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Greville type {1, 2, 3}-generalized inverses for rectangular matrices
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Abstract. For any complex matrices A and W, m× n and n×m, respectively, it is proved that there exists a
complex matrix X such that AXA = A, XAX = X, (AX)∗ = AX and XA(WA)k = (WA)k, where k is the index of
WA. When A is square and W is the identity matrix, such an X reduces to Greville’s spectral {1, 2, 3}-inverse
of A. Various expressions of such generalized inverses are established.

1. Introduction

Throughout the paper, let Cm×n be the set of all m × n complex matrices and In be the n × n identity
matrix. For A ∈ Cm×n, the symbols A∗ and rank(A) will denote the conjugate transpose and the rank of A,
respectively. When A is square, Ind(A) denotes the index of A, i.e., the smallest nonnegative integer k such
that rank(Ak) = rank(Ak+1).

For A ∈ Cm×n, recall the four Penrose equations [17]

(i) AXA = A, (ii) XAX = X, (iii) (AX)∗ = AX, (iv) (XA)∗ = XA. (1)

As usual, a common solution of the i-th, · · · , j-th equations in (1) is called an {i, · · · , j}-inverse of A and
denoted by A(i,··· , j), and the set of all {i, · · · , j}-inverses of A is denoted by A{i, · · · , j}. It is known that the set
A{1, 2, 3, 4} is nonempty and it consists of a single element A†, called the Moore–Penrose inverse of A.

For A ∈ Cn×n, recall that the Drazin inverse AD of A is the unique common solution of the equations

XAk+1 = Ak, XAX = X, AX = XA, (2)

where k = Ind(A) [6]. The Drazin inverse of A always exists, and in the special case of Ind(A) ≤ 1, the
Drazin inverse of A is called the group inverse of A and denoted by A#. The spectral idempotent In − AAD

will be denoted by Aπ.
The equation XAk+1 = Ak in (2) is closely related to spectral properties of generalized inverses. For

example, if G is a solution of XAk+1 = Ak, then every λ-vector of A of grade p for λ , 0 is a λ−1-vector of G
of grade p (see, e.g., [3, p. 162]). Following Campbell and Meyer [4], any solution of XAk+1 = Ak is called a
weak Drazin inverse of A.
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Although the Moore–Penrose inverse A† is in general not a weak Drazin inverse of A, Greville [7]
showed that there exists a class of {1, 2, 3}-inverses of A that are weak Drazin inverses of A. According to
[7, Theorem 1], for a {1}-inverse A(1) of A, the composite generalized inverse ADAA† + A(1)(A − AADA)A† is
a common solution of equations

AXA = A, XAX = X, (AX)∗ = AX, XAk+1 = Ak; (3)

and conversely, any solution of (3) is of the form ADAA† + A(1)(A − AADA)A† for some {1}-inverse A(1) of A
(see also [3, p.173, Ex. 52]). These composite generalized inverses will hereafter be referred to as spectral
{1, 2, 3}-inverses of A.

Spectral {1, 2, 3}-inverses can be used like Moore–Penrose inverses when studying the least-squares
problem of linear equations [3], and like Drazin inverses when studying systems of differential equations
with singular coefficients or Markov chains [4, 5].

Unaware of Greville’s work, the present authors studied solutions of (3) under the name of {1, 2, 3, 1k
}-

inverses [22]. A main idea is that if X is a {1, 2, 3}-inverse of A and Y is a weak Drazin inverse of A,
then X + (In − XA)YAX is a spectral {1, 2, 3}-inverse of A. Also, it was shown that A has a unique spectral
{1, 2, 3}-inverse if and only if Ind(A) ≤ 1; in this case the unique spectral {1, 2, 3}-inverse is exactly the core
inverse of Baksalary and Trenkler [1], which has attracted much attention in the last decade (see, e.g.,
[2, 8–12, 15, 16, 18–21]).

