Filomat 38:4 (2024), 1143–1152 https://doi.org/10.2298/FIL2404143Z

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The φ -mixed affine surface areas

Chang-Jian Zhao^a

^aDepartment of Mathematics, China Jiliang University, Hangzhou 310018, P. R. China

Abstract. In the paper, our main aim is to introduce a new φ -mixed affine surface area $\Omega_{\varphi,p}(K,L)$ of convex bodies, which obeys classical basic properties. The new affine geometric quantity in special case yields the classical L_p -affine surface area $\Omega_p(K)$, L_p -mixed affine surface area $\Omega_p(K,L)$ and the newly established L_{pq} -mixed affine surface area $\Omega_{p,q}(K,L)$, respectively. As an application, we establish a φ -Minkowski inequality for the φ -mixed affine surface area, which follows the classical Minkowski inequality for mixed affine surface area $\Omega_{-1}(K,L)$, L_p -Minkowski inequality for L_p -affine surface area and L_{pq} -Minkowski inequality for L_{pq} -mixed affine surface area, respectively.

1. Introduction

A body in \mathbb{R}^n is a compact set equal to the closure of its interior. A set *K* is called a convex body if it is compact and convex subset with non-empty interiors. Let \mathcal{K}^n denote the class of convex bodies in \mathbb{R}^n . Let \mathcal{K}^n_o denote the class of convex bodies containing the origin in their interiors in \mathbb{R}^n . A convex body *K* was said to have a positive curvature function $f(K, \cdot) : S^{n-1} \to [0, \infty)$, if its surface area measure $S(K, \cdot)$, is absolutely continuous with respect to spherical Lebesgue measure, *S*, and (see [1])

$$\frac{dS(K,\cdot)}{dS} = f(K,\cdot), \tag{1.1}$$

almost everywhere with respect to *S*. A convex body *K* was said to have a positive curvature function $f_p(K, \cdot) : S^{n-1} \to [0, \infty)$, and $p \ge 1$, if $S_p(K, \cdot)$, is absolutely continuous with respect to spherical Lebesgue measure, *S*, and (see e.g. [2])

$$\frac{dS_p(K,\cdot)}{dS} = f_p(K,\cdot), \tag{1.2}$$

almost everywhere with respect to *S*, and where $S_p(K, \cdot)$ denotes the positive Borel measure on S^{n-1} . The subset of \mathcal{K}^n consisting of convex bodies which have a positive continuous curvature function will be denoted by \mathcal{F}^n . The subset of \mathcal{K}^n_o consisting of convex bodies which have a positive continuous curvature function will be denoted by \mathcal{F}^n_o . The class of the origin-symmetric convex bodies with positive and

Received: 03 July 2023; Accepted: 01 August 2023

²⁰²⁰ Mathematics Subject Classification. 46E30.

Keywords. Affine surface area; L_p -affine surface area; L_p -mixed affine surface area; L_{pq} -mixed affine surface area.

Communicated by Dragan S. Djordjević

Research is supported by National Natural Science Foundation of China (11371334, 109721205).

Email address: chjzhao@163.com (Chang-Jian Zhao)

continuous curvature function in \mathbb{R}^n will be denoted by \mathcal{F}_s^n . Lutwak [2] introduced the L_p -affine surface areas: For $p \ge 1$, the L_p -affine surface area of $K \in \mathcal{F}_o^n$, denoted by $\Omega_p(K)$, defined by

$$\Omega_p(K) = \int_{S^{n-1}} f_p(K, u)^{n/(n+p)} dS(u).$$
(1.3)

When p = 1, $\Omega_p(K)$ becomes the classical affine surface area $\Omega(K)$. Moreover, the mixed affine surface area of convex bodies was introduced in [3]. The classical L_p -Blaschke addition of convex bodies $K, L \in \mathcal{F}_s^n$, denoted by $K \neq L$, defined by (see [4])

