Filomat 38:3 (2024), 811–819 https://doi.org/10.2298/FIL2403811Z

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On (*B*, *C*)-**MP**-inverses of rectangular matrices

Huihui Zhu^{a,*}, Yuxuan Yang^a

^aSchool of Mathematics, Hefei University of Technology, Hefei 230009, China.

Abstract. For any $A \in \mathbb{C}^{n \times m}$, the set of all *n* by *m* complex matrices, Mosić and Stanimirović [14] introduced the composite OMP inverse of *A* by its outer inverse with the prescribed range, null space and Moore-Penrose inverse. This inverse unifies the core inverse, DMP inverse and Moore-Penrose inverse. In this paper, we mainly introduce and investigate a class of generalized inverses in complex matrices. Also, it is proved that this generalized inverse coincides with the OMP inverse. Finally, the defined inverse is related to OMP-inverses, *W*-core inverses and (*b*, *c*)-core inverses in the context of matrices.

1. Introduction and notation

For complex matrix A, the Moore-Penrose inverse A^{\dagger} [15] and the Drazin inverse A^{D} [6] are two classical generalized inverses. In the last decade, several new types of mixed generalized inverses were introduced by combining the Moore-Penrose inverse and the Drazin inverse (or the group inverse). For instance, in 2010, Baksalary and Trenkler [1] introduced the core inverse A^{\oplus} of A with index one (i.e., rank(A)=rank(A^{2})). In 2014, Malik and Thome [11] defined the DMP-inverse $A^{D,\dagger}$ of A with index $m \ge 1$ (i.e., m is the smallest positive integer such that rank(A^{k})=rank(A^{k+1})), extending the core inverse.

In order to unify the core inverse, the DMP inverse and so on, Mosić and Stanimirović [14] introduced the composite OMP inverse of a complex matrix by its outer inverse with the prescribed range, null space and Moore-Penrose inverse.

Motivated by [14], we mainly investigate a special case of OMP inverses, called (B, C)-MP-inverses. The paper is organized as follows. In Section 2, given $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$, the (B, C)-Moore-Penrose inverse (abbr. (B, C)-MP-inverse) of A is given. Also, we characterize the (B, C)-MP-inverse of A by its range and null spaces. But beyond that, it is shown in Theorem 2.8 that X is the (B, C)-MP inverse of A if and only if X is an outer inverse of A with prescribed range \mathcal{T} and null spaces. In Section 3, the (b, c)-core inverse in *-semigroups [21] is investigated in the context of rectangular matrices. Also, the (B, C)-MP-inverse is related to other generalized inverses.

Throughout this paper, $\mathbb{C}^{n \times m}$ denotes the set of $n \times m$ complex matrices. The symbol I_n stands for the identity matrix of order n.

²⁰²⁰ Mathematics Subject Classification. Primary 15A09; Secondary 15A03.

Keywords. (B, C)-inverses, OMP inverses, DMP-inverses, W-core inverses, $A_{T,S}^{(2)}$

Received: 29 May 2023; Accepted: 25 July 2023

Communicated by Dragana Cvetković-Ilić

Research supported by the National Natural Science Foundation of China (No. 11801124) and China Postdoctoral Science Foundation (No. 2020M671068).

^{*} Corresponding author: Huihui Zhu

Email addresses: hhzhu@hfut.edu.cn (Huihui Zhu), yyxmath@163.com (Yuxuan Yang)

For any $A \in \mathbb{C}^{n \times m}$, the column space and the null space of A are respectively defined as $\mathcal{R}(A) = \{Ax : x \in \mathbb{C}^{m \times 1}\}$ and $\mathcal{N}(A) = \{x \in \mathbb{C}^{m \times 1} : Ax = 0\}$. The symbols A^* and rk(A) stand for the conjugate transpose and the rank of A, respectively.

Three basic facts are given as follows: $\mathcal{N}(A^*) = \mathcal{R}(A)^{\perp}, \mathcal{R}(A^*) = \mathcal{N}(A)^{\perp}$ and $\operatorname{rk}(A) + \dim \mathcal{N}(A) = n$. Let $A, B \in \mathbb{C}^{n \times m}$. Then $\mathcal{R}(A) \subseteq \mathcal{R}(B)$ (resp., $\mathcal{N}(B) \subseteq \mathcal{N}(A)$) if and only if there exists some $X \in \mathbb{C}^{m \times m}$ (resp., $Y \in \mathbb{C}^{n \times n}$) such that A = BX (resp., A = YB).

Let us now recall several notions of generalized inverses. For any $A \in \mathbb{C}^{n \times m}$, the Moore-Penrose inverse A^{\dagger} [15] of A is the unique matrix $X \in \mathbb{C}^{m \times n}$ satisfying

(i)
$$AXA = A$$
, (ii) $XAX = X$, (iii) $(AX)^* = AX$, (iv) $(XA)^* = XA$.

More generally, a matrix $X \in \mathbb{C}^{m \times n}$ satisfying (i) AXA = A is called an inner inverse of A and is denoted by A^- . A matrix $X \in \mathbb{C}^{m \times n}$ satisfying (ii) XAX = X is called an outer inverse of A and is denoted by $A^{(2)}$.

Let $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$. The matrix A is said to be (B, C)-invertible (see [2]) if there exists a matrix $X \in \mathbb{C}^{m \times n}$ such that $XAB = B, CAX = C, \mathcal{R}(X) \subseteq \mathcal{R}(B)$ and $\mathcal{N}(C) \subseteq \mathcal{N}(X)$. Such a matrix X is called a (B, C)-inverse of A. It is unique if it exists and is denoted by $A^{\parallel (B,C)}$. One knows that the inverse along a matrix is an instance of the (B, C)-inverse. The inverse of A along D is denoted by $A^{\parallel D}$. The standard notion for the inverse along a matrix can be referred to [2].

Given $A \in \mathbb{C}^{n \times n}$, the Drazin inverse of A [6] is the unique matrix $A^D \in \mathbb{C}^{n \times n}$ satisfying $A^D A A^D = A^D$, $AA^D = A^D A$ and $A^D A^{k+1} = A^k$, where k = ind(A). The smallest positive integer k such that $rk(A^k) = rk(A^{k+1})$ is called the index of A and is denoted by ind(A). In particular, if $ind(A) \le 1$, then A is called group invertible. It is well known that A is group invertible if and only if $rk(A) = rk(A^2)$.

Following [1], a matrix $A \in \mathbb{C}^{n \times n}$ is called core invertible if there exists some $X \in \mathbb{C}^{n \times n}$ such that $AX = P_A$ and $\mathcal{R}(X) \subseteq \mathcal{R}(A)$, where P_A represents the orthogonal projector onto $\mathcal{R}(A)$. Such an X is called a core inverse of A [1]. The core inverse of A is unique if it exists and is denoted by A^{\oplus} . One knows from [1] that A is core invertible if and only if A is group invertible. In this case, we have $A^{\oplus} = A^{\#}AA^{\dagger}$.

Let $A \in \mathbb{C}^{n \times n}$ with index *m*. The DMP-inverse (denoted by $A^{D,\dagger}$) of $A \in \mathbb{C}^{n \times n}$ is defined as the unique matrix $X \in \mathbb{C}^{n \times n}$ satisfying $XAX = X, XA = A^{D}A$ and $A^{m}X = A^{m}A^{\dagger}$. Also, it is shown that $A^{D,\dagger} = A^{D}AA^{\dagger}$.

