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Available at: http://www.pmf.ni.ac.rs/filomat

A bivariate probability generator for the odd generalized exponential
model: Mathematical structure and data fitting

Mahmoud El-Morshedya,c, Mohamed. S. Eliwab,c

aDepartment of Mathematics, College of Science and Humanities in Al-Kharj,
Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

bDepartment of Statistics and Operation Research, College of Science, Qassim University, Buraydah 51482, Saudi Arabia
cDepartment of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

Abstract. The generalized exponential (GE) distribution is the well-established generalization of the expo-
nential distribution in statistical literature. Tahir et al. (2015) proposed a flexible probability generator called
the odd generalized exponential-G (OGE-G) family of distributions. In this article, we propose a bivariate
extension of the OGE-G class, in the so-called the bivariate odd generalized exponential-G (BOGE-G) family
of distributions, whose marginal distributions are OGE-G families. Important mathematical and statistical
properties of the BOGE-G family including joint density function with its marginals, Marshall-Olkin copula,
product moments, covariance, conditional densities, median correlation coefficient, joint reliability func-
tion, joint hazard rate function with its marginal functions, marginal asymptotic, and distributions for both
max(X1,X2) and min(X1,X2), are derived. After the general class is introduced, a sub-model is discussed
in detail. The maximum likelihood approach is utilized for estimating the bivariate family parameters. A
simulation study is carried out to assess the performance of the sub-model parameters. A real-life data set
is analyzed to illustrate the flexibility of the proposed bivariate class.

1. Introduction

The exponential (E) distribution is the basic and well-recognized probability model in teaching and
research. For lifetime phenomenon and reliability studies, the E model is rarely used due to having
constant hazard rate, but its memoryless property has utility in queuing theory. Various extensions of
the E distribution have been reported in the literature and have received increasing attention, especially
the exponentiated exponential (EE) distribution. In the literature, the EE distribution is also called the
generalized exponential (GE) distribution (see, Gupta et al. [1] and Gupta and Kundu [2, 3]). The cumulative
distribution function (CDF) of the GE distribution is given by

FGE =
(
1 − e−α x)β ; x > 0, (1)

where β > 0 is the power parameter, and α > 0 is the scale parameter. To bring the flexibility in a probability
distribution, the generalization or extension is the basic idea ”parameter induction approach”. Azzalini [4],
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Marshall-Olkin [5] and Gupta et al. [1] were the pioneers who proposed skew-normal, Marshall-Olkin, and
exponentiated-G families of distributions. Gupta et al. [1] discussed generalized families using Lehmann
alternatives 1 and 2 (LA1 and LA2) FLA1(x) = G(x)β and FLA2(x) = 1 − [Ḡ(x)]β, where G(·) and Ḡ(·) = 1 − G(·)
are the CDF and survival function (SF) of the baseline distribution, and β > 0 is the shape parameter.
For more detail on generalized families, the reader is referred to Tahir and Nadarajah [6] and Tahir and
Cordeiro [7]. Alzaatreh et al. [8] introduced a general approach for the construction of generalized families
by utilizing the transformed-transformer (T-X) technique. Based on Alzaatreh et al. [8] method, some odd
univariate distributions have been proposed in literature such as odd log-logistic-G (OLL-G) (Gleaton and
Lynch [9]), odd gamma-G (OGa-G) (Torabi [10]), odd Weibull-G (OW-G) (Bourguignon et al. [11]), odd
Birnbaum-Saunders-G (OBS-G) (Ortega et al. [12]), odd Burr-G (OB-G) (Alizadeh et al. [13]), generalized
odd half-Cauchy-G (GOHCa-G) (Cordeiro et al. [14]) and odd Lindley-G (OL-G) (Silva et al. [15]). Recently,
Tahir et al. [16] introduced a new odd function of distributions called the odd generalized exponential-G
(OGE-G) which exhibit flexible hazard rate shapes such as increasing, decreasing, bathtub or upside-down
bathtub. For more details about odd univariate generator (Alzaatreh et al. [8]). The CDF and PDF of the
OGE-G family are, respectively, given by

FOGE−G(x;α, β, ξ) =
(
1 − e−α

G(x;ξ)
Ḡ(x;ξ)

)β
; x > 0 (2)

and

fOGE−G(x;α, β, ξ) =
α β1(x; ξ)[
Ḡ(x; ξ)

]2 e−α
G(x;ξ)
Ḡ(x;ξ)

(
1 − e−α

G(x;ξ)
Ḡ(x;ξ)

)β−1
; x > 0, (3)

where α > 0 and β > 0 are scale and shape parameters, respectively, and ξ is the vector of parameters. The
bivariate (BV) or multivariate (MV) probability distributions have been derived and developed by many
statisticians which have wide applications in various fields including drought, reliability, engineering,
weather, sports, among others. More detail is given in Balakrishnan and Lai [17], and Sarabia and Gomez
[18]. The construction or development of BV (MV) discrete and continuous models are mainly such as the
compounding ”power series class”, marginals, copulas, reduction, and conditioning. Recently, the trend
in introducing new BV compounded, weighted and generalized (G-) families of distributions which have
received increased attention, which is briefly described below:
1. BV compounded distributions and families: Dimitrakopoulou et al. [19] obtained four BV extended
exponential-geometric (BVEEG) distributions from the extended exponential-geometric (EEG) model in-
troduced by Adamidis et al. [20]. Kundu and Gupta [21] proposed and studied BV Weibull-geometric
(BVWG) distribution and discussed some of its properties and estimation methods. Kundu [22] intro-
duced a five-parameter BV complementary GE-geometric (BVCGEG) model and investigated some of its
important properties. Roozegar and Jafari [23] introduced and studied complementary BV generalized
linear failure rate-power series (BVGLFRPS) family of distributions. Nadarajah and Roozegar [24] pro-
posed BV Weibull-power series (BVWPS) family of distribution which generalizes the work of [21]. Jafari
and Roozegar [25] obtained BV generalized-exponential power-series (BVGEPS) family of distributions by
compounding GE and power-series distributions. Bidram [26] compounded two discrete distributions and
proposed BV geometric-Poisson distribution.
2. BV weighted distributions: The Ronald Fisher’s idea of weighted distribution received attention due
to the work of [27, 28] who applied it in proposing sampling plans for human families and wildlife pop-
ulations. Later, their applications were found useful in the fields of line transcend sampling, renewal
theory, etiological studies, ecology, arial surveys, reliability modeling and bimedical sciences, among oth-
ers. Mahfond and Patil [29] first proposed and studied weight function for BV distributions. Patil et al. [30]
gave different weight functions, and illustrated their applications in various models. Further work on BV
weighted distributions appeared in [31–34]. Al-Mutairi et al. [35] first introduced an absolute continuous
BV weighted exponential (BVWtE) distribution from weighted exponential (WtE) marginal. Mahdavi et
al. [36] proposed BVWtE distribution from GE marginals and studied some of its mathematical proper-
ties. Jamalizadeh and Kundu [37] introduced a different approach for the construction of BVWtE model
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as compared to Al-Mutairi’s approach, called it weighted Marshall-Olkin BV exponential (WtMOBVE)
distribution. Recently, Ghosh and Alzaatreh [38], and Arnold et al. [39] proposed and studied BVWtE and
BVWtGE models via conditioning.
3. BV G-families: Gupta and Kundu [40] introduced BV proportional reversed hazard rate (BVPRHR)
family, that is, using LA1 class FPRHR(x) = [G(x)]β and discussed some of its properties. Sarabia et al.
[41] proposed three BV beta-generated (BVBG) families and also studied properties of some specific BVBG
distributions. The CDF of the well-known beta-G family (Eugene et al. [42]) of distributions can be listed
as

FBG(x) =
∫ G(x)

0
[B(a, b)]−1 ta−1 (1 − t)b−1 dt = IG(x)(a, b), (4)

where a > 0 and b > 0 are shape parameters, It(p, q) = B(p, q)/Bt(p, q), B(p, q) and Bt(p, q) are incomplete
beta function ratio, beta function and incomplete beta functions, respectively. Balakrishnan and Ristić
[43] introduced BV Zografos-Balaktishnan gamma-G (BVZBGaG) family from ZBGaG family proposed in
Zografos and Balakrishnan [44]. The CDF of ZBGaG family can be formulated as

