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New criteria for blow up of fractional differential equations

Yeqing Shana, Guangying Lva,∗

aSchool of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract. In this paper, some new blow-up criteria are given for a single equation, and the blow-up
problem of the solution of a single nonlocal equation is solved by changing the equation into a system of
equations by introducing an auxiliary function. In addition, the theory of ordinary differential equation
is extended to partial differential equation by using the first eigenvalue theory. The results show that the
blow-up criteria of the Liouville-Caputo and the Caputo-Hadamard fractional differential equations are
different.

1. Introduction

Increasingly, it has been realized that properties of many phenomena occurring in real life problems are
not adequately described by evolution equations of integer order in time, such as memory effects, material
science, anomalous diffusion, rheology, fractals and control theory. The references [9, 12, 16] covered
several of these phenomena and demonstrated the importance of the fractional modeling. A large number
of investigations of basic calculus have been reported by recent survey-cum-expository review papers
[29–31]. Additionally, [29, 30] also provided meaningful fractional calculus operators related to higher
transcendental functions and their applications. Furthermore, the well-posedness of fractional differential
equations (FDEs) has been well studied by many research groups [7, 16, 20, 24]. It is generally accepted
that the blow-up problem is an important issue in the well-posedness, which is a common phenomenon of
the FDEs [1]. Therefore, we intend in this work to focus on the finite time blow-up solutions. In this paper,
we are concerned with the blow-up phenomenon of FDEs. For FDEs, there are different definitions about
the fractional derivative. We only focus on two types: the Liouville-Caputo and the Caputo-Hadamard
fractional differential equations. We will present different blow-up criteria to the following Cauchy problems
for the time fractional diffusion equationc

0D
α
t f (t) = f p(t) and H

0D
α
t f (t) = f p(t), t > 0,

f (0) = f0,
(1)
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where p > 1, f ∈ C([0,T],R) and c
0D

α
t is the Liouville-Caputo fractional derivative of order α ∈ (0, 1),

c
0D

α
t u =

∂
∂t 0I

1−α
t (u(t, x) − u0(x)),

and referred to [29, 30], 0I1−αt denotes the left Riemann-Liouville fractional integrals of order 1− α, which is
defined by

0I
1−α
t u =

1
Γ(1 − α)

∫ t

0
(t − s)−αu(s)ds.

The Hadamard fractional derivative (Hadamard 1892) of a given function f (t) with order α > 0 is defined
by

H
0D
−α
t f (t) =

1
Γ(α)

∫ t

a

(
log

t
τ

)α−1
f (τ)

dτ
τ
, t > a > 0,

where Γ(·) is the Gamma function. The existence and uniqueness of fractional differential equations have
been studied by many researchers. Lakshmikantham & Vatsala [20] studied the basic properties of fractional
differential equations, also see [19, 22]. Bai et al. [2] used the monotone iterative method to studied the
fractional differential equations. Boulfoul et al. [5] obtained the existence and uniqueness of nonlinear
fractional integro-differential equation on an unbounded domain in a weighted Banach space. Srivastava et
al. [32] verified the existence of nondecreasing integrable solution of a nonlinear hybrid implicit functional
differential inclusion of arbitrary fractional order with complex initial condition, and then provided some
examples to prove the results. Li & Liu [26] studied a generalized definition of Caputo derivatives and
its application to fractional ODEs. Izadi and Srivastava [14] investigated a novel set of basis functions to
treat a class of multi-order fractional pantograph differential equations computationally, whose feasibility
was further proved via different evidences. Li and Sarwar [23] considered the Caputo type fractional
differential equations and obtained the existence and continuation of solutions of FDEs. Recently, Li & Li
[25] obtained the stability and logarithmic decay of the solution to Hadamard-type fractional differential
equation. Develi & Duman [8] obtained the existence and stability analysis of solution for fractional
delay differential equations. Srivastava et al. [34] systematically investigated a certain UFLCDE, and
found its fractional sum equation. Baleanu et al. [3] solved a system of fractional differential equations
and obtained the necessary operational matrix of fractional integral with the help of the Clenshaw-Curtis
formula. Yang and Srivastava [36] first proposed a non-differentiable asymptotic approximation theory
along with revealing the fractal behavior of a linear oscillator in fractal medium, and then proved the
effectiveness through graphical results. Srivastava et al. [33] revealed the existence of a unique solution for
a coupled system of higher-order fractional differential equations with multi-point boundary conditions.
Herzallah and Radwan [13] established the existence and uniqueness of solutions to some classes of nonlocal
semilinear conformable fractional differential. There are a lot of important results about the well-posedness
of FDEs. The above-mentioned literature demonstrated important results for the well-posedness of the
FDEs, all of which provide meaningful ideas for addressing the finite time blow-up problem in this paper.

