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Abstract. For any A ∈ Cn×m, the set of all n by m complex matrices, Mosić and Stanimirović [14] introduced
the composite OMP inverse of A by its outer inverse with the prescribed range, null space and Moore-
Penrose inverse. This inverse unifies the core inverse, DMP inverse and Moore-Penrose inverse. In this
paper, we mainly introduce and investigate a class of generalized inverses in complex matrices. Also, it is
proved that this generalized inverse coincides with the OMP inverse. Finally, the defined inverse is related
to OMP-inverses, W-core inverses and (b, c)-core inverses in the context of matrices.

1. Introduction and notation

For complex matrix A, the Moore-Penrose inverse A† [15] and the Drazin inverse AD [6] are two classical
generalized inverses. In the last decade, several new types of mixed generalized inverses were introduced
by combining the Moore-Penrose inverse and the Drazin inverse (or the group inverse). For instance, in
2010, Baksalary and Trenkler [1] introduced the core inverse A #O of A with index one (i.e., rank(A)=rank(A2)).
In 2014, Malik and Thome [11] defined the DMP-inverse AD,† of A with index m ≥ 1 (i.e., m is the smallest
positive integer such that rank(Ak)=rank(Ak+1)), extending the core inverse.

In order to unify the core inverse, the DMP inverse and so on, Mosić and Stanimirović [14] introduced
the composite OMP inverse of a complex matrix by its outer inverse with the prescribed range, null space
and Moore-Penrose inverse.

Motivated by [14], we mainly investigate a special case of OMP inverses, called (B,C)-MP-inverses. The
paper is organized as follows. In Section 2, given A ∈ Cn×m and B,C ∈ Cm×n, the (B,C)-Moore-Penrose
inverse (abbr. (B,C)-MP-inverse) of A is given. Also, we characterize the (B,C)-MP-inverse of A by its range
and null spaces. But beyond that, it is shown in Theorem 2.8 that X is the (B,C)-MP inverse of A if and only
if X is an outer inverse of A with prescribed range T and null space S. In Section 3, the (b, c)-core inverse
in ∗-semigroups [21] is investigated in the context of rectangular matrices. Also, the (B,C)-MP-inverse is
related to other generalized inverses.

Throughout this paper, Cn×m denotes the set of n × m complex matrices. The symbol In stands for the
identity matrix of order n.
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Research supported by the National Natural Science Foundation of China (No. 11801124) and China Postdoctoral Science

Foundation (No. 2020M671068).
* Corresponding author: Huihui Zhu
Email addresses: hhzhu@hfut.edu.cn (Huihui Zhu), yyxmath@163.com (Yuxuan Yang)



H. Zhu, Y. Yang / Filomat 38:3 (2024), 811–819 812

For any A ∈ Cn×m, the column space and the null space of A are respectively defined as R(A) =
{Ax : x ∈ Cm×1

} andN(A) = {x ∈ Cm×1 : Ax = 0}. The symbols A∗ and rk(A) stand for the conjugate transpose
and the rank of A, respectively.

Three basic facts are given as follows: N(A∗) = R(A)⊥,R(A∗) = N(A)⊥ and rk(A) + dimN(A) = n. Let
A,B ∈ Cn×m. Then R(A) ⊆ R(B) (resp., N(B) ⊆ N(A) ) if and only if there exists some X ∈ Cm×m (resp.,
Y ∈ Cn×n) such that A = BX (resp., A = YB).

Let us now recall several notions of generalized inverses. For any A ∈ Cn×m, the Moore-Penrose inverse
A† [15] of A is the unique matrix X ∈ Cm×n satisfying

(i) AXA = A, (ii) XAX = X, (iii) (AX)∗ = AX, (iv) (XA)∗ = XA.

More generally, a matrix X ∈ Cm×n satisfying (i) AXA = A is called an inner inverse of A and is denoted by
A−. A matrix X ∈ Cm×n satisfying (ii) XAX = X is called an outer inverse of A and is denoted by A(2).

Let A ∈ Cn×m and B,C ∈ Cm×n. The matrix A is said to be (B,C)-invertible (see [2]) if there exists a
matrix X ∈ Cm×n such that XAB = B,CAX = C,R(X) ⊆ R(B) and N(C) ⊆ N(X). Such a matrix X is called
a (B,C)-inverse of A. It is unique if it exists and is denoted by A∥(B,C). One knows that the inverse along a
matrix is an instance of the (B,C)-inverse. The inverse of A along D is denoted by A∥D. The standard notion
for the inverse along a matrix can be referred to [2].