FZBGaG(x) =
∫
− log [1−G(x)]

0
[Γ(a)]−1 ta−1 exp(−t) dt = [Γ(a)]−1 γ

(
a,− log [1 − G(x)]

)
, (5)

where Γ(·) and γ(·) are complete gamma and upper incomplete gamma functions, respectively. Ghosh
and Hamedani [45] proposed BV Ristić-Balaktishnan gamma-G (BVRBGaG) family from RBGaG family
proposed by Ristić and Balaktishnan [46]. The CDF of RBGaG family can be expressed as

FRBGaG(x) = 1 −
∫
− log G(x)

0
[Γ(a)]−1 ta−1 exp(−t) dt = 1 − [Γ(a)]−1 γ

(
a,− log G(x)

)
. (6)

Roozegar and Jafari [47] proposed Marshall-Olkin type BV exponentiated extended Weibull (BVEeW)
family of distributions using LA1 approach to Gurvich et al. [48] extended-Weibull (eW) family. The CDF
of exponentiated-eW (EeW) family of distributions is given by

FEeW(x) =
(
1 − e−λH(x;ξ)

)α
; x > 0, (7)

where λ > 0 and α > 0 are the scale and power parameters, respectively, and H(x; ξ) is a non-negative
monotonically increasing function which depends on the parameter vector ξ.

The aim of our paper is to introduce a new bivariate family, the bivariate odd generalized exponential-G
(BOGE-G) family based on Marshall-Olkin shock model [49], whose marginal distributions are OGE-G
families. A random vector X =(X1,X2) follows the BV Marshall-Olkin model if and only if there exist three
independent random variables (RVs) U1, U2 and U3 such that ”X1 = max{U1,U3} and X2 = max{U2,U3}”
or ”X1 = min{U1,U3} and X2 = min{U2,U3}”. The proposed BOGE-G class was generated from three
independent OGE-G families for distributions that use a maximization process. Some features of the
BOGE-G family can be listed as follows:

1. The joint CDF can be formulated as a mixture of an absolute continuous and a singular functions;
2. The joint PDF, joint CDF and joint survival function can be proposed in explicit forms;
3. The joint hazard rate function (HRF) can take various shapes depending on the BOGE-G parameters;
4. The marginals of the BOGE-G class can be utilized to analyze various kindes of failure rates;
5. The stress-strength model is not based on the baseline function, but only on the parameters of the

bivariate class;
6. It can be applied to a maintenance model or a stress model;
7. This class contains several bivariate special distributions depending on the baseline function (BF);
8. This family can be utilized to model asymmetric data;
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9. It provide consistently better fits than other generated distributions under the same BF.

The paper is unfolded as follows. In Section 2, the BOGE-G family and its margins are defined. Some
mathematical properties of the BOGE-G class are obtained in Section 3. A sub-model of the BOGE-G
family called BOGE-Gompertz distributionis discussed in Section 4. In Section 5, the family parameters are
estimated via the maximum likelihood technique. A simulation study is performed in Section 6. In Section
7, the usefulness of the BOGE-G class is illustrated by means of a real data set. Finally, Section 8 offers some
concluding remarks and future work.

2. The BOGE-G Family: Methodology and Structure

Assume Ui ∼ OGE − G(α, ξ, βi); i = 1, 2, 3 are three independent RVs. Define Xm = max{Um,U3}

; m = 1, 2. Thus, the bivariate vector (BVr) X =(X1,X2) has the BOGE-G class with parameters vector
Ω = (α, ξ, β1, β2, β3). The joint CDF of the BVr X can be formulated as

FX1,X2 (x1, x2) = FOGE−G(z;α, ξ, β3)
2∏

i=1

FOGE−G(xi;α, ξ, βi), (8)

where z = min(x1, x2). Equation (8) can be written as follows

FX1,X2 (x1, x2) =
{

FOGE−G(x1;α, ξ, β1 + β3) × FOGE−G(x2;α, ξ, β2) if x1 ≤ x2
FOGE−G(x1;α, ξ, β1) × FOGE−G(x2;α, ξ, β2 + β3) if x1 > x2.

(9)

The corresponding joint PDF of Equation (9) can be expressed as

fX1,X2 (x1, x2) =


f1(x1, x2) if 0 < x1 < x2 < ∞
f2(x1, x2) if 0 < x2 < x1 < ∞
f3(x, x) if 0 < x1 = x2 = x < ∞,

(10)

where

f1(x1, x2) = fOGE−G
(
x2;α, ξ, β2

)
× fOGE−G

(
x1;α, ξ, β1 + β3

)
,

f2(x1, x2) = fOGE−G
(
x1;α, ξ, β1

)
× fOGE−G

(
x2;α, ξ, β2 + β3

)
,

and

f3(x, x) =
β3

β1 + β2 + β3
fOGE−G

(
x;α, ξ, β1 + β2 + β3

)
.

The expressions f1(x1, x2) and f2(x1, x2) can be derived by differentiating Equation (8) with respect to x1 and
x2 in case of x1 < (>) x2, respectively. Whereas f3(x, x) cannot be derived in the same approach. Thus, the
following fact can be utilized to get f3(x, x)

∞∫
0

f3(x, x) dx = 1 −
∫
∞

0

∫ x2

0
f1(x1, x2)dx1dx2 −

∫
∞

0

∫ x1

0
f2(x1, x2)dx2dx1. (11)

The marginal CDFs of the BOGE-G class can be represented as

FXi (xi) = FOGE−G
(
xi;α, ξ, βi + β3

)
; i = 1, 2. (12)

Therefore, the marginal PDFs to Equation (12) can be formulated as

fXi (xi) = fOGE−G
(
xi;α, ξ, βi + β3

)
; i = 1, 2, (13)
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The asymptotics of Equations (12) and (13) as G(xi; ξ)→ 0 are given by

FXi (xi) ∼ [αG(xi; ξ)]βi+β3 , (14)

and

fXi (xi) ∼
(
βi + β3

)
αβi+β31(xi; ξ) [G(xi; ξ)]βi+β3−1 , (15)

respectively. Further, when xi →∞, the asymptotics of Equations (12) and (13) are given by

1 − FXi (xi) ∼
(
βi + β3

)
e
−

α
G(xi ;ξ) , (16)

and

fXi (xi) ∼
α
(
βi + β3

)[
G(xi; ξ)

]2 1(xi; ξ)e
−

α
G(xi ;ξ) , (17)

respectively. A useful linear representation can be provided for the marginal PDFs of the BOGE-G class.
Using the generalized binomial expansion, expanding the exponential function in power series, and a result
of Gradshteyn and Ryzhik (2000, Section 0.314) for a power series raised to a positive integer, we get

fXi (xi) =
∞∑

k=0

ϖk,(βi+β3)hβi+β3+k(xi); i = 1, 2, (18)

where hβi+β3+k(xi) =
(
βi + β3 + k

)
1(xi, ξ) [G(xi, ξ)]βi+β3+k−1 is a RV having the exponential-G PDF with power

parameter (βi + β3 + k),

ϖk,(βi+β3) =

∞∑
m=0,l=m

(−1)l−m

l!
(
βi + β3

)
l

(
l

m

)
Lm,k with

(
βi + β3

)
0 = 1,

(
βi + β3

)
l =

(
βi + β3

) (
βi + β3 − 1

)
...

(
βi + β3 − l + 1

)
,

Lm,k =
1

kb0

s∑
n=1

(n(m + 1) − k) bnLm,k−n with Lm,0 = bm
0 ,m = 1, 2, 3, ...,

bn = an+1 with an =
∑

(s, j)∈In

(−1)s+ j+1

s!
αi

(
−s
j

)
,

and

In = {(s, j) : s + j = n, s = 1, 2, 3, ...; j = 0, 1, 2, ...}.

