On (B, C)-MP-inverses of rectangular matrices

Huihui Zhu ${ }^{\text {a,** }}$, Yuxuan Yang ${ }^{\text {a }}$
${ }^{a}$ School of Mathematics, Hefei University of Technology, Hefei 230009, China.

Abstract

For any $A \in \mathbb{C}^{n \times m}$, the set of all n by m complex matrices, Mosić and Stanimirović [14] introduced the composite OMP inverse of A by its outer inverse with the prescribed range, null space and MoorePenrose inverse. This inverse unifies the core inverse, DMP inverse and Moore-Penrose inverse. In this paper, we mainly introduce and investigate a class of generalized inverses in complex matrices. Also, it is proved that this generalized inverse coincides with the OMP inverse. Finally, the defined inverse is related to OMP-inverses, W-core inverses and (b, c)-core inverses in the context of matrices.

1. Introduction and notation

For complex matrix A, the Moore-Penrose inverse A^{\dagger} [15] and the Drazin inverse A^{D} [6] are two classical generalized inverses. In the last decade, several new types of mixed generalized inverses were introduced by combining the Moore-Penrose inverse and the Drazin inverse (or the group inverse). For instance, in 2010, Baksalary and Trenkler [1] introduced the core inverse A^{\oplus} of A with index one (i.e., $\operatorname{rank}(A)=\operatorname{rank}\left(A^{2}\right)$). In 2014, Malik and Thome [11] defined the DMP-inverse $A^{D, t}$ of A with index $m \geq 1$ (i.e., m is the smallest positive integer such that $\left.\operatorname{rank}\left(A^{k}\right)=\operatorname{rank}\left(A^{k+1}\right)\right)$, extending the core inverse.

In order to unify the core inverse, the DMP inverse and so on, Mosić and Stanimirović [14] introduced the composite OMP inverse of a complex matrix by its outer inverse with the prescribed range, null space and Moore-Penrose inverse.

Motivated by [14], we mainly investigate a special case of OMP inverses, called (B, C)-MP-inverses. The paper is organized as follows. In Section 2 , given $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$, the (B, C)-Moore-Penrose inverse (abbr. (B, C)-MP-inverse) of A is given. Also, we characterize the (B, C)-MP-inverse of A by its range and null spaces. But beyond that, it is shown in Theorem 2.8 that X is the (B, C)-MP inverse of A if and only if X is an outer inverse of A with prescribed range \mathcal{T} and null space \mathcal{S}. In Section 3, the (b,c)-core inverse in *-semigroups [21] is investigated in the context of rectangular matrices. Also, the (B, C)-MP-inverse is related to other generalized inverses.

Throughout this paper, $\mathbb{C}^{n \times m}$ denotes the set of $n \times m$ complex matrices. The symbol I_{n} stands for the identity matrix of order n.

[^0]For any $A \in \mathbb{C}^{n \times m}$, the column space and the null space of A are respectively defined as $\mathcal{R}(A)=$ $\left\{A x: x \in \mathbb{C}^{m \times 1}\right\}$ and $\mathcal{N}(A)=\left\{x \in \mathbb{C}^{m \times 1}: A x=0\right\}$. The symbols A^{*} and $\mathrm{rk}(A)$ stand for the conjugate transpose and the rank of A, respectively.

Three basic facts are given as follows: $\mathcal{N}\left(A^{*}\right)=\mathcal{R}(A)^{\perp}, \mathcal{R}\left(A^{*}\right)=\mathcal{N}(A)^{\perp}$ and $\operatorname{rk}(A)+\operatorname{dim} \mathcal{N}(A)=n$. Let $A, B \in \mathbb{C}^{n \times m}$. Then $\mathcal{R}(A) \subseteq \mathcal{R}(B)$ (resp., $\left.\mathcal{N}(B) \subseteq \mathcal{N}(A)\right)$ if and only if there exists some $X \in \mathbb{C}^{m \times m}$ (resp., $Y \in \mathbb{C}^{n \times n}$) such that $A=B X$ (resp., $A=Y B$).

Let us now recall several notions of generalized inverses. For any $A \in \mathbb{C}^{n \times m}$, the Moore-Penrose inverse $A^{+}[15]$ of A is the unique matrix $X \in \mathbb{C}^{m \times n}$ satisfying

$$
\text { (i) } A X A=A \text {, (ii) } X A X=X \text {, (iii) }(A X)^{*}=A X \text {, (iv) }(X A)^{*}=X A \text {. }
$$

More generally, a matrix $X \in \mathbb{C}^{m \times n}$ satisfying (i) $A X A=A$ is called an inner inverse of A and is denoted by A^{-}. A matrix $X \in \mathbb{C}^{m \times n}$ satisfying (ii) $X A X=X$ is called an outer inverse of A and is denoted by $A^{(2)}$.

Let $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$. The matrix A is said to be (B, C)-invertible (see [2]) if there exists a matrix $X \in \mathbb{C}^{m \times n}$ such that $X A B=B, C A X=C, \mathcal{R}(X) \subseteq \mathcal{R}(B)$ and $\mathcal{N}(C) \subseteq \mathcal{N}(X)$. Such a matrix X is called a (B, C)-inverse of A. It is unique if it exists and is denoted by $A^{\|(B, C)}$. One knows that the inverse along a matrix is an instance of the (B, C)-inverse. The inverse of A along D is denoted by $A^{\| D}$. The standard notion for the inverse along a matrix can be referred to [2].

Given $A \in \mathbb{C}^{n \times n}$, the Drazin inverse of A [6] is the unique matrix $A^{D} \in \mathbb{C}^{n \times n}$ satisfying $A^{D} A A^{D}=A^{D}$, $A A^{D}=A^{D} A$ and $A^{D} A^{k+1}=A^{k}$, where $k=\operatorname{ind}(A)$. The smallest positive integer k such that $\operatorname{rk}\left(A^{k}\right)=\operatorname{rk}\left(A^{k+1}\right)$ is called the index of A and is denoted by $\operatorname{ind}(A)$. In particular, if $\operatorname{ind}(A) \leq 1$, then A is called group invertible. It is well known that A is group invertible if and only if $\operatorname{rk}(A)=\operatorname{rk}\left(A^{2}\right)$.

Following [1], a matrix $A \in \mathbb{C}^{n \times n}$ is called core invertible if there exists some $X \in \mathbb{C}^{n \times n}$ such that $A X=P_{A}$ and $\mathcal{R}(X) \subseteq \mathcal{R}(A)$, where P_{A} represents the orthogonal projector onto $\mathcal{R}(A)$. Such an X is called a core inverse of A [1]. The core inverse of A is unique if it exists and is denoted by $A{ }^{\oplus}$. One knows from [1] that A is core invertible if and only if A is group invertible. In this case, we have $A^{\oplus}=A^{\#} A A^{\dagger}$.

Let $A \in \mathbb{C}^{n \times n}$ with index m. The DMP-inverse (denoted by $A^{D,+}$) of $A \in \mathbb{C}^{n \times n}$ is defined as the unique matrix $X \in \mathbb{C}^{n \times n}$ satisfying $X A X=X, X A=A^{D} A$ and $A^{m} X=A^{m} A^{\dagger}$. Also, it is shown that $A^{D,+}=A^{D} A A^{+}$.