Given A ∈ Cn×n, the Drazin inverse of A [6] is the unique matrix AD
∈ Cn×n satisfying ADAAD = AD,

AAD = ADA and ADAk+1 = Ak, where k = ind(A). The smallest positive integer k such that rk(Ak) = rk(Ak+1)
is called the index of A and is denoted by ind(A). In particular, if ind(A) ≤ 1, then A is called group
invertible. It is well known that A is group invertible if and only if rk(A) = rk(A2).

Following [1], a matrix A ∈ Cn×n is called core invertible if there exists some X ∈ Cn×n such that AX = PA
andR(X) ⊆ R(A), where PA represents the orthogonal projector ontoR(A). Such an X is called a core inverse
of A [1]. The core inverse of A is unique if it exists and is denoted by A #O. One knows from [1] that A is core
invertible if and only if A is group invertible. In this case, we have A #O = A#AA†.

Let A ∈ Cn×n with index m. The DMP-inverse (denoted by AD,†) of A ∈ Cn×n is defined as the unique
matrix X ∈ Cn×n satisfying XAX = X,XA = ADA and AmX = AmA†. Also, it is shown that AD,† = ADAA†.

Suppose thatT andS are subspaces ofCm×1 andCn×1, respectively. Given A ∈ Cn×m, a matrix X ∈ Cm×n is
called an outer inverse of A with prescribed range T and null space S if X = XAX,R(X) = T andN(X) = S
(see e.g., [20]). The outer inverse of A with prescribed range T and null space S is unique if it exists, and
is denoted by A(2)

T ,S
. Some types of generalized inverses are characterized by A(2)

T ,S
. Here are several well

known characterizations for generalized inverses :

(1) A† = A(2)
R(A∗),N(A∗) for A ∈ Cn×m [20].

(2) AD = A(2)
R(Ak),N(Ak)

for A ∈ Cn×n and k = ind(A) [20].

(3) A∥D = A(2)
R(D),N(D) for A ∈ Cn×m and D ∈ Cm×n [2].

(4) A∥(B,C) = A(2)
R(B),N(C) for A ∈ Cn×m and B,C ∈ Cm×n [2].

(5) AD,† = A(2)
R(Ak),N(AkA†)

for A ∈ Cn×n and k = ind(A) [24].

Let A ∈ Cn×m be of rank r, let T be of dimension s ≤ r and let S be of dimension m − s. Suppose A(2)
T ,S

exists. A matrix X ∈ Cm×n is called an OMP inverse of A if it satisfies the system of equations XAX = X,
AX = AA(2)

T ,S
AA† and XA = A(2)

T ,S
A. This inverse is unique if it exists. Also, it was shown in [14] that

X = A(2)
T ,S

AA† is solution to the system above.

Several known generalized inverses are listed as special cases of OMP inverses.

(1) For m = n and A(2)
T ,S
= A#, then the OMP inverse of A coincides with its core inverse.

(2) For m = n and A(2)
T ,S
= AD, then the OMP inverse of A coincides with its DMP-inverse.
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2. The (B,C)-MP-inverse of a matrix

As defined in [14], the OMP inverse of a rectangular matrix A was given by combining its outer inverse
A(2)
T ,S

and Moore-Penrose inverse A†. The main goal in this section is to introduce and investigate a type of
generalized inverses, called the (B,C)-MP-inverse of A (See Definition 2.1 below).

Definition 2.1. Let A ∈ Cn×m and B,C ∈ Cm×n such that A∥(B,C) exists. The matrix A is called (B,C)-MP-invertible
if there exists some matrix X ∈ Cm×n satisfying the system of equations

XAX = X, XA = A∥(B,C)A and CAX = CAA†. (1)

Such an X is called a (B,C)-MP-inverse of A.

Following [14], a matrix A ∈ Cn×m is called (B,C)-MP-invertible (in the sense of Mosić and Stanimirović)
if there exists some X ∈ Cm×n such that XAX = X, AX = AA∥(B,C)AA† and XA = A∥(B,C)A. Such an X is called
the (B,C)-MP-inverse of A. We remark here the readers that the defined (B,C)-MP-inverse is equivalent to
Mosić and Stanimirović’s (B,C)-MP-inverse [14]. Suppose X ∈ Cm×n satisfy XAX = X, AX = AA∥(B,C)AA†

and XA = A∥(B,C)A. Then it satisfies XAX = X, XA = A∥(B,C)A and CAX = CAA†. Conversely, given
XAX = X, XA = A∥(B,C)A and CAX = CAA†, then by Theorem 2.2 below, X = A∥(B,C)AA†, and consequently
AX = AA∥(B,C)AA†.

