Greville type $\{1,2,3\}$-generalized inverses for rectangular matrices

Cang Wu ${ }^{\text {a }}$, Jianlong Chen ${ }^{\text {a,* }}$
a School of Mathematics, Southeast University, Nanjing 210096, China

Abstract

For any complex matrices A and $W, m \times n$ and $n \times m$, respectively, it is proved that there exists a complex matrix X such that $A X A=A, X A X=X,(A X)^{*}=A X$ and $X A(W A)^{k}=(W A)^{k}$, where k is the index of $W A$. When A is square and W is the identity matrix, such an X reduces to Greville's spectral $\{1,2,3\}$-inverse of A. Various expressions of such generalized inverses are established.

1. Introduction

Throughout the paper, let $\mathbb{C}^{m \times n}$ be the set of all $m \times n$ complex matrices and I_{n} be the $n \times n$ identity matrix. For $A \in \mathbb{C}^{m \times n}$, the symbols A^{*} and $\operatorname{rank}(A)$ will denote the conjugate transpose and the rank of A, respectively. When A is square, $\operatorname{Ind}(A)$ denotes the index of A, i.e., the smallest nonnegative integer k such that $\operatorname{rank}\left(A^{k}\right)=\operatorname{rank}\left(A^{k+1}\right)$.

For $A \in \mathbb{C}^{m \times n}$, recall the four Penrose equations [17]
(i) $A X A=A$,
(ii) $X A X=X$,
(iii) $(A X)^{*}=A X$,
(iv) $(X A)^{*}=X A$.

As usual, a common solution of the i-th, \cdots, j-th equations in (1) is called an $\{i, \cdots, j\}$-inverse of A and denoted by $A^{(i, \cdots, j)}$, and the set of all $\{i, \cdots, j\}$-inverses of A is denoted by $A\{i, \cdots, j\}$. It is known that the set $A\{1,2,3,4\}$ is nonempty and it consists of a single element A^{+}, called the Moore-Penrose inverse of A.

For $A \in \mathbb{C}^{n \times n}$, recall that the Drazin inverse A^{D} of A is the unique common solution of the equations

$$
\begin{equation*}
X A^{k+1}=A^{k}, \quad X A X=X, \quad A X=X A \tag{2}
\end{equation*}
$$

where $k=\operatorname{Ind}(A)[6]$. The Drazin inverse of A always exists, and in the special case of $\operatorname{Ind}(A) \leq 1$, the Drazin inverse of A is called the group inverse of A and denoted by $A^{\#}$. The spectral idempotent $I_{n}-A A^{D}$ will be denoted by A^{π}.

The equation $X A^{k+1}=A^{k}$ in (2) is closely related to spectral properties of generalized inverses. For example, if G is a solution of $X A^{k+1}=A^{k}$, then every λ-vector of A of grade p for $\lambda \neq 0$ is a λ^{-1}-vector of G of grade p (see, e.g., [3, p. 162]). Following Campbell and Meyer [4], any solution of $X A^{k+1}=A^{k}$ is called a weak Drazin inverse of A.

[^0]Although the Moore-Penrose inverse A^{+}is in general not a weak Drazin inverse of A, Greville [7] showed that there exists a class of $\{1,2,3\}$-inverses of A that are weak Drazin inverses of A. According to [7, Theorem 1], for a \{1\}-inverse $A^{(1)}$ of A, the composite generalized inverse $A^{D} A A^{\dagger}+A^{(1)}\left(A-A A^{D} A\right) A^{\dagger}$ is a common solution of equations

$$
\begin{equation*}
A X A=A, \quad X A X=X, \quad(A X)^{*}=A X, \quad X A^{k+1}=A^{k} ; \tag{3}
\end{equation*}
$$

and conversely, any solution of (3) is of the form $A^{D} A A^{\dagger}+A^{(1)}\left(A-A A^{D} A\right) A^{\dagger}$ for some $\{1\}$-inverse $A^{(1)}$ of A (see also [3, p.173, Ex. 52]). These composite generalized inverses will hereafter be referred to as spectral $\{1,2,3\}$-inverses of A.

Spectral $\{1,2,3\}$-inverses can be used like Moore-Penrose inverses when studying the least-squares problem of linear equations [3], and like Drazin inverses when studying systems of differential equations with singular coefficients or Markov chains [4, 5].

