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Surface family interpolating a common spherical indicatrix curve
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Abstract. The trajectory of a moving particle in space forms a curve. By moving a line along a curve, a
surface called ruled surface is obtained. The striction point on a ruled surface is the foot of the common
normal between two consecutive generators or ruling. The set of striction points defines the striction curve.
In the present paper, we obtain surfaces passing through the spherical indicatrix curves formed on the unit
sphere by the end points of the geodesic Frenet frame formed on this curve. We present conditions for these
curves to be asymptotic curves or geodesic on the surface. We illustrate the method with several examples.

1. Introduction

The study of curves and surfaces has wide application areas such as architectural design, computer
aided design, astronomy, astrophysics and genetics [1–14]. We encounter curves and surfaces in every
differential geometry book. Traditional studies focus on special surface curves such as geodesic, line
of curvature, asymptotic curve etc. There are vast studies dealing with these special curves and their
properties. However, there is an increasing interest of finding surfaces interpolating a given curve as a
special curve. Recently, Güler [16] presented the geometric relationship between the focal surfaces and the
original surface. Bayram [7] constructed surfaces with constant mean curvature along a timelike curve.
Surfaces with a common adjoint curve are obtained in [9]. Güler et. al. [10] presented conditions for offset
surfaces with a common asymptotic curve. Bayram et. al. [11] studied magnetic flux surfaces.

Another interesting curve is the spherical indicatrix curve. Letα (s) be a unit speed curve (∥α′ (s)∥ = 1, ∀s)
and T (s) = α′ (s) be its tangent vector field. The tangent indicatrix of α (s) is the curve γ (s) = T (s) .
Geometrically, γ (s) is obtained by moving every T (s) to the origin of R3. By definition, it lies on the unit
sphere and its motion shows the turning of α (s) . Given a timelike space curve, its directional spherical
indicatrices are introduced in [17]. A new formula for binormal spherical indicatrices of magnetic curves
presented by Körpınar and Baş [18]. Ateş et. al. studied tubular surfaces whose centers are semi-spherical
indicatrices of a spatial curve [19]. Şahiner defined some new associated curves by Frenet vectors of tangent
indicatrix of a curve in 3 dimensional Euclidean space [14].

On the other hand, curvature theory examines the simple geometric properties of lines and planes.
It is the easiest way to determine solid space motions. It also deals with the velocity and acceleration
distribution of the moving rigid body. Results from the curvature theory are applied to the synthesis and
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analysis of spherical, planar and spatial mechanisms. A point and a line fixed to a rigid body in space
draw a ruled surface. With the help of a common perpendicular line between two adjacent main lines, a
striction curve forms, which is defined as the shortest distance. On this curve, the geodesic Frenet frame is
defined with the help of the director vector. The curve drawn by the end points of the director vector on the
sphere is the spherical indicatrix curve. We can think of [20] as the paper that best explains the curvature
theory. They characterize the shape of the ruled surface in two different ways. Firstly, the authors define a
sequence of ruled surfaces associated with the trajectory ruled surface and secondly use dual vector algebra
to transform the differential geometry of ruled surfaces into that of spherical curves. There has recently
been an ascending interest regarding curvature theory [21–24]. Since the curvature properties in curvature
theory characterize a point trajectory, the curvature theory is quite useful for the path planning of robot
trajectory. When we look at the studies in the literature, we can see the curvature theory in robot trajectory
motion. Some of these papers are [25–30].

In this study, the curves, that is, the spherical indicatrix curves drawn by the end points of the geodesic
Frenet frame vectors on the sphere during the formation of the ruled surface using the curvature theory
is discussed. We obtain the conditions for surface family passing through these curves for a common
asymptotic curve or geodesic. Also, we present examples to illustrate the method.

2. Preliminaries

Let p and p′ be two points in a rigid body and P
(
ψ
)

and P′
(
ψ
)

be their trajectories, respectively. Then,
R

(
ψ
)
= P′

(
ψ
)
− P

(
ψ
)

is called the spherical indicatrix curve or the director vector which is on the surface
of a sphere of radius

∣∣∣p′ − p
∣∣∣ . Now

L
(
ψ, v

)
= α

(
ψ
)
+ vR

(
ψ
)

defines a ruled surface in the parametric form, where α
(
ψ
)

is the base curve of it [20].
Since the shape of the ruled surface L

(
ψ, v

)
is independent of the parameter ψ chosen to identify, we

take a standard parametrization, i.e. the arc-length parameter as

s
(
ψ
)
=

∫ ψ

0

∥∥∥dR/dt
∥∥∥ dt, (1)

where R =
∥∥∥dR/dψ

∥∥∥ is called the speed of the spherical indicatrix curve R
(
ψ
)
. If R , 0, then Eqn. (1) can be

revised to yield ψ (s) allowing the definition of R
(
ψ (s)

)
= R (s) .

