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Abstract. There are many definitions of epi-convergence in the literature. These definitions can be
categorized as sequential, topological and epigraphical. In this paper, we will first give the epigraphical
definition of ideal epi-convergence, and from this definition we will derive other definitions. In addition,
we will see that the definition of epi-convergence can be given over the level sets. We will also answer the
question of what is the relationship between ideal epi-convergence and ordinary epi-convergence.

1. Introduction and Preliminaries

The notion of statistical convergence is first studied by Zygmund [26] in 1935 and introduced by
Steinhaus [19], Fast [7] and Schoenberg [17] independently. Then it is generalized by Kostyrko et al. [10]
with the help of ideal of subsets of the set of natural numbers N. Kostyrko et al. [9] and Aytar et al.
[4] proved some of basic properties of I-convergence. Also, Demirci [6] presented the notions of I-limit
superior and inferior of a real sequence and gave some properties.

Wijsman [24, 25] studied epi-convergence in the late of 1960’s. At that time, it was called infimal
convergence. Later, it is studied by Mosco [13] on variational inequalities, by Joly [8] on topological
structures compatible with epi-convergence, by Salinetti and Wets [16] on equisemicontinuous families of
convex functions, by Attouch [3] on the relationship between the epi-convergence of convex functions and
the graphical convergence of their subgradient mappings, and by McLinden and Bergstrom [12] on the
preservation of epi-convergence under various operations performed on convex functions. In the time, it is
also called Γ-convergence by Dal Maso [11]. For the first time, Wets [23] called it epi-convergence in 1980.
A characterization of epi-convergence in terms of level sets is given by Beer et al. [5]. Sever et al. [18] have
focused on statistical epi-convergence as a generalization of epi-convergence. The connection between
epi-Cesaro convergence of sequences of functions and Kuratowski Cesaro convergence of their epigraphs
matched by Nuray et al. [14]. Moreover, Tortop et al. [22] studied the sequential characterization of
statistical epi-convergence. In recent years, Nuray [15] has also derived some results of epi-convergence on
double sequence of functions. Solutions of some mathematical problems including stochastic optimization,
variational problems and partial differential equations need epi-convergence.

In this part, fundamental definitions and theorems will be given. First of all, let (X, d) be a metric space
and f , ( fn) are functions defined on X with n ∈ N. If it is not mentioned explicitly the symbol d stands for
the metric on X.
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Statistical convergence of a sequence of scalars was introduced by Fast [7]. Let (xn) be a sequence of real or
complex numbers. If for all ε > 0, there exists L such that,

lim
k→∞

1
k
|{n ≤ k : |xn − L| ≥ ε}| = 0,

then the sequence (xn) is statistically convergent to L.
Now, let us recall the definitions of basic concepts (see [1, 2, 6, 9, 10, 20, 21]).

Let X , ∅. A class I of subsets of X is said to be an ideal in X provided:
i) ∅ ∈ I, ii) A,B ∈ I implies A ∪ B ∈ I, iii) A ∈ I, B ⊂ A implies B ∈ I.
I is called a nontrivial ideal if X < I.

Let X , ∅. A non empty class F of subsets of X is said to be a filter in X provided:
i) ∅ < F , ii) A,B ∈ F implies A ∩ B ∈ F , iii) A ∈ F , A ⊂ B implies B ∈ F .

If I is a nontrivial ideal in X, X , ∅, then the class

F (I) = {M ⊂ X : (∃A ∈ I)(M = X\A)}

is a filter on X, called the filter associated with I.
A nontrivial ideal I in X is called admissible if {x} ∈ I for each x ∈ X.
Denote byId the class of all A ⊂Nwith d(A) = 0. ThenId is non-trivial admissible ideal andId-convergence
coincides with the statistical convergence.
Throughout the paper we take I as a nontrivial admissible ideal inN.
Let (X, ρ) be a linear metric space. A sequence (xn) of elements of X is said to be I-convergent to ξ ∈ X
(I − limn→∞ xn = ξ) if and only if for each ε > 0 the set A(ε) = {n ∈ N : ρ(xn, ξ) ≥ ε} belongs to I. The
element ξ is called the I-limit of the sequence (xn).
Note that if I is an admissible ideal, then usual convergence in X implies I-convergence in X.
For a sequence x = (xn) of real numbers, the notions of ideal limit superior and ideal limit inferior are
defined as follows:

I − lim sup x =
{

sup Bx , i f Bx , ∅
−∞ , i f Bx = ∅

and

I − lim inf x =
{

inf Ax , i f Ax , ∅
+∞ , i f Ax = ∅

,

where Ax = {a ∈ R : {n ∈N : xn < a} < I} and Bx = {b ∈ R : {n ∈N : xn > b} < I}.
A point λ ∈ X is called an ideal limit point of a sequence (xn) if there is a set K = {n1 < n2 < n3 < ...} ⊂ N
with K < I such that xnk → λ as k → ∞. The set of all ideal limit points of a sequence (xn) will be denoted
by I(Λ(xn)).
A point γ ∈ X is called an ideal cluster point of (xn) if for any ε > 0,

{n ∈N : d(xn, γ) < ε} < I.