Recently, Hernández, Lattanzi and Thome [8, 9] introduced two more general 1MP-inverses and 2MP-
inverses of A, where 1MP-inverses (resp., 2MP-inverses) of A are given by its inner inverses (resp., outer
inverses) and Moore-Penrose inverse. More details on these generalized inverses can be found in [3–
5, 7, 14, 16, 18, 22, 23].

Needless to say, the (B,C)-MP-inverse belongs to 2MP-inverses. However, 2MP-inverses do not have
many properties owned by the (B,C)-MP-inverse, such as the most fundamental uniqueness. It is known
that the OMP inverse is unique whenever it exists, and so is the (B,C)-MP-inverse. We denote the (B,C)-
MP-inverse of A by A∥(B,C),†.

The following theorem gives the expression for the (B,C)-MP inverse of A.

Theorem 2.2. The system (1) has a unique solution: X = A∥(B,C)AA†.

Proof. Suppose X = A∥(B,C)AA†. Then one can directly check that X satisfies the system (1).

Several known generalized inverses are listed as special cases of (B,C)-MP-inverses.
(1) For m = n and B = C = A, then A∥(B,C) = A# and (A,A)-MP inverse of A coincides with its core inverse.
(1’) For m = n, B = A and C = A∗, then by [17, Theorem 4.4], we have A∥(B,C) = A #O and (A,A∗)-MP inverse

of A coincides with its core inverse.
(2) Let ind(A) = k, m = n and B = C = Ak. Then A∥(B,C) = AD, so that (Ak,Ak)-MP inverse of A coincides

with its DMP-inverse.
(3) If B = C, then A∥(B,C) = A∥B and (B,B)-MP inverse of A coincides with its MMP-inverse along B.
(4) Suppose B = C = A∗. Then A∥(B,C) = A† and (A∗,A∗)-MP inverse of A coincides with its Moore-Penrose

inverse.
In [2], the writers derived the criterion for the (B,C)-inverse by rank conditions in complex matrices as

follows.

Lemma 2.3. [2, Theorem 4.4] Let A ∈ Cn×m and B,C ∈ Cm×n. Then the following statements are equivalent:
(i) A is (B,C)-invertible.
(ii) rk(C) = rk(B) = rk(CAB).
In this case, A∥(B,C) = B(CAB)†C.

Lemma 2.4. [2, Corollary 4.5] Let A ∈ Cn×m and B,C ∈ Cm×n such that A∥(B,C) exists. Then rk(AB) = rk(CA) =
rk(C) = rk(B).
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Based on the above results, we obtain the following theorem, which plays an important role in the
sequel.

Theorem 2.5. Let A ∈ Cn×m and B,C ∈ Cm×n such that A∥(B,C) exists. Then
(i) R(A∥(B,C),†A) = R(A∥(B,C),†) = R(B) and R(AA∥(B,C),†) = R(AB).
(ii)N(AA∥(B,C),†) = N(A∥(B,C),†) = N(CAA†) and N(A∥(B,C),†A) = N(CA).
(iii) rk(AB) = rk(B) = rk(AA∥(B,C),†) = rk(A∥(B,C),†) = rk(A∥(B,C),†A) = rk(CAA†) = rk(CA).

Proof. (i) Since A∥(B,C),†AA∥(B,C),† = A∥(B,C),†, one has R(A∥(B,C),†A) = R(A∥(B,C),†). From [2, Theorem 6.6], it
follows that R(A∥(B,C)A) = R(B) and R(AA∥(B,C)) = R(AB), whence R(A∥(B,C),†A) = R(A∥(B,C)A) = R(B) and
R(AB) = R(AA∥(B,C),†AB) ⊆ R(AA∥(B,C),†) = R(AA∥(B,C)AA†) ⊆ R(AA∥(B,C)) = R(AB). So, R(AA∥(B,C),†) = R(AB).

(ii) We have N(AA∥(B,C),†) = N(A∥(B,C),†) since A∥(B,C),†AA∥(B,C),† = A∥(B,C),†. Again by [2, Theorem 6.6],
we have N(A∥(B,C)A) = N(CA), so that N(A∥(B,C),†A) = N(A∥(B,C)A) = N(CA). As N(C) ⊆ N(A∥(B,C)), then
there exists some T ∈ Cm×m such that A∥(B,C) = TC. So, N(CAA†) = N(CAA∥(B,C),†) ⊆ N(TCAA∥(B,C),†) =
N(A∥(B,C),†) ⊆ (CAA∥(B,C),†) = N(CAA†). Therefore,N(AA∥(B,C),†) = N(A∥(B,C),†) = N(CAA†).