Suppose that \mathcal{T} and \mathcal{S} are subspaces of $\mathbb{C}^{m\times 1}$ and $\mathbb{C}^{n\times 1}$, respectively. Given $A \in \mathbb{C}^{n\times m}$, a matrix $X \in \mathbb{C}^{m\times n}$ is called an outer inverse of A with prescribed range \mathcal{T} and null space \mathcal{S} if X = XAX, $\mathcal{R}(X) = \mathcal{T}$ and $\mathcal{N}(X) = \mathcal{S}$ (see e.g., [20]). The outer inverse of A with prescribed range \mathcal{T} and null space \mathcal{S} is unique if it exists, and is denoted by $A_{\mathcal{T},\mathcal{S}}^{(2)}$. Some types of generalized inverses are characterized by $A_{\mathcal{T},\mathcal{S}}^{(2)}$. Here are several well known characterizations for generalized inverses :

(1) $A^{\dagger} = A_{\mathcal{R}(A^{*}),\mathcal{N}(A^{*})}^{(2)}$ for $A \in \mathbb{C}^{n \times m}$ [20]. (2) $A^{D} = A_{\mathcal{R}(A^{k}),\mathcal{N}(A^{k})}^{(2)}$ for $A \in \mathbb{C}^{n \times n}$ and $k = \operatorname{ind}(A)$ [20]. (3) $A^{\parallel D} = A_{\mathcal{R}(D),\mathcal{N}(D)}^{(2)}$ for $A \in \mathbb{C}^{n \times m}$ and $D \in \mathbb{C}^{m \times n}$ [2]. (4) $A^{\parallel (B,C)} = A_{\mathcal{R}(B),\mathcal{N}(C)}^{(2)}$ for $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$ [2]. (5) $A^{D,\dagger} = A_{\mathcal{R}(A^{k}),\mathcal{N}(A^{k}A^{\dagger})}^{(2)}$ for $A \in \mathbb{C}^{n \times n}$ and $k = \operatorname{ind}(A)$ [24].

Let $A \in \mathbb{C}^{n \times m}$ be of rank r, let T be of dimension $s \leq r$ and let S be of dimension m - s. Suppose $A_{\mathcal{T},S}^{(2)}$ exists. A matrix $X \in \mathbb{C}^{m \times n}$ is called an OMP inverse of A if it satisfies the system of equations XAX = X, $AX = AA_{\mathcal{T},S}^{(2)}AA^{\dagger}$ and $XA = A_{\mathcal{T},S}^{(2)}A$. This inverse is unique if it exists. Also, it was shown in [14] that $X = A_{\mathcal{T},S}^{(2)}AA^{\dagger}$ is solution to the system above.

Several known generalized inverses are listed as special cases of OMP inverses.

(1) For m = n and $A_{\mathcal{T},\mathcal{S}}^{(2)} = A^{\#}$, then the OMP inverse of *A* coincides with its core inverse.

(2) For m = n and $A_{\mathcal{T},\mathcal{S}}^{(2)} = A^D$, then the OMP inverse of A coincides with its DMP-inverse.

2. The (*B*, *C*)-MP-inverse of a matrix

As defined in [14], the OMP inverse of a rectangular matrix A was given by combining its outer inverse $A_{\mathcal{T},S}^{(2)}$ and Moore-Penrose inverse A^{\dagger} . The main goal in this section is to introduce and investigate a type of generalized inverses, called the (B, C)-MP-inverse of A (See Definition 2.1 below).

Definition 2.1. Let $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$ such that $A^{\parallel (B,C)}$ exists. The matrix A is called (B, C)-MP-invertible if there exists some matrix $X \in \mathbb{C}^{m \times n}$ satisfying the system of equations

$$XAX = X, XA = A^{\parallel (B,C)}A \text{ and } CAX = CAA^{\dagger}.$$
 (1)

Such an X is called a (B, C)-MP-inverse of A.

Following [14], a matrix $A \in \mathbb{C}^{n \times m}$ is called (B, C)-MP-invertible (in the sense of Mosić and Stanimirović) if there exists some $X \in \mathbb{C}^{m \times n}$ such that XAX = X, $AX = AA^{\parallel(B,C)}AA^{\dagger}$ and $XA = A^{\parallel(B,C)}A$. Such an X is called the (B, C)-MP-inverse of A. We remark here the readers that the defined (B, C)-MP-inverse is equivalent to Mosić and Stanimirović's (B, C)-MP-inverse [14]. Suppose $X \in \mathbb{C}^{m \times n}$ satisfy XAX = X, $AX = AA^{\parallel(B,C)}AA^{\dagger}$ and $XA = A^{\parallel(B,C)}A$. Then it satisfies XAX = X, $XA = A^{\parallel(B,C)}A$ and $CAX = CAA^{\dagger}$. Conversely, given XAX = X, $XA = A^{\parallel(B,C)}A$ and $CAX = CAA^{\dagger}$, and consequently $AX = AA^{\parallel(B,C)}AA^{\dagger}$.

Recently, Hernández, Lattanzi and Thome [8, 9] introduced two more general 1MP-inverses and 2MP-inverses of *A*, where 1MP-inverses (resp., 2MP-inverses) of *A* are given by its inner inverses (resp., outer inverses) and Moore-Penrose inverse. More details on these generalized inverses can be found in [3–5, 7, 14, 16, 18, 22, 23].

Needless to say, the (*B*, *C*)-MP-inverse belongs to 2MP-inverses. However, 2MP-inverses do not have many properties owned by the (*B*, *C*)-MP-inverse, such as the most fundamental uniqueness. It is known that the OMP inverse is unique whenever it exists, and so is the (*B*, *C*)-MP-inverse. We denote the (*B*, *C*)-MP-inverse of *A* by $A^{\parallel(B,C),\dagger}$.

The following theorem gives the expression for the (*B*, *C*)-MP inverse of *A*.

Theorem 2.2. The system (1) has a unique solution: $X = A^{\parallel (B,C)}AA^{\dagger}$.

Proof. Suppose $X = A^{\parallel (B,C)}AA^{\dagger}$. Then one can directly check that X satisfies the system (1). \Box

Several known generalized inverses are listed as special cases of (*B*, *C*)-MP-inverses.

(1) For m = n and B = C = A, then $A^{\parallel(B,C)} = A^{\#}$ and (A, A)-MP inverse of A coincides with its core inverse. (1') For m = n, B = A and $C = A^{*}$, then by [17, Theorem 4.4], we have $A^{\parallel(B,C)} = A^{\oplus}$ and (A, A^{*}) -MP inverse

of *A* coincides with its core inverse.

(2) Let ind(A) = k, m = n and $B = C = A^k$. Then $A^{\parallel (B,C)} = A^D$, so that (A^k, A^k) -MP inverse of A coincides with its DMP-inverse.

(3) If B = C, then $A^{\parallel (B,C)} = A^{\parallel B}$ and (B,B)-MP inverse of A coincides with its MMP-inverse along B.

(4) Suppose $B = C = A^*$. Then $A^{\parallel(B,C)} = A^*$ and (A^*, A^*) -MP inverse of A coincides with its Moore-Penrose inverse.

In [2], the writers derived the criterion for the (*B*, *C*)-inverse by rank conditions in complex matrices as follows.