Suppose that \mathcal{T} and \mathcal{S} are subspaces of $\mathbb{C}^{m \times 1}$ and $\mathbb{C}^{n \times 1}$, respectively. Given $A \in \mathbb{C}^{n \times m}$, a matrix $X \in \mathbb{C}^{m \times n}$ is called an outer inverse of A with prescribed range \mathcal{T} and null space \mathcal{S} if $X=X A X, \mathcal{R}(X)=\mathcal{T}$ and $\mathcal{N}(X)=\mathcal{S}$ (see e.g., [20]). The outer inverse of A with prescribed range \mathcal{T} and null space \mathcal{S} is unique if it exists, and is denoted by $A_{\mathcal{T}, \mathcal{S}}^{(2)}$. Some types of generalized inverses are characterized by $A_{\mathcal{T}, S}^{(2)}$. Here are several well known characterizations for generalized inverses :
(1) $A^{\dagger}=A_{\mathcal{R}\left(A^{*}\right), \mathcal{N}\left(A^{*}\right)}^{(2)}$ for $A \in \mathbb{C}^{n \times m}$ [20].
(2) $A^{D}=A_{\mathcal{R}\left(A^{k}\right), \mathcal{N}\left(A^{k}\right)}^{(2)}$ for $A \in \mathbb{C}^{n \times n}$ and $k=\operatorname{ind}(A)$ [20].
(3) $A^{\| D}=A_{\mathcal{R}(D), \mathcal{N}(D)}^{(2)}$ for $A \in \mathbb{C}^{n \times m}$ and $D \in \mathbb{C}^{m \times n}$ [2].
(4) $A^{\|(B, C)}=A_{\mathcal{R}(B), \mathcal{N}(C)}^{(2)}$ for $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$ [2].
(5) $A^{D,+}=A_{\mathcal{R}\left(A^{k}\right), \mathcal{N}\left(A^{k} A^{\dagger}\right)}^{(2)}$ for $A \in \mathbb{C}^{n \times n}$ and $k=\operatorname{ind}(A)$ [24].

Let $A \in \mathbb{C}^{n \times m}$ be of rank r, let T be of dimension $s \leq r$ and let S be of dimension $m-s$. Suppose $A_{\mathcal{T}, \mathcal{S}}^{(2)}$ exists. A matrix $X \in \mathbb{C}^{m \times n}$ is called an OMP inverse of A if it satisfies the system of equations $X A X=X$, $A X=A A_{\mathcal{T}, \mathcal{S}}^{(2)} A A^{+}$and $X A=A_{\mathcal{T}, S}^{(2)} A$. This inverse is unique if it exists. Also, it was shown in [14] that $X=A_{\mathcal{T}, S}^{(2)} A A^{\dagger}$ is solution to the system above.

Several known generalized inverses are listed as special cases of OMP inverses.
(1) For $m=n$ and $A_{\mathcal{T}, S}^{(2)}=A^{\#}$, then the OMP inverse of A coincides with its core inverse.
(2) For $m=n$ and $A_{\mathcal{T}, \mathcal{S}}^{(2)}=A^{D}$, then the OMP inverse of A coincides with its DMP-inverse.

2. The (B, C)-MP-inverse of a matrix

As defined in [14], the OMP inverse of a rectangular matrix A was given by combining its outer inverse $A_{\mathcal{T}, S}^{(2)}$ and Moore-Penrose inverse A^{+}. The main goal in this section is to introduce and investigate a type of generalized inverses, called the (B, C)-MP-inverse of A (See Definition 2.1 below).

Definition 2.1. Let $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$ such that $A^{\|(B, C)}$ exists. The matrix A is called ($\left.B, C\right)$-MP-invertible if there exists some matrix $X \in \mathbb{C}^{m \times n}$ satisfying the system of equations

$$
\begin{equation*}
X A X=X, X A=A^{\|(B, C)} A \text { and } C A X=C A A^{\dagger} . \tag{1}
\end{equation*}
$$

Such an X is called a (B, C)-MP-inverse of A.
Following [14], a matrix $A \in \mathbb{C}^{n \times m}$ is called (B, C)-MP-invertible (in the sense of Mosić and Stanimirović) if there exists some $X \in \mathbb{C}^{m \times n}$ such that $X A X=X, A X=A A^{\|(B, C)} A A^{\dagger}$ and $X A=A^{\|(B, C)} A$. Such an X is called the (B, C)-MP-inverse of A. We remark here the readers that the defined (B, C)-MP-inverse is equivalent to Mosić and Stanimirović's (B, C)-MP-inverse [14]. Suppose $X \in \mathbb{C}^{m \times n}$ satisfy $X A X=X, A X=A A^{\|(B, C)} A A^{\dagger}$ and $X A=A^{\|(B, C)} A$. Then it satisfies $X A X=X, X A=A^{\|(B, C)} A$ and $C A X=C A A^{+}$. Conversely, given $X A X=X, X A=A^{\|(B, C)} A$ and $C A X=C A A^{\dagger}$, then by Theorem 2.2 below, $X=A^{\|(B, C)} A A^{\dagger}$, and consequently $A X=A A^{\|(B, C)} A A^{+}$.

Recently, Hernández, Lattanzi and Thome [8, 9] introduced two more general 1MP-inverses and 2MPinverses of A, where 1MP-inverses (resp., 2MP-inverses) of A are given by its inner inverses (resp., outer inverses) and Moore-Penrose inverse. More details on these generalized inverses can be found in [3$5,7,14,16,18,22,23]$.

Needless to say, the (B, C)-MP-inverse belongs to 2 MP -inverses. However, 2MP-inverses do not have many properties owned by the (B, C)-MP-inverse, such as the most fundamental uniqueness. It is known that the OMP inverse is unique whenever it exists, and so is the (B, C)-MP-inverse. We denote the (B, C)-MP-inverse of A by $A^{\|(B, C), \dagger}$.

The following theorem gives the expression for the (B, C)-MP inverse of A.
Theorem 2.2. The system (1) has a unique solution: $X=A^{\|(B, C)} A A^{+}$.
Proof. Suppose $X=A^{\|(B, C)} A A^{\dagger}$. Then one can directly check that X satisfies the system (1).
Several known generalized inverses are listed as special cases of (B, C)-MP-inverses.
(1) For $m=n$ and $B=C=A$, then $A^{\|(B, C)}=A^{\#}$ and (A, A)-MP inverse of A coincides with its core inverse.
(1') For $m=n, B=A$ and $C=A^{*}$, then by [17, Theorem 4.4], we have $A^{\|(B, C)}=A^{\oplus}$ and $\left(A, A^{*}\right)$-MP inverse of A coincides with its core inverse.
(2) Let $\operatorname{ind}(A)=k, m=n$ and $B=C=A^{k}$. Then $A^{\|(B, C)}=A^{D}$, so that $\left(A^{k}, A^{k}\right)$-MP inverse of A coincides with its DMP-inverse.
(3) If $B=C$, then $A^{\|(B, C)}=A^{\| B}$ and (B, B)-MP inverse of A coincides with its MMP-inverse along B.
(4) Suppose $B=C=A^{*}$. Then $A^{\|(B, C)}=A^{\dagger}$ and $\left(A^{*}, A^{*}\right)$-MP inverse of A coincides with its Moore-Penrose inverse.

In [2], the writers derived the criterion for the (B, C)-inverse by rank conditions in complex matrices as follows.

Lemma 2.3. [2, Theorem 4.4] Let $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$. Then the following statements are equivalent:
(i) A is (B, C)-invertible.
(ii) $\operatorname{rk}(C)=\operatorname{rk}(B)=\operatorname{rk}(C A B)$.

In this case, $A^{\|(B, C)}=B(C A B)^{\dagger} C$.
Lemma 2.4. [2, Corollary 4.5] Let $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$ such that $A^{\|(B, C)}$ exists. Then $\operatorname{rk}(A B)=\operatorname{rk}(C A)=$ $\operatorname{rk}(C)=\operatorname{rk}(B)$.