There are a lot of results on solutions of fractional differential equations. In this paper, we will give
some new blow-up criteria for (1). Moreover, we find the blow-up criteria for the Liouville-Caputo and the
Caputo-Hadamard fractional differential equations are different, see Section 2. Based on the book [17], we
first give some new blow-up criteria for the Liouville-Caputo derivative and the Caputo-Hadamard derivative. Then
we generalize the blow-up results to time-fractional partial differential equations. Laskri and Tatar [21] considered
the following FDEsDα

+u(t) ≥ tβ|u|m, t > 0,m > 1, 0 < α < 1,
Dα−1
+ u(0+) = b,

(2)

where Dα
+ is the left-sided Riemann-Liouville fractional derivative. Under the assumptions that β > −α

and 1 < m ≤ 1+β
1−α , problem (2) does not admit global nontrivial solutions when b ≥ 0. Obviously, equations
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(1) and (2) are different. Furthermore, our method is very easy to understand. We remark that the Volterra
equations and FDEs have some common properties. Mydlarczyk et al. [28] obatined the blow-up solutions
to a system of nonlinear Volterra equations, also see [18]. Kassim et al. [15] obtained the non-existence
for fractionally damped fractional differential problems and our blow-up criteria are different from theirs.
Notably, [15, 18, 28] contains blow-up results for FDEs, but there is no result to describe the relation between
p and α.

For the finite time blow-up solutions of fractional partial differential equations (FPDEs), there are
abundant results. Firstly, there are many results about the Cauchy problem of FPDEs. Zhang and Li [38, 39]
studied the time-fractional superdiffusion equation with or without nonlinear memory, also see [6]. Because
we only consider the FPDEs on bounded domain, we will not recall other results of FPDEs in the whole
space. Alsaedi et al. [1] studied the following problem

Dα
+u(t) + (−∆)s

Ω
u = −u(1 − u), x ∈ Ω, t > 0, 0 < α < 1,

u = 0, x ∈ Rn
\Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω
(3)

where Ω ⊂ Rn is a bounded domain and (−∆)s
Ω

is the regional fractional Laplacian with s ∈ (0, 1). They
obtained the global solution of (3) under the assumption that 0 < u0 < 1 and finite time blow-up solution
of (3) under the assumptions that the initial data is suitable large. There are rich results about the blow-up
solution of SPDEs in the whole space. In [24], Li and Li considered the Caputo-Hadamard fractional partial
differential equations and obtained the existence of finite time blow-up solutions. In [27], Manimaran
and Shangerganesh considered the blow-up phenomenon of FPDEs with variable exponents on bounded
domain. Until now there are few results about Capito-Hadamard fractional partial differential equations
on bounded domain. In this paper, we give some positive answers.

The novelties of this paper are as follows: (1) some new blow-up criteria for the Liouville-Caputo
derivative and the Caputo-Hadamard derivative are given; (2) the difference between the Liouville-Caputo
derivative and the Caputo-Hadamard derivative is considered; (3) a new blow-up criterion of nonlocal
FDEs is given by transforming the single equation into a system; (4) some new blow-up criteria for partial
differential equations with the Liouville-Caputo derivative and the Caputo-Hadamard derivative are given.

This paper is arranged as follows. In Section 2, we study the blow-up phenomenon of FDEs, and Section
3 is devoted to FPDEs on a bounded domain.

2. Blow-up results of FDEs

Consider the initial value problem (IVP) for fractional differential equationsc
0D

α
t f (t) = f p(t), t > 0,

f (0) = f0,
(4)

where 0 < α < 1 and f ∈ C([0,T],R). Since f is assumed continuous, it is easy to see that the solution of
initial value problem (4) is equivalent to the solution of the following integral equation

f (t) = f (0) +
1
Γ(α)

∫ t

0
(t − s)α−1 f p(s)ds, 0 ≤ t ≤ T. (5)

Here Γ denotes the Gamma function.
And we quote the following fundamental result relative to the fractional integral.