A frame
{
e, t, 1

}
called the geodesic Frenet frame is formed on the striction curve of the ruled surface

L
(
ψ, v

)
. e (s) = R /

∥∥∥R
∥∥∥, t (s) = dR /ds and 1 (s) = e× t are unit vector fields and they are called the unit vector

field along the directrix, the center normal vector field and the asymptotic normal vector field, respectively.
Derivative formulas of the geodesic Frenet frame are

de (s) /ds = 1
R t (s) ,

dt (s) /ds = − 1
R e (s) + γ

R1 (s) ,
d1 (s) /ds = − γR t (s) ,

where γ (s) =
〈
d2R (s) /ds2

× R (s) , dR (s) /ds
〉

is the geodesic curvature of the spherical indicatrix curve

R
(
ψ
)

[20].
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3. Surface family interpolating a common spherical indicatrix curve

3.1. Surface family interpolating the spherical indicatrix curve drawn by the director curve e (s) of the ruled surface

In this section, we obtain surfaces interpolating the spherical indicatrix curve Re (s) = e (s) . They are
given by

φ1 (s, v) = Re (s) + x1 (s, v) e (s) + x2 (s, v) t (s) + x3 (s, v) 1 (s) ,
A1 ≤ s ≤ A2, B1 ≤ v ≤ B2,

(2)

where xi (s, v) , i = 1, 2, 3, are the so-called marching scale functions. We assume that the curve Re (s) is a
parameter curve on the surface (2) . Thus, we have

x1 (s, v0) = x2 (s, v0) = x3 (s, v0) = 0,

for some v0 ∈ [B1,B2] . The partial derivatives of (2) are calculated as

∂φ1

∂s
(s, v) =

(
∂x1

∂s
(s, v) −

1
R

x2 (s, v)
)

e (s)

+

(
1
R
+ x1 (s, v)

1
R
+
∂x2

∂s
(s, v) −

γ

R
x3 (s, v)

)
t (s)

+

(
γ

R
x2 (s, v) +

∂x3

∂s
(s, v)

)
1 (s)

∂φ1

∂v
(s, v) =

∂x1

∂v
(s, v) e (s) +

∂x2

∂v
(s, v) t (s) +

∂x3

∂v
(s, v) 1 (s)

The normal vector field n̂1 (s, v) of the surface (2) is

n̂1 (s, v) =

[
∂x3

∂v
(s, v)

(
γ

R
x3 (s, v) −

x1 (s, v)
R

−
∂x2

∂s
(s, v) −

1
R

)
−
∂x2

∂v
(s, v)

(
γ

R
x2 (s, v) +

∂x3

∂s
(s, v)

)]
e (s)

+

[
∂x1

∂v
(s, v)

(
γ

R
x2 (s, v) +

∂x3

∂s
(s, v)

)
+
∂x3

∂v
(s, v)

(
1
R

x2 (s, v) −
∂x1

∂s
(s, v)

)]
t (s)

+

[
∂x2

∂v
(s, v)

(
∂x1

∂v
(s, v) −

1
R

x2 (s, v)
)

+
∂x1

∂v
(s, v)

(
1
R
+

x1 (s, v)
R

+
∂x2

∂s
(s, v) −

γ

R
x3 (s, v)

)]
1 (s) .

The normal vector field along the curve Re (s) is

n̂1 (s, v0) =
1
R
∂x1

∂v
(s, v0) 1 (s) −

1
R
∂x3

∂v
(s, v0) e (s) (3)

Theorem 3.1. Condition for Re (s) to be an asymptotic curve on the surface (2) is

γ
∂x1

∂v
(s, v0) +

∂x3

∂v
(s, v0) = 0, ∀s. (4)
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Proof. Since the surface normal vector field along the curve Re (s) is orthogonal to the tangent vector field
t (s) , we have〈̂

n1 (s, v0) , t (s)
〉
= 0, ∀s.