Based on the above results, we obtain the following theorem, which plays an important role in the sequel.

Theorem 2.5. Let $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$ such that $A^{\|(B, C)}$ exists. Then
(i) $\mathcal{R}\left(A^{\|(B, C), \uparrow} A\right)=\mathcal{R}\left(A^{\|(B, C), \uparrow}\right)=\mathcal{R}(B)$ and $\mathcal{R}\left(A A^{\|(B, C), \uparrow}\right)=\mathcal{R}(A B)$.
(ii) $\mathcal{N}\left(A A^{\|(B, C), \dagger}\right)=\mathcal{N}\left(A^{\|(B, C), \dagger}\right)=\mathcal{N}\left(C A A^{\dagger}\right)$ and $N\left(A^{\|(B, C), \dagger} A\right)=N(C A)$.
(iii) $\operatorname{rk}(A B)=\operatorname{rk}(B)=\operatorname{rk}\left(A A^{\|(B, C), \dagger}\right)=\operatorname{rk}\left(A^{\|(B, C), \dagger}\right)=\operatorname{rk}\left(A^{\|(B, C), \dagger} A\right)=\operatorname{rk}\left(C A A^{\dagger}\right)=\operatorname{rk}(C A)$.

Proof. (i) Since $A^{\|(B, C), \dagger} A A^{\|(B, C), \dagger}=A^{\|(B, C), \dagger}$, one has $\mathcal{R}\left(A^{\|(B, C), \dagger} A\right)=\mathcal{R}\left(A^{\|(B, C), \dagger}\right)$. From [2, Theorem 6.6], it follows that $\mathcal{R}\left(A^{\|(B, C)} A\right)=\mathcal{R}(B)$ and $\mathcal{R}\left(A A^{\|(B, C)}\right)=\mathcal{R}(A B)$, whence $\mathcal{R}\left(A^{\|(B, C), \dagger} A\right)=\mathcal{R}\left(A^{\|(B, C)} A\right)=\mathcal{R}(B)$ and $\mathcal{R}(A B)=\mathcal{R}\left(A A^{\|(B, C), \dagger} A B\right) \subseteq \mathcal{R}\left(A A^{\|(B, C), \dagger}\right)=\mathcal{R}\left(A A^{\|(B, C)} A A^{\dagger}\right) \subseteq \mathcal{R}\left(A A^{\|(B, C)}\right)=\mathcal{R}(A B)$. So, $\mathcal{R}\left(A A^{\|(B, C), \dagger}\right)=\mathcal{R}(A B)$.
(ii) We have $\mathcal{N}\left(A A^{\|(B, C), \dagger}\right)=\mathcal{N}\left(A^{\|(B, C), \dagger}\right)$ since $A^{\|(B, C), \dagger} A A^{\|(B, C), \dagger}=A^{\|(B, C), \dagger}$. Again by [2, Theorem 6.6], we have $\mathcal{N}\left(A^{\|(B, C)} A\right)=\mathcal{N}(C A)$, so that $\mathcal{N}\left(A^{\|(B, C), t} A\right)=\mathcal{N}\left(A^{\|(B, C)} A\right)=\mathcal{N}(C A)$. As $\mathcal{N}(C) \subseteq \mathcal{N}\left(A^{\|(B, C)}\right)$, then there exists some $T \in \mathbb{C}^{m \times m}$ such that $A^{\|(B, C)}=T C$. So, $\mathcal{N}\left(C A A^{+}\right)=\mathcal{N}\left(C A A^{\|(B, C), \uparrow}\right) \subseteq \mathcal{N}\left(T C A A^{\|(B, C), \uparrow}\right)=$ $\mathcal{N}\left(A^{\|(B, C), \dagger}\right) \subseteq\left(C A A^{\|(B, C), \dagger}\right)=\mathcal{N}\left(C A A^{\dagger}\right)$. Therefore, $\mathcal{N}\left(A A^{\|(B, C), \dagger}\right)=\mathcal{N}\left(A^{\|(B, C), \dagger}\right)=\mathcal{N}\left(C A A^{\dagger}\right)$.
(iii) It follows from (i) and (ii).

A matrix $A \in \mathbb{C}^{n \times n}$ is called Hermitian if $A^{*}=A$. A Hermitian projector matrix is called an orthogonal projector. It is known that $A A^{\|(B, C), \dagger}$ and $A^{\|(B, C), \dagger} A$ are both projectors. However, they may not be orthogonal projectors. We next show under what conditions $A A^{\|(B, C), \dagger}$ and $A^{\|(B, C), \dagger} A$ are orthogonal projectors.

Theorem 2.6. Let $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$ such that $A^{\|(B, C)}$ exists. Then the following statements are equivalent:
(i) $A A^{\|(B, C),+}$ is an orthogonal projector.
(ii) $\mathcal{R}(A B)=\mathcal{R}\left(A A^{+} C^{*}\right)$.
(iii) $\mathcal{R}\left(A A^{+} C^{*}\right) \subseteq \mathcal{R}(A B)$.
(iv) $\mathcal{R}(A B) \subseteq \mathcal{R}\left(A A^{\dagger} C^{*}\right)$.

Proof. To begin with, (ii) \Rightarrow (iii) and (ii) \Rightarrow (iv) are obvious.
(i) \Rightarrow (ii) Given (i), then $A A^{\|(B, C), t}=\left(A A^{\|(B, C),+}\right)^{*}$, so that $\mathcal{R}\left(A A^{\|(B, C), t}\right)=\mathcal{R}\left(\left(A A^{\|(B, C),+}\right)^{*}\right)=\mathcal{N}\left(A A^{\|(B, C), \uparrow}\right)^{\perp}$.

By Theorem 2.5, we have

$$
\begin{aligned}
\mathcal{R}(A B) & =\mathcal{R}\left(A A^{\|(B, C), \dagger}\right)=\mathcal{N}\left(A A^{\|(B, C),+}\right)^{\perp}=\mathcal{N}\left(C A A^{\dagger}\right)^{\perp} \\
& =\mathcal{R}\left(\left(C A A^{\dagger}\right)^{*}\right)=\mathcal{R}\left(A A^{\dagger} C^{*}\right) .
\end{aligned}
$$

(iii) \Rightarrow (i) Since $A A^{\|(B, C), t}=\left(A A^{\|(B, C), t}\right)^{2}$, to prove (i), it suffices to show $\left(A A^{\|(B, C), t}\right)^{*}=A A^{\|(B, C), \dagger}$. As $\mathcal{R}\left(A A^{+} C^{*}\right) \subseteq \mathcal{R}(A B)$, then by Theorem 2.5 , we have

$$
\begin{aligned}
\mathcal{R}\left(\left(A A^{\|(B, C), \dagger}\right)^{*}\right) & =\mathcal{N}\left(A A^{\|(B, C), \dagger}\right)^{\perp}=\mathcal{N}\left(C A A^{\dagger}\right)^{\perp}=\mathcal{R}\left(\left(C A A^{\dagger}\right)^{*}\right) \\
& =\mathcal{R}\left(A A^{\dagger} C^{*}\right) \subseteq \mathcal{R}(A B)=\mathcal{R}\left(A A^{\|(B, C), \dagger}\right) .
\end{aligned}
$$

Hence, there exists some $D \in \mathbb{C}^{n \times n}$ such that $\left(A A^{\|(B, C), \dagger}\right)^{*}=A A^{\|(B, C), \dagger} D=A A^{\|(B, C), \dagger} A A^{\|(B, C), \dagger} D=A A^{\|(B, C), \dagger}\left(A A^{\|(B, C), \dagger}\right)^{*}=$ $A A^{\|(B, C), \dagger}$, as required.
(iv) \Rightarrow (ii) It follows from Theorem 2.5 (iii) that $\operatorname{rk}(A B)=\operatorname{rk}\left(C A A^{+}\right)=\operatorname{rk}\left(A A^{+} C^{*}\right)$, whence $\mathcal{R}(A B)=$ $\mathcal{R}\left(A A^{+} C^{*}\right)$ since $\mathcal{R}(A B) \subseteq \mathcal{R}\left(A A^{\dagger} C^{*}\right)$.