Lemma 2.1. [20] (Comparison principle) Let v,w ∈ C([0,T],R), f ∈ C([0,T] ×R,R) and
(1) v(t) ≤ v(0) + 1

Γ(α)

∫ t

0 (t − s)α−1 f p(s, v(s))ds,

(2) w(t) ≥ w(0) + 1
Γ(α)

∫ t

0 (t − s)α−1 f p(s,w(s))ds, 0 ≤ t ≤ T.
One of the foregoing inequalities is strict. Furthermore, f p(t, x) is nondecreasing in x for each t and v(0) < w(0),

then we have v(t) < w(t).
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2.1.1 The Liouville-Caputo fractional differential equation
In this subsection, we will give our blow-up criteria for the Liouville-Caputo fractional differential

equation

Theorem 2.2. Assume that f0 is positive, let 0 < α < 1 and p > 1, then for IVP (4), we have the following results.
(1) If 0 < p(1 − α) ≤ 1, then the solution of problem (4) with f0 ≥ 0 blows up in a finite time;
(2) If p(1− α) > 1 and f0 > ( p−1

Γ(α)[p(1−α)−1] )
p−1, then there exists a constant T, such that the solution of the problem

(4) blows up in a finite time.

Proof Note that 0 < t − s < t < t + 1, we have

f (t) = f (0) +
1
Γ(α)

∫ t

0
(t − s)α−1 f p(s)ds

≥ f (0) +
1

Γ(α)(t + 1)1−α

∫ t

0
f p(s)ds,

By the Lemma 2.1, using comparison principle, we know that f (s) is an upper solution ofu′(t) = up(t)
Γ(α)(t+1)p(1−α) ,

u(0) = f (0),

where u(t) = (1 + t)1−α f (t). Set u(t) = (1 + t)1−α f (t), then we get

u(t) ≥ (1 + t)1−α f (0) +
1
Γ(α)

∫ t

0

up(s)
(1 + s)p(1−α)

ds

≥ f (0) +
1
Γ(α)

∫ t

0

up(s)
(1 + s)p(1−α)

ds.

Next, we consideru′(t) = up(t)
Γ(α)(t+1)p(1−α) ,

u(0) = f (0).
(6)

It is easy to show that

u1−p(t) = f 1−p(0) +
p − 1

Γ(α)(1 − p(1 − α))
−

(p − 1)(1 + t)1−p(1−α)

Γ(α)(1 − p(1 − α))
. (7)

Proof of (1): Note that 0 < p(1 − α) < 1, we have the solution u(t) will blow-up at time T, where

T =
(
1 +

f 1−p(0)Γ(α)(1 − p(1 − α))
p − 1

) 1
1−p(1−α)

− 1.

The function f (t) is an upper solution of (4) by comparison principle.
If p(1 − α) = 1, (6) is transformed as follows

u′(t) =
up(t)

Γ(α)(t + 1)
, u(0) = f (0).

Solving this, we get

u1−p(t) = u1−p(0) −
(p − 1) ln(1 + t)

Γ(α)
, u(0) = f (0).
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Hence, there exists a constant T∗, we know that the solution u(t) blows up at time t > T∗ for any nonnegative
initial value.

Proof of (2): If p(1 − α) > 1, then we have the following results. We first transform equation (7) into

u(t) =

 1

f 1−p(0) + (p−1)(1+t)1−p(1−α)

Γ(α)[p(1−α)−1] −
p−1

Γ(α)[p(1−α)−1]


1

p−1

.

When f 1−p(0) < p−1
Γ(α)[p(1−α)−1] , there exists a constant T∗ > 0, such that the solution u(t) blows up. The proof

is complete. □
Next, we consider another case, if the bound of blow-up time T is fixed, can we give an initial data such

that the solution will blow-up before time T? We now give a positive answer.

Theorem 2.3. Let f (t) be the solution of the following ODE:c
0D

α
t f (t) = f p(t), 0 < t ≤ T,

f (0) = f0,

where T > 0 is a fixed constant. Then for any T∗ ∈ (0,T], there exists a positive constant C1 such that for any f0 > C1,
the solution f (t) will be infinite with initial data f0 whenever t > T∗.

