q)).

(6)

Taking into consideration that

degT(p) > degT(q) ≥ degT(v) > degT(u),

it becomes straightforward to obtain

f (degT(p),degT(v)) + f (degT(q),degT(u)) > f (degT(q),degT(v)) + f (degT(p),degT(u))

by directly implementing Eq. (3). Now, by using Eq. (6), this immediately leads us to R f (T1) − R f (T) > 0,
which is clearly not possible due to the fact that T attains the maximum R f value on TD.

Thus, we conclude that while T is being constructed in accordance with the scheme C, the vertices
must be added in such a way their degrees yield a non-increasing sequence, with each vertex after the first
being connected to a pre-existing SPA vertex. However, this is precisely how Algorithm 1 works, hence it
promptly follows that T must indeed be constructible by Algorithm 1.

We are now finally in position to put all the pieces of the puzzle together and complete the proof of the
validity of Algorithm 1.

Proof of the validity of Algorithm 1. If a tree attains the maximum R f value onTD, then it is surely constructible
by Algorithm 1, by virtue of Lemma 3.3. Thus, in order to finish the validity proof, we need to show that
each tree constructible by Algorithm 1 must also attain the maximum R f value on TD. Since there are
finitely many isomorphism classes among the TD trees, there certainly exists a tree T0 ∈ TD that attains the
maximum R f value on TD. Due to Lemma 3.3, we know that T0 is constructible by Algorithm 1. From here
we notice that in order to demonstrate that all the trees constructible by Algorithm 1 attain the maximum
R f value on TD, it is sufficient to prove that they all have the same R f value.

For each 1 ≤ j ≤ n and 0 ≤ k ≤ n − 1, let Y j,k denote the sum of availabilities of all the existing
vertices of degree k after j vertices have been added in total while executing Algorithm 1. Let the scheme
((v0, v1, v2, . . . , vn−1), ( f1, f2, . . . , fn−1)) correspond to an execution of Algorithm 1 which yields the tree T ∈ TD.
It becomes apparent that while adding vertex v j, the degrees of v j and f j can be determined by using the
simple expression

degT v j = d j,

degT f j = max{k ∈N : 0 ≤ k ≤ n − 1, Y j,k > 0}.

Besides that, it is possible to obtain the values Y j+1,k in terms of Y j,k by simply setting Y j+1,k B Y j,k for each
0 ≤ k ≤ n−1, then increasing the value of Y j+1,degT v j by degT v j−1 and then decreasing the value of Y j+1,degT f j

by one. Here, it is important to notice that regardless of how the algorithm is executed, the elements Y j,k
depend solely on the given degree sequence D, and not the concrete execution itself. For this reason, the
degrees of v0, v1, v2, . . . , vn−1 and f1, f2, . . . , fn−1 must be the same in all the executions of Algorithm 1. Given
the fact that for any T ∈ TD constructed via the scheme ((v0, v1, v2, . . . , vn−1), ( f1, f2, . . . , fn−1)), we have

R f (T) =
n−1∑
j=1

f (degT(v j),degT( f j)),

it is clear that all the trees constructible by Algorithm 1 must attain the same R f value, as desired.
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4. Validity of Algorithm 2

In this section, we will consider an arbitrary strict positive polarity function f and prove that each tree
minimizing R f on TD must be constructible by Algorithm 2. We will then show that each tree constructible
by Algorithm 2 also attains the minimum value of R f on TD, thereby completing the proof. We begin by
disclosing the following two auxiliary lemmas.

Lemma 4.1. Let T ∈ TD be a tree that attains the minimum R f value on TD. If the tree T contains a path
x0x1 · · · xn−1xn of length n ∈ N, n ≥ 3 which satisfies degT(x0) < degT(xn), then degT(x1) ≥ degT(xn−1) must be
true.

x0 x1 xn−1 xn

Figure 3: The structure of the path P = x0x1 · · · xn−1xn.