In Theorem 2.7 below, we derive the necessary and sufficient conditions such that $A^{\|(B, C), t} A$ is an orthogonal projector, whose proof is similar to that of Theorem 2.6. We herein leave it to the readers.

Theorem 2.7. Let $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$ such that $A^{\|(B, C)}$ exists. Then the following statements are equivalent:
(i) $A^{\|(B, C), \dagger} A$ is an orthogonal projector.
(ii) $\mathcal{R}\left((C A)^{*}\right)=\mathcal{R}(B)$.
(iii) $\mathcal{R}\left((C A)^{*}\right) \subseteq \mathcal{R}(B)$.
(iv) $\mathcal{R}(B) \subseteq \mathcal{R}\left((C A)^{*}\right)$.

As stated in Section 1, several types of generalized inverses are described by $A_{\mathcal{T}, \mathcal{S}}^{(2)}$. We next establish the criterion of the (B, C)-MP-inverse of A using its $A_{\mathcal{T}, S}^{(2)}$.

Theorem 2.8. Let $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$ such that $A^{\|(B, C)}$ exists. Then $X=A^{\|(B, C), \dagger}$ if and only if $X=$ $A_{\mathcal{R}(B), \mathcal{N}\left(C A A^{+}\right)}^{(2)}$.

Proof. Suppose $X=A^{\|(B, C), \dagger}$. Then, by Theorem 2.5, we have $X A X=X, \mathcal{R}(X)=\mathcal{R}(B)$ and $\mathcal{N}(X)=\mathcal{N}\left(C A A^{\dagger}\right)$, so that $X=A_{\mathcal{R}(B), \mathcal{N}\left(C A A^{+}\right)}^{(2)}$.

Conversely, if $X=A_{\mathcal{R}(B), \mathcal{N}\left(C A A^{+}\right)}^{(2)}$, then $X A X=X, \mathcal{R}(X)=\mathcal{R}(B)$ and $\mathcal{N}(X)=\mathcal{N}\left(C A A^{\dagger}\right)$, and hence $\mathcal{R}(A X-$ $\left.I_{n}\right) \subseteq \mathcal{N}(X)=\mathcal{N}\left(C A A^{+}\right)$. This implies $C A X=C A A^{+}$. The inclusion $\mathcal{N}(C) \subseteq \mathcal{N}\left(A^{\|(B, C)}\right)$ gives $A^{\|(B, C)}=S C$ for some $S \in \mathbb{C}^{m \times m}$. Also, from $\mathcal{R}(X)=\mathcal{R}(B)$, it follows that $X=A^{\|(B, C)} A X=S C A X=S C A A^{+}=A^{\|(B, C)} A A^{\dagger}=$ $A^{\|(B, C), \dagger}$.

We denote by $P_{M, N}$ the projector onto M along N, where M, N are two complementary subspaces of $\mathbb{C}^{n \times 1}$, namely $\mathbb{C}^{n \times 1}=M \oplus N$.

It follows from Theorem 2.5 that $\mathcal{R}\left(A A^{\|(B, C), \dagger}\right)=\mathcal{R}(A B), N\left(A A^{\|(B, C), \dagger}\right)=\mathcal{N}\left(C A A^{\dagger}\right)$ and $\mathcal{R}\left(A^{\|(B, C), \dagger}\right) \subseteq \mathcal{R}(B)$. So, $\mathcal{R}(A B) \oplus \mathcal{N}\left(C A A^{+}\right)=\mathbb{C}^{n \times 1}$. Let $X=A^{\|(B, C)} A A^{+}$. Then $A X=P_{\mathcal{R}(A B), N\left(C A A^{+}\right)}$is a projector onto $\mathcal{R}(A B)$ along $\mathcal{N}\left(C A A^{\dagger}\right)$.

We next give show that $X=A^{\|(B, C)} A A^{+}$is the unique solution of the following system consisting of $P_{\mathcal{R}(A B), \mathcal{N}\left(C A A^{+}\right)}$.

Theorem 2.9. Let $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$ such that $A^{\|(B, C)}$ exists. Then

$$
\begin{equation*}
A X=P_{\mathcal{R}(A B), \mathcal{N}\left(C A A^{+}\right)}, \mathcal{R}(X) \subseteq \mathcal{R}(B) \tag{2}
\end{equation*}
$$

is consistent and has the unique solution $X=A^{\|(B, C), \dagger}$.
Proof. We assume that X_{1}, X_{2} satisfy (2). Then $A X_{1}=A X_{2}=P_{\mathcal{R}(A B), N\left(C A A^{+}\right)} \mathcal{R}\left(X_{1}\right) \subseteq \mathcal{R}(B)$ and $\mathcal{R}\left(X_{2}\right) \subseteq \mathcal{R}(B)$. We have at once $A\left(X_{1}-X_{2}\right)=0, \mathcal{R}\left(X_{1}-X_{2}\right) \subseteq \mathcal{N}(A)$ and $\mathcal{R}\left(X_{1}-X_{2}\right) \subseteq \mathcal{R}(B)$. Consequently, it follows that $\mathcal{R}\left(X_{1}-X_{2}\right) \subseteq \mathcal{N}(A) \cap \mathcal{R}(B)$.

Given any $X \in \mathcal{N}(A) \cap \mathcal{R}(B)$, then there exists some $T \in \mathbb{C}^{n \times n}$ such that $X=B T=A^{\|(B, C)} A B T=A^{\|(B, C)} A X=$ 0 and $\mathcal{N}(A) \cap \mathcal{R}(B)=\{0\}$. Hence $\mathcal{R}\left(X_{1}-X_{2}\right) \subseteq \mathcal{N}(A) \cap \mathcal{R}(B)=\{0\}$ and $X_{1}=X_{2}$.

Remark 2.10. In Theorem 2.9, $\mathcal{R}(X) \subseteq \mathcal{R}(B)$ is equivalent to the condition $X=A^{\|(B, C)} A X$. Indeed, if $\mathcal{R}(X) \subseteq \mathcal{R}(B)$, then $X=B T=A^{\|(B, C)} A B T=A^{\|(B, C)} A X$ for some $T \in \mathbb{C}^{n \times n}$. For the converse statement, if $X=A^{\|(B, C)} A X$ then $\mathcal{R}(X) \subseteq \mathcal{R}\left(A^{\|(B, C)}\right)$, so that $\mathcal{R}(X) \subseteq \mathcal{R}(B)$ since $\mathcal{R}\left(A^{\|(B, C)}\right) \subseteq \mathcal{R}(B)$.

Let \mathbb{C}_{n}^{p} be the set of $n \times n$ projector matrices. Given $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$ such that $A^{\|(B, C)}$ exists, then $A A^{\|(B, C), \dagger} \in \mathbb{C}_{n}^{P}, A^{\|(B, C), \dagger} A \in \mathbb{C}_{m}^{P}$.