Differentiating both sides with respect to s we obtain〈
∂̂n1

∂s
(s, v0) , t (s)

〉
+

〈̂
n1 (s, v0) , t′ (s)

〉
= 0, ∀s. (5)

Using Eqn. (5) , the normal curvature of the surface (2) along the curve Re (s) is given by

κn = −

〈
∂̂n1

∂s
(s, v0) , t (s)

〉
.

Re (s) is an asymptotic curve on the surface (2) if the normal curvature vanishes. By Eqn. (3) , we have〈
∂
∂s

(
1
R
∂x1

∂v
(s, v0) 1 (s) −

1
R
∂x3

∂v
(s, v0) e (s)

)
, t (s)

〉
= 0

if and only if

γ

R
∂x1

∂v
(s, v0) +

1
R
∂x3

∂v
(s, v0) = 0, ∀s.

Since R is nonzero, we have the desired condition.

Theorem 3.2. Condition for Re (s) to be a geodesic on the surface (2) is

x3 (s, v) = v − v0, x1 (s, v) = γ (v − v0) , ∀s. (6)

Proof. Re (s) is a geodesic on the surface (2) if and only if R
′′

e (s) is orthogonal to the surface. To satisfy this
condition, one should have R

′′

e (s) ∥ n̂1 (s, v0) . We have

R
′′

e (s) = t′ (s) = −
1
R

e (s) +
γ

R
1 (s) .

Choosing of x1 (s, v) and x3 (s, v) as in Eqn. (6) makes R
′′

e (s) parallel to n̂1 (s, v0) completing the proof.

3.2. Surface family interpolating the spherical indicatrix curve drawn by the center normal vector field t (s) of the
geodesic Frenet frame

Now, we construct surface family interpolating the spherical indicatrix curve Rt (s) = t (s) . They are
given by

φ2 (s, v) = Rt (s) + y1 (s, v) e (s) + y2 (s, v) t (s) + y3 (s, v) 1 (s) ,
A1 ≤ s ≤ A2, B1 ≤ v ≤ B2.

(7)

We assume that the curve Rt (s) is a parameter curve on the surface (7) . Thus, we have

y1 (s, v0) = y2 (s, v0) = y3 (s, v0) = 0,
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for some v0 ∈ [B1,B2] . The partial derivatives of (7) are calculated as

∂φ2

∂s
(s, v) =

(
∂y1

∂s
(s, v) −

1
R

y2 (s, v) −
1
R

)
e (s)

+

(
1
R

y1 (s, v) +
∂y2

∂s
(s, v) +

γ

R
y2 (s, v) −

γ

R
y3 (s, v)

)
t (s)

+

(
γ

R
y2 (s, v) +

∂y3

∂s
(s, v)

)
1 (s)

∂φ2

∂v
(s, v) =

∂y1

∂v
(s, v) e (s) +

∂y2

∂v
(s, v) t (s) +

∂y3

∂v
(s, v) 1 (s) .

The normal vector field n̂2 (s, v) of the surface (7) is

n̂2 (s, v) =

[
∂y3

∂v
(s, v)

(
1
R

y1 (s, v) +
∂y2

∂s
(s, v) +

γ

R
y2 (s, v) −

γ

R
y3 (s, v)

)
−
∂y2

∂v
(s, v)

(
γ

R
+
∂y3

∂s
(s, v)

)]
e (s)

+

[
∂y1

∂v
(s, v)

(
γ

R
+
∂y3

∂s
(s, v) +

∂y1

∂s
(s, v) −

1
R

y2 (s, v) −
1
R

)
+
∂y3

∂v
(s, v)

(
1
R
−
∂y1

∂s
(s, v) +

1
R

y2 (s, v)
)]

t (s)

+

[
∂y2

∂v
(s, v)

(
∂y1

∂s
(s, v) −

1
R

y2 (s, v) −
1
R

)
−
∂y1

∂v
(s, v)

(
1
R

y1 (s, v) +
∂y2

∂s
(s, v) +

γ

R
y2 (s, v) −

γ

R
y3 (s, v)

)]
1 (s) .

The normal vector field along the curve Rt (s) is

n̂2 (s, v0) =
1
R

[
−γ
∂y2

∂v
(s, v0) e (s) +

(
γ
∂y1

∂v
(s, v0) −

∂y3

∂v
(s, v0)

)
t (s) −

∂y2

∂v
(s, v0) 1 (s)

]
.