Unaware of Greville's work, the present authors studied solutions of (3) under the name of $\left\{1,2,3,1^{k}\right\}$ inverses [22]. A main idea is that if X is a $\{1,2,3\}$-inverse of A and Y is a weak Drazin inverse of A, then $X+\left(I_{n}-X A\right) Y A X$ is a spectral $\{1,2,3\}$-inverse of A. Also, it was shown that A has a unique spectral $\{1,2,3\}$-inverse if and only if $\operatorname{Ind}(A) \leq 1$; in this case the unique spectral $\{1,2,3\}$-inverse is exactly the core inverse of Baksalary and Trenkler [1], which has attracted much attention in the last decade (see, e.g., [$2,8-12,15,16,18-21]$).

In this paper, the notion of spectral $\{1,2,3\}$-inverses is extended to rectangular matrices. Let $A \in \mathbb{C}^{m \times n}$. It is proved that for any $W \in \mathbb{C}^{n \times m}$, there exists a class of $\{1,2,3\}$-inverses X of A such that $X A(W A)^{k}=(W A)^{k}$, where k is the index of $W A$. This class of $\{1,2,3\}$-inverses, called W-spectral $\{1,2,3\}$-inverses of A, reduces to spectral $\{1,2,3\}$-inverses of A when $m=n$ and $W=I_{n}$, and becomes the Moore-Penrose A^{+}when $W=A^{*}$. Some characterizations of W-spectral $\{1,2,3\}$-inverses are presented, and the set of all W-spectral $\{1,2,3\}$-inverses is described. Moreover, a canonical form for W-spectral $\{1,2,3\}$-inverses is given by using the singular value decomposition.

2. Spectral $\{1,2,3\}$-inverses for rectangular matrices

We begin with the following definition.
Definition 2.1. Let $A \in \mathbb{C}^{m \times n}, W \in \mathbb{C}^{n \times m}$. Then $X \in \mathbb{C}^{n \times m}$ is called a W-spectral $\{1,2,3\}$-inverse of A if it satisfies

$$
\begin{equation*}
A X A=A, \quad X A X=X, \quad(A X)^{*}=A X, \quad X A(W A)^{k}=(W A)^{k} \tag{4}
\end{equation*}
$$

where k is the index of WA.
Example 2.2. Let $A \in \mathbb{C}^{m \times n}, W \in \mathbb{C}^{n \times m}$.
(i) When $m=n$ and $W=I_{n}$ (or more generally, W is a nonsingular matrix commuting with A), W-spectral $\{1,2,3\}$-inverses of A reduce to its spectral $\{1,2,3\}$-inverses.
(ii) When $W=A^{*}$, the equation $X A(W A)^{k}=(W A)^{k}$ becomes $X A A^{*} A=A^{*} A$ since $\operatorname{Ind}\left(A^{*} A\right) \leq 1$. Multiplying by A^{+}from the right and using $A^{*} A A^{+}=A^{*}$, we get $X A A^{*}=A^{*}$, which is equivalent to X being a $\{1,4\}$-inverse of A. Thus, the A^{*}-spectral $\{1,2,3\}$-inverse of A is exactly the $\{1,2,3,4\}$ inverse A^{\dagger} and so it is unique.

The next result shows the existence of W-spectral $\{1,2,3\}$-inverses by giving an explicit construction of them.

Theorem 2.3. Let $A \in \mathbb{C}^{m \times n}, W \in \mathbb{C}^{n \times m}$. Then the following statements are equivalent:
(i) X is a W-spectral $\{1,2,3\}$-inverse of A.
(ii) $X=A^{(1,2,3)}+\left(I_{n}-A^{(1,2,3)} A\right)\left[(W A)^{D} W\right] A A^{(1,2,3)}$ for some $\{1,2,3\}$-inverse $A^{(1,2,3)}$ of A.
(iii) $X=A^{(1,2,3)}+\left(I_{n}-A^{(1,2,3)} A\right) Z A A^{(1,2,3)}$ for some $\{1,2,3\}$-inverse $A^{(1,2,3)}$ of A and some Z satisfying $Z A(W A)^{k}=(W A)^{k}$, where $k=\operatorname{Ind}(W A)$.