$$dS_p(K +_p L, \cdot) = dS_p(K, \cdot) + dS_p(L, \cdot).$$

$$(1.4)$$

In the paper, we consider convex and strictly increasing function $\varphi : \mathbb{R} \to [0, \infty)$ with $\varphi(0) = 0$. Let Φ be the class of convex and strictly increasing functions $\varphi : [0, \infty) \to [0, \infty)$ such that $\varphi(0) = 0$. Our main aim is to introduce a new concept call it φ -mixed affine surface area $\Omega_{\varphi,p}(K,L)$ of convex bodies K and L, which obeys classical properties, including continuity, bounded nature and affine invariance. The φ -mixed affine surface area $\Omega_{\varphi,p}(K,L)$ in special case yields the classical L_p -affine surface area $\Omega_p(K)$, L_p -mixed affine surface area $\Omega_p(K,L)$, and the newly established L_{pq} -mixed affine surface area $\Omega_{pq}(K,L)$, respectively. We establish a φ -Minkowski inequality for the φ -mixed affine surface areas, which follows the classical Minkowski inequality for mixed affine surface area $\Omega_{-1}(K,L)$, L_p -Minkowski inequality for L_p -mixed affine surface area, respectively. As applications, some generalized φ -Minkowski type inequalities are also derived.

For $K, L \in \mathcal{F}_s^n$, The φ -mixed affine surface area of K and L, is denoted by $\Omega_{\varphi,p}(K, L)$, is defined by (see Section 3 for definition)

$$\Omega_{\varphi,p}(K,L) = \inf\left\{\lambda > 0: \int_{S^{n-1}} \varphi\left(\frac{f_p(K,u)}{\lambda f_p(L,u)}\right) d\Omega_p(L,u) \le 1\right\},\tag{1.5}$$

where $p \ge 1$, $d\Omega_p(L, u)$ denotes affine surface area probability measure of *L*, and (see [3])

$$d\Omega_p(L, u) = \frac{1}{\Omega_p(L)} f_p(L, u)^{n/(n+p)} dS(u).$$

Remark 1.1 With $\varphi = \varphi_1(t) = t^p$ and p = 1, (1.5) turns out that

$$\Omega_{\varphi_{1},1}(K,L) = \frac{\Omega_{-1}(K,L)}{\Omega(L)},$$
(1.6)

where $\Omega_{-1}(K, L)$ is the mixed affine surface area of *K* and *L*, and (see [5])

$$\Omega_{-1}(K,L) = \int_{S^{n-1}} f(K,u) f(L,u)^{-1/(n+1)} dS(u).$$

With $\varphi = \varphi_q(t) = t^q$, and $q \ge 1$, (1.5) yields that

$$\Omega_{\varphi_{q},p}(K,L) = \left(\frac{\Omega_{p,q}(L,K)}{\Omega_{p}(L)}\right)^{1/q},$$
(1.7)

where $\Omega_{p,q}(L, K)$ is the L_{pq} -mixed affine surface area of K and L, and (see [6])

$$\Omega_{p,q}(K,L) = \int_{S^{n-1}} \left(\frac{f_p(K,u)}{f_p(L,u)}\right)^q f_p(L,u)^{n/(n+p)} dS(u).$$
(1.8)

When q = 1, (1.8) becomes the following result.

$$\Omega_{\varphi_{1,p}}(K,L) = \frac{\Omega_{-p}(K,L)}{\Omega_{p}(L)},$$
(1.9)

where $\Omega_{-p}(K, L)$ is the L_p -mixed affine surface area of K and L, and (see [7])

$$\Omega_{-p}(K,L) = \int_{S^{n-1}} f_p(K,u) f_p(L,u)^{-p/(n+p)} dS(u).$$
(1.10)

In Section 4, we establish the following φ -Minkowski inequality for the φ -mixed affine surface areas $\Omega_{\varphi,p}(K,L)$ of convex bodies *K* and *L*.

The φ **-Minkowski inequality** *If* $K, L \in \mathcal{F}_s^n$, $p \ge 1$, $\varphi \in \Phi$ and $\varphi(c_{\varphi}) = 1$, then

$$c_{\varphi}\Omega_{\varphi,p}(K,L) \ge \Omega_p(K)^{(n+p)/n}\Omega_p(L)^{-(n+p)/n}.$$
 (1.11)

If φ is strictly convex, equality holds if and only if K and L are homothetic.

Remark 1.2 When $\varphi = \varphi_1(t) = t^p$ and p = 1, (1.11) becomes the following Minkowski inequality established by Lutwak [5]. If $K, L \in \mathcal{F}_s^n$, then

$$\Omega_{-1}(K,L) \ge \Omega(K)^{(n+1)/n} \Omega(L)^{-1/n}, \tag{1.12}$$

with equality if and only if *K* and *L* are homothetic.