(iii) It follows from (i) and (ii).

A matrix A ∈ Cn×n is called Hermitian if A∗ = A. A Hermitian projector matrix is called an orthogonal
projector. It is known that AA∥(B,C),† and A∥(B,C),†A are both projectors. However, they may not be orthogonal
projectors. We next show under what conditions AA∥(B,C),† and A∥(B,C),†A are orthogonal projectors.

Theorem 2.6. Let A ∈ Cn×m and B,C ∈ Cm×n such that A∥(B,C) exists. Then the following statements are equivalent:
(i) AA∥(B,C),† is an orthogonal projector.
(ii) R(AB) = R(AA†C∗).
(iii) R(AA†C∗) ⊆ R(AB).
(iv) R(AB) ⊆ R(AA†C∗).

Proof. To begin with, (ii)⇒ (iii) and (ii)⇒ (iv) are obvious.
(i)⇒ (ii) Given (i), then AA∥(B,C),† = (AA∥(B,C),†)∗, so that R(AA∥(B,C),†) = R((AA∥(B,C),†)∗) = N(AA∥(B,C),†)⊥.
By Theorem 2.5, we have

R(AB) = R(AA∥(B,C),†) = N(AA∥(B,C),†)⊥ = N(CAA†)⊥

= R((CAA†)∗) = R(AA†C∗).

(iii) ⇒ (i) Since AA∥(B,C),† = (AA∥(B,C),†)2, to prove (i), it suffices to show (AA∥(B,C),†)∗ = AA∥(B,C),†. As
R(AA†C∗) ⊆ R(AB), then by Theorem 2.5, we have

R((AA∥(B,C),†)∗) = N(AA∥(B,C),†)⊥ = N(CAA†)⊥ = R((CAA†)∗)
= R(AA†C∗) ⊆ R(AB) = R(AA∥(B,C),†).

Hence, there exists some D ∈ Cn×n such that (AA∥(B,C),†)∗ = AA∥(B,C),†D = AA∥(B,C),†AA∥(B,C),†D = AA∥(B,C),†(AA∥(B,C),†)∗ =
AA∥(B,C),†, as required.

(iv) ⇒ (ii) It follows from Theorem 2.5 (iii) that rk(AB) = rk(CAA†) = rk(AA†C∗), whence R(AB) =
R(AA†C∗) since R(AB) ⊆ R(AA†C∗).

In Theorem 2.7 below, we derive the necessary and sufficient conditions such that A∥(B,C),†A is an
orthogonal projector, whose proof is similar to that of Theorem 2.6. We herein leave it to the readers.

Theorem 2.7. Let A ∈ Cn×m and B,C ∈ Cm×n such that A∥(B,C) exists. Then the following statements are equivalent:
(i) A∥(B,C),†A is an orthogonal projector.
(ii) R((CA)∗) = R(B).
(iii) R((CA)∗) ⊆ R(B).
(iv) R(B) ⊆ R((CA)∗).
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As stated in Section 1, several types of generalized inverses are described by A(2)
T ,S

. We next establish

the criterion of the (B,C)-MP-inverse of A using its A(2)
T ,S

.

Theorem 2.8. Let A ∈ Cn×m and B,C ∈ Cm×n such that A∥(B,C) exists. Then X = A∥(B,C),† if and only if X =
A(2)
R(B),N(CAA†).

Proof. Suppose X = A∥(B,C),†. Then, by Theorem 2.5, we have XAX = X, R(X) = R(B) andN(X) = N(CAA†),
so that X = A(2)

R(B),N(CAA†).

Conversely, if X = A(2)
R(B),N(CAA†), then XAX = X,R(X) = R(B) and N(X) = N(CAA†), and hence R(AX −

In) ⊆ N(X) = N(CAA†). This implies CAX = CAA†. The inclusion N(C) ⊆ N(A∥(B,C)) gives A∥(B,C) = SC for
some S ∈ Cm×m. Also, from R(X) = R(B), it follows that X = A∥(B,C)AX = SCAX = SCAA† = A∥(B,C)AA† =
A∥(B,C),†.

We denote by PM,N the projector onto M along N, where M,N are two complementary subspaces ofCn×1,
namely Cn×1 =M ⊕N.