In this paper, the notion of spectral {1, 2, 3}-inverses is extended to rectangular matrices. Let A ∈ Cm×n. It
is proved that for any W ∈ Cn×m, there exists a class of {1, 2, 3}-inverses X of A such that XA(WA)k = (WA)k,
where k is the index of WA. This class of {1, 2, 3}-inverses, called W-spectral {1, 2, 3}-inverses of A, reduces
to spectral {1, 2, 3}-inverses of A when m = n and W = In, and becomes the Moore–Penrose A† when
W = A∗. Some characterizations of W-spectral {1, 2, 3}-inverses are presented, and the set of all W-spectral
{1, 2, 3}-inverses is described. Moreover, a canonical form for W-spectral {1, 2, 3}-inverses is given by using
the singular value decomposition.

2. Spectral {1, 2, 3}-inverses for rectangular matrices

We begin with the following definition.

Definition 2.1. Let A ∈ Cm×n, W ∈ Cn×m. Then X ∈ Cn×m is called a W-spectral {1, 2, 3}-inverse of A if it satisfies

AXA = A, XAX = X, (AX)∗ = AX, XA(WA)k = (WA)k, (4)

where k is the index of WA.

Example 2.2. Let A ∈ Cm×n, W ∈ Cn×m.

(i) When m = n and W = In (or more generally, W is a nonsingular matrix commuting with A),
W-spectral {1, 2, 3}-inverses of A reduce to its spectral {1, 2, 3}-inverses.

(ii) When W = A∗, the equation XA(WA)k = (WA)k becomes XAA∗A = A∗A since Ind(A∗A) ≤ 1.
Multiplying by A† from the right and using A∗AA† = A∗, we get XAA∗ = A∗, which is equivalent
to X being a {1, 4}-inverse of A. Thus, the A∗-spectral {1, 2, 3}-inverse of A is exactly the {1, 2, 3, 4}-
inverse A† and so it is unique.

The next result shows the existence of W-spectral {1, 2, 3}-inverses by giving an explicit construction of
them.

Theorem 2.3. Let A ∈ Cm×n, W ∈ Cn×m. Then the following statements are equivalent:

(i) X is a W-spectral {1, 2, 3}-inverse of A.
(ii) X = A(1,2,3) + (In − A(1,2,3)A)[(WA)DW]AA(1,2,3) for some {1, 2, 3}-inverse A(1,2,3) of A.
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(iii) X = A(1,2,3) + (In − A(1,2,3)A)ZAA(1,2,3) for some {1, 2, 3}-inverse A(1,2,3) of A and some Z satisfying
ZA(WA)k = (WA)k, where k = Ind(WA).

Proof. Let k = Ind(WA).
(i)⇒(ii). Assume that X is a W-spectral {1, 2, 3}-inverse of A. Since XA(WA)k = (WA)k, we have

XA(WA)D = (WA)D, i.e., (In − XA)(WA)D = 0. It follows that

X = X + (In − XA)[(WA)DW]AX.

Thus (ii) follows by taking A(1,2,3) = X.
(ii)⇒(iii). It is clear by noting that (WA)DW is just such a Z.
(iii)⇒(i). For any {1, 2, 3}-inverse A(1,2,3) of A and Z satisfying ZA(WA)k = (WA)k, let

X = A(1,2,3) + (In − A(1,2,3)A)ZAA(1,2,3).

Since AX = AA(1,2,3), it is easy to see that X is a {1, 2, 3}-inverse of A. Moreover,

XA(WA)k = A(1,2,3)A(WA)k + (In − A(1,2,3)A)ZA(WA)k

= A(1,2,3)A(WA)k + (In − A(1,2,3)A)(WA)k = (WA)k.

Therefore, X is a W-spectral {1, 2, 3}-inverse of A by the definition.

For a {1, 2, 3}-inverse of A and a solution of the equation XA(WA)k = (WA)k, we may think of Theorem
2.3 as a way to construct a matrix that is simultaneously a {1, 2, 3}-inverse of A and a solution of XA(WA)k =
(WA)k.

Remark 2.4. In a similar vein, taking

Y = A(1,2,4) + A(1,2,4)A[W(AW)D](Im − AA(1,2,4)),

one can show that Y is a {1, 2, 4}-inverse of A and satisfies (AW)lAY = (AW)l, where l is the index of AW. This type
of {1, 2, 4}-inverses is dual to W-spectral {1, 2, 3}-inverses.