The following result presents characterizations for the (B, C)-MP-inverse of A using projectors $A A^{\|(B, C), t}$ and $A^{\|(B, C), \dagger} A$.

Theorem 2.11. Let $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$ such that $A^{\|(B, C)}$ exists. Then the following conditions are equivalent:
(i) $X=A^{\|(B, C), t}$.
(ii) $C A X=C A A^{\dagger}, \mathcal{R}(X)=\mathcal{R}(B)$.
(iii) $C A X=C A A^{\dagger}, X=A^{\|(B, C)} A X$.
(iv) $X A B=B, \mathcal{N}(X)=\mathcal{N}\left(C A A^{\dagger}\right)$.
(v) $X A A^{\|(B, C)}=A^{\|(B, C)}, \operatorname{rk}(X)=\operatorname{rk}(B), C A X=C A A^{\dagger}$.
(vi) $A X=A A^{\|(B, C)} A A^{\dagger}, \mathcal{R}(X)=\mathcal{R}(B)$.
(vii) $A X=A A^{\|(B, C)} A A^{\dagger}, X=A^{\|(B, C)} A X$.
(viii) $A X \in \mathbb{C}_{n}^{P}, \mathcal{R}(X)=\mathcal{R}(B), \mathcal{N}(X)=\mathcal{N}\left(C A A^{\dagger}\right)$.
(ix) $A X \in \mathbb{C}_{n}^{P}, X=A^{\|(B, C)} A X, \mathcal{N}(X)=\mathcal{N}\left(C A A^{+}\right)$.
(x) $A X A=A A^{\|(B, C)} A, \mathcal{R}(X)=\mathcal{R}(B), \mathcal{N}(X)=\mathcal{N}\left(C A A^{\dagger}\right)$.
(xi) $X A=A^{\|(B, C)} A, \mathcal{N}(X)=\mathcal{N}\left(C A A^{+}\right)$.
(xii) $X A \in \mathbb{C}_{m}^{P}, \mathcal{R}(X)=\mathcal{R}(B), \mathcal{N}(X)=\mathcal{N}\left(C A A^{\dagger}\right)$.

Proof. (i) implies these items (ii)-(xii) by Theorems 2.5 and 2.8 ; (ii) \Rightarrow (iii), (vi) \Rightarrow (vii), (viii) \Rightarrow (ix), (x) \Rightarrow (xi) follow from Remark 2.10.
(iii) \Rightarrow (i) It follows from $\mathcal{N}(C) \subseteq \mathcal{N}\left(A^{\|(B, C)}\right)$ that $X=A^{\|(B, C)} A X=S C A X=S C A A^{\dagger}=A^{\|(B, C)} A A^{+}=A^{\|(B, C),+}$ for some $S \in \mathbb{C}^{m \times m}$.
(iv) $\Rightarrow\left(\right.$ v) Since $\mathcal{R}\left(A^{\|(B, C)}\right) \subseteq \mathcal{R}(B)$, we have $A^{\|(B, C)}=B S$ for suitable $S \in \mathbb{C}^{n \times n}$, This combines with $X A B=B$ to imply $X A A^{\|(B, C)}=A^{\|(B, C)}$. According to $\mathcal{N}\left(C A A^{\dagger}\right)=\mathcal{N}(X)$ and Theorem 2.5, we have $\operatorname{rk}(X)=\operatorname{rk}\left(C A A^{\dagger}\right)=$ $\operatorname{rk}(B)$. Also, $X A B=B$ implies $\mathcal{R}(B) \subseteq \mathcal{R}(X)$. So, $\mathcal{R}(X)=\mathcal{R}(B)$. Then X can be written as the form of $B T$ for suitable $T \in \mathbb{C}^{n \times n}$. Post-multiplying $X A B=B$ by T gives $X A X=X$. So, $\mathcal{R}\left(I_{n}-A X\right) \subseteq \mathcal{N}(X)=\mathcal{N}\left(C A A^{\dagger}\right)$. Therefore, $C A X=C A A^{\dagger}$.
(v) \Rightarrow (ii) Post-Multiplying $X A A^{\|(B, C)}=A^{\|(B, C)}$ by $A B$ implies $X A B=B$. Then we have at once $\mathcal{R}(B) \subseteq \mathcal{R}(X)$, which combines with $\operatorname{rk}(X)=\operatorname{rk}(B)$ to ensure $\mathcal{R}(X)=\mathcal{R}(B)$.
(vii) \Rightarrow (i) Given $A X=A A^{\|(B, C)} A A^{\dagger}$, then it follows that $X=A^{\|(B, C)} A X=A^{\|(B, C)} A A^{\|(B, C)} A A^{+}=A^{\|(B, C)} A A^{+}=$ $A^{\|(B, C), \uparrow .}$
(ix) \Rightarrow (iii) By $A X \in \mathbb{C}_{n}^{p}$, we have $X=A^{\|(B, C)} A X=A^{\|(B, C)} A X A X=X A X$. Hence, $\mathcal{R}\left(I_{n}-A X\right) \subseteq \mathcal{N}(X)=$ $\mathcal{N}\left(C A A^{+}\right)$and $C A X=C A A^{+}$.
$($ xi) \Rightarrow (iv) is obvious.
(xii) \Rightarrow (ii) As $X A \in \mathbb{C}_{m}^{P}$, then $\mathcal{R}(A-A X A) \subseteq \mathcal{N}(X)=\mathcal{N}\left(C A A^{+}\right)$, so that $C A=C A X A$. Post-multiplying $C A=C A X A$ by A^{\dagger} gives $C A A^{\dagger}=C A X A A^{\dagger}$. From $\mathcal{R}\left(I_{n}-A A^{\dagger}\right) \subseteq \mathcal{N}\left(C A A^{\dagger}\right)=\mathcal{N}(X)$, one has $X=X A A^{\dagger}$ and $C A A^{\dagger}=C A\left(X A A^{\dagger}\right)=C A X$.

Remark 2.12. In Theorem 2.11 above, the condition $\mathcal{R}(X)=\mathcal{R}(B)$ can be weaken to the inclusion $\mathcal{R}(X) \subseteq \mathcal{R}(B)$.

3. Connections with other generalized inverses

Let $A \in \mathbb{C}^{n \times m}$ and $B, C, B^{\prime}, C^{\prime} \in \mathbb{C}^{m \times n}$. Benítez et al. in [2, Remark 4.3] proved that if $\mathcal{R}(B)=\mathcal{R}\left(B^{\prime}\right)$, $\mathcal{N}(C)=\mathcal{N}\left(C^{\prime}\right)$, then the existence of $A^{\|(B, C)}$ coincides with that of $A^{\|\left(B^{\prime}, C^{\prime}\right)}$ and $A^{\|(B, C)}=A^{\|\left(B^{\prime}, C^{\prime}\right)}$.

The following result shows that the converse statement also holds.
Lemma 3.1. Let $A \in \mathbb{C}^{n \times m}$ and $B, C, B^{\prime}, C^{\prime} \in \mathbb{C}^{m \times n}$ such that $A^{\|(B, C)}$ and $A^{\|\left(B^{\prime}, C^{\prime}\right)}$ exist. Then the following conditions are equivalent:
(i) $A^{\|(B, C)}=A^{\|\left(B^{\prime}, C^{\prime}\right)}$.
(ii) $\mathcal{R}(B)=\mathcal{R}\left(B^{\prime}\right), \mathcal{N}(C)=\mathcal{N}\left(C^{\prime}\right)$.
(iii) $\mathcal{R}(B) \subseteq \mathcal{R}\left(B^{\prime}\right), \mathcal{N}(C) \subseteq \mathcal{N}\left(C^{\prime}\right)$.