3. Statistical Generator Properties

3.1. Absolute continuous and singular parts with copula
The BOGE generator has both an absolute continuous and a singular parts similar to Marshall and

Olkin’s bivariate exponential model. The joint distribution function of X1 and X2 has a singular part along
the line x1 = x2 with weight β3

β1+β2+β3
, and has an absolute continuous part on 0 < x1 , x2 < ∞ with weight

β1+β2

β1+β2+β3
. Interestingly, the BOGE-G family can be derived via the Marshall-Olkin copula with the marginals

as the OGE-G family of distributions. To every bivariate distribution function FX1,X2 (x1, x2) with continuous
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marginals FX1 (x1) and FX2 (x2) corresponds a unique bivariate distribution function with uniform margins
C : [0, 1]2

→ [0, 1] called a copula, such that

FX1,X2 (x1, x2) = C
(
FX1 (x1),FX2 (x2)

)
; for all (x1, x2) ∈ R2, (19)

(see, Nelsen [51]). The Marshall-Olkin copula can be expressed as

Cδ1,δ2 (v1, v2) = v1−δ1
1 v1−δ2

2 min
(
vδ1

1 , v
δ2
2

)
; for 0 < δ1, δ2 < 1. (20)

Utilizing vi = FXi (xi) where Xi ∼ OGE − G(α, ξ, βi + β3), and δi =
β3

βi+β3
; i = 1, 2 gives the same CDF as

Equation (9). A copula is a function that links the marginal distributions of random variables to their
joint distribution. A copula can have both continuous and singular parts, where the continuous part
describes the dependence between random variables and the singular part describes the probability of
perfect dependence or independence. To manipulate a copula analytically, one needs to use derivatives
and integrals, which can be done using generalized functions such as the Heaviside and Dirac functions. A
copula with a singular part can be used to model phenomena such as perfect correlation, extreme events,
or discrete data.

3.2. Distributions of T = max(X1,X2) and S = min(X1,X2)
In applied fields, particularly in the industrial, medical, insurance and military areas, it is significant to

derive the distributions of the RVs T and S, because the RVs X1 and X2 could be exchange rates in two time
periods, or remission times two chemicals when administered in two types of mechanical systems, or two
types of ammunition that will penetrate their target in military warfare, or future observations about the
stability of an engineering design. Assume the BVr X has the BOGE-G class, then the distributions of the
RVs T and S can be expressed, respectively, as

FT(t) = FOGE−G(t;α, ξ, β1 + β2 + β3), (21)

and

FS(t) = FOGE−G(t;α, ξ, β1 + β3) + FOGE−G(t;α, ξ, β2 + β3) − FOGE−G(t;α, ξ, β1 + β2 + β3). (22)

3.3. Moments of the margins and RV Z = Xr
1Xr

2

Descriptive statistics is an invaluable tool used in the analysis of data. It allows us to summaries and
interpret large datasets, providing a concise overview of the data’s key points. Descriptive statistics provide
quantifiable information about the data such as the mean, median, mode, variance, standard deviation and
range, which can be presented in graphical form. This enables us to quickly identify patterns and trends
within the data, allowing for more accurate conclusions to be drawn. Additionally, descriptive statistics
can be used to identify outliers in the data, thus providing an even more comprehensive understanding
of the dataset. In this segment, we derive the rth moment and mth incomplete moment of Xi when
Xi ∼ OGE − G(α, ξ, βi), such that i = 1, 2. Further, the product moment, say E(Xr

1Xr
2), covariance, and

coefficient of correlation of the BVr X are derived. The rth moment of Xi, say E(Xr
i ), can be expressed as

E(Xr
i ) =

∞∑
k=0

ϖk,(βi+β3)E(Yr
i,k); i = 1, 2, (23)

where Yi,k; i = 1, 2 are the RVrs having the exponential-G PDF hβi+β3+k(xi) with power parameter (βi + β3 + k).
The moments of the exponential-G distributions were discussed by Nadarajah and Kotz [53]. Setting r = 1
in Equation (23), we obtain the mean of Xi; i = 1, 2. The variance of Xi, say Var(Xi), can be expressed as

Var(Xi) =
∞∑

k=0

ϖk,(βi+β3)E(Y2
i,k) −

[
E(X1

i )
]2

; i = 1, 2. (24)
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For empirical purposes, the shapes of many distributions can be usefully described by what we call the first
incomplete moment which plays an important role for measuring inequality, for example, income quantiles,
and Lorenz and Bonferroni curves. The mth incomplete moment of X1 and X2 can be expressed as

Mmi (.) =
(
βi + β3

) ∞∑
k=0

dk

∫ G(.)

0
QG(w)wβi+β3+k−1dw; i = 1, 2. (25)

The last integral can be calculated for most G distributions. Utilizing Equations (10) and (18), the product
moments can be formulated as

E(Xr
1Xr

2) =
∫
∞

0

∫ x2

0
xr

1xr
2 f1(x1, x2)dx1dx2 +

∫
∞

0

∫ x1

0
xr

1xr
2 f2(x1, x2)dx2dx1 +

∫
∞

0
x2r f3(x, x) dx

=

∞∑
k=0

∞∑
k∗=0

[
ϖk,(β1+β3)ϖk∗,(β2)Ψ

(r)
2 (k, ω) + ϖk,(β2+β3)ϖk∗,(β1)Ψ

(r)
1 (k, ω)

]
+

β3

β1 + β2 + β3

∞∑
k∗=0

ϖk∗,(β1+β2+β3)Ψ
(r)
∗ (k, ω), (26)

where

Ψ(r)
i (k, ω) =

∫
∞

0
xr

i ∆
(r)(xi)hβi+β3+k∗ (xi) dxi,

∆(r)(xi) =
∫ xi

0
xr

3−i hβ3−i+β3+k(x3−i)dx3−i,

and

Ψ(r)
∗ (k, ω) =

∫
∞

0
x2r hβi+β3+k∗ (x) dx ; i = 1, 2.

Based on Equations (23) and (26) when r = 1, the covariance, say Cov(X1,X2), of the RVr X can be expressed
as

Cov(X1,X2) =
∞∑

k=0

∞∑
k∗=0

[
ϖk,(β1+β3)ϖk∗,(β2)Ψ

(1)
2 (k, ω) + ϖk,(β2+β3)ϖk∗,(β1)Ψ

(1)
1 (k, ω)

]
+

β3

β1 + β2 + β3

∞∑
k∗=0

ϖk∗,(β1+β2+β3)Ψ
(1)
∗ (k, ω) −

∞∑
k=0

ϖk,(β1+β3)E(Y1
1,k)

×

∞∑
k=0

ϖk,(β2+β3)E(Y1
2,k). (27)

According to Equations (23) and (27), the coefficient of correlation, say ϑ(X1,X2), can be represented as

ϑ(X1,X2) =

( ∞∑
k=0

ϖk,(β1+β3)E(Y2
1,k) −

[
E(X1

1)
]2

)(
∞∑

k=0

ϖk,(β2+β3)E(Y2
2,k) −

[
E(X1

2)
]2

)


−1
2

× [
∞∑

k=0

∞∑
k∗=0

[
ϖk,(β1+β3)ϖk∗,(β2)Ψ

(1)
2 (k, ω) + ϖk,(β2+β3)ϖk∗,(β1)Ψ

(1)
1 (k, ω)

]
+

β3

β1 + β2 + β3

∞∑
k∗=0

ϖk∗,(β1+β2+β3)Ψ
(1)
∗ (k, ω) −

∞∑
k=0

ϖk,(β1+β3)E(Y1
1,k)
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×

∞∑
k=0

ϖk,(β2+β3)E(Y1
2,k)], (28)

where ϑ(X1,X2) = Cov(X1,X2)
σX1σX2

, σXi = +
√

Var(Xi) for i = 1, 2.