The proof is easier than that of Theorem 2.2. In order to read easily, we also give a proof to briefly
explain it.

Proof Similar to the proof of Theorem 2.2, noting that 0 < t ≤ T, we have

f (t) ≥ f (0) +
1

Γ(α)T1−α

∫ t

0
f p(s)ds.

Based on the comparison principle, we consider f ′(t) = 1
Γ(α)T1−α f p(t),

f (0) = f0.

whose solution is given by

f (t) =
( 1

f 1−p
0 −

t(p−1)
Γ(α)T1−α

) 1
p−1
, f or t ≤ T.

Thus the blow-up occurs at t = Γ(α)T1−α

f p−1
0 (p−1)

. We can choose f0 ≥ ( T1−αΓ(α)
T∗(p−1) )

1
p−1 , for any T∗ < T, then f (t) blows up

before time T∗. The proof is complete. □
As a special example, we consider the linear perturbation f ′(t) = λ f (t) + f p(t), t > 0,

f (0) = f0.

Like equation (4), Theorem 2.2 and Theorem 2.3 also hold for (6), the reason is that the linear term has no
effect on blow-up.
2.1.2 Nonlocal FDEs.

We shall be concerned with the following nonlocal differential equation of time-fractional order:Dα
t ( f − f0) = [

∫ t

0 (t − s)γ−1 f p(s)ds]q, t > 0,
f |t=0 = f0.

(8)
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Let 1 =
∫ t

0 (t − s)γ−1 f p(s)ds, thenDγ
t (1) = f p(t), t > 0,
1|t=0 = 0.

(9)

Hence
Dα

t ( f − f0) = 1q, t > 0,
D
γ
t 1 = f p, t > 0,

f |t=0 = f0, 1|t=0 = 0.
(10)

Here Dα
a+ f (x) is the Riemann-Liouville fractional derivative of order α ∈ C. When 0 < α < 1, Dα

a+ f (x)
has the following relationship with the Liouville-Caputo fractional derivative cDα

a+ f (x):

(cDα
a+ f )(x) = (Dα

a+ [ f (t) − f (a)])(x),

and

Dα
a+ f =

dm

dxm (Jm−α f (x)) =
1

Γ(m − α)
dm

dxm

[ ∫ x

0
(x − t)m−α−1 f (t)dt

]
,

whereDα
a+ is the Riemann-Liouville fractional derivative operator, and Jα is the Riemann-Liouville fractional

integral operator of order α ∈ C. In this section, we note the Liouville-Caputo fractional derivative cDα
a+

instead of c
0D

α
t as cDα

a+ , which means the fractional derivative from the initial time a. We have the following
results.

Theorem 2.4. Let f0 > 0, p > 1, q > 1, if α > 1 − 1
p , the solution of the equation (10) blows up in finite time.

Proof We assume that ( f , 1) is the global solution of equation (10), set

φ(t) =

 (T−t)λ

Tλ , t ∈ [0,T],
0 , t > T.

satisfies ∫ T

0
Dα

T−φ(t)dt = Cα,λT1−α, Cα,λ =
Γ(λ + 1)
Γ(λ + 2 − α)

,∫ T

0
|Dα

T−φ(t)|pφ1−p(t)dt = Cp,αT1−αp, Cp,α =
1

λ − pα + 1

[ Γ(λ + 1)
Γ(λ + 1 − α)

]p
,

and λ > max{αp − 1, γp − 1}. Next, we will use the following properties of Riemann-Liouville fractional
derivative operator.∫ T

0
f (t)Dα

0+1(t)dt =
∫ T

0
1(t)Dα

T− f (t)dt, 0 < α < 1.