It follows from Theorem 2.5 that R(AA∥(B,C),†) = R(AB), N(AA∥(B,C),†) = N(CAA†) and R(A∥(B,C),†) ⊆ R(B).
So, R(AB) ⊕N(CAA†) = Cn×1. Let X = A∥(B,C)AA†. Then AX = PR(AB),N(CAA†) is a projector onto R(AB) along
N(CAA†).

We next give show that X = A∥(B,C)AA† is the unique solution of the following system consisting of
PR(AB),N(CAA†).

Theorem 2.9. Let A ∈ Cn×m and B,C ∈ Cm×n such that A∥(B,C) exists. Then

AX = PR(AB),N(CAA†),R(X) ⊆ R(B). (2)

is consistent and has the unique solution X = A∥(B,C),†.

Proof. We assume that X1,X2 satisfy (2). Then AX1 = AX2 = PR(AB),N(CAA†), R(X1) ⊆ R(B) and R(X2) ⊆ R(B).
We have at once A(X1 − X2) = 0, R(X1 − X2) ⊆ N(A) and R(X1 − X2) ⊆ R(B). Consequently, it follows that
R(X1 − X2) ⊆ N(A) ∩ R(B).

Given any X ∈ N(A)∩R(B), then there exists some T ∈ Cn×n such that X = BT = A∥(B,C)ABT = A∥(B,C)AX =
0 andN(A) ∩ R(B) = {0}. Hence R(X1 − X2) ⊆ N(A) ∩ R(B) = {0} and X1 = X2.

Remark 2.10. In Theorem 2.9, R(X) ⊆ R(B) is equivalent to the condition X = A∥(B,C)AX. Indeed, if
R(X) ⊆ R(B), then X = BT = A∥(B,C)ABT = A∥(B,C)AX for some T ∈ Cn×n. For the converse statement, if
X = A∥(B,C)AX then R(X) ⊆ R(A∥(B,C)), so that R(X) ⊆ R(B) since R(A∥(B,C)) ⊆ R(B).

Let CP
n be the set of n × n projector matrices. Given A ∈ Cn×m and B,C ∈ Cm×n such that A∥(B,C) exists,

then AA∥(B,C),†
∈ CP

n , A∥(B,C),†A ∈ CP
m.

The following result presents characterizations for the (B,C)-MP-inverse of A using projectors AA∥(B,C),†

and A∥(B,C),†A.

Theorem 2.11. Let A ∈ Cn×m and B,C ∈ Cm×n such that A∥(B,C) exists. Then the following conditions are equivalent:
(i) X = A∥(B,C),†.
(ii) CAX = CAA†,R(X) = R(B).
(iii) CAX = CAA†,X = A∥(B,C)AX.
(iv) XAB = B,N(X) = N(CAA†).
(v) XAA∥(B,C) = A∥(B,C), rk(X) = rk(B),CAX = CAA†.
(vi) AX = AA∥(B,C)AA†,R(X) = R(B).
(vii) AX = AA∥(B,C)AA†,X = A∥(B,C)AX.
(viii) AX ∈ CP

n ,R(X) = R(B),N(X) = N(CAA†).
(ix) AX ∈ CP

n ,X = A∥(B,C)AX,N(X) = N(CAA†).
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(x) AXA = AA∥(B,C)A,R(X) = R(B),N(X) = N(CAA†).
(xi) XA = A∥(B,C)A,N(X) = N(CAA†).
(xii) XA ∈ CP

m,R(X) = R(B),N(X) = N(CAA†).

Proof. (i) implies these items (ii)-(xii) by Theorems 2.5 and 2.8; (ii)⇒ (iii), (vi)⇒ (vii), (viii)⇒ (ix), (x)⇒
(xi) follow from Remark 2.10.

(iii)⇒ (i) It follows fromN(C) ⊆ N(A∥(B,C)) that X = A∥(B,C)AX = SCAX = SCAA† = A∥(B,C)AA† = A∥(B,C),†

for some S ∈ Cm×m.
(iv)⇒ (v) SinceR(A∥(B,C)) ⊆ R(B), we have A∥(B,C) = BS for suitable S ∈ Cn×n, This combines with XAB = B

to imply XAA∥(B,C) = A∥(B,C). According toN(CAA†) = N(X) and Theorem 2.5, we have rk(X) = rk(CAA†) =
rk(B). Also, XAB = B implies R(B) ⊆ R(X). So, R(X) = R(B). Then X can be written as the form of BT for
suitable T ∈ Cn×n. Post-multiplying XAB = B by T gives XAX = X. So, R(In − AX) ⊆ N(X) = N(CAA†).
Therefore, CAX = CAA†.