3.4. Conditional densities
A conditional distribution is a statistical concept that describes the probability of an event occurring,

given that another event has already occurred. This type of distribution is useful for examining the
probability of outcomes that are dependent on a specific event. It enables us to predict the probability
of an event based on the probability of a different event. The conditional distribution can also be used to
analyze the relationship between two variables. This type of analysis can help us understand how a change.
Assume the RVr X has the BOGE-G class, the conditional PDF of Xi given X j = x j, (i, j = 1, 2, i , j), can be
expressed as

fXi |X j (xi | x j) =


f (1)
Xi |X j

(xi | x j) if 0 < xi < x j < ∞

f (2)
Xi |X j

(xi | x j) if 0 < x j < xi < ∞

f (3)
Xi |X j

(xi | x j) if 0 < xi = x j < ∞,

(29)

where

f (1)
Xi |X j

(xi | x j) =
αβ j

(
βi + β3

)
1(xi; ξ)e

−α
G(xi ;ξ)

G(xi ;ξ)

(
1 − e

−α
G(xi ;ξ)

G(xi ;ξ)

)βi+β3−1

(
β j + β3

) (
G(xi; ξ)

)2
1 − e

−α
G(xj ;ξ)

G(xj ;ξ)

β3
,

f (2)
Xi |X j

(xi | x j) =
αβi(

G(xi; ξ)
)2 1(xi; ξ)e

−α
G(xi ;ξ)

G(xi ;ξ)

(
1 − e

−α
G(xi ;ξ)

G(xi ;ξ)

)βi−1

,

and

f (3)
Xi |X j

(xi | x j) =
β3

β j + β3

(
1 − e

−α
G(xi ;ξ)

G(xi ;ξ)

)βi

.

Equation (29) can be derived by substituting from Equations (10) and (18) in the following relation

fXi |X j (xi | x j) =
joint(Xi,X j) density at (xi, x j)

marginal X j density at x j
; (i , j = 1, 2). (30)

3.5. Median correlation coefficient (MCC)
Domma [52] presented the MCC, say MX1,X2 , as a form

MX1,X2 = 4FX1,X2 (MX1 ,MX2 ) − 1, (31)

where MX1 and MX2 denote the median of X1 and X2, respectively. If X1 ∼ OGE − G(α, ξ, β1 + β3) and
X2 ∼ OGE − G(α, ξ, β2 + β3), then

MXi = QG


− log

[
1 −U

1
βi+β3

]
α − log

[
1 −U

1
βi+β3

]
 ; i = 1, 2, (32)
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where U has a uniform U(0, 1) distribution, and QG(.) = G−1(.) the baseline quantile function. So, the MCC
between X1 and X2 at U = 0.5 can be formulated as

MX1,X2 =

{
4FOGE−G

(
MX2 ;α, ξ, β2

)
× FOGE−G

(
MX1 ;α, ξ, β1 + β3

)
− 1 if x1 < x2

4FOGE−G
(
MX1 ;α, ξ, β1

)
× FOGE−G

(
MX2 ;α, ξ, β2 + β3

)
− 1 if x1 > x2.

(33)

3.6. Joint reliability function
Survival functions are an important tool in statistics, with many applications in understanding the

behavior of living organisms. In essence, a survival function is a mathematical expression of the probability
of an organism surviving until a certain time, given a certain set of conditions. The form of the survival
function can vary greatly, depending on the type of organism being studied. In contrast, a survival function
for a species of insect may only consider the rate of reproduction. For any organism, the survival function
is a reflection of the environment in which it exists. Factors such as climate, competition, and predation all
play a role in determining the survival rate. As a result, survival functions can provide valuable insight into
the ecology of a species. In addition to its use in ecology, the survival function is also used in economics and
other fields. Assume (X1,X2) be two dimensional RVr with CDF FX1,X2 (x1, x2), and the marginal functions
are FX1 (x1) and FX2 (x2). Then, the joint RF can be expressed as

RX1,X2 (x1, x2) = 1 − FX1 (x1) − FX2 (x2) + FX1,X2 (x1, x2). (34)

Assume the RVr X has the BOGE-G class. Then, the joint RF can be formulated as

RX1,X2 (x1, x2) =


R1(x1, x2) if 0 < x1 < x2 < ∞
R2(x1, x2) if 0 < x2 < x1 < ∞
R3(x, x) if 0 < x1 = x2 = x < ∞,

(35)

where

R1(x1, x2) = 1 − FOGE−G(x1;α, ξ, β1 + β3) − FOGE−G(x2;α, ξ, β2 + β3)+
FOGE−G(x2;α, ξ, β2) × FOGE−G(x1;α, ξ, β1 + β3),

R2(x1, x2) = 1 − FOGE−G(x1;α, ξ, β1 + β3) − FOGE−G(x2;α, ξ, β2 + β3)+
FOGE−G(x1;α, ξ, β1) × FOGE−G(x2;α, ξ, β2 + β3),

and

R3(x, x) = 1 − FOGE−GF(x;α, ξ, β1 + β3) − FOGE−GF(x;α, ξ, β2 + β3)+
FOGE−GF(x;α, ξ, β1 + β2 + β3).

3.7. Joint hazard rate function: Marginal distributions with asymptotic
Assume (X1,X2) be two dimensional RV with joint PDF fX1,X2 (x1, x2), and joint RF RX1,X2 (x1, x2). Basu

[54] defined the joint HRF as follows

hX1,X2 (x1, x2) =
fX1,X2 (x1, x2)

RX1,X2 (x1, x2)
. (36)

Based on Equation (36), the joint HRF of the BOGE-G class can be listed as

hX1,X2 (x1, x2) =


h1(x1, x2) if 0 < x1 < x2 < ∞
h2(x1, x2) if 0 < x2 < x1 < ∞
h3(x, x) if 0 < x1 = x2 = x < ∞,

(37)
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where

h1(x1, x2) = fOGE−G
(
x2;α, ξ, β2

)
× fOGE−G

(
x1;α, ξ, β1 + β3

)
×

[1 − FOGE−G(x1;α, ξ, β1 + β3) − FOGE−G(x2;α, ξ, β2 + β3)+

FOGE−G(x2;α, ξ, β2) × FOGE−G(x1;α, ξ, β1 + β3)]−1,

h2(x1, x2) = fOGE−G
(
x1;α, ξ, β1

)
× fOGE−G

(
x2;α, ξ, β2 + β3

)
×

[1 − FOGE−G(x1;α, ξ, β1 + β3) − FOGE−G(x2;α, ξ, β2 + β3)+

FOGE−G(x1;α, ξ, β1) × FOGE−G(x2;α, ξ, β2 + β3)]−1,

and

h3(x, x) =
β3

β1 + β2 + β3
fOGE−G

(
x;α, ξ, β1 + β2 + β3

)
×

[1 − FOGE−G(x;α, ξ, β1 + β3) − FOGE−G(x;α, ξ, β2 + β3)+

FOGE−G(x;α, ξ, β1 + β2 + β3)]−1.

Further, the marginal functions of the joint HRF, say hi(xi); i = 1, 2, of the BOGE-G class can be reportd as

hi(xi) =
fOGE−GF

(
xi;α, ξ, βi + β3

)
1 − FOGE−GF

(
xi;α, ξ, βi + β3

) ; i = 1, 2. (38)

The asymptotic of Equation (38) as G(xi; ξ)→ 0 can be listed as

hi(xi) ∼
(
βi + β3

)
αβi+β31(xi; ξ) [G(xi; ξ)]βi+β3−1 . (39)

Also, the asymptotic of Equation (38) as xi →∞ is given by

hi(xi) ∼
α(

G(xi; ξ)
)2 1(xi; ξ). (40)

4. Bivariate Odd Generalized Exponential-Gompertz Distribution

The Gompertz distribution is a continuous probability distribution that is often used to model the
distribution of time until an event occurs, particularly in survival analysis and reliability engineering. It
is named after the British mathematician Benjamin Gompertz, who introduced it in the early 19th century.
The Gompertz distribution is characterized by its shape, which features exponential growth in hazard rate
as time progresses. Assume

G(x; a, b) = 1 − e−
a
b (ebx
−1); a > 0, b > 0, (41)

is the CDF of the Gompertz RV. The joint CDF of the bivariate generalized exponential-Gompertz (BOGEGz)
is formulated using Equations (2), (8) and (41). The joint PDF can be extracted using Equations (3), (10)
and (41). The joint RF can be proposed using Equations (2), (35) and (41). Similarly, the joint HRF can be
derived using Equations (3), (37) and (41). As an example, the joint CDF of the BOGEGz distribution can
be formulated as

FX1,X2 (x1, x2) =

1 − e
−α

[
e

a
b (ebz

−1)
−1

]
β3 2∏

i=1

1 − e
−α

[
e

a
b (ebxi−1)

−1
]
βi

. (42)
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Figures 1, 2, and 3 show some plots of the joint PDF, joint HRF, and joint RF of the BOGEGz model based
on various values of the model parameters.
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Figure 1. Some distribution characterization functions for specific parameters
β1 = 0.5, β2 = 0.5, β3 = 0.5, α = 0.3, a = 0.05, and b = 0.06.
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Figure 2. Some distribution characterization functions for specific parameters
β1 = 0.1, β2 = 0.3, β3 = 0.5, α = 0.5, a = 0.2, and b = 0.02.