Proof. Let $k=\operatorname{Ind}(W A)$.
(i) \Rightarrow (ii). Assume that X is a W-spectral $\{1,2,3\}$-inverse of A. Since $X A(W A)^{k}=(W A)^{k}$, we have $X A(W A)^{D}=(W A)^{D}$, i.e., $\left(I_{n}-X A\right)(W A)^{D}=0$. It follows that

$$
X=X+\left(I_{n}-X A\right)\left[(W A)^{D} W\right] A X
$$

Thus (ii) follows by taking $A^{(1,2,3)}=X$.
(ii) \Rightarrow (iii). It is clear by noting that $(W A)^{D} W$ is just such a Z.
$($ iii $) \Rightarrow($ i $)$. For any $\{1,2,3\}$-inverse $A^{(1,2,3)}$ of A and Z satisfying $Z A(W A)^{k}=(W A)^{k}$, let

$$
X=A^{(1,2,3)}+\left(I_{n}-A^{(1,2,3)} A\right) Z A A^{(1,2,3)}
$$

Since $A X=A A^{(1,2,3)}$, it is easy to see that X is a $\{1,2,3\}$-inverse of A. Moreover,

$$
\begin{aligned}
X A(W A)^{k} & =A^{(1,2,3)} A(W A)^{k}+\left(I_{n}-A^{(1,2,3)} A\right) Z A(W A)^{k} \\
& =A^{(1,2,3)} A(W A)^{k}+\left(I_{n}-A^{(1,2,3)} A\right)(W A)^{k}=(W A)^{k}
\end{aligned}
$$

Therefore, X is a W-spectral $\{1,2,3\}$-inverse of A by the definition.
For a $\{1,2,3\}$-inverse of A and a solution of the equation $X A(W A)^{k}=(W A)^{k}$, we may think of Theorem 2.3 as a way to construct a matrix that is simultaneously a $\{1,2,3\}$-inverse of A and a solution of $X A(W A)^{k}=$ $(W A)^{k}$.

Remark 2.4. In a similar vein, taking

$$
Y=A^{(1,2,4)}+A^{(1,2,4)} A\left[W(A W)^{D}\right]\left(I_{m}-A A^{(1,2,4)}\right)
$$

one can show that Y is a $\{1,2,4\}$-inverse of A and satisfies $(A W)^{l} A Y=(A W)^{l}$, where l is the index of $A W$. This type of $\{1,2,4\}$-inverses is dual to W-spectral $\{1,2,3\}$-inverses.

Also, by Cline's formula $(W A)^{D}=W\left[(A W)^{D}\right]^{2} A$, we know that

$$
\begin{equation*}
(W A)^{D} W=W(A W)^{D} \tag{5}
\end{equation*}
$$

The next result gives a characterization of the set of all $\{1,2,3\}$-inverses of A; it is a slight modification of [3, p. 56, Exercise 12].

Lemma 2.5. For any fixed $\{1\}$-inverse $A^{(1)}$ and $\{1,2,3\}$-inverse $A^{(1,2,3)}$ of $A \in \mathbb{C}^{m \times n}$, the set of all $\{1,2,3\}$-inverses of A is given by

$$
\begin{equation*}
A\{1,2,3\}=\left\{A^{(1,2,3)}+\left(I_{n}-A^{(1)} A\right) Z A A^{(1,2,3)}: Z \in \mathbb{C}^{n \times m}\right\} \tag{6}
\end{equation*}
$$

Proof. For any $Z \in \mathbb{C}^{n \times m}$, it is direct to verify that

$$
A^{(1,2,3)}+\left(I_{n}-A^{(1)} A\right) Z A A^{(1,2,3)} \in A\{1,2,3\}
$$

Also, for any $X \in A\{1,2,3\}$, since $A X=A A^{(1,2,3)}$, it follows that $A\left(X-A^{(1,2,3)}\right)=0$ and $X A A^{(1,2,3)}=X$. Thus,

$$
\begin{aligned}
& A^{(1,2,3)}+\left(I_{n}-A^{(1)} A\right)\left(X-A^{(1,2,3)}\right) A A^{(1,2,3)} \\
= & A^{(1,2,3)}+\left(X-A^{(1,2,3)}\right) A A^{(1,2,3)}=A^{(1,2,3)}+X-A^{(1,2,3)}=X
\end{aligned}
$$

which shows that $X \in\left\{A^{(1,2,3)}+\left(I_{n}-A^{(1)} A\right) W A A^{(1,2,3)}: W \in \mathbb{C}^{n \times n}\right\}$. The proof is completed.