Lemma 2.3. [2, Theorem 4.4] Let $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$. Then the following statements are equivalent: (i) A is (B, C)-invertible. (ii) $\operatorname{rk}(C) = \operatorname{rk}(B) = \operatorname{rk}(CAB)$.

In this case, $A^{\parallel(B,C)} = B(CAB)^{\dagger}C$.

Lemma 2.4. [2, Corollary 4.5] Let $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$ such that $A^{\parallel (B,C)}$ exists. Then $\operatorname{rk}(AB) = \operatorname{rk}(CA) = \operatorname{rk}(C) = \operatorname{rk}(B)$.

Based on the above results, we obtain the following theorem, which plays an important role in the sequel.

Theorem 2.5. Let $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$ such that $A^{\parallel(B,C)}$ exists. Then (i) $\mathcal{R}(A^{\parallel(B,C),\dagger}A) = \mathcal{R}(A^{\parallel(B,C),\dagger}) = \mathcal{R}(B)$ and $\mathcal{R}(AA^{\parallel(B,C),\dagger}) = \mathcal{R}(AB)$. (ii) $\mathcal{N}(AA^{\parallel(B,C),\dagger}) = \mathcal{N}(A^{\parallel(B,C),\dagger}) = \mathcal{N}(CAA^{\dagger})$ and $\mathcal{N}(A^{\parallel(B,C),\dagger}A) = \mathcal{N}(CA)$. (iii) $\mathrm{rk}(AB) = \mathrm{rk}(B) = \mathrm{rk}(AA^{\parallel(B,C),\dagger}) = \mathrm{rk}(A^{\parallel(B,C),\dagger}) = \mathrm{rk}(A^{\parallel(B,C),\dagger}A) = \mathrm{rk}(CAA^{\dagger}) = \mathrm{rk}(CA)$.

Proof. (i) Since $A^{\parallel(B,C),\dagger}AA^{\parallel(B,C),\dagger} = A^{\parallel(B,C),\dagger}$, one has $\mathcal{R}(A^{\parallel(B,C),\dagger}A) = \mathcal{R}(A^{\parallel(B,C),\dagger})$. From [2, Theorem 6.6], it follows that $\mathcal{R}(A^{\parallel(B,C)}A) = \mathcal{R}(B)$ and $\mathcal{R}(AA^{\parallel(B,C)}) = \mathcal{R}(AB)$, whence $\mathcal{R}(A^{\parallel(B,C),\dagger}A) = \mathcal{R}(A^{\parallel(B,C)}A) = \mathcal{R}(B)$ and $\mathcal{R}(AB) = \mathcal{R}(AA^{\parallel(B,C),\dagger}AB) \subseteq \mathcal{R}(AA^{\parallel(B,C),\dagger}) = \mathcal{R}(AA^{\parallel(B,C),\dagger}) = \mathcal{R}(AA^{\parallel(B,C),\dagger}) = \mathcal{R}(AA^{\parallel(B,C),\dagger}) = \mathcal{R}(AB)$. So, $\mathcal{R}(AA^{\parallel(B,C),\dagger}) = \mathcal{R}(AB)$. (ii) We have $\mathcal{N}(AA^{\parallel(B,C),\dagger}) = \mathcal{N}(A^{\parallel(B,C),\dagger})$ since $A^{\parallel(B,C),\dagger}AA^{\parallel(B,C),\dagger} = A^{\parallel(B,C),\dagger}$. Again by [2, Theorem 6.6], we have $\mathcal{N}(A^{\parallel(B,C),A}) = \mathcal{N}(CA)$, so that $\mathcal{N}(A^{\parallel(B,C),\dagger}A) = \mathcal{N}(A^{\parallel(B,C),\dagger}) = \mathcal{N}(CA)$. As $\mathcal{N}(C) \subseteq \mathcal{N}(A^{\parallel(B,C)})$, then

we have $\mathcal{N}(A^{\parallel(B,C)}A) = \mathcal{N}(CA)$, so that $\mathcal{N}(A^{\parallel(B,C),\uparrow}A) = \mathcal{N}(CA)$. As $\mathcal{N}(C) \subseteq \mathcal{N}(A^{\parallel(B,C)})$, then there exists some $T \in \mathbb{C}^{m \times m}$ such that $A^{\parallel(B,C)} = TC$. So, $\mathcal{N}(CAA^{\dagger}) = \mathcal{N}(CAA^{\parallel(B,C),\dagger}) \subseteq \mathcal{N}(TCAA^{\parallel(B,C),\dagger}) =$ $\mathcal{N}(A^{\parallel(B,C),\dagger}) \subseteq (CAA^{\parallel(B,C),\dagger}) = \mathcal{N}(CAA^{\dagger})$. Therefore, $\mathcal{N}(AA^{\parallel(B,C),\dagger}) = \mathcal{N}(CAA^{\dagger})$. (iii) It follows from (i) and (ii). \Box

A matrix $A \in \mathbb{C}^{n \times n}$ is called Hermitian if $A^* = A$. A Hermitian projector matrix is called an orthogonal projector. It is known that $AA^{\parallel(B,C),\dagger}$ and $A^{\parallel(B,C),\dagger}A$ are both projectors. However, they may not be orthogonal projectors. We next show under what conditions $AA^{\parallel(B,C),\dagger}$ and $A^{\parallel(B,C),\dagger}A$ are orthogonal projectors.

Theorem 2.6. Let $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$ such that $A^{\parallel (B,C)}$ exists. Then the following statements are equivalent: (i) $AA^{\parallel (B,C),\dagger}$ is an orthogonal projector.

(ii) $\mathcal{R}(AB) = \mathcal{R}(AA^{\dagger}C^{*}).$ (iii) $\mathcal{R}(AA^{\dagger}C^{*}) \subseteq \mathcal{R}(AB).$ (iv) $\mathcal{R}(AB) \subseteq \mathcal{R}(AA^{\dagger}C^{*}).$

Proof. To begin with, (ii) \Rightarrow (iii) and (ii) \Rightarrow (iv) are obvious.

(i) \Rightarrow (ii) Given (i), then $AA^{\parallel(B,C),\dagger} = (AA^{\parallel(B,C),\dagger})^*$, so that $\mathcal{R}(AA^{\parallel(B,C),\dagger}) = \mathcal{R}((AA^{\parallel(B,C),\dagger})^*) = \mathcal{N}(AA^{\parallel(B,C),\dagger})^{\perp}$. By Theorem 2.5, we have

$$\mathcal{R}(AB) = \mathcal{R}(AA^{\parallel(B,C),\dagger}) = \mathcal{N}(AA^{\parallel(B,C),\dagger})^{\perp} = \mathcal{N}(CAA^{\dagger})^{\perp}$$
$$= \mathcal{R}((CAA^{\dagger})^{*}) = \mathcal{R}(AA^{\dagger}C^{*}).$$

(iii) \Rightarrow (i) Since $AA^{\parallel(B,C),\dagger} = (AA^{\parallel(B,C),\dagger})^2$, to prove (i), it suffices to show $(AA^{\parallel(B,C),\dagger})^* = AA^{\parallel(B,C),\dagger}$. As $\mathcal{R}(AA^{\dagger}C^*) \subseteq \mathcal{R}(AB)$, then by Theorem 2.5, we have

$$\mathcal{R}((AA^{\parallel(B,C),\dagger})^*) = \mathcal{N}(AA^{\parallel(B,C),\dagger})^{\perp} = \mathcal{N}(CAA^{\dagger})^{\perp} = \mathcal{R}((CAA^{\dagger})^*)$$
$$= \mathcal{R}(AA^{\dagger}C^*) \subseteq \mathcal{R}(AB) = \mathcal{R}(AA^{\parallel(B,C),\dagger}).$$

Hence, there exists some $D \in \mathbb{C}^{n \times n}$ such that $(AA^{\parallel (B,C),\dagger})^* = AA^{\parallel (B,C),\dagger}D = AA^{\parallel (B,C),\dagger}AA^{\parallel (B,C),\dagger}D = AA^{\parallel (B,C),\dagger}(AA^{\parallel (B,C),\dagger})^* = AA^{\parallel (B,C),\dagger}$, as required.