X
1

5
10

15

20

25

30

X
2

5
10

15

20

25

30

0.000

0.002

0.004

0.006

0.008

Joint PDF

X
1

5
10

15

20

25

30

X
2

5
10

15

20

25

30

0.0

0.1

0.2

0.3

0.4

Joint HRF

X
1

5
10

15

20

25

30

X
2

5
10

15

20

25

30

0.2

0.4

0.6

0.8

Joint RF

Figure 3. Some distribution characterization functions for specific parameters
β1 = 1.8, β2 = 0.5, β3 = 1.5, α = 0.3, a = 0.05, and b = 0.06.

As can be noted, the joint PDF of the BOGEGz model can be utilized to model asymmetric data. Further, it
can be either decreasing or unimodal-shaped. The joint HRF can take various shapes. Thus, the BOGEGz
distribution can be utilized as a probabilistic tool to model and discuss different types of failure rates.

5. A General Mathematical Formula for Parameters Estimation

In this segment, the unknown parameters of the BOGE-G class are estimated via the maximum likelihood
(ML) approach. The ML estimation is a statistical technique used to estimate parameters in a model. It
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is widely employed in the fields of engineering and science, as it provides an efficient way of estimating
parameters based on observed data. In essence, the technique works by calculating a probability distribution
that best fits the observed data. Once this distribution has been determined, the ML estimates of the
parameters are calculated by maximizing the likelihood function. This ML estimate is then used to make
predictions. The technique is advantageous because it is relatively easy to implement and can yield
accurate results, even when the data is heterogeneous and noisy. Furthermore, it is a powerful tool for
testing hypotheses as it can be used to determine the significance of certain parameters and provide insight
into the underlying structure of the data. Overall, ML estimation is a useful tool for making sense of
complex data. Its implementation is efficient and can yield accurate results. It is thus a valuable tool
for any researcher seeking to gain insight into the structure. Consider (x11, x21), (x12, x22),..., (x1n, x2n) is a
random sample of size n from the BOGE-G family. The following notation can be utilized: I1 = {x1i < x2i},
I2 = {x1i > x2i}, I3 = {x1i = x2i = xi}, I = I1 ∪ I2 ∪ I3, |I1| = n1, |I2| = n2, |I3| = n3, and |I| = n1 + n2 + n3 = n. Based
on the observations, the likelihood function, say l(Ω), of this sample can be proposed as

l(Ω) =
n1∏
i=1

f1(x1i, x2i)
n2∏
i=1

f2(x1i, x2i)
n3∏
i=1

f3(xi, xi). (43)

Substituting from Equation (10) into Equation (43), the log-likelihood function, say L(Ω), can be written as

L(Ω) = n1 ln
[
α2β2

(
β1 + β3

)]
− α

n1∑
i=1

G(x1i; ξ)

G(x1i; ξ)
+

(
β1 + β3 − 1

) n1∑
i=1

ln
[
1 − e

−α
G(x1i ;ξ)

G(x1i ;ξ)

]

+

n1∑
i=1

ln
[
1(x1i; ξ)

]
− 2

n1∑
i=1

ln
[
G(x1i; ξ)

]
+

n1∑
i=1

ln
[
1(x2i; ξ)

]
− 2

n1∑
i=1

ln
[
G(x2i; ξ)

]
− α

n1∑
i=1

G(x2i; ξ)

G(x2i; ξ)
+

(
β2 − 1

) n1∑
i=1

ln
[
1 − e

−α
G(x2i ;ξ)

G(x2i ;ξ)

]
+ n2 ln

[
α2β1(β2 + β3)

]
− α

n2∑
i=1

G(x1i; ξ)

G(x1i; ξ)
+

(
β1 − 1

) n2∑
i=1

ln
[
1 − e

−α
G(x1i ;ξ)

G(x1i ;ξ)

]
+

n2∑
i=1

ln
[
1(x1i; ξ)

]
− 2

n2∑
i=1

ln
[
G(x1i; ξ)

]
+

n2∑
i=1

ln
[
1(x2i; ξ)

]
− 2

n2∑
i=1

ln
[
G(x2i; ξ)

]
− α

n2∑
i=1

G(x2i; ξ)

G(x2i; ξ)

+
(
β2 + β3 − 1

) n2∑
i=1

ln
[
1 − e

−α
G(x2i ;ξ)

G(x2i ;ξ)

]
+

n3∑
i=1

ln
[
1(xi; ξ)

]
− 2

n3∑
i=1

ln
[
G(xi; ξ)

]
+ n3 ln

[
αβ3

]
− α

n3∑
i=1

G(xi; ξ)

G(xi; ξ)
+

(
β1 + β2 + β3 − 1

) n3∑
i=1

ln
[
1 − e

−α
G(xi ;ξ)

G(xi ;ξ)

]
. (44)

The first partial derivatives of Equation (44) with respect to β1, β2, β3, α and ξk (k = 1, 2, 3, ...) can be
expressed as

∂L(Ω)
∂β1

=
n1

β1 + β3
+

n1∑
i=1

ln
[
1 − e

−α
G(x1i ;ξ)

G(x1i ;ξ)

]
+

n2

β1
+

n2∑
i=1

ln
[
1 − e

−α
G(x1i ;ξ)

G(x1i ;ξ)

]

+

n3∑
i=1

ln
[
1 − e

−α
G(xi ;ξ)

G(xi ;ξ)

]
, (45)

∂L(Ω)
∂β2

=
n1

β2
+

n1∑
i=1

ln
[
1 − e

−α
G(x2i ;ξ)

G(x2i ;ξ)

]
+

n2

β2 + β3
+

n2∑
i=1

ln
[
1 − e

−α
G(x2i ;ξ)

G(x2i ;ξ)

]

+

n3∑
i=1

ln
[
1 − e

−α
G(xi ;ξ)

G(xi ;ξ)

]
, (46)
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∂L(Ω)
∂β3

=
n1

β1 + β3
+

n1∑
i=1

ln
[
1 − e

−α
G(x1i ;ξ)

G(x1i ;ξ)

]
+

n2

β2 + β3
+

n2∑
i=1

ln
[
1 − e

−α
G(x2i ;ξ)

G(x2i ;ξ)

]

+
n3

β3
+

n3∑
i=1

ln
[
1 − e

−α
G(xi ;ξ)

G(xi ;ξ)

]
, (47)

∂L(Ω)
∂α
=

2n1

α
−

n1∑
i=1

G(x1i; ξ)

G(x1i; ξ)
+ (β1 + β3 − 1)

n1∑
i=1

G(x1i; ξ)

G(x1i; ξ)A(x1i; ξ)
−

n1∑
i=1

G(x2i; ξ)

G(x2i; ξ)

+ (β2 − 1)
n1∑
i=1

G(x2i; ξ)

G(x2i; ξ)A(x2i; ξ)
+

2n2

α
−

n2∑
i=1

G(x1i; ξ)

G(x1i; ξ)
−

n2∑
i=1

G(x2i; ξ)

G(x2i; ξ)

+ (β1 − 1)
n2∑
i=1

G(x1i; ξ)

G(x1i; ξ)A(x1i; ξ)
+ (β2 + β3 − 1)

n2∑
i=1

G(x2i; ξ)

G(x2i; ξ)A(x2i; ξ)

+
n3

α
−

n3∑
i=1

G(xi; ξ)