Observe Greville's construction for spectral \{1,2,3\}-inverses:

$$
A^{D} A A^{\dagger}+A^{(1)}\left(A-A A^{D} A\right) A^{\dagger}=A^{(1)} A A^{\dagger}+\left(I_{n}-A^{(1)} A\right) A^{D} A A^{\dagger}
$$

Here, $A^{(1)} A A^{\dagger}$ is a $\{1,2,3\}$-inverse of A.
We next present a characterization of the set of all W-spectral $\{1,2,3\}$-inverses of A.
Theorem 2.6. Let $A \in \mathbb{C}^{m \times n}, W \in \mathbb{C}^{n \times m}$, and let $A^{(1)}$ be a $\{1\}$-inverse of A. Then the set of all W-spectral $\{1,2,3\}$-inverses of A is given by

$$
\left\{A^{(1)} A A^{\dagger}+\left(I_{n}-A^{(1)} A\right)\left[W(A W)^{D}+S(A W)^{\pi}\right] A A^{\dagger}: S \in \mathbb{C}^{n \times m}\right\}
$$

Proof. Let $k=\operatorname{Ind}(W A)$. For any $S \in \mathbb{C}^{n \times m}$, take

$$
X_{s}=A^{(1)} A A^{\dagger}+\left(I_{n}-A^{(1)} A\right)\left[W(A W)^{D}+S(A W)^{\pi}\right] A A^{\dagger}
$$

Then X_{s} is a $\{1,2,3\}$-inverse of A by Lemma 2.5, and

$$
\begin{aligned}
X_{s} A(W A)^{k} & =A^{(1)} A(W A)^{k}+\left(I_{n}-A^{(1)} A\right)\left[W(A W)^{D}+S(A W)^{\pi}\right] A(W A)^{k} \\
& =A^{(1)} A(W A)^{k}+\left(I_{n}-A^{(1)} A\right)\left[W(A W)^{D} A(W A)^{k}+S(A W)^{\pi} A(W A)^{k}\right] \\
& \stackrel{(5)}{=} A^{(1)} A(W A)^{k}+\left(I_{n}-A^{(1)} A\right)\left[(W A)^{D} W A(W A)^{k}+S A(W A)^{\pi}(W A)^{k}\right] \\
& =A^{(1)} A(W A)^{k}+\left(I_{n}-A^{(1)} A\right)(W A)^{k}=(W A)^{k} .
\end{aligned}
$$

Therefore, X_{s} is a W-spectral $\{1,2,3\}$-inverse of A. In particular,

$$
X_{0}=A^{(1)} A A^{+}+\left(I_{n}-A^{(1)} A\right)\left[W(A W)^{D}\right] A A^{+}
$$

is a W-spectral $\{1,2,3\}$-inverse of A.
On the other hand, for any W-spectral $\{1,2,3\}$-inverse X of A, since X and X_{0} are $\{1,2,3\}$-inverses of A, it follows by Lemma 2.5 that there exists a $T \in \mathbb{C}^{n \times m}$ such that

$$
X=X_{0}+\left(I_{n}-A^{(1)} A\right) T A X_{0}
$$

Since $X A(W A)^{k}=(W A)^{k}$ and $X_{0} A(W A)^{k}=(W A)^{k}$, it follows that

$$
\left[\left(I_{n}-A^{(1)} A\right) T A X_{0}\right] A(W A)^{k}=0
$$

and so

$$
\left[\left(I_{n}-A^{(1)} A\right) T\right] A(W A)^{k}=0
$$

Thus we get

$$
\begin{aligned}
& {\left[\left(I_{n}-A^{(1)} A\right) T\right] A W(A W)^{D} \stackrel{(5)}{=}\left[\left(I_{n}-A^{(1)} A\right) T\right] A(W A)^{D} W } \\
&=\left[\left(I_{n}-A^{(1)} A\right) T\right] A\left[(W A)^{k}\left[(W A)^{D}\right]^{k+1}\right] W=0,
\end{aligned}
$$

which implies that $\left(I_{n}-A^{(1)} A\right) T=\left(I_{n}-A^{(1)} A\right) T(A W)^{\pi}$. Therefore,

$$
\begin{aligned}
X & =X_{0}+\left(I_{n}-A^{(1)} A\right) T A A^{\dagger} \\
& =X_{0}+\left(I_{n}-A^{(1)} A\right) T(A W)^{\pi} A A^{\dagger} \\
& =A^{(1)} A A^{\dagger}+\left(I_{n}-A^{(1)} A\right)\left[W(A W)^{D}+T(A W)^{\pi}\right] A A^{\dagger} .
\end{aligned}
$$

The proof is completed.