The set of all statistical cluster points of (xn) will be denoted by I(Γ(xn)).
Obviously we have I(Λ(xn)) ⊆ I(Γ(xn)).
α = I- lim inf xn ∈ R if and only if

{n : xn < α + ε} < I and {n : xn < α − ε} ∈ I. (1)

β = I- lim sup xn ∈ R if and only if

{n : xn > β − ε} < I and {n : xn > β + ε} ∈ I. (2)

Following collections of subsets ofN need to be defined before we mention about ideal convergence of
sequence of sets.
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NI = {N ⊂N :N \N ∈ I} = F (I) and NI
# = {N ⊂N : N < I}.

Following definitions and propositions of ideal inner and outer limit of a sequence (An) of closed subsets
of X are referred to [21].

Let (X, d) be a metric space. The ideal inner and outer limit of a sequence (An) of closed subsets of X are
defined as follows:

I- lim inf
n

An : = {x | ∀V ∈ N(x),∃N ∈ NI,∀n ∈ N : An ∩ V , ∅},

I- lim sup
n

An : = {x | ∀V ∈ N(x),∃N ∈ NI#,∀n ∈ N : An ∩ V , ∅}.

Proposition 1.1. Let (X, d) be a metric space and (An) be a sequence of closed subsets of X. Then

I- lim inf
n

An = {x | ∃N ∈ NI,∀n ∈ N,∃yn ∈ An : lim
n

yn = x}.

Proposition 1.2. Let (X, d) be a metric space and (An) be a sequence of closed subsets of X. Then

I- lim sup
n

An = {x | ∃N ∈ NI#,∀n ∈ N,∃yn ∈ An : x ∈ I(Γ(yn))}.

Let f be a function defined on X, the epigraph of f is the set epi f := {(x, α) ∈ X × R | α ≥ f (x)} and its
level set is defined by lev≤α f := {x ∈ X | f (x) ≤ α}. Hence for functions f and 1 from X to R, if f ≤ 1 for all
x ∈ X it is obvious that

epi f ⊇ epi1. (3)

For any sequence ( fn) of functions on X, statistical epi-limit inferior, est- lim infn fn:

epi(est- lim inf
n

fn) = st- lim sup
n

(epi fn).

Statistical epi-limit superior, est- lim supn fn:

epi(est- lim sup
n

fn) := st- lim inf
n

(epi fn).

When these two functions equal to each other, we have est- limn fn = est- lim infn fn = est- lim supn fn. Hence
the functions fn are said to statistical epi convergent to the function f (see [18]). It is symbolized by fn

est
→ f .

Moreover, the relation between set convergence and convergence of sequence of functions appears in the
following equality.

fn
est
→ f ⇔ epi fn

st
→ epi f .

For every function f : X → R the lower semicontinuous envelope sc− f of f is defined for every x ∈ X
by (sc− f )(x) = sup

1∈G( f ) 1(x), where G( f ) is the set of all lower semicontinuous functions 1 on X such that
1(y) ≤ f (y) for every y ∈ X.

Proposition 1.3. [11] Let f : X→ R be a function. Then,

(sc− f )(x) = sup
V∈N(x)

inf
y∈V

f (y)

for every x ∈ X whereN(x) is the neighbourhood of x.
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2. Main Result

In this part, we define ideal epi-convergence by using epigraph of the functions. The functions are chosen
to be lower semicontinuous since epigraphs of lower semicontinuous functions are closed. After that, we
derive the topological definition of ideal epi-convergence. Level sets which are important instruments in
set theory are also included in our calculations for lower and upper ideal epi-limits. At the end, we answer
the question of what is the relationship between ideal epi-convergence and ordinary epi-convergence.

Definition 2.1. Let (X, d) be a metric space and fn : X→ R a sequence of lower semicontinuous functions. The ideal
epi-limit inferior, eI- lim infn fn is defined by:

epi(eI- lim inf
n

fn) := I- lim sup
n

(epi fn).