Proof. Assume the contrary and let P = x0x1 · · · xn−1xn be a path in T of length n ∈ N, n ≥ 3 such that
degT(x0) < degT(xn) and degT(x1) < degT(xn−1). Now consider the graph T1 obtained by removing the
edges x0x1, xn−1xn and adding the edges x0xn−1 and x1xn. Bearing in mind Figure 3, it is evident that T1 must
be a tree. Moreoever, it is straightforward to see that T1 ∈ TD. By implementing Eq. (1), we immediately
obtain that

R f (T) − R f (T1) = f (degT(xn),degT(xn−1)) + f (degT(x0),degT(x1))
− f (degT(xn),degT(x1)) − f (degT(x0),degT(xn−1)).

Now, it is sufficient to use Eq. (3) in order to reach R f (T)−R f (T1) > 0. Thus, T does not attain the minimum
value of R f on TD, which is a contradiction.

Lemma 4.2. Let T ∈ TD be a tree that attains the minimum R f value on TD. Now, let n, b, a be positive integers
and suppose that u, v0, v1 are vertices in T such that degT(u) = a, degT(v0) = b,degT(v1) = a. Furthermore, let
c = min(a, b) and d = max(a, b). For an arbitrary edge z1z2 ∈ E(T), say that it is good if {degT(z1),degT(z2)} = {c, d}.
If there is an i ∈ {0, 1} such that there is a path ux1 · · · xnvi · · · v1−iy in T with degT(xn),degT(y) ∈ [c, d], then one of
the edges xnvi, v1−iy must be good.

Proof. The proof is trivial to do if a = b. We now choose to carry out the proof only for the case when a < b,
given the fact that the statement can be proved in an entirely analogous manner whenever b < a. Thus, we
will assume that c = a and b = d.

u x1 xn vi v1−i y

Figure 4: The structure of the path P = ux1 · · · xnvi · · · v1−iy.

Suppose the contrary, that neither xnvi nor v1−iy are good edges. Define the paths P,P′ to be P =
ux1...xnvi...v1−iy and P′ = uv0...v1x1...xny where we have V(P) = V(P′). Let T1 be the graph obtained by
taking T and replacing the edges ux1, xnvi, v1−iy with the edges uv0, v1x1, xny. Notice that T1 is obtained
from T when we replace P with P′. This means that T1 is indeed a tree, and given the fact that P,P′ have the
same endpoints we have not changed any of the vertex degrees. Hence we obtain that T1 ∈ TD. If i = 0, we
then have a < degT(xn) and degT(y) < b, which leads us to

R f (T) − R f (T1) = f (a,degT(x1)) + f (degT(xn), b) + f (a,degT(y))
− f (a, b) − f (a,degT(x1)) − f (degT(xn),degT(y)) > 0
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by implementing Eq. (3) together with the aforementioned inequalities. This is a contradiction since T
obtains the minimum value of R f on TD. The case when i = 1 can be resolved in an analogous manner and
we choose to leave out the according proof details.

In the remainder of the section, we will use a, b to denote the desired degrees of the WPA and SPA
vertices, respectively. Our next step shall be to use Lemmas 4.1 and 4.2 in order to demonstrate that every
T ∈ TD which minimizes R f is constructible using Algorithm 2. The said result is given in the next lemma.

Lemma 4.3. Suppose that T ∈ TD minimizes R f on TD. Then it is possible to construct T using Algorithm 2 in
such a way that at any time after all the vertices have been added and before the tree is fully constructed, the following
conditions hold:

(i) There is at most one MMM component and all the other components are uniform.

(ii) If there is an MMM component, then all the cleaves C have deg(C) equal to a or b.

(iii) If there are no MMM components, then each cleaf C satisfying the property deg(C) > a certainly has a degree
which is not below the degree of any non-cleaf.

Proof. Suppose that k ≥ 0 is the maximum number of edges that we can add using Algorithm 2 such that at
every required step the conditions (i), (ii) and (iii) hold. Note that at the start we have that all components
are uniform and all cleaves have the degree one, so (i), (ii) and (iii) do hold. Let n = |T|. If k = n − 1, then
we are done. Suppose that k = n − 2. Then we would have one edge left and we could add it according to
Algorithm 2 and there would be a single component remaining so we would be done. Now suppose that
k < n − 2.