Proof. (i) \Rightarrow (ii) Post-multiplying $A^{\|(B, C)}=A^{\|\left(B^{\prime}, C^{\prime}\right)}$ by $A B$ gives $B=A^{\|\left(B^{\prime}, C^{\prime}\right)} A B$, and $\mathcal{R}(B) \subseteq \mathcal{R}\left(A^{\|\left(B^{\prime}, C^{\prime}\right)}\right) \subseteq \mathcal{R}\left(B^{\prime}\right)$. Pre-multiplying $A^{\|(B, C)}=A^{\|\left(B^{\prime}, C^{\prime}\right)}$ by $C A$ yields $C=C A A^{\|\left(B^{\prime}, C^{\prime}\right)}$, so that $\mathcal{N}\left(C^{\prime}\right) \subseteq \mathcal{N}\left(A^{\|\left(B^{\prime}, C^{\prime}\right)}\right) \subseteq \mathcal{N}(C)$. Dually, one can get $\mathcal{R}\left(B^{\prime}\right) \subseteq \mathcal{R}(B)$ and $\mathcal{N}(C) \subseteq \mathcal{N}\left(C^{\prime}\right)$. Consequently, $\mathcal{R}(B)=\mathcal{R}\left(B^{\prime}\right), \mathcal{N}(C)=\mathcal{N}\left(C^{\prime}\right)$.
(ii) \Rightarrow (iii) is obvious.
(iii) \Rightarrow (i) Note that $\mathcal{R}(B) \subseteq \mathcal{R}\left(B^{\prime}\right)$ implies $\operatorname{rk}(B) \leq \operatorname{rk}\left(B^{\prime}\right)$, and $\mathcal{N}(C) \subseteq \mathcal{N}\left(C^{\prime}\right)$ gives $\operatorname{rk}\left(C^{\prime}\right) \leq \operatorname{rk}(C)$. By Lemma 2.3, one knows that $\operatorname{rk}(B)=\operatorname{rk}(C)$ and $\operatorname{rk}\left(B^{\prime}\right)=\operatorname{rk}\left(C^{\prime}\right)$. So, $\operatorname{rk}(B)=\operatorname{rk}\left(B^{\prime}\right)=\operatorname{rk}\left(C^{\prime}\right)=\operatorname{rk}(C)$ and hence $\mathcal{R}(B)=\mathcal{R}\left(B^{\prime}\right), \mathcal{N}(C)=\mathcal{N}\left(C^{\prime}\right)$. Hence $A^{\|(B, C)}=A^{\|\left(B^{\prime}, C^{\prime}\right)}$ from [2, Remark 4.3].

It is known from [4] that $A^{+}=A^{\|\left(A^{*}, A^{*}\right)}$ for $A \in \mathbb{C}^{n \times m}$. Taking $B^{\prime}=C^{\prime}=A^{*}$ in Lemma 3.1, we have the following result.

Lemma 3.2. Let $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$ such that $A^{\|(B, C)}$ exists. Then the following statements are equivalent:
(i) $A^{\|(B, C)}=A^{+}$.
(ii) $\mathcal{R}(B)=\mathcal{R}\left(A^{*}\right), \mathcal{N}(C)=\mathcal{N}\left(A^{*}\right)$.
(iii) $\mathcal{R}(B) \subseteq \mathcal{R}\left(A^{*}\right), \mathcal{N}(C) \subseteq \mathcal{N}\left(A^{*}\right)$.

It is worth pointing out that if $A^{\|(B, C)}=A^{+}$then $A^{\|(B, C),+}=A^{\|(B, C)} A A^{+}=A^{\dagger} A A^{+}=A^{\dagger}$. However, the converse statement may not be true, namely $A^{\|(B, C), \dagger}=A^{\dagger}$ does not imply $A^{\|(B, C)}=A^{\dagger}$ in general. A counterexample is given below.

Example 3.3. Set $A=\left[\begin{array}{ll}2 & 0 \\ 4 & 0\end{array}\right], B=\left[\begin{array}{ll}4 & 2 \\ 0 & 0\end{array}\right], C=\left[\begin{array}{ll}\frac{1}{2} & 0 \\ 0 & 0\end{array}\right] \in \mathbb{C}^{2 \times 2}$. As $\operatorname{rk}(C A B)=\operatorname{rk}(B)=\operatorname{rk}(C)$, then, by Lemma 2.3, $A^{\|(B, C)}$ exists. A simple computation gives $A^{\|(B, C)}=C=\left[\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & 0\end{array}\right], A^{+}=\left[\begin{array}{cc}\frac{1}{10} & \frac{1}{5} \\ 0 & 0\end{array}\right]$ and hence $A^{\|(B, C),+}=\left[\begin{array}{cc}\frac{1}{10} & \frac{1}{5} \\ 0 & 0\end{array}\right]$, so that $A^{\dagger}=A^{\|(B, C), \dagger}$. However, $A^{\dagger} \neq A^{\|(B, C)}$.

The following theorem presents the necessary and sufficient conditions such that $A^{\dagger}=A^{\|(B, C), \dagger}$.
Theorem 3.4. Let $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$ such that $A^{\|(B, C)}$ exists. Then the following statements are equivalent:
(i) $A^{\|(B, C), \dagger}=A^{\dagger}$.
(ii) $\mathcal{R}\left(A^{*}\right)=\mathcal{R}(B)$.
(iii) $\mathcal{R}\left(A^{*}\right) \subseteq \mathcal{R}(B)$.

Proof. (i) \Rightarrow (ii) Multiplying $A^{\|(B, C),+}=A^{+}$by $A A^{*}$ on the right side yields $A^{\|(B, C)} A A^{*}=A^{\dagger} A A^{*}=A^{*}$ and $\mathcal{R}\left(A^{*}\right) \subseteq \mathcal{R}\left(A^{\|(B, C)}\right) \subseteq \mathcal{R}(B)$. By Lemma 2.4, $\operatorname{rk}(B) \leq \operatorname{rk}(A)=\operatorname{rk}\left(A^{*}\right)$. Consequently, $\mathcal{R}\left(A^{*}\right)=\mathcal{R}(B)$.
(ii) \Rightarrow (iii) is clear.
(iii) \Rightarrow (i) As $\mathcal{R}\left(A^{*}\right) \subseteq \mathcal{R}(B)$, then there exists some $T \in \mathbb{C}^{n \times n}$ such that $A^{*}=B T=A^{\|(B, C)} A B T=A^{\|(B, C)} A A^{*}$. Multiplying $A^{*}=A^{\|(B, C)} A A^{*}$ by $\left(A^{\dagger}\right)^{*} A^{\dagger}$ on the right side gives $A^{+}=A^{\|(B, C)} A A^{+}=A^{\|(B, C), \dagger}$.

Theorem 3.5. Let $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$ such that $A^{\|(B, C)}$ exists. Then $A^{\|(B, C),+}=A^{\|(B, C)}$ if and only if $C=C A A^{\dagger}$.

Proof. Suppose $A^{\|(B, C), \dagger}=A^{\|(B, C)}$. Pre-multiplying $A^{\|(B, C), \dagger}=A^{\|(B, C)}$ by $C A$ yields $C A A^{\dagger}=C A A^{\|(B, C), t}=$ $C A A^{\|(B, C)}=C$.

Conversely, since $\mathcal{N}(C) \subseteq \mathcal{N}\left(A^{\|(B, C)}\right)$, there exists some $S \in \mathbb{C}^{m \times m}$ such that $A^{\|(B, C)}=S C=S C A A^{+}=$ $A^{\|(B, C)} A A^{\dagger}=A^{\|(B, C),{ }^{\dagger}}$.