When $\varphi = \varphi_1(t) = t^q$ and $q \ge 1$, (1.11) becomes the following L_{pq} -Minkowski inequality established in [6]. If $K, L \in \mathcal{F}_s^n$ and $p, q \ge 1$, then

$$\Omega_{p,q}(K,L)^{\frac{n}{n+p}} \ge \Omega_p(K)^{\frac{n}{n+p}-q} \Omega_p(L)^q, \tag{1.13}$$

with equality if and only if *K* and *L* are homothetic.

When q = 1, (1.13) becomes the following well-known L_p -Minkowski inequality. If $K, L \in \mathcal{F}_s^n$ and $p \ge 1$, then (see [7])

$$\Omega_{-p}(K,L) \ge \Omega(K)^{(n+p)/n} \Omega(L)^{-p/n}, \qquad (1.14)$$

with equality if and only if *K* and *L* are homothetic.

We establish also the following generalized φ -Brunn-Minkowski inequality for three convex bodies *K*, *K*' and *L*.

The φ **-Brunn-Minkowski type inequality.** *If* $K, K', L \in \mathcal{F}_s^n$, $p \ge 1$ and $\varphi(c_{\varphi}) = 1$, then

$$\left(\Omega_{\varphi,p}(K,L) + \Omega_{\varphi,p}(K',L)\right)^{n/(n+p)} \ge \frac{1}{c_{\varphi}^{n/(n+p)}} \left(\frac{\Omega_p(K+_pK')}{\Omega_p(L)}\right).$$
(1.15)

If φ is strictly convex, equality holds if and only if K, L and K' are homothetic.

2 Notations and preliminaries

2.1 Basics regarding convex bodies

For $\phi \in GL(n)$ write ϕ^t for the transpose of ϕ and ϕ^{-t} for the inverse of the transpose of ϕ . Write $|\phi|$ for the absolute value of the determinant of ϕ . Observe that from the definition of the support function it follows immediately that for $\phi \in GL(n)$ the support function of the image $\phi K = \{\phi y : y \in K\}$ is given by (see [8])

$$h(\phi K, x) = h(K, \phi^t x), \tag{2.1}$$

Let *d* denote the Hausdorff metric on \mathcal{K}^n (see [9]), i.e., for $K, L \in \mathcal{K}^n$,

$$d(K,L) = |h(K,u) - h(L,u)|_{\infty},$$

where $|\cdot|_{\infty}$ denotes the sup-norm on the space of continuous functions $C(S^{n-1})$.

Let Φ be the class of convex and strictly increasing functions $\varphi : [0, \infty) \to [0, \infty)$ such that $\varphi(0) = 0$. We say that the sequence $\{\varphi_i\}$, where the $\varphi_i \in \Phi$, is such that $\varphi_i \to \varphi_0 \in \Phi$ provided

$$|\varphi_i - \varphi_0|_I := \max_{t \in I} |\varphi_i(t) - \varphi_0(t)| \to 0$$

for every compact interval $I \subset \mathbb{R}$.

For $K \in \mathcal{K}_o^n$, r_K and R_K are defined by

$$r_{K} = \min_{u \in S^{n-1}} f_{p}(K, u), \quad R_{K} = \max_{u \in S^{n-1}} f_{p}(K, u).$$
(2.2)

2.2 L_{pq} -mixed affine surface areas

The L_{pq} -Blaschke addition of convex bodies $K, L \in \mathcal{F}_s^n$ denoted by $\check{+}_{pq}$, and is defined by (see [6])

$$f_p(K +_{pq} L, u)^q = f_p(K, u)^q + f_p(L, u)^q,$$
(2.3)

for $u \in S^{n-1}$ and $p \ge 1$. Obviously, when q = 1, L_{pq} -Blaschke addition becomes L_p -Blaschke addition. The following result follows immediately form (2.3) with $p, q \ge 1$.

$$\frac{q(n+p)}{n}\lim_{\varepsilon\to 0^+}\frac{\Omega_p(K\check{+}_{pq}\varepsilon\cdot L)-\Omega_p(L)}{\varepsilon}=\int_{S^{n-1}}f_p(K,u)^{\frac{n}{n+p}-q}f_p(L,u)^q dS(u).$$

Definition 2.1 Let $K, L \in \mathcal{F}_s^n$ and $p, q \ge 1$, L_{pq} -mixed affine surface area of K and L, is denoted by $\Omega_{p,q}(K,L)$, is defined by (see [6])

$$\Omega_{p,q}(K,L) = \int_{S^{n-1}} f_p(K,u)^{\frac{n}{n+p}-q} f_p(L,u)^q dS(u).$$
(2.4)