(v)⇒ (ii) Post-Multiplying XAA∥(B,C) = A∥(B,C) by AB implies XAB = B. Then we have at onceR(B) ⊆ R(X),
which combines with rk(X) = rk(B) to ensure R(X) = R(B).

(vii)⇒ (i) Given AX = AA∥(B,C)AA†, then it follows that X = A∥(B,C)AX = A∥(B,C)AA∥(B,C)AA† = A∥(B,C)AA† =
A∥(B,C),†.

(ix) ⇒ (iii) By AX ∈ CP
n , we have X = A∥(B,C)AX = A∥(B,C)AXAX = XAX. Hence, R(In − AX) ⊆ N(X) =

N(CAA†) and CAX = CAA†.
(xi)⇒ (iv) is obvious.
(xii)⇒ (ii) As XA ∈ CP

m, then R(A − AXA) ⊆ N(X) = N(CAA†), so that CA = CAXA. Post-multiplying
CA = CAXA by A† gives CAA† = CAXAA†. From R(In − AA†) ⊆ N(CAA†) = N(X), one has X = XAA† and
CAA† = CA(XAA†) = CAX.

Remark 2.12. In Theorem 2.11 above, the conditionR(X) = R(B) can be weaken to the inclusionR(X) ⊆ R(B).

3. Connections with other generalized inverses

Let A ∈ Cn×m and B,C,B′,C′ ∈ Cm×n. Benı́tez et al. in [2, Remark 4.3] proved that if R(B) = R(B′),
N(C) = N(C′), then the existence of A∥(B,C) coincides with that of A∥(B′,C′) and A∥(B,C) = A∥(B′,C′).

The following result shows that the converse statement also holds.

Lemma 3.1. Let A ∈ Cn×m and B,C,B′,C′ ∈ Cm×n such that A∥(B,C) and A∥(B′,C′) exist. Then the following conditions
are equivalent:

(i) A∥(B,C) = A∥(B′,C′).
(ii) R(B) = R(B′),N(C) = N(C′).
(iii) R(B) ⊆ R(B′),N(C) ⊆ N(C′).

Proof. (i)⇒ (ii) Post-multiplying A∥(B,C) = A∥(B′,C′) by AB gives B = A∥(B′,C′)AB, andR(B) ⊆ R(A∥(B′,C′)) ⊆ R(B′).
Pre-multiplying A∥(B,C) = A∥(B′,C′) by CA yields C = CAA∥(B′,C′), so that N(C′) ⊆ N(A∥(B′,C′)) ⊆ N(C). Dually,
one can get R(B′) ⊆ R(B) andN(C) ⊆ N(C′). Consequently, R(B) = R(B′),N(C) = N(C′).

(ii)⇒ (iii) is obvious.
(iii) ⇒ (i) Note that R(B) ⊆ R(B′) implies rk(B) ≤ rk(B′), and N(C) ⊆ N(C′) gives rk(C′) ≤ rk(C). By

Lemma 2.3, one knows that rk(B) = rk(C) and rk(B′) = rk(C′). So, rk(B) = rk(B′) = rk(C′) = rk(C) and hence
R(B) = R(B′),N(C) = N(C′). Hence A∥(B,C) = A∥(B′,C′) from [2, Remark 4.3].

It is known from [4] that A† = A∥(A∗,A∗) for A ∈ Cn×m. Taking B′ = C′ = A∗ in Lemma 3.1, we have the
following result.

Lemma 3.2. Let A ∈ Cn×m and B,C ∈ Cm×n such that A∥(B,C) exists. Then the following statements are equivalent:
(i) A∥(B,C) = A†.
(ii) R(B) = R(A∗),N(C) = N(A∗).
(iii) R(B) ⊆ R(A∗),N(C) ⊆ N(A∗).
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It is worth pointing out that if A∥(B,C) = A† then A∥(B,C),† = A∥(B,C)AA† = A†AA† = A†. However, the
converse statement may not be true, namely A∥(B,C),† = A† does not imply A∥(B,C) = A† in general. A
counterexample is given below.

Example 3.3. Set A =
[ 2 0

4 0
]
,B =

[
4 2
0 0
]
,C =

[ 1
2 0
0 0

]
∈ C2×2. As rk(CAB) = rk(B) = rk(C), then, by Lemma

2.3, A∥(B,C) exists. A simple computation gives A∥(B,C) = C =
[ 1

2 0
0 0

]
, A† =

[ 1
10

1
5

0 0

]
and hence A∥(B,C),† =

[ 1
10

1
5

0 0

]
,

so that A† = A∥(B,C),†. However, A† , A∥(B,C).