Also, by Cline’s formula (WA)D =W[(AW)D]2A, we know that

(WA)DW =W(AW)D. (5)

The next result gives a characterization of the set of all {1, 2, 3}-inverses of A; it is a slight modification
of [3, p. 56, Exercise 12].

Lemma 2.5. For any fixed {1}-inverse A(1) and {1, 2, 3}-inverse A(1,2,3) of A ∈ Cm×n, the set of all {1, 2, 3}-inverses of
A is given by

A{1, 2, 3} = {A(1,2,3) + (In − A(1)A)ZAA(1,2,3) : Z ∈ Cn×m
}. (6)

Proof. For any Z ∈ Cn×m, it is direct to verify that

A(1,2,3) + (In − A(1)A)ZAA(1,2,3)
∈ A{1, 2, 3}.

Also, for any X ∈ A{1, 2, 3}, since AX = AA(1,2,3), it follows that A(X − A(1,2,3)) = 0 and XAA(1,2,3) = X. Thus,

A(1,2,3) + (In − A(1)A)(X − A(1,2,3))AA(1,2,3)

= A(1,2,3) + (X − A(1,2,3))AA(1,2,3) = A(1,2,3) + X − A(1,2,3) = X,

which shows that X ∈ {A(1,2,3) + (In − A(1)A)WAA(1,2,3) : W ∈ Cn×n
}. The proof is completed.
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Observe Greville’s construction for spectral {1, 2, 3}-inverses:

ADAA† + A(1)(A − AADA)A† = A(1)AA† + (In − A(1)A)ADAA†.

Here, A(1)AA† is a {1, 2, 3}-inverse of A.
We next present a characterization of the set of all W-spectral {1, 2, 3}-inverses of A.

Theorem 2.6. Let A ∈ Cm×n, W ∈ Cn×m, and let A(1) be a {1}-inverse of A. Then the set of all W-spectral
{1, 2, 3}-inverses of A is given by

{A(1)AA† + (In − A(1)A)
[
W(AW)D + S(AW)π

]
AA† : S ∈ Cn×m

}.

Proof. Let k = Ind(WA). For any S ∈ Cn×m, take

Xs = A(1)AA† + (In − A(1)A)
[
W(AW)D + S(AW)π

]
AA†.

Then Xs is a {1, 2, 3}-inverse of A by Lemma 2.5, and

XsA(WA)k = A(1)A(WA)k + (In − A(1)A)
[
W(AW)D + S(AW)π

]
A(WA)k

= A(1)A(WA)k + (In − A(1)A)
[
W(AW)DA(WA)k + S(AW)πA(WA)k

]
(5)
= A(1)A(WA)k + (In − A(1)A)

[
(WA)DWA(WA)k + SA(WA)π(WA)k

]
= A(1)A(WA)k + (In − A(1)A)(WA)k = (WA)k.

Therefore, Xs is a W-spectral {1, 2, 3}-inverse of A. In particular,

X0 = A(1)AA† + (In − A(1)A)[W(AW)D]AA†

is a W-spectral {1, 2, 3}-inverse of A.
On the other hand, for any W-spectral {1, 2, 3}-inverse X of A, since X and X0 are {1, 2, 3}-inverses of A,

it follows by Lemma 2.5 that there exists a T ∈ Cn×m such that

X = X0 + (In − A(1)A)TAX0.

Since XA(WA)k = (WA)k and X0A(WA)k = (WA)k, it follows that

[(In − A(1)A)TAX0]A(WA)k = 0,

and so

[(In − A(1)A)T]A(WA)k = 0.

Thus we get

[(In − A(1)A)T]AW(AW)D (5)
= [(In − A(1)A)T]A(WA)DW

= [(In − A(1)A)T]A[(WA)k[(WA)D]k+1]W = 0,

which implies that (In − A(1)A)T = (In − A(1)A)T(AW)π. Therefore,

X = X0 + (In − A(1)A)TAA†

= X0 + (In − A(1)A)T(AW)πAA†

= A(1)AA† + (In − A(1)A)[W(AW)D + T(AW)π]AA†.

The proof is completed.
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In particular, when m = n and W = In, we obtain the following characterization for the set of all spectral
{1, 2, 3}-inverses. It is a supplement to Greville’s construction.