Obviously, when K = L, the L_{pq} -mixed affine surface area $\Omega_{p,q}(K, K)$ becomes the L_p affine surface area $\Omega_p(K)$. A fundamental inequality for L_{pq} -mixed affine surface area is the following L_{pq} -Minkowski inequality: If $K, L \in \mathcal{F}_s^n$ and $p, q \ge 1$, then

$$\Omega_{p,q}(K,L)^{\frac{n}{n+p}} \ge \Omega_p(K)^{\frac{n}{n+p}-q} \Omega_p(L)^q,$$
(2.5)

with equality if and only if *K* and *L* are homothetic.

2.3 Orlicz mixed affine surface areas

Let us introduce Orlicz mixed affine surface areas convex bodies *K* and *L*.

Definition 2.2 For $K, L \in \mathcal{F}_s^n$, $\psi \in \Phi$ and $p \ge 1$, Orlicz mixed affine surface area of K and L, is denoted by $\Omega_{\psi,p}(K,L)$, is defined by (see [6])

$$\Omega_{\psi,p}(K,L) := \int_{S^{n-1}} \psi\left(\frac{f_p(L,u)}{f_p(K,u)}\right) \cdot f_p(K,u)^{\frac{n}{n+p}} dS(u).$$
(2.6)

Obviously, when K = L and $p \ge 1$, the Orlicz-mixed affine surface area $\Omega_{\psi,p}(K, L)$ becomes the L_p -affine surface area $\Omega_p(K)$. When $\psi(t) = t^q$ and $q \ge 1$, the Orlicz L_{ψ} -mixed affine surface area $\Omega_{\psi,p}(K, L)$ becomes the L_{pq} -mixed affine surface area $\Omega_{p,q}(K, L)$.

A fundamental inequality for Orlicz mixed affine surface area is the following Orlicz Minkowski inequality for Orlicz-mixed affine surface area. If $K, L \in \mathcal{F}_s^n$, $p \ge 1$ and $\psi \in \Phi$, then (see [6])

$$\Omega_{\psi,p}(K,L) \ge \Omega_p(K) \cdot \psi\left(\left(\frac{\Omega_p(L)}{\Omega_p(K)}\right)^{\frac{n+p}{n}}\right).$$
(2.7)

If ψ is strictly convex, equality holds if and only if *K* and *L* are homothetic.

When $\psi(t) = t^q$ and $q \ge 1$, (2.7) becomes the L_{pq} -Minkowski inequality (1.13) stated in the introduction.

3 The φ -mixed affine surface areas

Definition 3.1 (L_p -affine surface area measure) Let $L \in \mathcal{F}_s^n$, $p \ge 1$, the L_p -affine surface area measure of L, is denoted by $d\Omega_p(L, u)$, is defined by

$$d\Omega_p(L,u) = \frac{1}{\Omega_p(L)} f_p(L,u)^{n/(n+p)} dS(u).$$
(3.1)

Next, we first give the definition of φ -mixed affine surface area of convex bodies *K* and *L*.

Definition 3.2 Let $K, L \in \mathcal{F}_s^n$, $p \ge 1$ and $\varphi \in \Phi$, the φ -mixed affine surface area of convex bodies K and L, is denoted by $\Omega_{\varphi,p}(K, L)$, is defined by

$$\Omega_{\varphi,p}(K,L) = \inf\left\{\lambda > 0: \int_{S^{n-1}} \varphi\left(\frac{f_p(K,u)}{\lambda f_p(L,u)}\right) d\Omega_p(L,u) \le 1\right\},\tag{3.2}$$

Lemma 3.3 (see [10]) If $K \in \mathcal{F}_o^n$, $p \ge 1$ and $A \in SL(n)$, then

$$f_p(AK, u) = f_p(K, A^t u),$$
 (3.3)

for all $u \in S^{n-1}$.