In particular, when $m=n$ and $W=I_{n}$, we obtain the following characterization for the set of all spectral $\{1,2,3\}$-inverses. It is a supplement to Greville's construction.

Corollary 2.7. Let $A \in \mathbb{C}^{n \times n}$ and let $A^{(1)}$ be a $\{1\}$-inverse of A. Then the set of all spectral $\{1,2,3\}$-inverses of A is given by $\left\{A^{(1)} A A^{\dagger}+\left(I_{n}-A^{(1)} A\right)\left(A^{D}+S A^{\pi}\right) A A^{\dagger}: S \in \mathbb{C}^{n \times n}\right\}$.

Using Theorem 2.6, we next consider a canonical form for W-spectral $\{1,2,3\}$-inverses.
For $A \in \mathbb{C}^{m \times n}$, the singular value decomposition states that there exist two unitary matrices $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ such that

$$
A=U\left[\begin{array}{ll}
\Sigma & 0 \tag{7}\\
0 & 0
\end{array}\right] V^{*}
$$

where $\Sigma=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{r}\right)$ is the diagonal matrix of singular values of $A, r=\operatorname{rank}(A)$. Moreover,

$$
A^{\dagger}=V\left[\begin{array}{cc}
\Sigma^{-1} & 0 \tag{8}\\
0 & 0
\end{array}\right] U^{*}
$$

and a general $\{1,2,3\}$-inverse of A is of the form $V\left[\begin{array}{cc}\Sigma^{-1} & 0 \\ Z & 0\end{array}\right] U^{*}$ for some Z; see [3, p. 208].
The next result shows how to choose a Z to get a W-spectral $\{1,2,3\}$-inverse for A.
Proposition 2.8. Let $A \in \mathbb{C}^{m \times n}$ be as in (7) and $W \in \mathbb{C}^{n \times m}$ be partitioned as

$$
W=V\left[\begin{array}{ll}
W_{1} & W_{2} \\
W_{3} & W_{4}
\end{array}\right] U^{*}
$$

where $W_{1} \in \mathbb{C}^{r \times r}$, and W_{2}, W_{3}, W_{4} are of appropriate sizes. Then $X \in \mathbb{C}^{n \times m}$ is a W-spectral $\{1,2,3\}$-inverse of A if and only if there is $T \in \mathbb{C}^{(n-r) \times r}$ such that

$$
X=V\left[\begin{array}{cc}
\Sigma^{-1} & 0 \tag{9}\\
W_{3}\left(\Sigma W_{1}\right)^{D}+T\left(\Sigma W_{1}\right)^{\pi} & 0
\end{array}\right] U^{*} .
$$

Proof. First, direct calculation shows that

$$
A A^{+}=U\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right] U^{*}, \quad A^{+} A=V\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right] V^{*}, \quad A W=U\left[\begin{array}{cc}
\Sigma W_{1} & \Sigma W_{2} \\
0 & 0
\end{array}\right] U^{*} .
$$

By [12, Eq. 14], we have

$$
(A W)^{D}=U\left[\begin{array}{cc}
\left(\Sigma W_{1}\right)^{D} & {\left[\left(\Sigma W_{1}\right)^{D}\right]^{2} \Sigma W_{2}} \\
0 & 0
\end{array}\right] U^{*}
$$

and so

$$
\begin{align*}
W(A W)^{D} & =V\left[\begin{array}{cc}
W_{1}\left(\Sigma W_{1}\right)^{D} & W_{1}\left[\left(\Sigma W_{1}\right)^{D}\right]^{2} \Sigma W_{2} \\
W_{3}\left(\Sigma W_{1}\right)^{D} & W_{3}\left[\left(\Sigma W_{1}\right)^{D}\right]^{2} \Sigma W_{2}
\end{array}\right] U^{*}, \tag{10}\\
(A W)^{\pi} & =U\left[\begin{array}{cc}
\left(\Sigma W_{1}\right)^{\pi} & -\left(\Sigma W_{1}\right)^{D} \Sigma W_{2} \\
0 & I_{m-r}
\end{array}\right] U^{*} . \tag{11}
\end{align*}
$$