Let T′ ≤ T be the spanning subgraph of T that we can construct using Algorithm 2 with k = |E(T′)|.
Suppose that T′ has l components C1,C2, . . . ,Cl. Consider the graph T1 with vertices Ci and where there is
an edge CiC j if and only if there is an edge in T between Ci and C j. Note that T1 is connected and acyclic
and hence a tree. Thus, we must have degT1

(Ci) = 1 for some Ci. Since there are no e, f such that there are
two edges in T between Ce and C f (as that would give a cycle in T), we have that Ci is a cleaf. In particular,
there must be a cleaf.

We now choose to split the given problem into two cases.

Case 1. There is no MMM component in T′. We split this case into two further subcases.

Case 1a. Every component of degree a or b is a cleaf. Note that by adding any edge from T\T′ we do not
obtain any component with zero total availability since we could still add edges to make T. Thus, there is
some component that is not a cleaf. Let C be a component that is not a cleaf and has the highest possible
degree and let deg(C) = ξ. Also, let u be a PA vertex of desired degree a. There is a shortest path in T from u
to C. Let that path be P = ux1 · · · xmv with m ≥ 0 and v ∈ C. Since C is not a cleaf, there must be some v0 ∈ C
and a PA vertex y ∈ V(T)\C such that y < P and v0y ∈ E(T). Therefore, ux1 · · · xmv · · · v0y is a path in T.

If m = 0, then we may add the edge uv. This is valid in accordance with Algorithm 2 and it is not
difficult to realize that all the components would now be uniform. Moreover, the newly formed component
containing u, v may or may not be a cleaf, but either way, each cleaf with a degree greater than a would not
have a degree lower than any non-cleaf. For this reason, the additional conditions (i), (ii) and (iii) would
all hold as well. This observation would contradict the maximality of k, as desired.

Now, if m > 0, then note that degT(x1) ≤ ξ because x1 must belong to a component that is not a cleaf and
not C, since P must enter and then leave that component. This means that degT(u) = a ≤ degT(y), as well
as degT(x1) ≤ ξ = degT(v0). This allows us to apply Lemma 4.1 on the path ux1 · · · xmv · · · v0y and deduce
that degT(y) = a or degT(x1) = ξ. In any case, there exists an edge whose endpoints are two PA vertices
with the desired degrees a and ξ coming from different components, one of which is not a cleaf. Thus,
we can add that edge according to Algorithm 2. It is not difficult to establish that all the newly obtained
components will be uniform. Also, the newly formed component may or may not be a cleaf, but either way,
the condition (iii) will hold, as desired. This contradicts the maximality of k once again.
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Case 1b. Not all components with degrees a, b are cleaves. As noted earlier, there must exist at least one
cleaf. The condition (iii) guarantees that there certainly exists a cleaf of degree a or b. Without loss of
generality, let there be a cleaf of degree a. We now have that either there is a component of degree b that is
not a cleaf, or all the components of degree b are cleaves and then there must be a component of degree a
which is not a cleaf. Either way, there are two components C,D of degrees a, b, respectively, such that one
of them is a cleaf, while the other is not.

Without loss of generality, let C be a cleaf and let u ∈ C be the corresponding PA vertex. Following the
same argument as in Case 1a, we can show that that Algorithm 2 permits us to add an edge of T whose
endpoints have the desired degrees a, b in T. We now have two possibilities — either the newly formed
component is uniform or not. If it is uniform, then it must be of degree a or b and it is not difficult to check
that all the conditions (i), (ii) and (iii) must hold. If it is not uniform, this means that we had a non-cleaf of
degree b to begin with, which promptly implies that we end up with an MMM component and that all the
newly existing cleaves must have the degree a or b. This means that the conditions (i), (ii) and (iii) all hold.
We reach a contradiction regarding the maximality of k.