Corollary 2.7. Let A ∈ Cn×n and let A(1) be a {1}-inverse of A. Then the set of all spectral {1, 2, 3}-inverses of A is
given by {A(1)AA† + (In − A(1)A)(AD + SAπ)AA† : S ∈ Cn×n

}.

Using Theorem 2.6, we next consider a canonical form for W-spectral {1, 2, 3}-inverses.
For A ∈ Cm×n, the singular value decomposition states that there exist two unitary matrices U ∈ Cm×m

and V ∈ Cn×n such that

A = U
[
Σ 0
0 0

]
V∗, (7)

where Σ = diag(σ1, · · · , σr) is the diagonal matrix of singular values of A, r = rank(A). Moreover,

A† = V
[
Σ−1 0

0 0

]
U∗ (8)

and a general {1, 2, 3}-inverse of A is of the form V
[
Σ−1 0
Z 0

]
U∗ for some Z; see [3, p. 208].

The next result shows how to choose a Z to get a W-spectral {1, 2, 3}-inverse for A.

Proposition 2.8. Let A ∈ Cm×n be as in (7) and W ∈ Cn×m be partitioned as

W = V
[

W1 W2
W3 W4

]
U∗,

where W1 ∈ Cr×r, and W2,W3,W4 are of appropriate sizes. Then X ∈ Cn×m is a W-spectral {1, 2, 3}-inverse of A if
and only if there is T ∈ C(n−r)×r such that

X = V
[

Σ−1 0
W3(ΣW1)D + T(ΣW1)π 0

]
U∗. (9)

Proof. First, direct calculation shows that

AA† = U
[

Ir 0
0 0

]
U∗, A†A = V

[
Ir 0
0 0

]
V∗, AW = U

[
ΣW1 ΣW2

0 0

]
U∗.

By [12, Eq. 14], we have

(AW)D = U
[

(ΣW1)D [(ΣW1)D]2ΣW2
0 0

]
U∗,

and so

W(AW)D = V
[

W1(ΣW1)D W1[(ΣW1)D]2ΣW2
W3(ΣW1)D W3[(ΣW1)D]2ΣW2

]
U∗, (10)

(AW)π = U
[

(ΣW1)π −(ΣW1)DΣW2
0 Im−r

]
U∗. (11)

By Theorem 2.6, X is a W-spectral {1, 2, 3}-inverse of A if and only if there is S ∈ Cn×m such that

X = A† + (In − A†A)[W(AW)D + S(AW)π]AA†.
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Let S be partitioned as S = V
[

S1 S2
T S3

]
U∗, where T ∈ C(n−r)×r. Then by (10) and (11),

W(AW)D + S(AW)π = V
[

⋆1 ⋆2
W3(ΣW1)D + T(ΣW1)π ⋆3

]
U∗.

It follows that

(In − A†A)[W(AW)D + S(AW)π]AA† = V
[

0 0
W3(ΣW1)D + T(ΣW1)π 0

]
U∗,

and therefore

X = A† + (In − A†A)[W(AW)D + S(AW)π]AA† = V
[

Σ−1 0
W3(ΣW1)D + T(ΣW1)π 0

]
U∗,

which completes the proof.

In the rest of the paper, we study two special cases: matrices which possess a unique W-spectral {1, 2, 3}-
inverse, and matrices for which every {1, 2, 3}-inverse is a W-spectral {1, 2, 3}-inverse. To these ends, we
need the following well known result.

Lemma 2.9. Let A ∈ Cm×n, B ∈ Cp×q. If ASB = 0 for all S ∈ Cn×p, then A = 0 or B = 0.

Proof. If A,B , 0, then there exist invertible matrices P1 ∈ Cm×m,Q1 ∈ Cn×n and P2 ∈ Cp×p,Q2 ∈ Cq×q such

that A = P1

[
Ir 0
0 0

]
Q1 and B = P2

[
It 0
0 0

]
Q2, where r = rank(A) > 0 and t = rank(B) > 0. Now let S11 be an

n × p matrix whose entries are all zeros except the (1, 1)-entry s11. Then

A(Q−1
1 S11P−1

2 )B = P1

[
Ir 0
0 0

]
S11

[
It 0
0 0

]
Q2 = P1

[
s11 0
0 0

]
Q2 , 0,

contradicting ASB = 0 for all S ∈ Cn×p. Thus A = 0 or B = 0.