By Theorem 2.6, X is a W-spectral $\{1,2,3\}$-inverse of A if and only if there is $S \in \mathbb{C}^{n \times m}$ such that

$$
X=A^{\dagger}+\left(I_{n}-A^{\dagger} A\right)\left[W(A W)^{D}+S(A W)^{\pi}\right] A A^{\dagger}
$$

Let S be partitioned as $S=V\left[\begin{array}{cc}S_{1} & S_{2} \\ T & S_{3}\end{array}\right] U^{*}$, where $T \in \mathbb{C}^{(n-r) \times r}$. Then by (10) and (11),

$$
W(A W)^{D}+S(A W)^{\pi}=V\left[\begin{array}{cc}
\star_{1} & \star_{2} \\
W_{3}\left(\Sigma W_{1}\right)^{D}+T\left(\Sigma W_{1}\right)^{\pi} & \star_{3}
\end{array}\right] U^{*} .
$$

It follows that

$$
\left(I_{n}-A^{\dagger} A\right)\left[W(A W)^{D}+S(A W)^{\pi}\right] A A^{+}=V\left[\begin{array}{cc}
0 & 0 \\
W_{3}\left(\Sigma W_{1}\right)^{D}+T\left(\Sigma W_{1}\right)^{\pi} & 0
\end{array}\right] U^{*}
$$

and therefore

$$
X=A^{\dagger}+\left(I_{n}-A^{\dagger} A\right)\left[W(A W)^{D}+S(A W)^{\pi}\right] A A^{\dagger}=V\left[\begin{array}{cc}
\Sigma^{-1} & 0 \\
W_{3}\left(\Sigma W_{1}\right)^{D}+T\left(\Sigma W_{1}\right)^{\pi} & 0
\end{array}\right] U^{*}
$$

which completes the proof.
In the rest of the paper, we study two special cases: matrices which possess a unique W-spectral $\{1,2,3\}$ inverse, and matrices for which every $\{1,2,3\}$-inverse is a W-spectral $\{1,2,3\}$-inverse. To these ends, we need the following well known result.

Lemma 2.9. Let $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{p \times q}$. If $A S B=0$ for all $S \in \mathbb{C}^{n \times p}$, then $A=0$ or $B=0$.
Proof. If $A, B \neq 0$, then there exist invertible matrices $P_{1} \in \mathbb{C}^{m \times m}, Q_{1} \in \mathbb{C}^{n \times n}$ and $P_{2} \in \mathbb{C}^{p \times p}, Q_{2} \in \mathbb{C}^{q \times q}$ such that $A=P_{1}\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right] Q_{1}$ and $B=P_{2}\left[\begin{array}{cc}I_{t} & 0 \\ 0 & 0\end{array}\right] Q_{2}$, where $r=\operatorname{rank}(A)>0$ and $t=\operatorname{rank}(B)>0$. Now let S_{11} be an $n \times p$ matrix whose entries are all zeros except the (1,1)-entry s_{11}. Then

$$
A\left(Q_{1}^{-1} S_{11} P_{2}^{-1}\right) B=P_{1}\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right] S_{11}\left[\begin{array}{cc}
I_{t} & 0 \\
0 & 0
\end{array}\right] Q_{2}=P_{1}\left[\begin{array}{cc}
s_{11} & 0 \\
0 & 0
\end{array}\right] Q_{2} \neq 0,
$$

contradicting $A S B=0$ for all $S \in \mathbb{C}^{n \times p}$. Thus $A=0$ or $B=0$.
By Meyer and Painter [14], A has a unique $\{1,3\}$-inverse if and only if it is of full column rank. Analogously, A has a unique $\{1,2,3\}$-inverse if and only if A is of full column rank or $A=0$. In [22], it was shown that a square matrix A has a unique spectral $\{1,2,3\}$-inverse if and only if $\operatorname{rank}(A)=\operatorname{rank}\left(A^{2}\right)$, in which case the unique spectral $\{1,2,3\}$-inverse is exactly the core inverse $A^{\#} A A^{\dagger}$. Now we consider the class of matrices which have a unique W-spectral $\{1,2,3\}$-inverse.