The following theorem presents the necessary and sufficient conditions such that A† = A∥(B,C),†.

Theorem 3.4. Let A ∈ Cn×m and B,C ∈ Cm×n such that A∥(B,C) exists. Then the following statements are equivalent:
(i) A∥(B,C),† = A†.
(ii) R(A∗) = R(B).
(iii) R(A∗) ⊆ R(B).

Proof. (i) ⇒ (ii) Multiplying A∥(B,C),† = A† by AA∗ on the right side yields A∥(B,C)AA∗ = A†AA∗ = A∗ and
R(A∗) ⊆ R(A∥(B,C)) ⊆ R(B). By Lemma 2.4, rk(B) ≤ rk(A) = rk(A∗). Consequently, R(A∗) = R(B).

(ii)⇒ (iii) is clear.
(iii)⇒ (i) As R(A∗) ⊆ R(B), then there exists some T ∈ Cn×n such that A∗ = BT = A∥(B,C)ABT = A∥(B,C)AA∗.

Multiplying A∗ = A∥(B,C)AA∗ by (A†)∗A† on the right side gives A† = A∥(B,C)AA† = A∥(B,C),†.

Theorem 3.5. Let A ∈ Cn×m and B,C ∈ Cm×n such that A∥(B,C) exists. Then A∥(B,C),† = A∥(B,C) if and only if
C = CAA†.

Proof. Suppose A∥(B,C),† = A∥(B,C). Pre-multiplying A∥(B,C),† = A∥(B,C) by CA yields CAA† = CAA∥(B,C),† =
CAA∥(B,C) = C.

Conversely, since N(C) ⊆ N(A∥(B,C)), there exists some S ∈ Cm×m such that A∥(B,C) = SC = SCAA† =
A∥(B,C)AA† = A∥(B,C),†.

Suppose S is a ∗-semigroup and a, b, c ∈ S. We recall from [21] that a is (b, c)-core invertible if there exists
some x ∈ S such that caxc = c, xS = bS and Sx = Sc∗. The (b, c)-core inverse x of a is uniquely determined
(if it exists) and is denoted by a #O

(b,c). It is shown in [21] that a is (b, c)-core invertible if and only if a is
(b, c)-invertible and c is {1, 3}-invertible. Moreover, a #O

(b,c) = a∥(b,c)c(1,3).
We next give the notion of (b, c)-core inverses in complex matrices.

Definition 3.6. Let A ∈ Cn×m and B,C ∈ Cm×n. The matrix A is called (B,C)-core invertible if there exists some
X ∈ Cm×m such that CAXC = C,R(X) = R(B) andN(X) = N(C∗). Such an X is called a (B,C)-core inverse of A.

Given any A ∈ Cn×m and B,C ∈ Cm×n, it can be proved that the (B,C)-core inverse of A is unique if it exists.
As usual, we denote by A #O

(B,C) the (B,C)-core inverse of A. Moreover, one has the following equivalence: A
is (B,C)-core invertible if and only if A is (B,C)-invertible. In this case, A #O

(B,C) = A∥(B,C)C†.

Theorem 3.7. Let A ∈ Cn×m and B,C ∈ Cm×n. Then the following conditions are equivalent:
(i) A is (B,C)-MP-invertible.
(ii) A is (B,C)-core invertible.
In this case, A∥(B,C),† = A #O

(B,C)CAA†.

Proof. The equivalence between (i) and (ii) is obvious. It next suffices to give the formula. As A #O

(B,C) exists,
then A #O

(B,C) = A∥(B,C)C†, A #O

(B,C)C = A∥(B,C)C†C = A∥(B,C) and post-multiplying A #O

(B,C) = A∥(B,C)C† by CAA† yields
A∥(B,C),† = A∥(B,C)AA† = A #O

(B,C)CAA†.
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As pointed out in [4], A∥D is the (D,D)-inverse of A for any A,D ∈ Cn×n, and hence A∥(D,D),† = A∥(D,D)AA† =
A∥DAA† = A∥,†D .

The following theorem presents the criterion such that A∥(B,C),† = A∥,†D .

