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Metallic shaped contact hypersurfaces of Kaehler manifolds

Cihan Özgüra
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Abstract. We study on metallic shaped contact hypersurfaces of Kaehler manifolds. We show that a
metallic shaped (κ, µ)-contact metric hypersurface of a Kaehler manifold has constant mean curvature. As
a special case, we also consider product shaped Sasakian hypersurfaces of Kaehler manifolds.

1. Introduction

Let F(0) = a, F(1) = b and a, b, p and q be real numbers. Then the generalized secondary Fibonacci
sequence is given by the relation

F(k + 1) = pF(k) + qF(k − 1), k ≥ 1,

(see [7]) . When p = q = 1, we have the Fibonacci sequence. If the limit x = lim
k→∞

F(k+1)
F(k) exists, then it is a root

of the equation

x2
− px − q = 0, (1)

(see [6]).

Let p and q be two integers. The positive solution σp,q =
p+
√
p2+4q
2 of the equation (1) is called member of

the metallic means family (briefly MMF) [6]. The numbers σp,q are called (p, q)-metallic numbers [6]. For some
special values of p and q, we have some known metallic means. For example: If p = q = 1, then σG =

1+
√

5
2 is

the golden mean. If p = 2 and q = 1, then σA1 = 1 +
√

2 is the silver mean. If p = 3 and q = 1, then σBr =
3+
√

13
2

is the bronze mean. If p = 1 and q = 2, then σCu = 2 is the copper mean. If p = 1 and q = 3, then σNi =
1+
√

13
2 is

the nickel mean.
So MMF is a generalization of the golden mean. The golden mean has many applications in biological

growth, constructions of buildings, musics, paintings. The MMF are used in describing fractal geometry,
quasiperiodic dynamics (see [7] and [8]).

The notion of a metallic shaped hypersurface was defined by the present author and N. Y. Özgür in [11].
M is called a metallic shaped hypersurface [11], if the shape operatorA of M satisfies

A
2 = pA + qI,
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where I is the identity on the tangent bundle of M and p and q are positive integers. The full classification
of the metallic shaped hypersurfaces in real space forms and Lorentzian space forms were given in [11] and
[12], respectively. If p = q = 1, then the hypersurface is golden shaped [4]. The full classification of golden
shaped hypersurfaces in real space forms were given by Crâşmăreanu, Hreţcanu and Munteanu in [4]. If
p = 2 and q = 1, if p = 3 and q = 1, if p = 1 and q = 2, or if p = 1 and q = 3, then the hypersurface is called
silver shaped, bronze shaped, copper shaped or nickel shaped, respectively [11].

M is called a product-shaped hypersurface [4], if the shape operatorA satisfies

A
2 = I.

Based on these observations, in the present paper, we consider metallic shaped contact hypersurfaces
of Kaehler manifolds. It is shown that a metallic shaped (κ, µ)-contact metric hypersurface of a Kaehler
manifold has constant mean curvature. As a special case, we also consider product shaped Sasakian
hypersurfaces of Kaehler manifolds.

2. Contact Metric Manifolds

Let M = (M2n+1, φ, ξ, η, 1) be a contact metric manifold with an almost contact metric structure (φ, ξ, η, 1).
A contact metric manifold M = (M2n+1, φ, ξ, η, 1) is called a Sasakian manifold, if it is normal (see [1], [5]).

The (κ, µ)-nullity distribution of a contact metric manifold M = (M2n+1, φ, ξ, η, 1) for the pair (κ, µ) ∈ R2

is a distribution

N(κ, µ) : p→Np(κ, µ) =
{
W ∈ TpM : R(U,V)W = κ

(
1(V,W)U − 1(U,W)V

)
+µ(1(V,W)hU − 1(U,W)hV)

}
,

where R is the curvature tensor of the contact metric manifold M (see [2]) and h is a (1, 1)-tensor field defined
by hU = 1

2
(
Lξφ
)

U where Lξ denotes Lie differentiation in the direction of ξ, where U,V,W ∈ TM. For a
contact metric manifold, it is clear that trh = trhφ = 0.

If the characteristic vector field ξ belongs to the (κ, µ)-nullity distribution, then

R(U,V)ξ = κ
(
η(V)U − η(U)V

)
+ µ(η(V)hU − η(U)hV),

where κ ≤ 1. If κ = 1, then M = (M2n+1, φ, ξ, η, 1) is Sasakian. If the characteristic vector field ξ belongs to
the (κ, µ)-nullity distribution, then the contact metric manifold is called a (κ, µ)-contact metric manifold [2].