(iv) \Rightarrow (ii) It follows from Theorem 2.5 (iii) that $rk(AB) = rk(CAA^{\dagger}) = rk(AA^{\dagger}C^{*})$, whence $\mathcal{R}(AB) = \mathcal{R}(AA^{\dagger}C^{*})$ since $\mathcal{R}(AB) \subseteq \mathcal{R}(AA^{\dagger}C^{*})$. \Box

In Theorem 2.7 below, we derive the necessary and sufficient conditions such that $A^{\parallel(B,C),\dagger}A$ is an orthogonal projector, whose proof is similar to that of Theorem 2.6. We herein leave it to the readers.

Theorem 2.7. Let $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$ such that $A^{\parallel (B,C)}$ exists. Then the following statements are equivalent: (i) $A^{\parallel (B,C),\dagger}A$ is an orthogonal projector.

(i) $\mathcal{R}((CA)^*) = \mathcal{R}(B).$ (iii) $\mathcal{R}((CA)^*) \subseteq \mathcal{R}(B).$ (iv) $\mathcal{R}(B) \subseteq \mathcal{R}((CA)^*).$ As stated in Section 1, several types of generalized inverses are described by $A_{\mathcal{T},S}^{(2)}$. We next establish the criterion of the (*B*, *C*)-MP-inverse of *A* using its $A_{\mathcal{T},S}^{(2)}$.

Theorem 2.8. Let $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$ such that $A^{\parallel (B,C)}$ exists. Then $X = A^{\parallel (B,C),\dagger}$ if and only if $X = A_{\mathcal{R}(B),\mathcal{N}(CAA^{\dagger})}^{(2)}$.

Proof. Suppose $X = A^{\parallel(B,C),\dagger}$. Then, by Theorem 2.5, we have XAX = X, $\mathcal{R}(X) = \mathcal{R}(B)$ and $\mathcal{N}(X) = \mathcal{N}(CAA^{\dagger})$, so that $X = A^{(2)}_{\mathcal{R}(B),\mathcal{N}(CAA^{\dagger})}$.

Conversely, if $X = A_{\mathcal{R}(B),\mathcal{N}(CAA^{\dagger})}^{(2)}$ then $XAX = X, \mathcal{R}(X) = \mathcal{R}(B)$ and $\mathcal{N}(X) = \mathcal{N}(CAA^{\dagger})$, and hence $\mathcal{R}(AX - I_n) \subseteq \mathcal{N}(X) = \mathcal{N}(CAA^{\dagger})$. This implies $CAX = CAA^{\dagger}$. The inclusion $\mathcal{N}(C) \subseteq \mathcal{N}(A^{\parallel(B,C)})$ gives $A^{\parallel(B,C)} = SC$ for some $S \in \mathbb{C}^{m \times m}$. Also, from $\mathcal{R}(X) = \mathcal{R}(B)$, it follows that $X = A^{\parallel(B,C)}AX = SCAX = SCAA^{\dagger} = A^{\parallel(B,C)}AA^{\dagger} = A^{\parallel(B,C),\dagger}$. \Box

We denote by $P_{M,N}$ the projector onto M along N, where M, N are two complementary subspaces of $\mathbb{C}^{n \times 1}$, namely $\mathbb{C}^{n \times 1} = M \oplus N$.

It follows from Theorem 2.5 that $\mathcal{R}(AA^{\parallel(B,C),\dagger}) = \mathcal{R}(AB)$, $N(AA^{\parallel(B,C),\dagger}) = \mathcal{N}(CAA^{\dagger})$ and $\mathcal{R}(A^{\parallel(B,C),\dagger}) \subseteq \mathcal{R}(B)$. So, $\mathcal{R}(AB) \oplus \mathcal{N}(CAA^{\dagger}) = \mathbb{C}^{n \times 1}$. Let $X = A^{\parallel(B,C)}AA^{\dagger}$. Then $AX = P_{\mathcal{R}(AB),\mathcal{N}(CAA^{\dagger})}$ is a projector onto $\mathcal{R}(AB)$ along $\mathcal{N}(CAA^{\dagger})$.

We next give show that $X = A^{\parallel (B,C)}AA^{\dagger}$ is the unique solution of the following system consisting of $P_{\mathcal{R}(AB),\mathcal{N}(CAA^{\dagger})}$.

Theorem 2.9. Let $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$ such that $A^{\parallel (B,C)}$ exists. Then

$$AX = P_{\mathcal{R}(AB), \mathcal{N}(CAA^{\dagger})}, \mathcal{R}(X) \subseteq \mathcal{R}(B).$$

is consistent and has the unique solution $X = A^{\parallel (B,C),\dagger}$.

Proof. We assume that X_1, X_2 satisfy (2). Then $AX_1 = AX_2 = P_{\mathcal{R}(AB), \mathcal{N}(CAA^{\dagger})}, \mathcal{R}(X_1) \subseteq \mathcal{R}(B)$ and $\mathcal{R}(X_2) \subseteq \mathcal{R}(B)$. We have at once $A(X_1 - X_2) = 0, \mathcal{R}(X_1 - X_2) \subseteq \mathcal{N}(A)$ and $\mathcal{R}(X_1 - X_2) \subseteq \mathcal{R}(B)$. Consequently, it follows that $\mathcal{R}(X_1 - X_2) \subseteq \mathcal{N}(A) \cap \mathcal{R}(B)$.

Given any $X \in \mathcal{N}(A) \cap \mathcal{R}(B)$, then there exists some $T \in \mathbb{C}^{n \times n}$ such that $X = BT = A^{\parallel (B,C)}ABT = A^{\parallel (B,C)}AX = 0$ and $\mathcal{N}(A) \cap \mathcal{R}(B) = \{0\}$. Hence $\mathcal{R}(X_1 - X_2) \subseteq \mathcal{N}(A) \cap \mathcal{R}(B) = \{0\}$ and $X_1 = X_2$. \Box

Remark 2.10. In Theorem 2.9, $\mathcal{R}(X) \subseteq \mathcal{R}(B)$ is equivalent to the condition $X = A^{\parallel(B,C)}AX$. Indeed, if $\mathcal{R}(X) \subseteq \mathcal{R}(B)$, then $X = BT = A^{\parallel(B,C)}ABT = A^{\parallel(B,C)}AX$ for some $T \in \mathbb{C}^{n \times n}$. For the converse statement, if $X = A^{\parallel(B,C)}AX$ then $\mathcal{R}(X) \subseteq \mathcal{R}(A^{\parallel(B,C)})$, so that $\mathcal{R}(X) \subseteq \mathcal{R}(B)$ since $\mathcal{R}(A^{\parallel(B,C)}) \subseteq \mathcal{R}(B)$.