G(xi; ξ)
+ (β1 + β2 + β3 − 1)

n3∑
i=1

G(xi; ξ)

G(xi; ξ)A(xi; ξ)
, (48)

and

∂L
∂ξk
=−α

n1∑
i=1

U(x1i; ξ) + (β1 + β3 − 1)
n1∑
i=1

αU(x1i; ξ)
A(x1i; ξ)

+ 2
n1∑
i=1

G(x1i; ξ)U(x1i; ξ)

+

n1∑
i=1

V(x1i; ξ) +
n1∑
i=1

V(x2i; ξ) + 2
n1∑
i=1

G(x2i; ξ)U(x2i; ξ) + (β2 − 1)
n1∑
i=1

αU(x2i; ξ)
A(x2i; ξ)

−α
n1∑
i=1

U(x2i; ξ) +
n2∑
i=1

V(x1i; ξ) + 2
n2∑
i=1

G(x1i; ξ)U(x1i; ξ) + (β1 − 1)
n2∑
i=1

αU(x1i; ξ)
A(x1i; ξ)

−α
n2∑
i=1

U(x1i; ξ) +
n2∑
i=1

V(x2i; ξ) + 2
n2∑
i=1

G(x2i; ξ)U(x2i; ξ)−α
n2∑
i=1

U(x2i; ξ)

+ (β2 + β3 − 1)
n2∑
i=1

αU(x2i; ξ)
A(x2i; ξ)

+

n3∑
i=1

V(xi; ξ) + 2
n3∑
i=1

G(xi; ξ)U(xi; ξ)

+ (β1 + β2 + β3 − 1)
n3∑
i=1

αU(xi; ξ)
A(xi; ξ)

−α
n3∑
i=1

U(xi; ξ), (49)

where

U(x; ξ) =
[G′(x; ξ)]ξk[

G(x; ξ)
]2 , V(x; ξ) =

[
1′(x; ξ)

]
ξk

1(x; ξ)
,

and

[Θ′(x; ξ)]ξk
= ∂Θ(x; ξ)/∂ξk.

By equating the Equations (45-49) with zeros, we get the non-linear regular equations. Therefore, the
solution must be obtained numerically.

6. Behavior of Estimator: A Simulation Study

A simulation study for parameter estimation is a method of finding the optimal values of model
inputs that match a set of reference data. This can be done by formulating the problem as a maximum
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likelihood optimization problem and using a parameter estimation study step in a software tool such as R.
A simulation study can help to gain insight into the effects of model inputs on the objective function, as
well as to perform curve fitting or data fitting applications. A simulation study for parameter estimation
may depend on factors such as the experimental design, the error structure, and the sample size.

The behaviour of the probability model estimators refers to how the estimators perform in terms of
their properties and characteristics. An estimator is a rule or a method for obtaining an estimate of an
unknown parameter based on observed data. An estimate is a specific value or a range of values obtained
by applying the estimator to a sample of data. Some of the properties that are used to evaluate and
compare estimators are: Bias, variance, mean squared error, mean relative errors, consistency, efficiency,
and sufficiency. Different estimators may have different behaviours depending on the model, the data, and
the sample size. For example, some estimators may be biased but consistent, while others may be unbiased
but inconsistent. Some estimators may be more efficient or more robust than others. Some estimators may
be derived from graphical methods such as probability plots, while others may be derived from analytical
methods such as maximum likelihood or method of moments. In this section, we assess the performance
of the maximum likelihood estimation (MLE) technique with respect to sample size n using R software.
Simulations are discussed based on different schemes as follows:

1. Generate N = 1000 samples of various sample sizes ni; i = 1, 2, 3, 4, 5 from the BOGEGz distribution as
follows

• Scheme I: β1 = 0.3, β2 = 0.8, β3 = 0.1, a = 0.3, b = 0.2, α = 0.3| n1 = 20, n2 = 50, n3 = 150, n4 =
300, n5 = 500.

• Scheme II: β1 = 0.4, β2 = 0.7, β3 = 0.2, a = 0.5, b = 0.4, α = 0.4| n1 = 20, n2 = 50, n3 = 150, n4 =
300, n5 = 500.

• Scheme III: β1 = 0.5, β2 = 0.6, β3 = 0.3, a = 0.7, b = 0.6, α = 0.2| n1 = 20, n2 = 50, n3 = 150, n4 =
300, n5 = 500.

• Scheme IV: β1 = 0.6, β2 = 0.5, β3 = 0.4, a = 0.9, b = 0.8, α = 0.5| n1 = 20, n2 = 50, n3 = 150, n4 =
300, n5 = 500.

• Scheme V: β1 = 0.7, β2 = 0.4, β3 = 0.5, a = 1.5, b = 1.4, α = 0.6| n1 = 20, n2 = 50, n3 = 150, n4 =
300, n5 = 500.

• Scheme VI: β1 = 0.8, β2 = 0.3, β3 = 0.6, a = 2.0, b = 1.8, α = 0.8| n1 = 20, n2 = 50, n3 = 150, n4 =
300, n5 = 500.

2. Compute the MLE for the 1000 samples, say Ω̂ j for j = 1, 2, ..., 1000.

3. Calculate the bias, mean squared errors (MSE), mean relative errors (MRE) for N = 1000 samples.

4. Simulation results are reported in Tables 1, 2, and 3 and provided via Figures 4 and 5 for schemes I and
II as an example. As can be noted, the bias approaches to zero when n increases. Similarly, both
MSE and MRE approach to zero as n grows. These results reveal the unbiasedness, consistency, and
efficiency properties of the MLE technique as n grows. Thus, we can conclude that the MLE technique
works quite well under different sizes of samples.
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Table 1. The empirical simulation results for schemes I and II.
Scheme I Scheme II

Parameter n Bias MSE MRE Bias MSE MRE
a 20 0.13628963 0.01952369 0.27223691 0.87136982 0.76096852 0.29098552

50 0.08332697 0.00702369 0.16102369 0.54112560 0.29185002 0.17912202
150 0.05120258 0.00224102 0.09896369 0.31201473 0.09737463 0.10408996
300 0.03339722 0.00122147 0.06698555 0.22903692 0.05189303 0.07710369
500 0.01903147 0.00061236 0.02901224 0.01301255 0.00086636 0.03263632

b 20 0.27663280 0.07502186 0.55410366 0.42336961 0.17489632 0.20401478
50 0.15636996 0.02441559 0.31428859 0.25258893 0.06601255 0.17198203
150 0.09641147 0.00923036 0.19936966 0.14619855 0.02017746 0.09811258
300 0.06422395 0.00423974 0.12730478 0.10701236 0.01202982 0.07102585
500 0.02498200 0.00062258 0.06602285 0.02303736 0.00097123 0.00552025

α 20 0.13930274 0.02112994 0.28130178 0.92412239 0.92410026 0.29128669
50 0.09289630 0.00824139 0.18212703 0.59309980 0.59396691 0.19801588
150 0.05329823 0.00396664 0.10622369 0.32714469 0.32703268 0.11102366
300 0.03500274 0.00083255 0.07396691 0.02502369 0.02303369 0.05022558
500 0.00666369 0.00003896 0.00092369 0.00336941 0.00410369 0.00603258

β1 20 0.32412024 0.10423697 0.28442555 0.86032684 0.73103269 0.29032185
50 0.20310369 0.04369951 0.13968222 0.50402369 0.25630361 0.19012553
150 0.11299822 0.01402255 0.07774960 0.38442023 0.15203368 0.13022699
300 0.08752332 0.00766369 0.02903259 0.20012025 0.09882690 0.08401225
500 0.00977475 0.00141225 0.00422701 0.08410236 0.00403255 0.00640236

β2 20 0.09901225 0.00963369 0.15831452 0.78013698 0.31336025 0.26302254
50 0.05933674 0.00352556 0.11801255 0.47800236 0.22801259 0.16033662
150 0.02630364 0.00067022 0.05133690 0.29702366 0.09112582 0.09302668
300 0.01041147 0.00013625 0.02035594 0.19023664 0.04289033 0.04369956
500 0.00536951 0.00003366 0.00612369 0.03482255 0.00141115 0.00710247