Suppose S is a *-semigroup and $a, b, c \in S$. We recall from [21] that a is (b, c)-core invertible if there exists some $x \in S$ such that caxc $=c, x S=b S$ and $S x=S c^{*}$. The (b, c)-core inverse x of a is uniquely determined (if it exists) and is denoted by $a_{(b, c)}^{\oplus}$. It is shown in [21] that a is (b,c)-core invertible if and only if a is (b, c)-invertible and c is $\{1,3\}$-invertible. Moreover, $a_{(b, c)}^{\oplus}=a^{\|(b, c)} c^{(1,3)}$.

We next give the notion of (b, c)-core inverses in complex matrices.
Definition 3.6. Let $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$. The matrix A is called (B, C)-core invertible if there exists some $X \in \mathbb{C}^{m \times m}$ such that $C A X C=C, \mathcal{R}(X)=\mathcal{R}(B)$ and $\mathcal{N}(X)=\mathcal{N}\left(C^{*}\right)$. Such an X is called $a(B, C)$-core inverse of A.

Given any $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$, it can be proved that the (B, C)-core inverse of A is unique if it exists. As usual, we denote by $A_{(B, C)}^{\oplus}$ the (B, C)-core inverse of A. Moreover, one has the following equivalence: A is (B, C)-core invertible if and only if A is (B, C)-invertible. In this case, $A_{(B, C)}^{\oplus}=A^{\|(B, C)} C^{\dagger}$.

Theorem 3.7. Let $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$. Then the following conditions are equivalent:
(i) A is (B, C)-MP-invertible.
(ii) A is (B, C)-core invertible.

In this case, $A^{\|(B, C),+}=A_{(B, C)}^{\oplus} C A A^{\dagger}$.
Proof. The equivalence between (i) and (ii) is obvious. It next suffices to give the formula. As $A_{(B, C)}^{\oplus}$ exists, then $A_{(B, C)}^{\oplus}=A^{\|(B, C)} C^{\dagger}, A_{(B, C)}^{\oplus} C=A^{\|(B, C)} C^{\dagger} C=A^{\|(B, C)}$ and post-multiplying $A_{(B, C)}^{\oplus}=A^{\|(B, C)} C^{\dagger}$ by $C A A^{\dagger}$ yields $A^{\|(B, C), t}=A^{\|(B, C)} A A^{\dagger}=A_{(B, C)}^{\oplus} C A A^{\dagger}$.

As pointed out in [4], $A^{\| D}$ is the (D, D)-inverse of A for any $A, D \in \mathbb{C}^{n \times n}$, and hence $A^{\|(D, D), \dagger}=A^{\|(D, D)} A A^{\dagger}=$ $A^{\| D} A A^{\dagger}=A_{D}^{\|,+}$.

The following theorem presents the criterion such that $A^{\|(B, C), t}=A_{D}^{\|, t}$.
Theorem 3.8. Let $A, B, C, D \in \mathbb{C}^{n \times n}$ such that $A^{\|(B, C)}$ and $A^{\| D}$ exist. Then the following conditions are equivalent:
(i) $A^{\|(B, C), \dagger}=A_{D}^{\|, \dagger}$.
(ii) $\mathcal{R}(D)=\mathcal{R}(B), \mathcal{N}(D A)=\mathcal{N}(C A)$.
(iii) $\mathcal{R}(D) \subseteq \mathcal{R}(B), \mathcal{N}(D A) \subseteq \mathcal{N}(C A)$.

Proof. (i) \Rightarrow (ii) As $A^{\|(B, C),+}=A_{D}^{\|, \dagger}$, i.e., $A^{\|(B, C)} A A^{+}=A^{\| D} A A^{+}$, then $A^{\|(B, C)} A=A^{\| D} A$. Post-multiplying $A^{\|(B, C)} A=A^{\| D} A$ by B and D give $B=A^{\| D} A B$ and $A^{\|(B, C)} A D=D$, respectively. Then $\mathcal{R}(B) \subseteq \mathcal{R}\left(A^{\| D}\right) \subseteq \mathcal{R}(D)$ and $\mathcal{R}(D) \subseteq \mathcal{R}\left(A^{\|(B, C)}\right) \subseteq \mathcal{R}(B)$. So, $\mathcal{R}(B)=\mathcal{R}(D)$. Pre-multiplying $A^{\|(B, C)} A=A^{\| D} A$ by $C A$ and $D A$ yield $C A=$ $C A A^{\| D} A$ and $D A A^{\|(B, C)} A=D A$, respectively. It follows that $\mathcal{N}\left(A^{\| D} A\right) \subseteq \mathcal{N}(C A)$ and $\mathcal{N}\left(A^{\|(B, C)} A\right) \subseteq \mathcal{N}(D A)$. By [2, Theorem 6.6], we have $\mathcal{N}(C A)=\mathcal{N}\left(A^{\|(B, C)} A\right)$ and $\mathcal{N}(D A)=\mathcal{N}\left(A^{\| D} A\right)$. Consequently, $\mathcal{N}(C A)=\mathcal{N}(D A)$.
(ii) \Rightarrow (iii) is trivial.
(iii) \Rightarrow (i) Since $\mathcal{R}(D) \subseteq \mathcal{R}(B)$, there exists some $T \in \mathbb{C}^{n \times n}$ such that $D=B T=A^{\|(B, C)} A B T=A^{\|(B, C)} A D$, which combines with $\mathcal{R}\left(A^{\| D)} \subseteq \mathcal{R}(D)\right.$ to lead $A^{\| D}=A^{\|(B, C)} A A^{\| D}$. Similarly, as $\mathcal{N}(D A) \subseteq \mathcal{N}(C A)$, then $C A=S D A=S D A A^{\| D} A=C A A^{\| D} A$ for suitable $S \in \mathbb{C}^{n \times n}$. From $\mathcal{N}(C) \subseteq \mathcal{N}\left(A^{\|(B, C)}\right)$, it follows that $A^{\|(B, C)} A=A^{\|(B, C)} A A^{\| D} A$. Consequently, $A^{\|(B, C)} A=A^{\| D} A$ and $A^{\|(B, C), t}=A_{D}^{\|,+}$.

In Theorem 3.8, taking $D=A^{m}(m=\operatorname{ind}(A))$, then $A^{\| A^{m}}=A^{D}$, so that $A_{A^{m}}^{\|, \dagger}=A^{\| A^{m}} A A^{\dagger}=A^{D} A A^{\dagger}=A^{D, \dagger}$. Note that $\mathcal{N}\left(A^{m}\right)=\mathcal{N}\left(A^{m+1}\right)$ since $A^{m}=A^{D} A^{m+1}$. So, we have the following result.
Corollary 3.9. Let $A, B, C \in \mathbb{C}^{n \times n}$ and $\operatorname{ind}(A)=m$. Suppose $A^{\|(B, C)}$ exists. Then the following conditions are equivalent:
(i) $A^{\|(B, C), \dagger}=A^{D,+}$.
(ii) $\mathcal{R}\left(A^{m}\right)=\mathcal{R}(B), \mathcal{N}\left(A^{m}\right)=\mathcal{N}(C A)$.
(iii) $\mathcal{R}\left(A^{m}\right) \subseteq \mathcal{R}(B), \mathcal{N}\left(A^{m}\right) \subseteq \mathcal{N}(C A)$.