Since $\varphi \in \Phi$, it follows that the function:

$$\lambda \to \int_{S^{n-1}} \varphi\left(\frac{f_p(K, u)}{\lambda f_p(L, u)}\right) d\Omega_p(L, u)$$

is also strictly decreasing in $(0, \infty)$. This yields that

Lemma 3.4 If $K, L \in \mathcal{F}_s^n$, $p \ge 1$ and $\varphi \in \Phi$, then

$$\int_{S^{n-1}} \varphi\left(\frac{f_p(K, u)}{\lambda_0 f_p(L, u)}\right) d\Omega_p(L, u) = 1$$

if and only if

$$\Omega_{\varphi,p}(K,L) = \lambda_o$$

In the following, we prove that the φ -mixed affine surface area $\Omega_{\varphi,p}(K,L)$ is continuous.

Lemma 3.5 If $\breve{K}, L \in \mathcal{F}_s^n$, $p \ge 1$ and $\phi \in \Phi$, then ϕ -mixed affine surface area $\Omega_{\phi,p}(K,L) : \mathcal{F}_s^n \times \mathcal{F}_s^n \to [0,\infty)$ is continuous.

Proof To see this, indeed, let $K, L \in \mathcal{F}_s^n$, $i \in \mathbb{N} \cup \{0\}$ be such that $K_i \to K$ and $L_i \to L$ as $i \to \infty$. Noting that

$$\begin{split} \Omega_{\varphi,p}(K_i,L_i) &= \inf\left\{\lambda > 0: \int_{S^{n-1}} \varphi\left(\frac{f_p(K_i,u)}{\lambda f_p(L_i,u)}\right) d\Omega_p(L_i,u) \le 1\right\} \\ &= \inf\left\{\lambda > 0: \frac{1}{\Omega_p(L_i)} \int_{S^{n-1}} \varphi\left(\frac{f_p(K_i,u)}{\lambda f_p(L_i,u)}\right) f_p(L_i,u)^{n/(n+p)} dS(u) \le 1\right\}. \end{split}$$

Hence

$$\lim_{i \to \infty} \Omega_{\varphi, p}(K_i, L_i) = \inf \left\{ \lambda > 0 : \int_{S^{n-1}} \varphi \left(\frac{f_p(K, u)}{\lambda f_p(L, u)} \right) d\Omega_p(L, u) \le 1 \right\}$$
$$= \Omega_{\varphi, p}(K, L).$$

This shows that the φ -mixed affine surface area $\Omega_{\varphi,p}(K, L)$ is continuous.

Lemma 3.6 If $K, L \in \mathcal{F}_s^n$, $p \ge 1$ and $\varphi_i \in \Phi$, then

$$\varphi_i \to \varphi \in \Phi \Rightarrow \Omega_{\varphi_i,p}(K,L) \to \Omega_{\varphi,p}(K,L).$$
(3.4)

Proof Noting that $\varphi_i \rightarrow \varphi \in \Phi$, implies that

$$\varphi_i\left(\frac{f_p(K,u)}{\lambda f_p(L,u)}\right) \to \varphi\left(\frac{f_p(K,u)}{\lambda f_p(L,u)}\right) \in \Phi_i$$

Further

$$\int_{S^{n-1}} \varphi_i \left(\frac{f_p(K, u)}{\lambda f_p(L, u)} \right) d\Omega_p(L, u) \to \int_{S^{n-1}} \varphi \left(\frac{f_p(K, u)}{\lambda f_p(L, u)} \right) d\Omega_p(L, u).$$

Hence

$$\begin{split} \lim_{i \to \infty} \Omega_{\varphi_{i,p}}(K,L) &= \inf \left\{ \lambda > 0 : \int_{S^{n-1}} \varphi \left(\frac{f_p(K,u)}{\lambda f_p(L,u)} \right) d\Omega_p(L,u) \le 1 \right\} \\ &= \Omega_{\varphi_{i,p}}(K,L). \end{split}$$

This completes the proof.

Lemma 3.7 If $K, L \in \mathcal{F}_s^n$, $p \ge 1$ and $\varphi \in \Phi$, then φ -mixed affine surface area $\Omega_{\varphi,p}(K, L)$ is bounded. **Proof** For $\varphi \in \Phi$, there must be a real number $0 < c_{\varphi} < \infty$ such that $\varphi(c_{\varphi}) = 1$, and let

$$\Omega_{\varphi,p}(K,L) = \lambda_0.$$

Hence

$$1 = \varphi(c_{\varphi})$$

$$= \int_{S^{n-1}} \varphi\left(\frac{f_p(K, u)}{\lambda_0 f_p(L, u)}\right) d\Omega_p(L, u)$$

$$\geq \varphi\left(\int_{S^{n-1}} \left(\frac{f_p(K, u)}{\lambda_0 f_p(L, u)}\right) d\Omega_p(L, u)\right)$$