Proposition 2.10. Let $A \in \mathbb{C}^{m \times n}, W \in \mathbb{C}^{n \times m}$. Then A has a unique W-spectral $\{1,2,3\}$-inverse if and only if A is of full column rank or $\operatorname{rank}(A)=\operatorname{rank}(A W A)$. Moreover, if A is of full column rank, then A^{+}is the unique W-spectral $\{1,2,3\}$-inverse of A; if $\operatorname{rank}(A)=\operatorname{rank}(A W A)$, then $W(A W)^{\#} A A^{+}$is the unique W-spectral $\{1,2,3\}$-inverse of A.
Proof. Let $A^{(1)}$ be a fixed $\{1\}$-inverse of A. By Theorem 2.6, $X_{0}=A^{(1)} A A^{+}+\left(I_{n}-A^{(1)} A\right)\left[W(A W)^{D}\right] A A^{+}$is a W-spectral $\{1,2,3\}$-inverse of A, and so is $X_{s}=X_{0}+\left(I_{n}-A^{(1)} A\right) S(A W)^{\pi} A A^{+}$for any $S \in \mathbb{C}^{n \times m}$.

Now assume that A has a unique W-spectral $\{1,2,3\}$-inverse. Then it follows that $X_{0}=X_{s}$, i.e., $\left(I_{n}-\right.$ $\left.A^{(1)} A\right) S(A W)^{\pi} A A^{+}=0$ for any $S \in \mathbb{C}^{n \times m}$. Thus by Lemma 2.9, we have $I_{n}-A^{(1)} A=0$ or $(A W)^{\pi} A A^{+}=0$. When $I_{n}-A^{(1)} A=0, A$ is of full column rank. When $(A W)^{\pi} A A^{+}=0$, we have $A A^{+}=\left[(A W)^{D} A W\right] A A^{\dagger}$. Post-multiplication this equation by A yields $A=(A W)^{D} A W A$, so $\operatorname{rank}(A)=\operatorname{rank}(A W A)$.

Conversely, if A is of full column rank, then every $\{1\}$-inverse of A is a left inverse and thus a $\{1,2,4\}-$ inverse. So a $\{1,3\}$-inverse of A must be the unique $\{1,2,3,4\}$-inverse A^{\dagger}, and $A^{\dagger} A(W A)^{k}=(W A)^{k}$ holds, where k is the index of $W A$. It follows that A^{+}is the unique W-spectral $\{1,2,3\}$-inverse of A. If $\operatorname{rank}(A)=$ $\operatorname{rank}(A W A)$, then

$$
(A W)^{\#} \text { and }(W A)^{\#} \text { exist, } A=A W(A W)^{\#} A \text { and }(A W)^{\pi} A=0
$$

It follows that

$$
\begin{aligned}
X_{0} & =A^{(1)} A A^{\dagger}+\left(I_{n}-A^{(1)} A\right)\left[W(A W)^{\#}\right] A A^{\dagger} \\
& =A^{(1)} A A^{\dagger}+\left[W(A W)^{\#}\right] A A^{\dagger}-A^{(1)}\left[A W(A W)^{\#} A\right] A^{\dagger} \\
& =A^{(1)} A A^{\dagger}+\left[W(A W)^{\#}\right] A A^{\dagger}-A^{(1)} A A^{\dagger}=W(A W)^{\#} A A^{\dagger},
\end{aligned}
$$

and $X_{s}=X_{0}+\left(I_{n}-A^{(1)} A\right) S(A W)^{\pi} A A^{\dagger}=X_{0}$. Therefore, by Theorem 2.6, $W(A W)^{\#} A A^{\dagger}$ is the unique W-spectral $\{1,2,3\}$-inverse of A.

Similarly, we have the next result.
Proposition 2.11. Let $A \in \mathbb{C}^{m \times n}, W \in \mathbb{C}^{n \times m}$. Then every $\{1,2,3\}$-inverse of A is its W-spectral $\{1,2,3\}$-inverse if and only if A is of full column rank or WA is nilpotent.

Proof. The "if" part is clear. For the "only if" part, let X be a fixed $\{1,2,3\}$-inverse of A. Then by Lemma $2.5, X+\left(I_{n}-X A\right) S X$ is a $\{1,2,3\}$-inverse of A for every $S \in \mathbb{C}^{n \times n}$. Assume that every $\{1,2,3\}$-inverse of A is its W-spectral $\{1,2,3\}$-inverse. Let $k=\operatorname{Ind}(W A)$. Then we have

$$
X A(W A)^{k}=(W A)^{k} \text { and }\left[X+\left(I_{n}-X A\right) S X\right] A(W A)^{k}=(W A)^{k}
$$

which imply that $\left(I_{n}-X A\right) S(W A)^{k}=0$ for every $S \in \mathbb{C}^{n \times n}$. Thus, we get $\left(I_{n}-X A\right)=0$ or $(W A)^{k}=0$ by Lemma 2.9, and so A is of full column rank or $W A$ is nilpotent. The proof is completed.