Similarly, the ideal epi-limit superior eI- lim supn fn is defined by:

epi(eI- lim sup
n

fn) := I- lim inf
n

(epi fn).

When these two functions are equal, we get ideal epi-limit function:

f = eI- lim
n

fn := eI- lim sup
n

fn = eI- lim inf
n

fn.

As defined in above and by (3), it is obvious that eI- lim infn fn ≤ eI- lim supn fn.

Here we use statistical Painlevé-Kuratowski convergence. Whenever ( fn) is ideal epi-convergent to f we
can use the inclusion

I- lim sup
n

(epi fn) ⊂ epi f ⊂ I- lim inf
n

(epi fn).

Moreover, following comparisons with epi-limit are valid for any f : X→ R.

e- lim inf
n

fn ≤ eI- lim inf
n

fn and e- lim sup
n

fn ≤ eI- lim sup
n

fn.

Lemma 2.2. Let (X, d) be a metric space and fn : X → R a sequence of lower semicontinuous functions, for every
x ∈ X, define 1 : X→ R by

1(x) = sup
V∈N(x)

I- lim inf
n

inf
y∈V

fn(y).

Then, I- lim supn(epi fn) = epi1.

Proof. We need to prove the inclusions

I- lim sup
n

(epi fn) ⊂ epi1 and epi1 ⊂ I- lim sup
n

(epi fn).

For the first inclusion, let us choose arbitrary (x, α) ∈ I- lim supn(epi fn), V0 ∈ N(x) and ε > 0. According
to the definition of I-outer limit, ∃N ∈ N#

I
such that ∀n ∈ N we have

V0 × (−∞, α + ε)
⋂

epi fn , ∅.

As a result,
{n ∈N : inf

y∈V0
fn(y) < α + ε} < I.

By (1) we have,
I- lim inf

n
inf
y∈V0

fn(y) ≤ α + ε.
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Since V0 and ε are arbitrary, we have 1(x) ≤ α and hence (x, α) ∈ epi1.
For the second inclusion let (x, α) ∈ epi1, for all V0 ∈ N(x) and for all ε > 0 we have,

α + ε > 1(x) ≥ I- lim inf
n

inf
y∈V0

fn(y).

Again by (1) we get
{n ∈N : inf

y∈V0
fn(y) < α + ε} < I.

It means, ∃N ∈ N#
I

such that ∀n ∈ N

V0 × (−∞, α + ε)
⋂

epi fn , ∅.

and as epigraphs lie in the vertical direction, we have

V0 × (α − ε, α + ε)
⋂

epi fn , ∅,

and so
(x, α) ∈ I- lim sup

n
(epi fn).

Lemma 2.3. Let (X, d) be a metric space and fn : X → R a sequence of lower semicontinuous functions, for every
x ∈ X, define h : X→ R by

h(x) = sup
V∈N(x)

I- lim sup
n

inf
y∈V

fn(y).

Then, I- lim infn(epi fn) = epih.

Proof. We need to show that

I- lim inf
n

(epi fn) ⊂ epih and epih ⊂ I- lim inf
n

(epi fn).

For the first inclusion, let us choose arbitrary (x, α) ∈ I- lim infn(epi fn), V0 ∈ N(x) and ε > 0. According to
the definition of I-inner limit, ∃N ∈ NI such that ∀n ∈ N we have

V0 × (−∞, α + ε)
⋂

epi fn , ∅.

Hence, we get
{n ∈N : inf

y∈V0
fn(y) > α + ε} ∈ I.

By (2) we obtain
I- lim sup

n
inf
y∈V0

fn(y) ≤ α + ε.

Since V0 and ε are arbitrary, we have h(x) ≤ α and hence (x, α) ∈ epih.
For the second inclusion, fix (x, α) ∈ epih. Given V0 ∈ N(x) and ε > 0, ∃N ∈ NI such that ∀n ∈ N we

have
I- lim sup

n
inf
y∈V0

fn(y) ≤ h(x) < α + ε

and it equals to the following equality

{n ∈N : inf
y∈V0

fn(y) < α + ε} ∈ NI.

Hence,
{n ∈N : V0 × (−∞, α + ε)

⋂
epi fn , ∅} ∈ NI.

It can be written as
{n ∈N : V0 × (α − ε, α + ε)

⋂
epi fn , ∅} ∈ NI.

It gives (x, α) ∈ I- lim infn(epi fn) and concludes the proof.
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The following definition is a direct result of Lemma 2.2 and Lemma 2.3.