$$\geq \varphi\left(\int_{S^{n-1}} \frac{r_K}{\lambda_0 R_L} d\Omega_p(L, u)\right)$$

$$= \varphi\left(\frac{r_K}{\lambda_0 R_L}\right).$$

Since φ is monotone increasing on $[0, \infty)$, from this we obtain the lower bound,

$$\lambda_0 \geq \frac{r_L}{c_{\varphi} R_K}.$$

In a similar approach, we can obtain upper bound for $\Omega_{\varphi,p}(K,L)$,

$$\lambda_0 \leq \frac{R_L}{c_{\varphi} r_K}.$$

This completes the proof.

We easy find that the φ -mixed affine surface area $\Omega_{\varphi,p}(K, L)$ is invariant under simultaneous unimodular centro-affine transformation.

Lemma 3.8 If $K, L \in \mathcal{F}_s^n$, $p \ge 1$, $A \in SL(n)$ and $\varphi \in \Phi$, then

$$\Omega_{\varphi,p}(AK,AL) = \Omega_{\varphi,p}(K,L).$$
(3.5)

1148

Proof From (3.2) and (3.3), we obtain

$$\begin{split} \Omega_{\varphi,p}(K,AL) &= \inf\left\{\lambda > 0: \int_{S^{n-1}} \varphi\left(\frac{f_p(K,u)}{\lambda f_p(AL,u)}\right) d\Omega_p(AL,u) \le 1\right\} \\ &= \inf\left\{\lambda > 0: \frac{1}{\Omega_p(L)} \int_{S^{n-1}} \varphi\left(\frac{f_p(K,u)}{\lambda f_p(L,A^tu)}\right) f_p(L,A^tu)^{n/(n+p)} dS(u) \le 1\right\} \\ &= \inf\left\{\lambda > 0: \frac{1}{\Omega_p(L)} \int_{S^{n-1}} \varphi\left(\frac{f_p(K,A^{-t}u)}{\lambda f_p(L,u)}\right) f_p(L,u)^{n/(n+p)} dS(A^{-t}u) \le 1\right\} \\ &= \inf\left\{\lambda > 0: \int_{S^{n-1}} \varphi\left(\frac{f_p(A^{-1}K,u)}{\lambda f_p(L,u)}\right) d\Omega_p(L,u) \le 1\right\} \\ &= \Omega_{\varphi,p}(A^{-1}K,L). \end{split}$$

Hence

$$\Omega_{\varphi,p}(AK,AL) = \Omega_{\varphi,p}(K,L).$$

This completes the proof.

4 The φ -Minkowski inequality for φ -mixed affine surface areas

Lemma 4.1 (Jensen's inequality) Let μ be a probability measure on a space X and $g : X \to I \subset \mathbb{R}$ is a μ -integrable function, where I is a possibly infinite interval. If $\psi : I \to \mathbb{R}$ is a convex function, then

$$\int_{X} \psi(g(x)) d\mu(x) \ge \psi\left(\int_{X} g(x) d\mu(x)\right).$$
(4.1)

If ψ is strictly convex, equality holds if and only if g(x) is constant for μ -almost all $x \in X$ (see [11, p.165]). Lemma 4.2 Let $K, L \in \mathcal{F}_s^n$ and $p \ge 1$.

(1) If K and L are homothetic, then K and $K +_p L$ are homothetic.

(2) If K and $K +_p L$ are homothetic, then K and L are homothetic.

Proof Suppose exist a constant $\delta > 0$ such that $L = \delta K$, for $p \ge 1$, we have

 $f_p(K +_p L, u) = (1 + \delta^{n-p}) f_p(K, u).$

On the other hand, the exist unique constant $\eta > 0$ such that

$$f_p(\eta K, u) = (1 + \delta^{n-p}) f_p(K, u),$$

where η satisfies that

$$\eta = [(1 + \delta^{n-p})]^{1/(n-p)}.$$

This shows that $K +_p L = \eta K$.

For $p \ge 1$, suppose exist a constant $\delta > 0$ such that $K +_p L = \delta K$. Then

$$\frac{f_p(L,u)}{f_p(K,u)} = \delta^{n-p} - 1.$$

This shows that *K* and *L* are homothetic.

This completes the proof.