3. Hypersurfaces of Kaehler Manifolds

Let M be a (2n + 1)-dimensional orientable hypersurface isometrically embedded into a (2n + 2)-
dimensional Kaehler manifold M̃ = (M̃2n+2, 1, J) with almost complex structure J and Kaehlerian metric
1. Let υ be the unit normal vector field to M. Then the Gauss and Weingarten formulas are given by

∇̃UV = DUV + σ(U,V)υ, (2)

∇̃Uυ = −AU, (3)

whereA is the shape operator of M andA and σ are related with 1(AU,V) = σ(U,V), U,V ∈ TM [3].
Since υ is the unit normal vector field, Jυ is tangent to M. Setting

Jυ = ξ, (4)

JX = φX − η(X)υ, (5)

where φ is a (1, 1)-tensor field, η is a 1-form and X ∈ TM.
From (4) by differentiation along M, and by the use of (2) and (3), we have

DXξ = −φAX.
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Hence because of (4) and (5), (η, ξ, φ, 1) defines an almost contact metric structure on M. From (5), by
differentiation along M, and by using of (2) and (3), we find

(DXφ)Y = σ(X,Y)ξ − η(Y)AX,

(see [13]).
We suppose that the almost contact metric structure induced on M is a contact metric structure. Such a

hypersurface is called a contact hypersurface of the Kaehler manifold M̃ [13]. By easy calculations, we have the
following formulas (see [13]):

Aξ = (tr(A) − 2n)ξ (6)

and

AX = X + hX + (tr(A) − 2n − 1)η(X)ξ. (7)

From [13], we know that a contact hypersurface of a Kaehler manifold is a Hopf hypersurface. Because of
this reason, to study on a contact hypersurface of a Kaehler manifold is more interesting than other real
hypersurfaces of a Kaehler manifold (see [13]). For more details about hypersurfaces of Kaehler manifolds,
we refer to [9], [10] and [14].

4. Main Results

Let M be a contact hypersurface of a Kaehler manifold M̃. Similar to the definition of a metallic shaped
hypersurface in a real space form given in [11], we can define the metallic shaped contact hypersurface of
a Kaehler manifold as follows:

Definition 4.1. Let M be a contact hypersurface in a Kaehler manifold M̃. Then M is called metallic shaped, if the
shape operatorA of M satisfies the condition

A
2X = pAX + qX (8)

for any vector field X in TM, which is not parallel to the characteristic vector field ξ, where p and q are positive
integers.

From (7), we have

A
2X = A(AX) = AX +AhX + (tr(A) − 2n − 1)η(X)Aξ.

Then using (6) and (7), we get

A
2X = X + 2hX + h2X + (tr(A) − 2n − 1)(tr(A) − 2n + 1)η(X)ξ. (9)

Since M is a metallic shaped contact hypersurface, from (7), (8) and (9), it follows that

(1 − p − q) X + (2 − p) hX + h2X + (tr(A) − 2n − 1)(tr(A) − 2n + 1 − p)η(X)ξ = 0.

Contracting the last equation, we find

(1 − p − q) (2n + 1) + trh2 + (tr(A) − 2n − 1)(tr(A) − 2n + 1 − p) = 0. (10)

Then we can state the following Lemma:

Lemma 4.2. Let M be a metallic shaped contact hypersurface in a Kaehler manifold M̃2n+2. Then the condition (10)
is satisfied on M.
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Now assume that M is a non-Sasakian (κ, µ)-contact metric hypersurface of a Kaehler manifold M̃2n+2.
From [2], we know that for an (2n + 1)-dimensional (κ, µ)-contact metric manifold, we have h2 = (κ − 1)φ2,
which implies trh2 = 2n (1 − κ) . So substituting trh2 = 2n (1 − κ) in (10), we get

(1 − p − q) (2n + 1) + 2n (1 − κ) + (tr(A) − 2n − 1)(tr(A) − 2n + 1 − p) = 0

or equivalently

(trA)2
− (4n + p) trA+4n2 + 2n (2 − κ − q) − q = 0. (11)

This gives us

tr(A) =
(4n + p) ∓

√
p2 + 8n (p + q+κ − 2) + 4q

2
,

which is a constant, since p and q are positive integers.
Then we can state the following result:

Theorem 4.3. Let M be a metallic shaped (κ, µ)-contact metric hypersurface in a Kaehler manifold M̃2n+2. Then M

has constant mean curvature H =
(4n+p)+

√
p2+8n(p+q+κ−2)+4q
2(2n+1) or H =

(4n+p)−
√
p2+8n(p+q+κ−2)+4q
2(2n+1) .