Definition 2.4. Let (X, d) be a metric space and fn : X→ R a sequence of lower semicontinuous functions, for every
x ∈ X, ideal epi-limit inferior and superior functions are defined by(

eI- lim inf
n

fn
)

(x) := sup
V∈N(x)

I- lim inf
n

inf
y∈V

fn(y),

(
eI- lim sup

n
fn

)
(x) := sup

V∈N(x)
I- lim sup

n
inf
y∈V

fn(y)

If there exists a function f : X→ R such that

eI- lim inf
n

fn = eI- lim sup
n

fn = f

then, we write f = eI- limn fn and we say that ( fn) is eI-convergent to f on X.

Lemma 2.5. Let x = (xn) be a real sequence. Then,

I- lim inf
n

xn = inf
N∈N#

I

sup
n∈N

xn = sup
N∈NI

inf
n∈N

xn,

I- lim sup
n

xn = sup
N∈N#

I

inf
n∈N

xn = inf
N∈NI

sup
n∈N

xn

By lemma 2.5, the ideal epi-limit inferior can be expressed as follows:

(eI- lim inf
n

fn)(x) = sup
V∈N(x)

inf
N∈N#

I

sup
n∈N

inf
y∈V

fn(y) = sup
V∈N(x)

sup
N∈NI

inf
n∈N

inf
y∈V

fn(y).

Similarly, the ideal epi-limit superior can be expressed as follows:

(eI- lim sup
n

fn)(x) = sup
V∈N(x)

sup
N∈N#

I

inf
n∈N

inf
y∈V

fn(y) = sup
V∈N(x)

inf
N∈NI

sup
n∈N

inf
y∈V

fn(y).

Remark 2.6. If the functions fn(x) are independent of x, for every n ∈ N there exists a constant αn ∈ R such that
fn(x) = αn for every x ∈ X,

eI- lim inf
n

fn(x) = I- lim inf
n
αn and eI- lim sup

n
fn(x) = I- lim sup

n
αn.

If the sequence of functions are independent of n, there exists f : X→ R such that fn(x) = f (x) for every x ∈ X,

eI- lim inf
n

fn = eI- lim sup
n

fn = sc− f

for every n ∈N.

Proposition 2.7. In a metric space (X, d) the following inequalities hold:

(eI- lim inf
n

fn)(x) ≤ I- lim inf
n

fn(x) and (eI- lim sup
n

fn)(x) ≤ I- lim sup
n

fn(x).

for every x ∈ X.
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Proof. ∀x ∈ X and ∀V ∈ N(x), ∃N ∈ NI such that ∀n ∈ N we have

inf
y∈V

fn(y) ≤ fn(x) and in fy∈V fn(y) ≤ fn(x).

Since by the choice of our index set (n ∈ N), we get the following inequalities,

I- lim inf
n

inf
y∈V

fn(y) ≤ I- lim inf
n

fn(x) and I- lim sup
n

inf
y∈V

fn(y) ≤ I- lim sup
n

fn(x).

After taking the supremum over all V ∈ N(x) we get the desired conclusion.

Theorem 2.8. Let (X, d) be a metric space and let ( fn) be a sequence of lower semicontinuous functions. Suppose
that for each α ∈ R, ∃(αn) of reals ideal convergent to α with lev≤α f = I- limn(lev≤αn fn), then f = eI- limn fn.

Proof. Since lev≤α f = I- limn(lev≤αn fn) then, we can use the inclusion

lev≤α f ⊂ I- lim inf
n

(lev≤αn fn)

for each α ∈ R and for some sequence αn
I
→ α. Let (x, α) ∈ epi f , then there exists a sequence αn ideal

convergent to α such that
lev≤α f ⊂ I- lim inf

n
(lev≤αn fn).

Hence, x ∈ I- lim infn(lev≤αn fn). It means there exists a sequence (xn) ideal convergent to x such that
xn ∈ (lev≤αn fn). Finally we get

(xn, αn) I→ (x, α) and (x, α) ∈ I- lim inf
n

epi fn.

In order to get I- lim sup epi fn ⊂ epi f , suppose to the contrary that (x, β) ∈ I- lim sup epi fn but that (x, β) <
epi f . Then, β < f (x). We can find N ∈ N#

I
such that ∀n ∈ N, (xn, βn) ∈ epi fn such that (x, β) ∈ I(Γ(xn,βn)).

Choose a scalar α between β and f (x) and let (αn) be a sequence ideal convergent to α for which

lev≤α f ⊃ I- lim sup
n

(lev≤αn fn).

We have
{n : βn < αn} < I and (xn, βn) ∈ epi fn.