Lemma 4.3 If $K, K', L \in \mathcal{F}_s^n$, $p \ge 1$ and $\varphi \in \Phi$, then

$$\Omega_{\varphi,p}(K +_p K', L) \le \Omega_{\varphi,p}(K, L) + \Omega_{\varphi,p}(K', L).$$

$$(4.2)$$

If φ is strictly convex, equality holds if and only if $K +_p K'$ and L are homothetic.

Proof Let $\Omega_{\varphi,p}(K,L) = \lambda_1$ and $\Omega_{\varphi,p}(K',L) = \lambda_2$, then

$$\int_{S^{n-1}} \varphi\left(\frac{f_p(K,u)}{\lambda_1 f_p(L,u)}\right) d\Omega_p(L,u) = 1,$$

and

$$\int_{S^{n-1}} \varphi\left(\frac{f_p(K', u)}{\lambda_1 f_p(L, u)}\right) d\Omega_p(L, u) = 1$$

Combining the convexity of the function, we obtain

$$1 = \frac{\lambda_1}{\lambda_1 + \lambda_2} \int_{S^{n-1}} \varphi \left(\frac{f_p(K, u)}{\lambda_1 f_p(L, u)} \right) d\Omega_p(L, u) + \frac{\lambda_2}{\lambda_1 + \lambda_2} \int_{S^{n-1}} \varphi \left(\frac{f_p(K', u)}{\lambda_2 f_p(L, u)} \right) d\Omega_p(L, u) \geq \int_{S^{n-1}} \varphi \left(\frac{f_p(K, u) + f_p(K', u)}{(\lambda_1 + \lambda_2)h(L, u)} \right) d\Omega_p(L, u) = \int_{S^{n-1}} \varphi \left(\frac{f_p(K + p, K', u)}{(\lambda_1 + \lambda_2)h(L, u)} \right) d\Omega_p(L, u)$$

Hence

$$\begin{aligned} \Omega_{\varphi,p}(K+_pK',L) &\leq \lambda_1 + \lambda_2 \\ &= \Omega_{\varphi,p}(K,L) + \Omega_{\varphi,p}(K',L). \end{aligned}$$

If φ is strictly convex, from the equality of Jensen's inequality, it follows that the equality in (4.2) holds if and only if $K +_p K'$ and L are homothetic

This completes the proof.

Theorem 4.4 (φ -Minkowski inequality for φ -mixed affine surface area) If $K, L \in \mathcal{F}_s^n$, $p \ge 1$, $\varphi \in \Phi$ and $\varphi(c_{\varphi}) = 1$, then

$$\Omega_{\varphi,p}(K,L) \ge \frac{1}{c_{\varphi}} \Omega_{p}(K)^{(n+p)/n} \Omega_{p}(L)^{-(n+p)/n}.$$
(4.3)

If φ *is strictly convex, equality holds if and only if K and L are homothetic.*

Proof For $\varphi \in \Phi$, let

$$\Omega_{\varphi,p}(K,L) = \lambda. \tag{4.4}$$

Then

$$\int_{S^{n-1}}\varphi\left(\frac{f_p(K,u)}{\lambda f_p(L,u)}\right)d\Omega_p(L,u)=1$$

By using Jensen's inequality and L_p -Minkowski inequality (1.14), we obtain

$$1 = \varphi(c_{\varphi})$$

$$= \int_{S^{n-1}} \varphi\left(\frac{f_p(K, u)}{\lambda f_p(L, u)}\right) d\Omega_p(L, u)$$

$$\geq \varphi\left(\frac{1}{\lambda \Omega_p(L)} \int_{S^{n-1}} f_p(K, u) f_p(L, u)^{-p/(n+p)} dS(u)\right)$$

$$= \varphi\left(\frac{1}{\lambda} \cdot \frac{\Omega_{-p}(K, L)}{\Omega_{p(L)}}\right)$$

$$\geq \varphi\left(\frac{1}{\lambda} \cdot \frac{\Omega_p(K)^{(n+p)/n} \Omega_p(L)^{-p/n}}{\Omega_p(L)}\right).$$

1150

Hence

$$\Omega_{\varphi,p}(K,L) \ge \frac{1}{c_{\varphi}} \Omega_{p}(K)^{(n+p)/n} \Omega_{p}(L)^{-(n+p)/n}.$$
(4.5)

П

If φ is strictly convex, from equalities of Jensen's inequality and L_p -Minkowski inequality (1.14), it yields the equality in (4.5) holds if and only if *K* and *L* are homothetic.