By Meyer and Painter [14], A has a unique {1, 3}-inverse if and only if it is of full column rank. Analo-
gously, A has a unique {1, 2, 3}-inverse if and only if A is of full column rank or A = 0. In [22], it was shown
that a square matrix A has a unique spectral {1, 2, 3}-inverse if and only if rank(A) = rank(A2), in which case
the unique spectral {1, 2, 3}-inverse is exactly the core inverse A#AA†. Now we consider the class of matrices
which have a unique W-spectral {1, 2, 3}-inverse.

Proposition 2.10. Let A ∈ Cm×n, W ∈ Cn×m. Then A has a unique W-spectral {1, 2, 3}-inverse if and only if A is of
full column rank or rank(A) = rank(AWA). Moreover, if A is of full column rank, then A† is the unique W-spectral
{1, 2, 3}-inverse of A; if rank(A) = rank(AWA), then W(AW)#AA† is the unique W-spectral {1, 2, 3}-inverse of A.

Proof. Let A(1) be a fixed {1}-inverse of A. By Theorem 2.6, X0 = A(1)AA† + (In − A(1)A)[W(AW)D]AA† is a
W-spectral {1, 2, 3}-inverse of A, and so is Xs = X0 + (In − A(1)A)S(AW)πAA† for any S ∈ Cn×m.

Now assume that A has a unique W-spectral {1, 2, 3}-inverse. Then it follows that X0 = Xs, i.e., (In −

A(1)A)S(AW)πAA† = 0 for any S ∈ Cn×m. Thus by Lemma 2.9, we have In − A(1)A = 0 or (AW)πAA† = 0.
When In − A(1)A = 0, A is of full column rank. When (AW)πAA† = 0, we have AA† = [(AW)DAW]AA†.
Post-multiplication this equation by A yields A = (AW)DAWA, so rank(A) = rank(AWA).

Conversely, if A is of full column rank, then every {1}-inverse of A is a left inverse and thus a {1, 2, 4}-
inverse. So a {1, 3}-inverse of A must be the unique {1, 2, 3, 4}-inverse A†, and A†A(WA)k = (WA)k holds,
where k is the index of WA. It follows that A† is the unique W-spectral {1, 2, 3}-inverse of A. If rank(A) =
rank(AWA), then

(AW)# and (WA)# exist, A = AW(AW)#A and (AW)πA = 0.
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It follows that

X0 = A(1)AA† + (In − A(1)A)[W(AW)#]AA†

= A(1)AA† + [W(AW)#]AA† − A(1)[AW(AW)#A]A†

= A(1)AA† + [W(AW)#]AA† − A(1)AA† =W(AW)#AA†,

and Xs = X0+(In−A(1)A)S(AW)πAA† = X0. Therefore, by Theorem 2.6, W(AW)#AA† is the unique W-spectral
{1, 2, 3}-inverse of A.

Similarly, we have the next result.

Proposition 2.11. Let A ∈ Cm×n, W ∈ Cn×m. Then every {1, 2, 3}-inverse of A is its W-spectral {1, 2, 3}-inverse if
and only if A is of full column rank or WA is nilpotent.

Proof. The “if” part is clear. For the “only if” part, let X be a fixed {1, 2, 3}-inverse of A. Then by Lemma
2.5, X + (In − XA)SX is a {1, 2, 3}-inverse of A for every S ∈ Cn×n. Assume that every {1, 2, 3}-inverse of A is
its W-spectral {1, 2, 3}-inverse. Let k = Ind(WA). Then we have

XA(WA)k = (WA)k and [X + (In − XA)SX]A(WA)k = (WA)k,

which imply that (In − XA)S(WA)k = 0 for every S ∈ Cn×n. Thus, we get (In − XA) = 0 or (WA)k = 0 by
Lemma 2.9, and so A is of full column rank or WA is nilpotent. The proof is completed.
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