If M is a Sasakian hypersurface in a Kaehler manifold M̃2n+2, then κ = 1.
So we have the following corollary:

Corollary 4.4. Let M be a metallic shaped Sasakian hypersurface in a Kaehler manifold M̃2n+2. Then M has constant

mean curvature H =
(4n+p)+

√
p2+8n(p+q−1)+4q
2(2n+1) or H =

(4n+p)−
√
p2+8n(p+q−1)+4q
2(2n+1) .

If M is a Sasakian hypersurface with unit mean curvature in a Kaehler manifold M̃2n+2, then from (11),
we have

(1 − p − q)(2n + 1) = 0,

which is impossible, since p and q are positive integers.
Hence we obtain the following result:

Theorem 4.5. There does not exist a metallic shaped Sasakian hypersurface with unit mean curvature in a Kaehler
manifold M̃2n+2.

Now assume that M is a metallic shaped (κ, µ)-contact metric hypersurface in a Kaehler manifold M̃2n+2.
From the Gauss equation, we have

R̃ic(X,Y) − 1̃(R̃(υ,X)Y, υ) = Ric(X,Y) + 1(AX,AY) − tr(A)1(AX,Y),

where Ric and R̃ic denote the Ricci tensors of M and M̃2n+2, respectively. By a contraction from the last
equation, we have

s̃cal − 2R̃ic(υ, υ) = scal + ∥A∥2 − (tr(A))2 , (12)

where scal and s̃cal denote the scalar curvatures of M and M̃2n+2, respectively. Now assume that M̃2n+2 is
an Kaehler Einstein manifold. So we can write R̃ic(X,Y) = λ1̃(X,Y) for some constant λ. By a contraction,
the scalar curvature of M̃2n+2 is s̃cal = (2n + 2)λ. On the other hand by equation (8), we have ∥A∥2 =
ptr(A) + (2n + 1)q. Hence the equation (12) turns into

2nλ = scal + ptr(A) + (2n + 1)q− (tr(A))2 . (13)

So from Theorem 4.3, since tr(A) is a constant for a metallic shaped (κ, µ)-contact metric hypersurface in a
Kaehler manifold M̃2n+2, the equation (13) gives us the scalar curvature scal of M is a constant.

Then we can state the following theorem:
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Theorem 4.6. Let M be a metallic shaped (κ, µ)-contact metric hypersurface in an Kaehler Einstein manifold M̃2n+2.
Then M has constant scalar curvature.

Complex manifolds with a Ricci-flat Kaehler metric are called Calabi-Yau manifolds [15]. A Calabi-Yau
manifold is not a complex space-form, if it is not flat [15].

Now assume that M is a metallic shaped (κ, µ)-contact metric hypersurface in a Calabi-Yau manifold
M̃2n+2. Then from (12), we have

scal + ∥A∥2 − (tr(A))2 = 0. (14)

Since for a metallic shaped (κ, µ)-contact metric hypersurface of a Kaehler manifold, tr(A) and ∥A∥2 are
constants, from (14), the scalar curvature scal of M is also a constant.

So we have the following result:

Corollary 4.7. Let M be a metallic shaped (κ, µ)-contact metric hypersurface in a Calabi-Yau manifold M̃2n+2. Then
M has constant scalar curvature.

If the second fundamental form of a contact metric hypersurface M of a Kaehler manifold is a linear
combination of the metric tensor and η ⊗ η, then M is called a C-umbilical hypersurface [13].

Now assume that M is a product-shaped hypersurface in a Kaehler manifold M̃. Then its shape operator
satisfies the conditionA2 = I. Hence from (10), we have

trh2 + (tr(A) − 2n − 1)(tr(A) − 2n + 1) = 0.

If M is Sasakian, then (tr(A)− 2n− 1)(tr(A)− 2n+ 1) = 0. Since tr(A) is a constant, the last equation gives us
either tr(A) = 2n+ 1 or tr(A) = 2n− 1. If tr(A) = 2n+ 1, then it has unit mean curvature and moreover from
(7), it is totally umbilical. If M is 3-dimensional and M̃ is a 4-dimensional Calabi-Yau manifold, then M̃ is
flat at each point of M (see the proof of Theorem 2 in [13]). If tr(A) = 2n−1, then from (7),AX = X−2η(X)ξ.
Hence M is C-umbilical.

Thus we obtain the following theorem:

Theorem 4.8. Let M be a Sasakian hypersurface in a Kaehler manifold M̃. Then M is product shaped if and only if
either M is totally umbilical with unit mean curvature (if M is 3-dimensional and M̃ is a 4-dimensional Calabi-Yau
manifold, then M̃ is flat at each point of M) or M is a C-umbilical hypersurface whose shape operatorA is of the form
A = I − 2η ⊗ ξ.
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