Case 2. There is an MMM component in T′. Let u be any vertex which is in some cleaf, and by (ii), without
loss of generality, let degT(u) = a. Let C be the MMM component and let ux1 · · · xmv0 be the shortest path in T
from u to C, where m ≥ 0 and v0 is a PA vertex. Also, let v1 ∈ C be a PA vertex such that degT(v0) , degT(v1).
There must be some y < C such that v1y ∈ E(T), which means that ux1 · · · xmv0 · · · v1y is a path in T.

If m = 0, then either degT(v0) = b, in which case we can add the edge uv0, or degT(v1) = b, and then by
Lemma 4.1 we obtain degT(v0) = b or degT(y) = a, thus we can add either the edge uv0 or v1y. In each of
these scenarios, Algorithm 2 permits us to add an edge in such a way that all the conditions (i), (ii) and (iii)
are satisfies. This can be noticed by using a similar argumentation as done so in Case 1b.

If m ≥ 1, then by Lemma 4.2, at least one of the two edges xmv0 or v1y will have endpoints with desired
degrees a and b and could be added using Algorithm 2. Whatever the case, by adding the said edge, we
will connect some component to C and keep at most one MMM component. If there is a new cleaf, it must
have degree a or b. Thus, the conditions (i), (ii) and (iii) will all certainly hold. This once again contradicts
the maximality of k.

We have just shown that all trees that minimize R f can be constructed using Algorithm 2. Thus, the only
thing left to do is to show the converse — that any tree constructed using Algorithm 2 actually minimizes
R f . In order to finalize the desired proof, we will rely on the following lemma which analyzes the behavior
of Algorithm 2 while it is being executed.

Lemma 4.4. Whenever Algorithm 2 is applied on some degree sequence D, at any time after all the vertices have been
added and before the tree is fully constructed, the following conditions must hold:

(i) There are no forbidden components.

(ii) If there is an MMM component, then all the cleaves C have deg(C) equal to a or b.

(iii) If there are no MMM components, then each cleaf C satisfying the property deg(C) > a certainly has a degree
which is not below the degree of any non-cleaf.

Proof. We will prove the lemma by induction. Clearly, the lemma statement is true before any edges have
been added. Suppose it is true after adding k edges for some k < n−2. By using a similar argument as done
so in the proof of Lemma 4.3, there must be a cleaf.

If there is an MMM component, then there must be a cleaf of degree a or b, so Algorithm 2 dictates that
an edge should be added whose endpoints have desired degrees a and b. Regardless of which such edge is
added, we obtain that all the cleaves must have degrees a and b. Thus, the conditions (i), (ii) and (iii) must
all be satisfied, as desired.

If there is no MMM component, then if all the uniform components of degree a are cleaves, the problem
is straightforward to resolve — Algorithm 2 dictates that we should add an edge such that its endpoints
have the desired degrees a and ξ, where ξ represents the greatest degree that a non-cleaf component has.
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The newly formed component will be uniform and its degree shall be ξ, and from here, it is not difficult to
notice that (i), (ii) and (iii) must all hold.

Finally, if there is no MMM component and there exists at least one component of degree a that is not
a cleaf, then Algorithm 2 states that we should add an edge whose endpoints have the desired degrees a
and b. However, by doing so, we obtain that the new component is either a uniform component of degree
a or b, or an MMM component. If the component is uniform, then it is trivial to see that all the conditions
(i), (ii) and (iii) are satisfied. If the newly generated component is an MMM component, this means that it
arose from merging a non-cleaf of degree a and a non-cleaf of degree b. From here, it is evident that all the
remaining cleaves must have the degree a or b, which implies that the conditions (i), (ii) and (iii) all hold
once again.

We are now in the position to implement Lemma 4.4 in order to complete the proof of the validity of
Algorithm 2, and thereby finalize the proof of Theorem 1.3.

Proof of the validity of Algorithm 2. If a tree attains the minimum R f value onTD, then it must be constructible
by Algorithm 2, according to Lemma 4.3. Thus, in order to complete the proof, it is sufficient to demonstrate
that each tree constructible by Algorithm 2 must also attain the minimum R f value on TD. Similarly to
the proof of the validity of Algorithm 1, we note that there are finitely many trees up to isomorphism with
a given degree sequence. For this reason, the minimum of R f must be achieved by some tree and this
tree must be constructible by Algorithm 2, due to Lemma 4.3. So, in order to prove that Algorithm 2 only
produces trees that minimize R f , we just need to show that any two trees constructed by Algorithm 2 have
the same R f .