This completes the proof.

We establish also the following φ -Brunn-Minkowski inequality for three convex bodies *K*, *K*' and *L*.

Theorem 4.5 (The φ -Brunn-Minkowski inequality for φ -mixed affine surface areas) If $K, K', L \in \mathcal{F}_s^n$, $\varphi \in \Phi, p \ge 1$ and $\varphi(c_{\varphi}) = 1$, then

$$\Omega_{\varphi,p}(K,L) + \Omega_{\varphi,p}(K',L) \ge \frac{1}{c_{\varphi}} \left(\frac{\Omega_p(K +_p K')}{\Omega_p(L)} \right)^{(n+p)/n}.$$
(4.6)

If φ is strictly convex, equality holds if and only if K, L and K' are homothetic.

Proof This follows immediately from Theorem 4.4 and Lemmas 4.2-4.3,

Corollary 4.6 (The Brunn-Minkowski type inequality for mixed affine surface area) If $K, K', L \in \mathcal{F}_s^n$, then

$$\Omega_{-1}(K,L) + \Omega_{-1}(K',L) \ge \Omega(K + K')^{(n+1)/n} \Omega(L)^{-1/n}.$$
(4.7)

with equality if and only if K, L and K' are homothetic.

Proof This follows immediately from (1.6) and Theorem 4.5 with p = 1.

When K' = K, (4.7) becomes the following well-known Minkowski inequality for mixed affine surface area, which was established by Lutwak [5]. If $K, L \in \mathcal{F}_s^n$, then

$$\Omega_{-1}(K,L)^n \ge \Omega(K)^{n+1} \Omega(L)^{-1}, \tag{4.8}$$

with equality if and only if *K* and *L* are homothetic.

Corollary 4.7 (The L_{pq} -Brunn-Minkowski type inequality for φ -mixed affine surface areas) *If K, K', L* $\in \mathcal{F}_s^n$ and $p, q \ge 1$, then

$$\Omega_{p,q}(L,K)^{1/q} + \Omega_{p,q}(L,K')^{1/q} \ge \Omega_p(K +_p K')^{(n+p)/n} \Omega_p(L)^{(n-q(n+p))/(nq)}.$$
(4.9)

If φ is strictly convex, equality holds if and only if K, L and K' are homothetic.

Proof This follows immediately from (1.7) and Theorem 4.5

When K' = K, (4.9) becomes the following L_{pq} -Minkowski inequality, which was established in [6]. If $K, L \in \mathcal{F}_s^n$ and $p, q \ge 1$, then

$$\Omega_{p,q}(K,L)^{\frac{n}{n+p}} \ge \Omega_p(K)^{\frac{n}{n+p}-q} \Omega_p(L)^q,$$
(4.10)

with equality if and only if *K* and *L* are homothetic

Competing intersts: The author declare none.

References

- [1] E. Lutwak, Extended affine surface area, J. Math. Anal. Appl., 85 (1991), 39-68.
- [2] E. Lutwak, The Brunn-Minkowski-Firey Theorem II: Affine and Geominimal Surface Areas, *Adv. Math.*, **118** (1996), 244-294.
- [3] E. Lutwak, Mixed affine surface area, J. Math. Anal. Appl., 125 (1987), 351-360.
- [4] E. Lutwak, The Brunn-Minkowski-Firey theory I. mixed volumes and the Minkowski problem. J. Diff. Goem., 38 (1993), 131-150.
- [5] E. Lutwak, Centroid bodies and dual mixed volumes, Proc. London Math. Soc., 60 (3) (1990), 365-391.
- [6] C.-J. Zhao, Orlicz mixed affine surface areas, Bslkan J. Geom. Appl., 2019 (24) (2), 100-118.
- [7] W. Wang, G. Leng, *L_p* mixed affine surface area, J. Math. Anal. Appl., 335 (2007), 2517-2527.
- [8] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, 1993.
- [9] Y. D. Burago, V. A. Zalgaller, Geometric Inequalities, Springer-Verlag, Berlin, 1988.

- [10] E. Lutwak, The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas. Adv. Math., 118 (1996),
- [10] D. Balward, The Frank United they deciry in Thinke and geomainian surface areas. This Thinks, The (1996), 244-294.
 [11] J. Hoffmann-Jφgensen, Probability With a View Toward Statistics, Vol. I, Chapman and Hall, New York, 1994, 165-243.