∃N ∈ N#
I , ∀n ∈ N, xn ∈ lev≤αn fn which means

x ∈ I- lim sup
n

levαn fn.

By the inclusion I- lim supn(lev≤αn fn) ⊂ lev≤α f we get

x ∈ lev≤α f and f (x) ≤ α

which is a contradiction.

Theorem 2.9. The following properties hold for any sequence of lower semicontinuous functions ( fn) defined on X.
(i) The functions eI- lim infn fn and eI- lim supn fn are lower semicontinuous and so too is eI- limn fn when it exists.
(ii) If the sequence ( fn) is monotone ideal decreasing, then eI- limn fn exists and equals sc−[infn fn].
(iii) If the sequence ( fn) is monotone ideal increasing, then eI- limn fn exists and equals supn[sc− fn].
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Proof. (i) Let U be a family of open subsets of X, α : U → R be an arbitrary function and f : X → R be
defined by f (x) = supU∈N(x) α(U). ∀U ⊆ X, ∀y ∈ U and ∀U ∈ N(y) it is clear that f (y) ≥ α(U). Since the
inequality is satisfied by for all U ∈ N(x) we have

inf
y∈U

f (y) ≥ α(U).

Taking supremum of both sides
f (x) = sup

U∈N(x)
α(U) ≤ sup

U∈N(x)
inf
y∈U

f (y)

for every x ∈ X. Since the opposite inequality trivial we get

sup
U∈N(x)

α(U) = sup
U∈N(x)

inf
y∈U

f (y).

If we write
α(U) = I- lim inf

n
inf
y∈U

fn(y),

we get the desired conclusion. The proof is similar for functions eI- lim supn fn and eI- limn fn.
Now we will prove (ii), the proof of (iii) is similar. Since the sequence ( fn) is ideal decreasing, then there

exists a subset K = {k1 < k2 < k3 < · · · } ⊆N such that K ∈ F (I) and fkn ≥ fkn+1 for all n ∈N and its epigraph
epi fn will increase that is epi fkn ⊆ epi fkn+1 . Then, we have

epi(sc−[inf
n

fn]) = cl
⋃
n∈N

epi fkn . (4)

Moreover, Theorem 3.15 in [21] makes clear the following equality for increasing sequences

I- lim
n

(epi fn) = cl
⋃
n∈N

epi fkn . (5)

By using (4) and (5) combining with Definition 2.1,

I- lim
n

(epi fn) = epi(sc−[inf
n

fn]) = epi(eI- lim
n

fn).

Finally, we get the desired equation
sc−[inf

n
fn] = eI- lim

n
fn.

Definition 2.10. The sequence ( fn) is called ideal equi-lower semicontinuous at a point x if and only if for all ε > 0
there exists δ > 0 and N ⊂ NI such that for all y ∈ B(x, δ) we have,

fn(x) − fn(y) < ε

for each n ∈ N.

In general, ideal epi-convergence is neither stronger nor weaker than ideal convergence. The obvious differ-
ence between these convergence types is obtaining minimums, but we can say that these two convergence
types coincide under some conditions. The next theorem states the conditions for this overlap.

Theorem 2.11. ( fn) and f are functions from X to R and ( fn) be ideal equi-lower semicontinuous at x. ( fn) is ideal
epi-convergent to f at x if and only if ( fn) is ideal convergent to f at x.
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Proof. Assuming ( fn) is ideal equi-lower semicontinuous at x, we have that for all ε > 0, there exists V ∈ N(x)
and N ∈ NI such that

fn(x) − ε < inf
y∈V

fn(y)

for all n ∈ N. This implies

I- lim inf
n

fn(x) − ε ≤ sup
V∈N(x)

I- lim inf
n

inf
y∈V

fn(y)

for every ε > 0. Combining with Proposition 2.7 we get

I- lim inf
n

fn(x) = sup
V∈N(x)

I- lim inf
n

inf
y∈V

fn(y)

which means,

I- lim inf
n

fn(x) = eI- lim inf
n

fn(x).

In similar way, we get
I- lim sup

n
fn(x) = eI- lim sup

n
fn(x)

and finally we reach the desired equality as follows

I- lim
n

fn(x) = eI- lim
n

fn(x).

3. Conclusion, future work

So far, topological and epigraphical definitions of ideal epi-convergence have been focused on. These
definitions form the framework for understanding ideal epi-convergence and prepare the ground for the
sequential characterization. The difference of sequential characterization of ideal epi-convergence from the
definitions given in this paper is that it is not biconditional contrary to the ordinary characterization of epi-
convergence. In our future work, we will try to understand how this difference will affect the optimization
theorems.
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