Theorem 3.3. Condition for Rt (s) to be an asymptotic curve on the surface (7) is

γ

(
1 + γ2

R

)
∂y1

∂v
(s, v0) + γ′

∂y2

∂v
(s, v0) +

1 + γ2

R
∂y3

∂v
(s, v0) = 0, ∀s. (8)

Theorem 3.4. Condition for Rt (s) to be a geodesic on the surface (7) is

γ
∂y1

∂v
(s, v0) +

∂y3

∂v
(s, v0) +

1 + γ2

R
= 0, ∀s. (9)

3.3. Surface family interpolating the spherical indicatrix curve drawn by the asymptotic normal vector field 1 (s) of
the geodesic Frenet frame

Surface family interpolating the spherical indicatrix curve R1 (s) = 1 (s) is given by

φ3 (s, v) = R1 (s) + z1 (s, v) e (s) + z2 (s, v) t (s) + z3 (s, v) 1 (s) ,
A1 ≤ s ≤ A2, B1 ≤ v ≤ B2.

(10)



F. Güler et al. / Filomat 38:3 (2024), 821–831 826

We assume that the curve R1 (s) is a parameter curve on the surface (10) . Thus, we have

z1 (s, v0) = z2 (s, v0) = z3 (s, v0) = 0,

for some v0 ∈ [B1,B2] . The partial derivatives of (10) are calculated as

∂φ3

∂s
(s, v) =

(
∂z1

∂s
(s, v) −

1
R

z2 (s, v)
)

e (s)

+
1
R

(
z1 (s, v) +

∂z2

∂s
(s, v) − γ − γz3 (s, v)

)
t (s)

+

(
γ

R
z2 (s, v) +

∂z3

∂s
(s, v)

)
1 (s) ,

∂φ3

∂v
(s, v) =

∂z1

∂v
(s, v) e (s) +

∂z2

∂v
(s, v) t (s) +

∂z3

∂v
(s, v) 1 (s) .

The normal vector field n̂3 (s, v) of the surface (10) is

n̂3 (s, v) =

[
∂z3

∂v
(s, v)

(
1
R

z1 (s, v) −
γ

R
+
∂z2

∂s
(s, v) −

γ

R
z3 (s, v)

)
−
∂z2

∂v
(s, v)

(
γ

R
z2 (s, v) +

∂z3

∂s
(s, v)

)]
e (s)

+

[
∂z1

∂v
(s, v)

(
γ

R
z2 (s, v) +

∂z3

∂s
(s, v)

)
−
∂z3

∂v
(s, v)

(
∂z1

∂s
(s, v) −

1
R

z2 (s, v)
)]

t (s)

+

[
∂z2

∂v
(s, v)

(
∂z1

∂s
(s, v) −

1
R

z2 (s, v)
)

−
∂z1

∂v
(s, v)

(
1
R

z1 (s, v) −
1
R
+
∂z2

∂s
(s, v) −

γ

R
z3 (s, v)

)]
1 (s) .

The normal vector field along the curve R1 (s) is

n̂3 (s, v0) =
γ

R

(
−
∂z3

∂v
(s, v0) e (s) +

∂z1

∂v
(s, v0) 1 (s)

)
.

Theorem 3.5. Condition for R1 (s) to be an asymptotic curve on the surface (10) is

∂z3

∂v
(s, v0) + γ

∂z1

∂v
(s, v0) = 0, ∀s. (11)

Theorem 3.6. Condition for R1 (s) to be a geodesic curve on the surface (10) is

∂z1

∂v
(s, v0) = −

γ

R
,
∂z3

∂v
(s, v0) = −

1
R

and γ = constant. (12)

4. Numerical examples

4.1. Surface family interpolating the spherical indicatrix curve drawn by e (s)

Let R (s) =
(

1
2 sin 2s, 1

2 cos 2s,
√

2
2

)
be the director curve. The geodesic Frenet frame

{
e, t, 1

}
is given as

follow
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e (s) =
( √

3
3 sin 2s,

√
3

3 cos 2s,
√

6
3

)
,

t (s) = (cos 2s,− sin 2s, 0) ,

1 (s) =
( √

6
3 sin 2s,

√
6

3 cos 2s,−
√

3
3

)
,

where R =
∥∥∥R

∥∥∥ = √
3

2 and the geodesic curvature γ =
√

2.
If we take x1 (s, v) = sv, x2 (s, v) = vs2, x3 (s, v) =

√
2sv and v0 = 0, then Eqn. (4) is satisfied, and we obtain

a member of the surface family with a common asymptotic spherical indicatrix curve Re (s) = e (s) as

L1 (s, v) = (

√
3

3
sin 2s + s2v cos 2s +

√

3sv sin 2s,
√

3
3

cos 2s − s2v sin 2s +
√

3sv cos 2s,
√

6
3

),

where −2 < s < 2, −2 < v < 2 (Fig. 1).