Theorem 3.8. Let A,B,C,D ∈ Cn×n such that A∥(B,C) and A∥D exist. Then the following conditions are equivalent:
(i) A∥(B,C),† = A∥,†D .
(ii) R(D) = R(B),N(DA) = N(CA).
(iii) R(D) ⊆ R(B),N(DA) ⊆ N(CA).

Proof. (i) ⇒ (ii) As A∥(B,C),† = A∥,†D , i.e., A∥(B,C)AA† = A∥DAA†, then A∥(B,C)A = A∥DA. Post-multiplying
A∥(B,C)A = A∥DA by B and D give B = A∥DAB and A∥(B,C)AD = D, respectively. Then R(B) ⊆ R(A∥D) ⊆ R(D)
and R(D) ⊆ R(A∥(B,C)) ⊆ R(B). So, R(B) = R(D). Pre-multiplying A∥(B,C)A = A∥DA by CA and DA yield CA =
CAA∥DA and DAA∥(B,C)A = DA, respectively. It follows that N(A∥DA) ⊆ N(CA) and N(A∥(B,C)A) ⊆ N(DA).
By [2, Theorem 6.6], we haveN(CA) = N(A∥(B,C)A) andN(DA) = N(A∥DA). Consequently,N(CA) = N(DA).

(ii)⇒ (iii) is trivial.
(iii) ⇒ (i) Since R(D) ⊆ R(B), there exists some T ∈ Cn×n such that D = BT = A∥(B,C)ABT = A∥(B,C)AD,

which combines with R(A∥D)
⊆ R(D) to lead A∥D = A∥(B,C)AA∥D. Similarly, as N(DA) ⊆ N(CA), then

CA = SDA = SDAA∥DA = CAA∥DA for suitable S ∈ Cn×n. From N(C) ⊆ N(A∥(B,C)), it follows that
A∥(B,C)A = A∥(B,C)AA∥DA. Consequently, A∥(B,C)A = A∥DA and A∥(B,C),† = A∥,†D .

In Theorem 3.8, taking D = Am (m = ind(A)), then A∥Am
= AD, so that A∥,†Am = A∥Am AA† = ADAA† = AD,†.

Note thatN(Am) = N(Am+1) since Am = ADAm+1. So, we have the following result.

Corollary 3.9. Let A,B,C ∈ Cn×n and ind(A) = m. Suppose A∥(B,C) exists. Then the following conditions are
equivalent:

(i) A∥(B,C),† = AD,†.
(ii) R(Am) = R(B),N(Am) = N(CA).
(iii) R(Am) ⊆ R(B),N(Am) ⊆ N(CA).

Setting m = 1 in Corollary 3.9, then A is group invertible and hence AD,† = A#AA† = A #O. We claim
herein thatN(CA) = N(A) in the item (ii) andN(Am) ⊆ N(CA) in the item (iii) can be dropped. Indeed, the
condition N(A) ⊆ N(CA) is evident. By Lemma 2.4, one knows that rk(CA) = rk(A), and consequently the
conditionN(CA) = N(A) in the item (ii) can be dropped.

Corollary 3.10. Let A,B,C ∈ Cn×n and ind(A) = 1. Suppose A∥(B,C) exists. Then the following statements are
equivalent:

(i) A∥(B,C),† = A #O.
(ii) R(A) = R(B).
(iii) R(A) ⊆ R(B).

Recently, the author Zhu et al. [22] introduced W-core inverses in complex matrices. For A,W ∈ Cn×n,
A is called W-core invertible if there exists an X ∈ Cn×n satisfying AWX = PA and R(X) ⊆ R(A). Such an X
is called a W-core inverse of A. It is unique if it exists and is denoted by A #O

W . It is proved that A is W-core
invertible if and only if W is invertible along A (i.e., W is (A,A)-invertible). In this case, A #O

W =W∥AA†.
We close this section with the following result, relating the (B,C)-MP-inverse and the W-core inverse.

Theorem 3.11. Let A,W ∈ Cn×n. Then the following conditions are equivalent:
(i) W is (A,A)-MP-invertible.
(ii) A is W-core invertible.
In this case, W∥(A,A),† = A #O

WAWW†.

Proof. It is known that W is (A,A)-MP-invertible if and only if W is invertible along A if and only if A is
W-core invertible. It next only need to give the formula. Since A #O

W = W∥AA† = W∥(A,A)A† and W∥(A,A) =

W∥(A,A)A†A, post-multiplying A #O

W =W∥(A,A)A† by AWW† gives the equality A #O

WAWW† =W∥(A,A)A†AWW† =

W∥(A,A)WW† =W∥(A,A),†.
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