Multiply both sides of equation system (10) by φ, and then integrate t on [0,T], there is
∫ T

0 f ·Dα
T−φdt =

∫ T

0 f0 ·Dα
T−φdt +

∫ T

0 |1(t)|
qφdt,∫ T

0 1 ·D
γ
T−φdt =

∫ T

0 | f (t)|pφdt.
(11)
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Estimate the above formula by using Hölder inequality∫ T

0
f ·Dα

T−φdt ≤
[ ∫ T

0
| f |pφ(t)dt

] 1
p
[ ∫ T

0
|Dα

T−φ|
p′φ−

p′

p dt
] 1

p′ ,∫ T

0
1 ·D

γ
T−φdt ≤

[ ∫ T

0
|1|qφ(t)dt

] 1
q
[ ∫ T

0
|D

γ
T−φ|

q′φ−
q′

q dt
] 1

q′ ,

where 1
p +

1
p′ = 1 and 1

q +
1
q′ = 1. Let∫ T

0
|1|qφ(t)dt = A,

∫ T

0
| f |pφ(t)dt = B,∫ T

0
|Dα

T−φ|
p′φ−

p′

p dt = E,
∫ T

0
|D

γ
T−φ|

q′φ−
q′

q dt = F.

Since f0 > 0,
∫ T

0 D
α
T−φdt > 0, and∫ t

0
|1(t)|qφ(t)dt =

∫ T

0
f ·Dα

T−φdt −
∫ T

0
f0 ·Dα

T−φdt

⇒

∫ t

0
|1(t)|qφ(t)dt ≤

∫ T

0
f ·Dα

T−φdt ≤ B
1
p · E

1
p′

⇒ A ≤ B
1
p · E

1
p′ and B = A

1
q · F

1
q′ .

Arrange the above two equations, we obtain

A1− 1
pq ≤ (F

1
q′ )

1
p · E

1
p′ ,

B1− 1
pq ≤ (E

1
p′ )

1
q · F

1
q′ ,

and because of λ > max{αp − 1, γp − 1}, then we get E = Cp′,αT1−αp′ , F = Cq′,γT1−γq′ , we get

f0

∫ T

0
Dα

T−φdt =
∫ T

0
f ·Dα

T−φdt −
∫ T

0
|1(t)|qφdt

≤ B
1
p · E

1
p′ = B

1
p · [Cp′,αT1−αp′ ]

1
p′

= B
1
p · [C

1
p′

p′,αT
1
p′ −α],

when 1
p′ − α < 0, as α > 1

p′ , if T→∞, then we can get f0 ≤ 0, which contradicts the initial conditions f0 > 0,
so equation (10) blows up at a finite time. The proof is complete. □

2.2.1 The Caputo-Hadamard fractional differential equation
In this subsection, we will give a new blow-up criterion for the Caputo-Hadamard fractional differ-

ential equation. Consider the initial value problem (IVP) for the Caputo-Hadamard fractional differential
equations given byH

0D
α
a+ f (t) = f p(t), t > a,

H
0D

α
a+ f (a+) = b0, f (a+) = b0,

(12)

where 0 < α < 1 and f ∈ C([0,T],R). Since f is assumed continuous, it is easy to see that the solution of
initial value problem (12) can be written as the following fractional equation

f (t) =
b0

Γ(α)
(log

t
a

)α−1 +
1
Γ(α)

∫ t

a
(log

τ
a

)α−1 f p(τ)
dτ
τ
. (13)
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Here Γ denotes the Gamma function. We noted that log τ
a < log t

a for t > τ > a, so that(
log

τ
a

)α−1
>
(
log

t
a

)α−1
, 0 < α < 1.

Consequently,

f (t) ≥
b0

Γ(α)
(log

t
a

)α−1 +
1
Γ(α)

(log
t
a

)α−1
∫ t

0

f p(τ)
τ

dτ. (14)

Note that log τ
a <

τ
a if τ > a, then we get 1

τ <
1
a × (log τ

a )−1, which yields

f (t) ≥
b0

Γ(α)
(log

t
a

)α−1 +
1

aΓ(α)

∫ t

0

f p(τ)
(log τ

a )p(1−α)
dτ. (15)

Theorem 2.5. Let 0 < α < 1 and p > 1, then the solution of problem (12) blows up for arbitrary initial value.

Proof By Lemma 2.1 and comparison principle, we know that f (s) is an upper solution of the following
equation. Next, we consideru′(t) = up(t)

aΓ(α)(log t
a )p(1−α) ,

u(0) = u(a),
(16)

and u(a) = b0
Γ(α) (log t

a )α−1, it is easy to show that

u(t) =

 1

u1−p(a) − p−1
Γ(α)

∫ log t
a

0 sp(α−1)esds


1

p−1

. (17)

If 0 < p(1 − α) < 1, and t is large enough, then we have∫ log t
a

0
sp(α−1)esds =

( ∫ 1

0
+

∫ log t
a

1

)
sp(α−1)esds

≥

∫ log t
a

1
sp(α−1)esds

≥ (log
t
a

)p(α−1)(
t
a
− e)→∞, as t→∞.