Setting $m=1$ in Corollary 3.9, then A is group invertible and hence $A^{D,+}=A^{\#} A A^{+}=A^{\oplus}$. We claim herein that $\mathcal{N}(C A)=\mathcal{N}(A)$ in the item (ii) and $\mathcal{N}\left(A^{m}\right) \subseteq \mathcal{N}(C A)$ in the item (iii) can be dropped. Indeed, the condition $\mathcal{N}(A) \subseteq \mathcal{N}(C A)$ is evident. By Lemma 2.4, one knows that $\operatorname{rk}(C A)=\operatorname{rk}(A)$, and consequently the condition $\mathcal{N}(C A)=\mathcal{N}(A)$ in the item (ii) can be dropped.
Corollary 3.10. Let $A, B, C \in \mathbb{C}^{n \times n}$ and $\operatorname{ind}(A)=1$. Suppose $A^{\|(B, C)}$ exists. Then the following statements are equivalent:
(i) $A^{\|(B, C), \dagger}=A^{\oplus}$.
(ii) $\mathcal{R}(A)=\mathcal{R}(B)$.
(iii) $\mathcal{R}(A) \subseteq \mathcal{R}(B)$.

Recently, the author Zhu et al. [22] introduced W-core inverses in complex matrices. For $A, W \in \mathbb{C}^{n \times n}$, A is called W-core invertible if there exists an $X \in \mathbb{C}^{n \times n}$ satisfying $A W X=P_{A}$ and $\mathcal{R}(X) \subseteq \mathcal{R}(A)$. Such an X is called a W-core inverse of A. It is unique if it exists and is denoted by A_{W}^{\oplus}. It is proved that A is W-core invertible if and only if W is invertible along A (i.e., W is (A, A)-invertible). In this case, $A_{W}^{\oplus}=W^{\| A} A^{\dagger}$.

We close this section with the following result, relating the (B, C)-MP-inverse and the W-core inverse.
Theorem 3.11. Let $A, W \in \mathbb{C}^{n \times n}$. Then the following conditions are equivalent:
(i) W is (A, A)-MP-invertible.
(ii) A is W-core invertible.

In this case, $W^{\|(A, A), \dagger}=A_{W}^{\oplus} A W W^{\dagger}$.
Proof. It is known that W is (A, A)-MP-invertible if and only if W is invertible along A if and only if A is W-core invertible. It next only need to give the formula. Since $A_{W}^{\oplus}=W^{\| A} A^{+}=W^{\|(A, A)} A^{+}$and $W^{\|(A, A)}=$ $W^{\|(A, A)} A^{\dagger} A$, post-multiplying $A_{W}^{\oplus}=W^{\|(A, A)} A^{\dagger}$ by $A W W^{\dagger}$ gives the equality $A_{W}^{\oplus} A W W^{\dagger}=W^{\|(A, A)} A^{\dagger} A W W^{\dagger}=$ $W^{\|(A, A)} W W^{\dagger}=W^{\|(A, A), t}$.

References

[1] O.M. Baksalary, G. Trenkler, Core inverse of matrices, Linear Multilinear Algebra 58 (2010) 681-697.
[2] J. Benítez, E. Boasso, H.W. Jin, On one-sided (B,C)-inverse of arbitrary matrices, Electron. J. Linear Algebra 32 (2017) 391-422.
[3] D.S. Cvetković-Ilić, Y.M. Wei, Algebraic Properties of Generalized Inverses, Series: Developments in Mathematics, Vol. 52, Springer, 2017.
[4] M.P. Drazin, A class of outer generalized inverses, Linear Algebra Appl. 436 (2012) 1909-1923.
[5] M.P. Drazin, Left and right generalized inverses, Linear Algebra Appl. 510 (2016) 64-78.
[6] M.P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly 65 (1958) 506-514.
[7] D.E. Ferreyra, F.E. Levis, N. Thome, Revisiting the core EP inverse and its extension to rectangular matrices, Quaest. Math. 41(2018) 265-281.
[8] M.V. Hernández, M.B. Lattanzi, N. Thome, From projectors to 1MP and MP1 generalized inverses and their induced partial orders. RACSAM 115, 148 (2021) https://doi.org/10.1007/s13398-021-01090-8.
[9] M.V. Hernández, M.B. Lattanzi, N. Thome, On 2MP-, MP2- and C2MP-inverses for rectangular matrices, RACSAM 116 (2022) 116 https://doi.org/10.1007/s13398-022-01289-3.
[10] Y.H. Liu, How to characterize equalities for the generalized inverse $A_{T, S}^{(2)}$ of a matrix, Kyungpook Math. 43 (2003) 605-616.
[11] S.B. Malik, N. Thome, On a new generalized inverse for matrices of an arbitrary index, Appl. Math. Comput. 226 (2014) 575-580.
[12] K. Manjunatha Prasad, K.S. Mohana, Core-EP inverse, Linear Multilinear Algebra 62 (2014) 792-802.
[13] X. Mary, On generalized inverse and Green's relations, Linear Algebra Appl. 434 (2011) 1836-1844.
[14] D. Mosić, P.S. Stanimirović, Composite outer inverses for rectangular matrices, Quaest. Math. 44 (2021) 45-72.
[15] R. Penrose, A generalized inverse for matrices, Proc. Camb. Phil. Soc. 51 (1955) 406-413.
[16] D.S. Rakić, A note on Rao and Mitra's constrained inverse and Drazin's (b,c) inverse, Linear Algebra Appl. 523 (2017) 102-108.
[17] D.S. Rakić, N.C. Dinčić, D.S. Djordjević, Group, Moore-Penrose, core and dual core inverse in rings with involution, Linear Algebra Appl. 463 (2014) 115-133.
[18] D.S. Rakić, M.Z. Ljubenović, 1MP and MP1 inverses and one-sided star orders in a ring with involution, RACSAM 117 (2023) 117 https://doi.org/10.1007/s13398-022-01348-9.
[19] C.C. Wang, H.H. Zhu, A new generalized inverse of rectangular matrices, J. Algebra Appl, (2023) https://doi.org/10.1142/S0219498825500173
[20] Y.M. Wei, A characterization and representation of the generalized inverse $A_{T, S}^{(2)}$ and its application, Linear Algebra Appl. 280 (1998) 87-96.
[21] H.H. Zhu, (b, c-core inverse and its dual in rings with involution, J. Pure Appl. Algebra 228 (2024) 107526.
[22] H.H. Zhu, L.Y. Wu, J.L. Chen, A new class of generalized inverses in semigroups and rings with involution, Comm. Algebra 51 (2023) 2098-2113.
[23] H.H. Zhu, L.Y. Wu, D. Mosić, One-sided w-core inverses in rings with an involution, Linear Multilinear Algebra 71 (2023) 528-544.
[24] K.Z. Zuo, D.S. Cvetković-Ilić, Y.J. Cheng, Different characterizations of DMP-inverse of matrices, Linear Multilinear Algebra 3 (2020) 411-418.

[^0]: 2020 Mathematics Subject Classification. Primary 15A09; Secondary 15A03.
 Keywords. (B, C)-inverses, OMP inverses, DMP-inverses, W-core inverses, $A_{\mathcal{T}, \mathcal{S}}^{(2)}$
 Received: 29 May 2023; Accepted: 25 July 2023
 Communicated by Dragana Cvetković-Ilić
 Research supported by the National Natural Science Foundation of China (No. 11801124) and China Postdoctoral Science Foundation (No. 2020M671068).

 * Corresponding author: Huihui Zhu

 Email addresses: hhzhu@hfut.edu. cn (Huihui Zhu), yyxmath@163.com (Yuxuan Yang)