Let T,S be constructed by Algorithm 2 and let x1y1, . . . , xn−1yn−1 be the edges of T and z1t1, . . . , zn−1tn−1
be the edges of S in the order in which they were added in Algorithm 2 to construct T,S, respectively. It
is enough to show that, for each k = 1,n − 1, we have {degT(xk),degT(yk)} = {degS(zk),degS(tk)}, since this
would clearly indicate R f (T) = R f (S), by virtue of Eq. (1). Now, for any tree H constructed by Algorithm 2,
we will denote Y j,k(H) to be the total sum of availabilities of all vertices of desired degree j after k edges have
been added. In order to finalize the proof, it becomes sufficient to show that, for a fixed value k ∈ 0,n − 1,
Y j,k(H) is the same for all the trees H and all the values of j. We shall prove this by induction.

Note that the base case for k = 0 is true. Suppose that the statement is true up to some k, then notice that
Y j,k(S) = Y j,k(T). If a = b, then it immediately follows that all the edges to be added throughout the rest of
the algorithm will necessarily have endpoints whose desired degrees will all be equal to a. For this reason,
it is clear that Y j,k+1(S) = Y j,k+1(T) will hold for each j, and there is nothing left to discuss. Now, suppose
that a < b. We call an edge spanning if its endpoints have degrees a and b. By virtue of Lemma 4.4, there is
always a cleaf of degree a or b and, thus, the algorithm allows us to only add spanning edges unless there
is no MMM component and all the uniform components of degrees a and b are cleaves.

Now consider what happens after adding the first k edges in both T and S, for some k < n − 1. If we
suppose that Y j,k+1(S) = Y j,k+1(T) does not hold for each j, we may assume without loss of generality that in
T, there is no MMM component and all the uniform components of degrees a or b in T are cleaves. We now
point out that for any a < 1 < b, the number of uniform components of degree 1 must be the same in both
T and S as at the start of the algorithm after the vertices have been added but the edges have not. To verify
this, we observe that Lemma 4.4 dictates that such uniform components necessarily stay uniform up until
k edges have been added. Moreover, the only way for such a component to disappear is if it represents a
cleaf which is then merged into another uniform component whose degree is not greater than a. However,
this is not possible, since in this scenario, the other component would necessarily not be a cleaf, hence it
could be merged with one of the components which have a PA vertex whose desired degree is at least b.
Thus, the said edge addition would not be in accordance with Algorithm 2, which is not possible.

Thus, after k edges have been added, both S and T need to have the same number of uniform components
whose degree is 1, where a < 1 < b. Besides that, the total number of components must be n−k in both trees.
Thus, the total number of components containing only PA vertices of desired degrees a and b is the same
for T and S. It is not difficult to notice that this can only happen if all components containing PA vertices
with desired degrees a and b are cleaves in both T and S. Now, we can see that neither xk+1yk+1 nor zk+1tk+1



I. Damnjanović, Ž. Rand̄elović / Filomat 38:3 (2024), 1085–1099 1097

are spanning. Without loss of generality, let degT(xk+1) = degS(zk+1) = a. We further have that degT(yk) is
equal to the smallest j, a ≤ j < b such that Y j,k(T) is strictly larger than the number of uniform components
of degree j. However, this value is the same for S and T, hence degT(yk) = degS(tk), which completes the
proof.

5. Conclusion

Theorem 1.3 offers a complete solution set for both the R f maximization and R f minimization problem on
TD whenever the discrete symmetric function f is a strict positive polarity. This result makes a substantial
contribution to the field of chemical graph theory due to the sheer fact that many adjacent vertex degree
based topological indices are yielded by such functions f . For example, by analyzing the topological indices
displayed in Table 1, it is straightforward to deduce that a tree T ∈ TD is constructible by Algorithm 1
(Algorithm 2) if and only if it maximizes (minimizes) the Randić index, second Zagreb index, second
modified Zagreb index, harmonic index and sum–connectivity index, and if and only if it minimizes
(maximizes) the Sombor index.