Thus, the solution u(t) will blows up at t ≥ T∗.
If p(1 − α) = 1, We first transform equation (16) into

u′(t) =
up

aΓ(α) log( t
a )
, u(0) = u(a),

as well as equation (17), we can get

u(t) =

 1

u1−p(a) − p−1
Γ(α)

∫ log t
a

0 sesds


1

p−1

.

Hence, there exists a constant T∗, we know that the solution u(t) will blows up at time t > T∗ for any
nonnegative initial value.

When p(1 − α) > 1, we split the interval, along with∫ 1

0
sp(α−1)esds ≥

∫ 1

0
sp(α−1)ds = ∞.

Hence, the solution u(t) will blows up at time t > T∗ for arbitrarily initial value. The proof is complete. □
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Remark 2.6. Comparing with Theorems 2.4 and 2.1, we can find that there is no relationship between α and p, which

is different from the Liouville-Caputo derivative. The reason is that
∫ log t

a

0 sp(α−1)esds has two singularities s = 0 and
s = +∞.

3. Blow-up results of FPDEs

In this section, we generalize the blow-up results of FDEs to FPDEs. Consider the following FPDEs
Dα
+u(t) − ∆u = f (u), x ∈ Ω, t > 0, 0 < α < 1,

u = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), x ∈ Ω,

(18)

where Ω ⊂ Rn is a bounded domain. We consider the eigenvalue problem for the elliptic equation−∆ϕ = λϕ, inΩ,
ϕ = 0, on ∂Ω.

(19)

Then, all the eigenvalues are strictly positive, increasing and the eigenfunction ϕ1 corresponding to the
smallest eigenvalue λ1 does not change sign in domain Ω, as shown in [11]. Therefore, we normalize it as

ϕ1(x) ≥ 0,
∫
Ω

ϕ1(x)dx = 1.

Multiplying ϕ1 on both sides of the first equation of (18) and integrating over Ω, we have

(Dα
+u(t), ϕ1) − (∆u, ϕ1) = ( f (u), ϕ1).

If we let v(t) = (u(t, ·), ϕ1(·)), then f satisfies thatDα
+v(t) = λ1v(t) + ( f (u), ϕ1), t > 0,

v(0) = v0 = (u0, ϕ1).

This is the classical first eigenvalue method, the most important is the solution keeps nonnegative. It is
easy to see that the solution will keep nonnegative if the initial value is nonnegative. Consequently, we
have v(t) > 0. In particular, if f (u) = up, then by using Jensen’s inequality, we haveDα

+v(t) ≥ λ1v(t) + vp(t) ≥ vp(t), t > 0,
v(0) = v0 = (u0, ϕ1).

In other words, v is an upper solution of the following equationDα
+v(t) = vp(t), t > 0,

v(0) = v0 = (u0, ϕ1).

It follows from the results of Section 2, we have the following result.

Theorem 3.1. Let 0 < α < 1 and p > 1, then for problem (18), we have the following results.
(1) If 0 < p(1 − α) ≤ 1, then the solution of problem (18) with u0 ≥ 0 blows up in a finite time;
(2) If p(1 − α) > 1 and (u0, ϕ1) > ( p−1

Γ(α)[p(1−α)−1] )
p−1, then exists a constant T, such that the solution of problem

(18) blows up in a finite time.
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Similarly, one can consider the following reaction-diffusion equation
H
0D

α
a+u(t) − ∆u = f (u), x ∈ Ω, t > 0, 0 < α < 1,

u = 0, x ∈ ∂Ω, t > 0,
H
0Da+u(x, a) = ua(x), x ∈ Ω,

where Ω ⊂ Rn is a bounded domain. Furthermore, we can also deduce that
Dα
+u(t) − ∆u = [

∫ t

0 (t − s)γ−1up(s)ds]q, x ∈ Ω, t > 0, 0 < α < 1,
u = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), x ∈ Ω,

whereΩ ⊂ Rn is a bounded domain, p, q > 1. It is easy to see that the results of Section 2 can be generalized
by using the first eigenvalue method.
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