Let \mathbb{C}_n^p be the set of $n \times n$ projector matrices. Given $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$ such that $A^{\parallel (B,C)}$ exists, then $AA^{\parallel (B,C),\dagger} \in \mathbb{C}_n^p$, $A^{\parallel (B,C),\dagger}A \in \mathbb{C}_m^p$.

The following result presents characterizations for the (*B*, *C*)-MP-inverse of *A* using projectors $AA^{\parallel(B,C),\dagger}$ and $A^{\parallel(B,C),\dagger}A$.

Theorem 2.11. Let $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$ such that $A^{\parallel (B,C)}$ exists. Then the following conditions are equivalent: (i) $X = A^{\parallel (B,C),\dagger}$.

(ii) $CAX = CAA^{\dagger}, \mathcal{R}(X) = \mathcal{R}(B).$ (iii) $CAX = CAA^{\dagger}, X = A^{\parallel(B,C)}AX.$ (iv) $XAB = B, \mathcal{N}(X) = \mathcal{N}(CAA^{\dagger}).$ (v) $XAA^{\parallel(B,C)} = A^{\parallel(B,C)}, \operatorname{rk}(X) = \operatorname{rk}(B), CAX = CAA^{\dagger}.$ (vi) $AX = AA^{\parallel(B,C)}AA^{\dagger}, \mathcal{R}(X) = \mathcal{R}(B).$ (vii) $AX = AA^{\parallel(B,C)}AA^{\dagger}, \mathcal{R}(X) = \mathcal{R}(B).$ (viii) $AX \in \mathbb{C}_{n}^{p}, \mathcal{R}(X) = \mathcal{R}(B), \mathcal{N}(X) = \mathcal{N}(CAA^{\dagger}).$ (ix) $AX \in \mathbb{C}_{n}^{p}, X = A^{\parallel(B,C)}AX, \mathcal{N}(X) = \mathcal{N}(CAA^{\dagger}).$ 815

(2)

(x) $AXA = AA^{\parallel (B,C)}A, \mathcal{R}(X) = \mathcal{R}(B), \mathcal{N}(X) = \mathcal{N}(CAA^{\dagger}).$ (xi) $XA = A^{\parallel (B,C)}A, \mathcal{N}(X) = \mathcal{N}(CAA^{\dagger}).$ (xii) $XA \in \mathbb{C}_{m}^{p}, \mathcal{R}(X) = \mathcal{R}(B), \mathcal{N}(X) = \mathcal{N}(CAA^{\dagger}).$

Proof. (i) implies these items (ii)-(xii) by Theorems 2.5 and 2.8; (ii) \Rightarrow (iii), (vi) \Rightarrow (vii), (viii) \Rightarrow (ix), (x) \Rightarrow (xi) follow from Remark 2.10.

(iii) \Rightarrow (i) It follows from $\mathcal{N}(C) \subseteq \mathcal{N}(A^{\parallel(B,C)})$ that $X = A^{\parallel(B,C)}AX = SCAX = SCAA^{\dagger} = A^{\parallel(B,C)}AA^{\dagger} = A^{\parallel(B,C),\dagger}$ for some $S \in \mathbb{C}^{m \times m}$.

(iv) ⇒ (v) Since $\mathcal{R}(A^{\parallel(B,C)}) \subseteq \mathcal{R}(B)$, we have $A^{\parallel(B,C)} = BS$ for suitable $S \in \mathbb{C}^{n \times n}$, This combines with XAB = B to imply $XAA^{\parallel(B,C)} = A^{\parallel(B,C)}$. According to $\mathcal{N}(CAA^{\dagger}) = \mathcal{N}(X)$ and Theorem 2.5, we have $\operatorname{rk}(X) = \operatorname{rk}(CAA^{\dagger}) = \operatorname{rk}(B)$. Also, XAB = B implies $\mathcal{R}(B) \subseteq \mathcal{R}(X)$. So, $\mathcal{R}(X) = \mathcal{R}(B)$. Then X can be written as the form of BT for suitable $T \in \mathbb{C}^{n \times n}$. Post-multiplying XAB = B by T gives XAX = X. So, $\mathcal{R}(I_n - AX) \subseteq \mathcal{N}(X) = \mathcal{N}(CAA^{\dagger})$. Therefore, $CAX = CAA^{\dagger}$.

(v) \Rightarrow (ii) Post-Multiplying $XAA^{\parallel(B,C)} = A^{\parallel(B,C)}$ by AB implies XAB = B. Then we have at once $\mathcal{R}(B) \subseteq \mathcal{R}(X)$, which combines with $\operatorname{rk}(X) = \operatorname{rk}(B)$ to ensure $\mathcal{R}(X) = \mathcal{R}(B)$.

(vii) \Rightarrow (i) Given $AX = AA^{\parallel(B,C)}AA^{\dagger}$, then it follows that $X = A^{\parallel(B,C)}AX = A^{\parallel(B,C)}AA^{\parallel(B,C)}AA^{\dagger} = A^{\parallel(B,C)}AA^{\dagger} = A^{\parallel(B,C)$

(ix) \Rightarrow (iii) By $AX \in \mathbb{C}_n^p$, we have $X = A^{\parallel (B,C)}AX = A^{\parallel (B,C)}AXAX = XAX$. Hence, $\mathcal{R}(I_n - AX) \subseteq \mathcal{N}(X) = \mathcal{N}(CAA^{\dagger})$ and $CAX = CAA^{\dagger}$.

 $(xi) \Rightarrow (iv)$ is obvious.

(xii) \Rightarrow (ii) As $XA \in \mathbb{C}_m^p$, then $\mathcal{R}(A - AXA) \subseteq \mathcal{N}(X) = \mathcal{N}(CAA^{\dagger})$, so that CA = CAXA. Post-multiplying CA = CAXA by A^{\dagger} gives $CAA^{\dagger} = CAXAA^{\dagger}$. From $\mathcal{R}(I_n - AA^{\dagger}) \subseteq \mathcal{N}(CAA^{\dagger}) = \mathcal{N}(X)$, one has $X = XAA^{\dagger}$ and $CAA^{\dagger} = CA(XAA^{\dagger}) = CAX$. \Box

Remark 2.12. In Theorem 2.11 above, the condition $\mathcal{R}(X) = \mathcal{R}(B)$ can be weaken to the inclusion $\mathcal{R}(X) \subseteq \mathcal{R}(B)$.

3. Connections with other generalized inverses

Let $A \in \mathbb{C}^{n \times m}$ and $B, C, B', C' \in \mathbb{C}^{m \times n}$. Benítez et al. in [2, Remark 4.3] proved that if $\mathcal{R}(B) = \mathcal{R}(B')$, $\mathcal{N}(C) = \mathcal{N}(C')$, then the existence of $A^{\parallel(B,C)}$ coincides with that of $A^{\parallel(B',C')}$ and $A^{\parallel(B,C)} = A^{\parallel(B',C')}$. The following result shows that the converse statement also holds.