β3 20 0.05410366 0.00270236 0.10856921 0.36266991 0.14096337 0.25044148
50 0.03441259 0.00133694 0.07236695 0.23202238 0.05303668 0.15320369
150 0.02110396 0.00044525 0.04201885 0.12710395 0.01703695 0.08574118
300 0.01022369 0.00012036 0.03103368 0.09203699 0.00860125 0.06303699
500 0.00210025 0.00007126 0.02088589 0.04612368 0.00101778 0.01385558
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Table 2. The empirical simulation results for schemes III and IV.
Scheme III Scheme IV

Parameter n Bias MSE MRE Bias MSE MRE
a 20 0.24536629 0.12377416 0.38765541 0.76355409 0.53325985 0.37456721

50 0.17255304 0.08402554 0.24353684 0.48397461 0.30755489 0.19554772
150 0.11635899 0.02047651 0.19465469 0.19664829 0.16455793 0.10537780
300 0.06654024 0.00746555 0.11984655 0.09387642 0.08845012 0.05564672
500 0.02847476 0.00094544 0.06786541 0.02301255 0.00227455 0.01664820

b 20 0.24634654 0.06645791 0.34678224 0.55362378 0.33945672 0.36497671
50 0.13982654 0.03456782 0.28465910 0.35031634 0.21095874 0.28466554
150 0.08465543 0.00773547 0.17745441 0.20477618 0.11854665 0.18308574
300 0.05344674 0.00284554 0.10663598 0.12094751 0.04578097 0.10446773
500 0.01284650 0.00043708 0.04937510 0.03987645 0.00772965 0.03947655

α 20 0.16343680 0.04994613 0.32574781 0.88108774 0.72543404 0.55467194
50 0.12464785 0.01076561 0.25346794 0.58355110 0.53409313 0.38947109
150 0.08864509 0.00835461 0.18154908 0.37893744 0.34098412 0.24691049
300 0.05491094 0.00109476 0.09814482 0.13540462 0.16534840 0.12004765
500 0.00966344 0.00077846 0.00126491 0.07454002 0.08466551 0.00957623

β1 20 0.77839746 0.32497404 0.41297763 0.63454709 0.49498751 0.58766294
50 0.49234878 0.22476599 0.32773981 0.44109467 0.28499255 0.38756621
150 0.23574976 0.13978563 0.20344621 0.27450941 0.18766094 0.23564095
300 0.13560938 0.08946641 0.11376530 0.16554380 0.10847665 0.11645445
500 0.05498313 0.02294865 0.07208731 0.08220947 0.02745652 0.03765001

β2 20 0.33049875 0.12965864 0.16638912 0.38467659 0.22946641 0.32885765
50 0.27455479 0.08834654 0.12994765 0.28476554 0.12044357 0.24634644
150 0.21958762 0.02094764 0.08765093 0.20664862 0.08045567 0.19094862
300 0.13694723 0.00834562 0.03389087 0.12059765 0.00947652 0.11043765
500 0.08856553 0.00074513 0.00822544 0.04567773 0.00265455 0.05772545

β3 20 0.23536841 0.13276734 0.24646904 0.45475513 0.29576105 0.37746515
50 0.18641044 0.10455779 0.19277466 0.29763477 0.18565520 0.24468095
150 0.13845652 0.06486539 0.14274550 0.18655402 0.10846524 0.15448824
300 0.08846521 0.02094761 0.09451347 0.09330756 0.08456724 0.10025445
500 0.00946513 0.00436650 0.02194620 0.00856652 0.00305976 0.01335985
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Table 3. The empirical simulation results for schemes V and VI.
Scheme V Scheme VI

Parameter n Bias MSE MRE Bias MSE MRE
a 20 0.65374733 0.29837764 0.53883098 0.32945834 0.19464855 0.26029546

50 0.32878624 0.13563804 0.28455792 0.26443793 0.10454385 0.20475194
150 0.19436517 0.04562782 0.17355482 0.21494654 0.05472930 0.15026825
300 0.10394864 0.00865301 0.08445378 0.12951524 0.00923645 0.09450345
500 0.01046539 0.00184350 0.00845443 0.08454384 0.00104655 0.02045147

b 20 0.44236725 0.23703975 0.37455092 0.32749642 0.21955493 0.28496548
50 0.36845609 0.16367840 0.31546802 0.27745839 0.17468365 0.23547819
150 0.28456714 0.11038629 0.22648941 0.18458390 0.10458583 0.12045853
300 0.17454472 0.05475482 0.13204642 0.10465373 0.02437483 0.08443703
500 0.09465428 0.00309465 0.06465789 0.03964418 0.00104668 0.00745849

α 20 0.54025823 0.02112994 0.48376463 0.84648936 0.53829640 0.78294734
50 0.41047654 0.00824139 0.37501864 0.68357490 0.38569365 0.61402695
150 0.28288460 0.00396664 0.24093764 0.34253894 0.14036548 0.31045634
300 0.13846521 0.00083255 0.11947641 0.19465843 0.08455638 0.15493549
500 0.05341072 0.00003896 0.02094557 0.10465543 0.01046543 0.08586049

β1 20 0.28665895 0.16389045 0.23309741 0.27468934 0.12538495 0.25496395
50 0.20464198 0.12049652 0.16638901 0.21045578 0.08457852 0.19713054
150 0.12792554 0.09443682 0.11947603 0.15384742 0.02264895 0.12053385
300 0.08049862 0.01194354 0.04095756 0.08684965 0.00468245 0.05443840
500 0.00443789 0.00345748 0.00395665 0.00248467 0.00064802 0.00084568

β2 20 0.27640936 0.12948641 0.21946546 0.19846493 0.12057651 0.17434942
50 0.18464508 0.07486554 0.13647848 0.14384094 0.08465925 0.13074657
150 0.10386472 0.00836457 0.08465400 0.11094776 0.02058756 0.09469033
300 0.04093691 0.00094758 0.03324573 0.08464862 0.00385408 0.04369956
500 0.00773541 0.00004124 0.00553784 0.00438794 0.00029475 0.00285025

β3 20 0.19476593 0.10465584 0.17483095 0.29478504 0.16459354 0.28450385
50 0.12945730 0.01346485 0.10457842 0.20465785 0.11465833 0.19545845
150 0.06458296 0.00448543 0.04356473 0.13056715 0.07484390 0.11056844
300 0.00745682 0.00064244 0.00237554 0.07445930 0.00944683 0.05048664
500 0.00045834 0.00008405 0.00013368 0.02045655 0.00074431 0.01758430
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Figure 4. Visually display of the results reported in Table 1 for scheme I.
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Figure 5. Visually display of the results listed in Table 1 for scheme II.

7. Data Fitting: A Comparative Study and Statistical Criteria

This data represents football (soccer) data of the UEFA Champion’s League data for the year 2004-2005,
and 2005-2006 (see, Meintanis [55]). The BOGEGz model and some well-known competitive distributions
are considered to analyze and discuss this data. The competitive models are bivariate generalized expo-
nential (BGE), bivariate Weibull exponential (BWE), bivariate Gumbel exponential (BGuE), bivariate Burr
X exponential (BBUXE), Marshall-Olkin bivariate exponential (MOBE), bivariate generalized linear failure
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rate (BGLFR), bivariate exponentiated modified weibull extension (BEMWEx), bivariate generalized power
Weibull (BGPW), bivariate exponentiated Weibull (BEW), bivariate Weibull (BW), bivariate exponetiated
Weibull Gomperz (BEWGz), bivariate Burr X Gompertz (BBUXGz), bivariate Gompertz (BGz), and bivariate
generalized Gompertez (BGGz), bivariate Gumbel Gompertz (BGuGz) models. The comparison is based
on some statistical criteria, namely, negative L, Akaike information criterion (AIC), correct AIC (CAIC),
Bayesian IC (BIC), and Hannan-Quinn information criterion (HQIC). Further, the Kolmogorov-Smirnov (K-
S) distances and its corresponding p-values are calculated for the marginals. Figure 6 shows the bivariate
data spread via scatter and box plots. It was found some extreme observations.
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Figure 6. Diagram for real data.