References

[1] O. M. Baksalary, G. Trenkler, Core inverse of matrices, Linear Multilinear Algebra, 58(6) (2010), 681-697.
[2] O. M. Baksalary, G. Trenkler, On a generalized core inverse, Appl. Math. Comput., 236 (2014), 450-457.
[3] A. Ben-Israel, T. N. E. Greville, Generalized Inverses: Theory and Applications, (2nd edition), Springer, New York, 2003.
[4] S. L. Campbell, C. D. Meyer, Weak Drazin inverses, Linear Algebra Appl., 20(2) (1978), 167-178.
[5] D. S. Cvetković-Ilić, Y. M. Wei, Algebraic Properties of Generalized Inverses, Springer, Singapore, 2017.
[6] M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly, 65 (1958), 506-514.
[7] T. N. E. Greville, Some new generalized inverses with spectral properties, Proc. Sympos. Theory and Application of Generalized Inverses of Matrices (Lubbock, Texas, 1968), pp. 26-46.
[8] H. F. Ma, Optimal perturbation bounds for the core inverse, Appl. Math. Comput., 336 (2018), 176-181.
[9] H. F. Ma, Displacement structure of the core inverse, Linear Multilinear Algebra, 70(2) (2022), 203-214.
[10] S. B. Malik, Some more properties of core partial order, Appl. Math. Comput., 221 (2013), 192-201.
[11] S. B. Malik, L. Rueda, N. Thome, Further properties on the core partial order and other matrix partial orders, Linear Multilinear Algebra, 62(12) (2014), 1629-1648.
[12] S. B. Malik, N. Thome, On a new generalized inverse for matrices of an arbitrary index, Appl. Math. Comput., 226 (2014), 575-580.
[13] C. D. Meyer, Generalized inverses of block triangular matrices, SIAM J. Appl. Math., 19 (1970), 741-750.
[14] C. D. Meyer, R. J. Painter, Note on a least squares inverse for a matrix, J. Assoc. Comput. Mach., 17 (1970), 110-112.
[15] D. Mosić, Condition numbers related to the core inverse of a complex matrix, Filomat, 36(11) (2022), 3785-3796.
[16] D. Mosić, C. Y. Deng, H. F. Ma, On a weighted core inverse in a ring with involution, Comm. Algebra, 46(6) (2018), 2332-2345.
[17] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc., 51 (1955), 406-413.
[18] K. M. Prasad, K. S. Mohana, Core-EP inverse, Linear Multilinear Algebra, 62(6) (2014), 792-802.
[19] D. S. Rakić, N. Č. Dinčić, D. S. Djordjevic, Group, Moore-Penrose, core and dual core inverse in rings with involution, Linear Algebra Appl., 463 (2014), 115-133.
[20] X. P. Sheng, D. W. Xin, Methods of Gauss-Jordan elimination to compute $A^{\#}{ }^{\#}$ and dual core inverse A_{\oplus}, Linear Multilinear Algebra, 70(12) (2022), 2354-2366.
[21] H. X. Wang, X. J. Liu, Characterizations of the core inverse and the core partial ordering, Linear Multilinear Algebra, 63(9) (2015), 1829-1836.
[22] C. Wu, J. L. Chen, The $\left\{1,2,3,1^{m}\right\}$-inverses: A generalization of core inverses for matrices, Appl. Math. Comput., 427 (2022), No. 127149, 8 pp.

[^0]: 2020 Mathematics Subject Classification. Primary 15A09; Secondary 15A24.
 Keywords. Spectral \{1,2,3\}-inverse; Moore-Penrose inverse; Drazin inverse; Core inverse.
 Received: 28 April 2023; Accepted: 25 July 2023
 Communicated by Dragana Cvetković-Ilić
 This research was supported by the National Natural Science Foundation of China (Nos. 12171083 and 12071070) and the Qing Lan Project of Jiangsu Province.

 * Corresponding author: Jianlong Chen

 Email addresses: cang_wu@hotmail.com (Cang Wu), jlchen@seu.edu. cn (Jianlong Chen)