Lemma 3.1. Let $A \in \mathbb{C}^{n \times m}$ and $B, C, B', C' \in \mathbb{C}^{m \times n}$ such that $A^{\parallel(B,C)}$ and $A^{\parallel(B',C')}$ exist. Then the following conditions are equivalent:

(i) $A^{\parallel(B,C)} = A^{\parallel(B',C')}$. (ii) $\mathcal{R}(B) = \mathcal{R}(B'), \mathcal{N}(C) = \mathcal{N}(C')$. (iii) $\mathcal{R}(B) \subseteq \mathcal{R}(B'), \mathcal{N}(C) \subseteq \mathcal{N}(C')$.

Proof. (i) \Rightarrow (ii) Post-multiplying $A^{\parallel(B,C)} = A^{\parallel(B',C')}$ by *AB* gives $B = A^{\parallel(B',C')}AB$, and $\mathcal{R}(B) \subseteq \mathcal{R}(A^{\parallel(B',C')}) \subseteq \mathcal{R}(B')$. Pre-multiplying $A^{\parallel(B,C)} = A^{\parallel(B',C')}$ by *CA* yields $C = CAA^{\parallel(B',C')}$, so that $\mathcal{N}(C') \subseteq \mathcal{N}(A^{\parallel(B',C')}) \subseteq \mathcal{N}(C)$. Dually, one can get $\mathcal{R}(B') \subseteq \mathcal{R}(B)$ and $\mathcal{N}(C) \subseteq \mathcal{N}(C')$. Consequently, $\mathcal{R}(B) = \mathcal{R}(B')$, $\mathcal{N}(C) = \mathcal{N}(C')$.

(ii) \Rightarrow (iii) is obvious.

(iii) \Rightarrow (i) Note that $\mathcal{R}(B) \subseteq \mathcal{R}(B')$ implies $\operatorname{rk}(B) \leq \operatorname{rk}(B')$, and $\mathcal{N}(C) \subseteq \mathcal{N}(C')$ gives $\operatorname{rk}(C') \leq \operatorname{rk}(C)$. By Lemma 2.3, one knows that $\operatorname{rk}(B) = \operatorname{rk}(C)$ and $\operatorname{rk}(B') = \operatorname{rk}(C')$. So, $\operatorname{rk}(B) = \operatorname{rk}(B') = \operatorname{rk}(C') = \operatorname{rk}(C)$ and hence $\mathcal{R}(B) = \mathcal{R}(B')$, $\mathcal{N}(C) = \mathcal{N}(C')$. Hence $A^{\parallel (B,C)} = A^{\parallel (B',C')}$ from [2, Remark 4.3]. \Box

It is known from [4] that $A^{\dagger} = A^{\parallel (A^*, A^*)}$ for $A \in \mathbb{C}^{n \times m}$. Taking $B' = C' = A^*$ in Lemma 3.1, we have the following result.

Lemma 3.2. Let $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$ such that $A^{\parallel (B,C)}$ exists. Then the following statements are equivalent: (i) $A^{\parallel (B,C)} = A^{\dagger}$.

(ii) $\mathcal{R}(B) = \mathcal{R}(A^*), \mathcal{N}(C) = \mathcal{N}(A^*).$

(iii) $\mathcal{R}(B) \subseteq \mathcal{R}(A^*), \mathcal{N}(C) \subseteq \mathcal{N}(A^*).$

It is worth pointing out that if $A^{\parallel(B,C)} = A^{\dagger}$ then $A^{\parallel(B,C),\dagger} = A^{\parallel(B,C)}AA^{\dagger} = A^{\dagger}AA^{\dagger} = A^{\dagger}$. However, the converse statement may not be true, namely $A^{\parallel(B,C),\dagger} = A^{\dagger}$ does not imply $A^{\parallel(B,C)} = A^{\dagger}$ in general. A counterexample is given below.

Example 3.3. Set $A = \begin{bmatrix} 2 & 0 \\ 4 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 2 \\ 0 & 0 \end{bmatrix}$, $C = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 0 \end{bmatrix} \in \mathbb{C}^{2 \times 2}$. As $\operatorname{rk}(CAB) = \operatorname{rk}(B) = \operatorname{rk}(C)$, then, by Lemma 2.3, $A^{\parallel(B,C)}$ exists. A simple computation gives $A^{\parallel(B,C)} = C = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 0 \end{bmatrix}$, $A^{\dagger} = \begin{bmatrix} \frac{1}{10} & \frac{1}{5} \\ 0 & 0 \end{bmatrix}$ and hence $A^{\parallel(B,C),\dagger} = \begin{bmatrix} \frac{1}{10} & \frac{1}{5} \\ 0 & 0 \end{bmatrix}$, so that $A^{\dagger} = A^{\parallel(B,C),\dagger}$. However, $A^{\dagger} \neq A^{\parallel(B,C)}$.

The following theorem presents the necessary and sufficient conditions such that $A^{\dagger} = A^{\parallel (B,C),\dagger}$.

Theorem 3.4. Let $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$ such that $A^{\parallel (B,C)}$ exists. Then the following statements are equivalent: (i) $A^{\parallel (B,C),\dagger} = A^{\dagger}$. (ii) $\mathcal{R}(A^*) = \mathcal{R}(B)$.

(iii) $\mathcal{R}(A^*) \subseteq \mathcal{R}(B)$.

Proof. (i) \Rightarrow (ii) Multiplying $A^{\parallel(B,C),\dagger} = A^{\dagger}$ by AA^{*} on the right side yields $A^{\parallel(B,C)}AA^{*} = A^{\dagger}AA^{*} = A^{*}$ and $\mathcal{R}(A^{*}) \subseteq \mathcal{R}(A^{\parallel(B,C)}) \subseteq \mathcal{R}(B)$. By Lemma 2.4, $\operatorname{rk}(B) \leq \operatorname{rk}(A) = \operatorname{rk}(A^{*})$. Consequently, $\mathcal{R}(A^{*}) = \mathcal{R}(B)$. (ii) \Rightarrow (iii) is clear.

(iii) \Rightarrow (i) As $\mathcal{R}(A^*) \subseteq \mathcal{R}(B)$, then there exists some $T \in \mathbb{C}^{n \times n}$ such that $A^* = BT = A^{\parallel (B,C)}ABT = A^{\parallel (B,C)}AA^*$. Multiplying $A^* = A^{\parallel (B,C)}AA^*$ by $(A^{\dagger})^*A^{\dagger}$ on the right side gives $A^{\dagger} = A^{\parallel (B,C)}AA^{\dagger} = A^{\parallel (B,C),\dagger}$.

Theorem 3.5. Let $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$ such that $A^{\parallel (B,C)}$ exists. Then $A^{\parallel (B,C),\dagger} = A^{\parallel (B,C)}$ if and only if $C = CAA^{\dagger}$.

Proof. Suppose $A^{\parallel(B,C),\dagger} = A^{\parallel(B,C)}$. Pre-multiplying $A^{\parallel(B,C),\dagger} = A^{\parallel(B,C)}$ by CA yields $CAA^{\dagger} = CAA^{\parallel(B,C),\dagger} = CAA^{\parallel(B$

Conversely, since $\mathcal{N}(C) \subseteq \mathcal{N}(A^{\parallel (B,C)})$, there exists some $S \in \mathbb{C}^{m \times m}$ such that $A^{\parallel (B,C)} = SC = SCAA^{\dagger} = A^{\parallel (B,C),\dagger}$. \Box

Suppose *S* is a *-semigroup and *a*, *b*, *c* \in *S*. We recall from [21] that *a* is (*b*, *c*)-core invertible if there exists some $x \in S$ such that caxc = c, xS = bS and $Sx = Sc^*$. The (*b*, *c*)-core inverse *x* of *a* is uniquely determined (if it exists) and is denoted by $a^{\oplus}_{(b,c)}$. It is shown in [21] that *a* is (*b*, *c*)-core invertible if and only if *a* is (*b*, *c*)-invertible and *c* is {1,3}-invertible. Moreover, $a^{\oplus}_{(b,c)} = a^{\parallel (b,c)}c^{(1,3)}$.