For the marginals of the BOGEGz model, some non-parametric plots are sketched, namely, kernel
density, quantile-quantile (QQ), box, and TTT plots. A kernel density plot, often referred to as a kernel
density estimation (KDE) plot, is a non-parametric way to estimate the probability density function of a
continuous random variable. It is used to visualize the distribution of data points in a dataset and provides
a smoother representation compared to a histogram. Kernel density plots are useful for exploring the
distribution of data, identifying modes or peaks, and getting a sense of the data’s central tendency and
spread. They are particularly valuable when dealing with continuous data or when you want to visualize
the distribution of a single variable. For the QQ plot, it is a graphical tool used in statistics to assess
whether a dataset follows a particular theoretical distribution, such as the normal distribution. It helps you
visually compare the quantiles (percentiles) of your dataset against the quantiles of the chosen theoretical
distribution. If the points in the QQ plot lie approximately along a straight line, it suggests that your data
follows the chosen theoretical distribution. A box plot, also known as a box-and-whisker plot, is a graphical
representation of the distribution of a dataset. It provides a summary of the data’s central tendency, spread,
and identifies potential outliers. Box plots are particularly useful for comparing the distributions of multiple
datasets or for visualizing the distribution of a single dataset. In the context of testing or quality control,
”Total Time in Test” (TTT) typically refers to the cumulative amount of time that an item or component
is subjected to a testing process. TTT is often used in reliability testing, where the goal is to assess the
durability or longevity of a product or system under various conditions. It helps in estimating the expected
lifetime or failure rate of the item being tested. The results can be displayed in Figures 7, 8 and 9, and it
turns out that the data is asymmetric and does not contain any outliers. Furthermore, margins have an
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increased shape failure rate.
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Figure 7. The kernel densities for the marginals.
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Figure 8. The QQ plots for the marginals.
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Figure 9. The box and TTT plots for the marginals.

Before discussing and analyzing bivariate data across the presented model, the margins of the proposed
model should be empirically tested. Table 4 shows the goodness-of-fit (GOF) measures for the marginals.
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Table 4. The GOF measures for the marginals.
RV α β a b −L KS P-value
X1 0.7515 1.3710 0.0163 0.0087 161.8372 0.0947 0.8944
X2 2.7147 0.5461 0.0022 0.0311 164.4902 0.1066 0.7947

min(X1,X2) 0.3554 0.6634 0.2831 0.0043 159.4071 0.0998 0.8545

As can be seen, the margin provides more suitable for real data (P-value > 0.05). The empirical results
can be proved via Figures 10, 11, and 12.
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Figure 10. The estimated PDFs for the marginals.
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Figure 11. The empirical CDFs for the marginals.
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Figure 12. The probability-probability plots for the marginals.
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Having established with evidence that the marginal distributions are capable of discussing the data, we
can now test the BOGEGz distribution on that data. Tables 5 and 6 list the MLE and GOF measures for the
BOGEGz distribution and some competitive distributions.

Table 5. The MLE for the tested distributions based on real data.

Model β̂1 β̂2 β̂3 â b̂ α̂ γ̂
BGE 1.5532 0.4993 1.1563 0.0393 − − −

BWE 0.1351 0.3024 0.2650 0.0251 − − −

BGuE 2.6784 0.9621 2.0653 5.0111 4.0814 − −

BBUXE 0.3855 0.1362 0.3101 0.0122 − − −

MOBE 0.0121 0.0141 0.0221 − − − −

BGLFR 0.4520 0.1567 0.3604 0.0002 0.0008 − −

BEMWEx 0.1673 0.0613 0.1391 85.9183 4.5057 0.0254 −

BGPW 3.2294 1.9831 4.0840 0.0377 − − −

BEW 1.2269 0.3820 0.6611 0.0123 1.2683 − −

BW 0.3974 0.2738 0.3389 0.0837 − − −

BEWGz 0.5477 0.1917 0.4446 0.4117 0.0795 0.0050 1.3587
BBUXGz 0.1320 0.1873 0.2014 0.0063 0.0154 − −

BGz 0.0036 0.0023 0.0213 0.0406 − − −

BGGz 0.7428 0.2621 0.5984 0.0117 0.0294 − −

BGuGz 0.5784 0.2044 0.4756 0.0092 0.0473 2.2784 −

BOGEGz 0.5189 0.5837 1.3435 0.0065 0.0126 2.6815 −

Table 6. The GOF measures for the tested models based on real data.
Model −L AIC CAIC BIC HQIC

BGE 299.9142 607.7419 608.8894 614.2301 609.9163
BWE 291.1437 592.3103 594.2147 600.3223 595.1196
BGuE 297.8028 605.5696 607.5102 613.6426 608.4036
BBUXE 294.8127 597.6223 598.9336 604.0427 599.9744
MOBE 298.9362 607.9303 609.8102 615.9102 610.7330
BGLFR 296.8389 603.7339 605.6396 611.6896 606.5012
BEMWEx 294.0745 600.3396 603.1032 609.9325 603.7703
BGPW 344.8012 697.5412 698.8110 703.9036 699.8124
BEW 298.9336 607.9396 609.8396 615.8793 610.7399
BW 346.0174 700.0102 701.3145 706.4336 702.2892
BEWGz 294.6036 603.2112 607.1745 614.5107 607.2338
BBUXGz 301.1889 612.3892 614.3302 620.5289 615.2447
BGz 303.4996 614.9220 616.2036 621.4336 617.2302
BGGz 294.9170 599.8145 601.7163 607.9017 602.7147
BGuGz 294.2397 600.5336 603.3202 610.1230 603.9336
BOGEGz 283.7412 579.5336 582.3398 589.2112 582.9337

As can be noted, the BOGEGz model provides a better fit than the other tested models, because it has
the smallest value among −L, AIC, CAIC, BIC, and HQIC. Based on the maximum likelihood estimators
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(MLEs) of the BOGEGz parameres, the joint PDF, joint HRF, and joint RF are displayed in Figure 13.
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Figure 13. The joint PDF, joint HRF, and joint RF for the real data.

8. Concluding Remarks and Future Work

In this article, a new flexible bivariate generator of distributions has been introduced, in the so-called
bivariate odd generalized exponential-G (BOGE-G) family. The marginal distributions of the BOGE class
are OGE-G families. Both the joint CDF and the joint PDF of the BOGE-G family have simple forms;
therefore, this new bivariate class can be easily applied in practice to model bivariate data constrained in
the interval (0,∞). Some distribution statistics have been derived and discussed in detail. It was found that
the BOGE-G family can be used to model asymmetric data under various forms of failure rates. Further, the
stress-strength model was not based on the baseline function, but only on the parameters of the bivariate
generator. Regarding estimating the family parameters, the MLE approach has been used for this purpose.
The simulation results have indicated that the MLE technique works quite satisfactorily and can be applied
to estimate the family parameters. A real data set has been analyzed to provide the capacity and highlight
of the new generator. We can conclude this article by reporting a multivariate extension of the OGE-G
family. Let X1,X2, ...,Xn+1 be independent RVs with Xi ∼ OGE−G (α, ξ, βi), such that i = 1, 2, ...,n+1. Define
Y j = max{X j,Xn+1} for j = 1, 2, ...,n. Hence, the joint CDF of Y1,Y2, ..., Yn can be formulated as

FY1,Y2,...Yn (y1, y2, ..., yn) = Pr
[
Y1 ≤ y1,Y2 ≤ y2, ...,Yn ≤ yn,Yn+1 ≤ y

]
= F(y;α, ξ, βn+1)

n∏
j=1

F(y j;α, ξ, β j),

for (y1, y2, ..., yn) ∈ (0,∞)n, where y = min{y1, y2, ..., yn}. Clearly, the BOGE generator arises from this
multivariate OGE-G class by taking n = 2. As a future work, we will discuss in detail the multivariate
extension of the OGE-G family, as it has many applications in lifelong analysis, environmental sciences,
economics, engineering, and medical sciences. Finally, we hope that our new bivariate family will attract a
wider range of applications in areas such as survival and life data, economics, engineering, hydrology, and
others.
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