Figure 1: A member of the surface family with a common asymptotic spherical indicatrix curve Re (s) = e (s)

If we choose x1 (s, v) = −
√

2v, x2 (s, v) = vs2, x3 (s, v) = v and v0 = 0, then Eqn. (6) is satisfied, and we
obtain a member of the surface family with a common geodesic spherical indicatrix curve Re (s) = e (s) as

L2 (s, v) = (

√
3

3
sin 2s + s2v cos 2s,

√
3

3
cos 2s − s2v sin 2s,

√
6

3
−

√

3v),

where −2 < s < 2, −2 < v < 2 (Fig. 2).
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Figure 2: A member of the surface family with a common geodesic spherical indicatrix curve Re (s) = e (s)

4.2. Surface family interpolating the spherical indicatrix curve drawn by t (s)

Taking y1 (s, v) = vs2, y2 (s, v) = vs, y3 (s, v) =
√

2vs2 and v0 = 0 Eqn. (8) is satisfied, and we obtain a
member of the surface family with a common asymptotic spherical indicatrix curve Rt (s) = t (s) , as

L3 (s, v) = (cos 2s + sv cos 2s +
√

3s2v sin 2s,

− sin 2s − sv sin 2s +
√

3s2v cos 2s, 0),

where −2 < s < 2, −2 < v < 2 (Fig. 3).

Figure 3: A member of the surface family with a common asymptotic spherical indicatrix curve Rt (s) = t (s)
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If we take y1 (s, v) =
√

6v, y2 (s, v) = 0, y3 (s, v) = 4
√

3v and v0 = 0, then Eqn. (9) is satisfied, and we
obtain a member of the surface family with a common geodesic spherical indicatrix curve Rt (s) = t (s) as

L4 (s, v) =
(
cos 2s + 5

√

2v sin 2s, 5
√

2v cos 2s − sin 2s,−2v
)
,

where −5 < s < 5, −5 < v < 5 (Fig.4).

Figure 4: A member of the surface family with a common geodesic spherical indicatrix curve Rt (s) = t (s)

4.3. Surface family interpolating the spherical indicatrix curve drawn by 1 (s)

If we choose z1 (s, v) = sv, z2 (s, v) = vs2, z3 (s, v) =
√

2sv and v0 = 0, then Eqn. (11) is satisfied, and we
obtain a member of the surface family with a common asymptotic spherical indicatrix curve R1 (s) = 1 (s) as

L5 (s, v) = (

√
6

3
sin 2s + s2v cos 2s +

√

3sv sin 2s,
√

6
3

cos 2s − s2v sin 2s +
√

3sv cos 2s,−
√

3
3

),

where −2 < s < 2, −2 < v < 2 (Fig. 5).

If we take z1 (s, v) = 2
√

6
3 v, z2 (s, v) = vs2, z3 (s, v) = − 2

√
3

3 v and v0 = 0, then Eqn. (12) is satisfied, and we
obtain a member of the surface family with a common geodesic spherical indicatrix curve R1 (s) = 1 (s) as

L6 (s, v) = (

√
6

3
sin 2s + s2v cos 2s,

√
6

3
cos 2s − s2v sin 2s, 6v −

√
3

3
),

where −2 < s < 2, −2 < v < 2 (Fig. 6).
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Figure 5: A member of the surface family with a common asymptotic spherical indicatrix curve R1 (s) = 1 (s)

Figure 6: A member of the surface family with a common geodesic spherical indicatrix curve R1 (s) = 1 (s)
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[1] N. Macit, M. Düldül, Some new associated curves of a Frenet curve in E3 and E4, Turk. J. Math. 38 (2014), 1023–1037.
[2] A. T. Ali New special curves and their spherical indicatrix, Glob. J Adv. Res. Class. Mod. Geom. 1 (2) (2012), 28–38.
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