We next give the notion of (b, c)-core inverses in complex matrices.

Definition 3.6. Let $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$. The matrix A is called (B, C)-core invertible if there exists some $X \in \mathbb{C}^{m \times m}$ such that $CAXC = C, \mathcal{R}(X) = \mathcal{R}(B)$ and $\mathcal{N}(X) = \mathcal{N}(C^*)$. Such an X is called a (B, C)-core inverse of A.

Given any $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$, it can be proved that the (B, C)-core inverse of A is unique if it exists. As usual, we denote by $A_{(B,C)}^{\oplus}$ the (B, C)-core inverse of A. Moreover, one has the following equivalence: A is (B, C)-core invertible if and only if A is (B, C)-invertible. In this case, $A_{(B,C)}^{\oplus} = A^{\parallel (B,C)}C^{\dagger}$.

Theorem 3.7. Let $A \in \mathbb{C}^{n \times m}$ and $B, C \in \mathbb{C}^{m \times n}$. Then the following conditions are equivalent: (i) A is (B, C)-MP-invertible. (ii) A is (B, C)-core invertible. In this case, $A^{\parallel(B,C),\dagger} = A^{\oplus}_{(B,C)}CAA^{\dagger}$.

Proof. The equivalence between (i) and (ii) is obvious. It next suffices to give the formula. As $A_{(B,C)}^{\oplus}$ exists, then $A_{(B,C)}^{\oplus} = A^{\parallel(B,C)}C^{\dagger}$, $A_{(B,C)}^{\oplus}C = A^{\parallel(B,C)}C^{\dagger}C = A^{\parallel(B,C)}$ and post-multiplying $A_{(B,C)}^{\oplus} = A^{\parallel(B,C)}C^{\dagger}$ by CAA^{\dagger} yields $A^{\parallel(B,C),\dagger} = A^{\parallel(B,C)}AA^{\dagger} = A_{(B,C)}^{\oplus}CAA^{\dagger}$. \Box

As pointed out in [4], $A^{\parallel D}$ is the (D, D)-inverse of A for any $A, D \in \mathbb{C}^{n \times n}$, and hence $A^{\parallel (D,D),\dagger} = A^{\parallel (D,D)}AA^{\dagger} = A^{\parallel D}AA^{\dagger} = A^{\parallel D}AA^{\dagger} = A^{\parallel D}_{D}$.

The following theorem presents the criterion such that $A^{\parallel (B,C),\dagger} = A_D^{\parallel,\dagger}$.

Theorem 3.8. Let $A, B, C, D \in \mathbb{C}^{n \times n}$ such that $A^{\parallel (B,C)}$ and $A^{\parallel D}$ exist. Then the following conditions are equivalent: (i) $A^{\parallel (B,C),\dagger} = A_D^{\parallel,\dagger}$.

(ii) $\mathcal{R}(D) = \mathcal{R}(B), \mathcal{N}(DA) = \mathcal{N}(CA).$ (iii) $\mathcal{R}(D) \subseteq \mathcal{R}(B), \mathcal{N}(DA) \subseteq \mathcal{N}(CA).$

Proof. (i) ⇒ (ii) As $A^{\parallel(B,C),+} = A_D^{\parallel,+}$, i.e., $A^{\parallel(B,C)}AA^+ = A^{\parallel D}AA^+$, then $A^{\parallel(B,C)}A = A^{\parallel D}A$. Post-multiplying $A^{\parallel(B,C)}A = A^{\parallel D}A$ by *B* and *D* give $B = A^{\parallel D}AB$ and $A^{\parallel(B,C)}AD = D$, respectively. Then $\mathcal{R}(B) \subseteq \mathcal{R}(A^{\parallel D}) \subseteq \mathcal{R}(D)$ and $\mathcal{R}(D) \subseteq \mathcal{R}(A^{\parallel(B,C)}) \subseteq \mathcal{R}(B)$. So, $\mathcal{R}(B) = \mathcal{R}(D)$. Pre-multiplying $A^{\parallel(B,C)}A = A^{\parallel D}A$ by *CA* and *DA* yield *CA* = *CAA^{\parallel D}A* and *DAA^{\parallel(B,C)}A = DA*, respectively. It follows that $\mathcal{N}(A^{\parallel D}A) \subseteq \mathcal{N}(CA)$ and $\mathcal{N}(A^{\parallel(B,C)}A) \subseteq \mathcal{N}(DA)$. By [2, Theorem 6.6], we have $\mathcal{N}(CA) = \mathcal{N}(A^{\parallel(B,C)}A)$ and $\mathcal{N}(DA) = \mathcal{N}(A^{\parallel D}A)$. Consequently, $\mathcal{N}(CA) = \mathcal{N}(DA)$. (ii) ⇒ (iii) is trivial.

(ii) \Rightarrow (ii) is trivial. (iii) \Rightarrow (i) Since $\mathcal{R}(D) \subseteq \mathcal{R}(B)$, there exists some $T \in \mathbb{C}^{n \times n}$ such that $D = BT = A^{\parallel(B,C)}ABT = A^{\parallel(B,C)}AD$, which combines with $\mathcal{R}(A^{\parallel D}) \subseteq \mathcal{R}(D)$ to lead $A^{\parallel D} = A^{\parallel(B,C)}AA^{\parallel D}$. Similarly, as $\mathcal{N}(DA) \subseteq \mathcal{N}(CA)$, then $CA = SDA = SDAA^{\parallel D}A = CAA^{\parallel D}A$ for suitable $S \in \mathbb{C}^{n \times n}$. From $\mathcal{N}(C) \subseteq \mathcal{N}(A^{\parallel(B,C)})$, it follows that $A^{\parallel(B,C)}A = A^{\parallel(B,C)}AA^{\parallel D}A$. Consequently, $A^{\parallel(B,C)}A = A^{\parallel D}A$ and $A^{\parallel(B,C),\dagger} = A_D^{\parallel,\dagger}$. \Box

In Theorem 3.8, taking $D = A^m$ (m = ind(A)), then $A^{\parallel A^m} = A^D$, so that $A^{\parallel,\dagger}_{A^m} = A^{\parallel A^m}AA^{\dagger} = A^DAA^{\dagger} = A^{D,\dagger}$. Note that $\mathcal{N}(A^m) = \mathcal{N}(A^{m+1})$ since $A^m = A^DA^{m+1}$. So, we have the following result.

Corollary 3.9. Let $A, B, C \in \mathbb{C}^{n \times n}$ and ind(A) = m. Suppose $A^{\parallel (B,C)}$ exists. Then the following conditions are equivalent:

(i) $A^{\parallel(B,C),\dagger} = A^{D,\dagger}$. (ii) $\mathcal{R}(A^m) = \mathcal{R}(B), \mathcal{N}(A^m) = \mathcal{N}(CA)$. (iii) $\mathcal{R}(A^m) \subseteq \mathcal{R}(B), \mathcal{N}(A^m) \subseteq \mathcal{N}(CA)$.