We finish the paper by comparing Algorithms 1 and 2 with their counterparts disclosed by Wang. While
doing so, we will also give two brief examples of how Theorem 1.3 can be used on a concrete valid degree
sequence in order to yield the complete solution for the R f maximization and R f minimization problem in
the case that f is a strict positive polarity function. First of all, it can be said that Algorithm 1 is quite similar
to the algorithm given in Definition 1.1 and merely represents a relaxation of its rule set — the incoming
vertices do not have to be connected to a fixed available vertex of greatest possible degree, but to any such
available vertex. However, this small distinction is precisely what guarantees that Algorithm 1 necessarily
yields all the solutions to the R f maximization problem, while the other algorithm might not. For example,
let D1 = (4, 4, 3, 3, 2, 1, . . . , 1︸  ︷︷  ︸

8 ones

). By implementing the greedy tree construction algorithm, we quickly obtain

the uniquely determined greedy tree depicted in Figure 5.

6 7 8 9 10 11 12 13

2 3 4 5

1

Figure 5: The greedy tree corresponding to the degree sequence D1 = (4, 4, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1).

The issue with the aforementioned algorithm is that it forces the vertices of degrees three and two to
all be adjacent to a fixed vertex of degree four. However, there do exist solutions which do not satisfy this
property, which means that the given algorithm fails at generating all the possible solutions. On the other
hand, if we apply Theorem 1.3, we are able to swiftly conclude that some tree T attains the maximum R f
value on TD1 if and only if it belongs to one of the three isomorphism classes shown in Figure 6. This
observation is straightforward to notice — the trees constructible by Algorithm 1 are precisely such that the
two vertices of degree four are adjacent, while each vertex of degree three or two must have a neighbor of
degree four. Thus, there essentially exist exactly three different trees that attain the maximum R f value on
TD1 , with the greedy tree obtained by Wang corresponding to the tree given in Figure 6a. It becomes evident
that, although the difference between Algorithm 1 and the greedy tree construction from Definition 1.1 is
small, it proves to be crucial if our goal is to obtain all the solutions to the R f maximization problem.
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Figure 6: All three isomorphism classes corresponding to the trees constructible by Algorithm 1 for the
degree sequence D1 = (4, 4, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1). Each vertex is labelled by its degree and all the leaves
are left out for the sake of brevity.
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Figure 7: All nine isomorphism classes corresponding to the trees constructible by Algorithm 2 for the
degree sequence D2 = (8, 7, 6, 6, 5, 5, 3, 3, 3, 2, 1, 1, . . . , 1). Each vertex is labelled by its degree and all the
leaves are left out for the sake of brevity.

If we try to compare Algorithm 2 with the alternating greedy tree construction from Definition 1.2, it is
not difficult to see that these two algorithms are not that similar. It is convenient to demonstrate this fact
through an example. Let D2 = (8, 7, 6, 6, 5, 5, 3, 3, 3, 2, 1, 1, . . . , 1︸     ︷︷     ︸

30 ones

). If we run Algorithm 2 and use Theorem 1.3,

it is possible to obtain nine different isomorphism classes which represent the complete solution set to the
R f minimization problem onTD2 , provided f is a strict positive polarity function. All of these isomorphism
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classes are depicted in Figure 7. On the other hand, the construction from Definition 1.2 yields only two
isomorphism classes [10, Figure 7] that correspond to the trees given in Figures 7e and 7h. The reason why
the alternating greedy tree construction gives only two out of nine solutions, while Algorithm 2 generates
all nine, is quite easy to explain — the two algorithms use a vastly different rule set and construction
methodology. From here, it becomes clear that Theorem 1.3 represents a substantial improvement over the
aforementioned earlier construction mechanism.
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[7] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17(4)

(1972), 535–538.
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