Setting m = 1 in Corollary 3.9, then A is group invertible and hence $A^{D,\dagger} = A^{\#}AA^{\dagger} = A^{\oplus}$. We claim herein that $\mathcal{N}(CA) = \mathcal{N}(A)$ in the item (ii) and $\mathcal{N}(A^m) \subseteq \mathcal{N}(CA)$ in the item (iii) can be dropped. Indeed, the condition $\mathcal{N}(A) \subseteq \mathcal{N}(CA)$ is evident. By Lemma 2.4, one knows that $\mathrm{rk}(CA) = \mathrm{rk}(A)$, and consequently the condition $\mathcal{N}(CA) = \mathcal{N}(A)$ in the item (ii) can be dropped.

Corollary 3.10. Let $A, B, C \in \mathbb{C}^{n \times n}$ and ind(A) = 1. Suppose $A^{\parallel (B,C)}$ exists. Then the following statements are equivalent:

(i) $A^{\parallel (B,C),\dagger} = A^{\oplus}$. (ii) $\mathcal{R}(A) = \mathcal{R}(B)$. (iii) $\mathcal{R}(A) \subseteq \mathcal{R}(B)$.

Recently, the author Zhu et al. [22] introduced *W*-core inverses in complex matrices. For $A, W \in \mathbb{C}^{n \times n}$, *A* is called *W*-core invertible if there exists an $X \in \mathbb{C}^{n \times n}$ satisfying $AWX = P_A$ and $\mathcal{R}(X) \subseteq \mathcal{R}(A)$. Such an *X* is called a *W*-core inverse of *A*. It is unique if it exists and is denoted by A_W^{\oplus} . It is proved that *A* is *W*-core invertible if and only if *W* is invertible along *A* (i.e., *W* is (*A*, *A*)-invertible). In this case, $A_W^{\oplus} = W^{\parallel A}A^{\dagger}$.

We close this section with the following result, relating the (*B*, *C*)-MP-inverse and the W-core inverse.

Theorem 3.11. Let $A, W \in \mathbb{C}^{n \times n}$. Then the following conditions are equivalent:

(i) W is (A, A)-MP-invertible.

(ii) *A is W-core invertible*.

In this case, $W^{\parallel(A,A),\dagger} = A^{\oplus}_W AWW^{\dagger}$.

Proof. It is known that *W* is (*A*, *A*)-MP-invertible if and only if *W* is invertible along *A* if and only if *A* is *W*-core invertible. It next only need to give the formula. Since $A_W^{\oplus} = W^{\parallel A}A^{\dagger} = W^{\parallel (A,A)}A^{\dagger}$ and $W^{\parallel (A,A)} = W^{\parallel (A,A)}A^{\dagger}A$, post-multiplying $A_W^{\oplus} = W^{\parallel (A,A)}A^{\dagger}$ by AWW^{\dagger} gives the equality $A_W^{\oplus}AWW^{\dagger} = W^{\parallel (A,A)}A^{\dagger}AWW^{\dagger} = W^{\parallel (A,A),\dagger}$. \Box

References

- [1] O.M. Baksalary, G. Trenkler, Core inverse of matrices, Linear Multilinear Algebra 58 (2010) 681-697.
- [2] J. Benítez, E. Boasso, H.W. Jin, On one-sided (B, C)-inverse of arbitrary matrices, Electron. J. Linear Algebra 32 (2017) 391-422.
- [3] D.S. Cvetković-Ilić, Y.M. Wei, Algebraic Properties of Generalized Inverses, Series: Developments in Mathematics, Vol. 52, Springer, 2017.
- M.P. Drazin, A class of outer generalized inverses, Linear Algebra Appl. 436 (2012) 1909-1923.
- [5] M.P. Drazin, Left and right generalized inverses, Linear Algebra Appl. 510 (2016) 64-78.
- [6] M.P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly 65 (1958) 506-514.
- [7] D.E. Ferreyra, F.E. Levis, N. Thome, Revisiting the core EP inverse and its extension to rectangular matrices, Quaest. Math. 41(2018) 265-281.
- [8] M.V. Hernández, M.B. Lattanzi, N. Thome, From projectors to 1MP and MP1 generalized inverses and their induced partial orders. RACSAM 115, 148 (2021) https://doi.org/10.1007/s13398-021-01090-8.
- [9] M.V. Hernández, M.B. Lattanzi, N. Thome, On 2MP-, MP2- and C2MP-inverses for rectangular matrices, RACSAM 116 (2022) 116 https://doi.org/10.1007/s13398-022-01289-3.
- [10] Y.H. Liu, How to characterize equalities for the generalized inverse $A_{T,S}^{(2)}$ of a matrix, Kyungpook Math. 43 (2003) 605-616. [11] S.B. Malik, N. Thome, On a new generalized inverse for matrices of an arbitrary index, Appl. Math. Comput. 226 (2014) 575-580.
- [12] K. Manjunatha Prasad, K.S. Mohana, Core-EP inverse, Linear Multilinear Algebra 62 (2014) 792-802.
- [13] X. Mary, On generalized inverse and Green's relations, Linear Algebra Appl. 434 (2011) 1836-1844.
- [14] D. Mosić, P.S. Stanimirović, Composite outer inverses for rectangular matrices, Quaest. Math. 44 (2021) 45-72.
- [15] R. Penrose, A generalized inverse for matrices, Proc. Camb. Phil. Soc. 51 (1955) 406-413.
- [16] D.S. Rakić, A note on Rao and Mitra's constrained inverse and Drazin's (b, c) inverse, Linear Algebra Appl. 523 (2017) 102-108.
- [17] D.S. Rakić, N.C. Dinčić, D.S. Djordjević, Group, Moore-Penrose, core and dual core inverse in rings with involution, Linear Algebra Appl. 463 (2014) 115-133.
- [18] D.S. Rakić, M.Z. Ljubenović, 1MP and MP1 inverses and one-sided star orders in a ring with involution, RACSAM 117 (2023) 117 https://doi.org/10.1007/s13398-022-01348-9.
- [19] C.C. Wang, H.H. Zhu, A new generalized inverse of rectangular matrices, J. Algebra Appl, (2023) https://doi.org/10.1142/S0219498825500173
- [20] Y.M. Wei, A characterization and representation of the generalized inverse $A_{T,S}^{(2)}$ and its application, Linear Algebra Appl. 280 (1998) 87-96.
- [21] H.H. Zhu, (b, c)-core inverse and its dual in rings with involution, J. Pure Appl. Algebra 228 (2024) 107526.
- [22] H.H. Zhu, L.Y. Wu, J.L. Chen, A new class of generalized inverses in semigroups and rings with involution, Comm. Algebra 51 (2023) 2098-2113.
- [23] H.H. Zhu, L.Y. Wu, D. Mosić, One-sided w-core inverses in rings with an involution, Linear Multilinear Algebra 71 (2023) 528-544.
- [24] K.Z. Zuo, D.S. Cvetković-Ilić, Y.J. Cheng, Different characterizations of DMP-inverse of matrices, Linear Multilinear Algebra 3 (2020) 411-418.