
Filomat 38:4 (2024), 1367–1374
https://doi.org/10.2298/FIL2404367G

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper we study approximation properties of a discrete operators based on modified
Hermite polynomials. We find moments using the concept of moment generating function and estimate
convergence results for such operators.

1. Introduction

Krech [13] introduced a generalization of Szász-Mirakyan operators by means of Hermite polynomials,
for f ∈ C[0,∞) as follows

(Gαn f )(x) = e−(nx+αx2)
∞∑

k=0

xk

k!
Hk(n, α) f

( k
n

)
, α, x ≥ 0,n ∈ N, (1)

where Hk(n, α) are the modified Hermite polynomials of two variables defined in [13] as

Hk(n, α) := k!
[ k

2 ]∑
m=0

αm

m!
nk−2m

(k − 2m)!
,n, k ∈ N.

As a special case when α = 0, then Hk(n, 0) = nk and we get the Szász-Mirakyan operators defined by

(Sn f )(x) := (G0
n f )(x) =

∞∑
k=0

e−nx (nx)k

k!
f
( k

n

)
, x ≥ 0,n ∈ N, (2)

Also, we have the connection for negative α viz. Hk(2n,−1) = Hk(n), where Hk(n) := k!
∑[ k

2 ]
s=0

(−1)s

s!
(2n)k−2s

(k−2s)! . In
this form the operator (3) takes the form:

(G−1
n f )(x) = e−(2nx−x2)

∞∑
k=0

xk

k!
Hk(n) f

( k
2n

)
, x ≥ 0,n ∈ N. (3)

This form corresponding to α = −1 provides an operator, which is not positive but linear operator.
The present paper is an extension of the work of [13], we deal with some other approximation properties

of the operators Gαn , α ≥ 0. Firstly, we estimate moment producing function and using it we find moments.
We estimate some direct results including pointwise convergence and quantitative asymptotic formulae in
terms of different moduli of continuity.
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2. Moment Estimation

In [9] authors estimated the moments of some other operators, using different methods. For the operators
Gαn , we provide in this section the moments.

Lemma 2.1. For A is a real number, n ∈ N and α ≥ 0, the moment producing function of the operators Gαn is given
by

(GαneAt)(x) = e(eA/n
−1)[nx+αx2(eA/n+1)].

In particular, we have

(Gαne0)(x) = 1,

(Gαne1)(x) = x +
2αx2

n
,

(Gαne2)(x) = x2 +
4α2x3 + 4αnx3

n2 +
(nx + 4αx2)

n2 ,

(Gαne3)(x) = x3 +
(nx + 8αx2 + 3n2x2 + 18αnx3 + 24α2x4 + 6αn2x4 + 12α2nx5 + 8α3x6)

n3 ,

(Gαne4)(x) =
1
n4

[
nx + 16αx2 + 7n2x2 + 64αnx3 + 6n3x3 + 112α2x4 + 48αn2x4 + n4x4

+120α2nx5 + 8αn3x5 + 96α3x6 + 24α2n2x6 + 32α3nx7 + 16α4x8
]
.

Proof. By generating function of two variable Hermite polynomial

enx+αx2
=

∞∑
k=0

xk

k!
Hk(n, α)

and by definition (3), we have

(GαneAt)(x) = e−(nx+αx2)
∞∑

k=0

xk

k!
Hk(n, α)eAk/n

= e(eA/n
−1)[nx+αx2(eA/n+1)].

The moments follow by using the relation

(Gαner)(x) =
[
∂r

∂Ar e(eA/n
−1)[nx+αx2(eA/n+1)]

]
A=0
, r = 0, 1, 2, ...

Lemma 2.2. If we denote µαn,m(x) := (Gαn(e1 − xe0)m)(x),m ∈ N ∪ {0}, then

µαn,m(x) =
[
∂m

∂Am e(eA/n
−1)[nx+αx2(eA/n+1)]−Ax

]
A=0
.
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In particular, we get

µαn,0(x) = 1,

µαn,1(x) =
2αx2

n
,

µαn,2(x) =
nx + 4αx2 + 4α2x4

n2 ,

µαn,3(x) =
nx + 8αx2 + 6αnx3 + 24α2x4 + 8α3x6

n3 ,

µαn,4(x) =
nx + 16αx2 + 3n2x2 + 32αnx3 + 112α2x4 + 24α2nx5 + 96α3x6 + 16α4x8

n4 .

In general we have µαn,m(x) = O(n−[(m+1)/2]).

The central moments easily follow by the property of the moment generating function from Lemma 2.1 by
using change of scale law.

Lemma 2.3. For A > 0 real, n ∈ N and α ≥ 0, we have

(Gαn(t − x)2eAt)(x) ≤ C(A, α, x)µαn,2(x),

where C(A, α, x) = ex(eA
−1)+αx2(e2A

−1)]
[
e4A + x2(eA

− 1)2 + 4αx3e2A(eA
− 1)

]
.

Proof. By Lemma 2.2, differentiating moment producing function both sides with respect to A, we get

(GαnteAt)(x) = e(eA/n
−1)[nx+αx2(eA/n+1)]

[
xeA/n +

2αx2e2A/n

n

]
(Gαnt2eAt)(x) = e(eA/n

−1)[nx+αx2(eA/n+1)]

(xeA/n +
2αx2e2A/n

n

)2

+

(
xeA/n

n
+

4αx2e2A/n

n2

) .
Finally by linearity property using the fact n(eA/n

− 1) < eA
− 1, we get

(Gαn(t − x)2eAt)(x) = e(eA/n
−1)[nx+αx2(eA/n+1)]

[
x2(eA/n

− 1)2 +
4αx2e2A/n

n2 (1 + αx2e2A/n)

+
xeA/n

n
+

4αx3e3A/n

n
−

4αx3e2A/n

n

]
≤ C(A, α, x)µαn,2(x),

where C(A, α, x) = ex(eA
−1)+αx2(e2A

−1)
[
e4A + x2(eA

− 1)2 + 4αx3e2A(eA
− 1)

]
.

3. Convergence

This section consists of some direct results, we first find in the following result the point-wise conver-
gence of the operator (3):

Theorem 3.1. If f ∈ CB[0,∞) (class of bounded continuous functions on [0,∞)), then

lim
n→∞

(Gαn f (t))(x) = f (x),

and

lim
n→∞

(Gαmn f (nt))
(x

n

)
= (Sm f )(x),

where (Sm f )(x) denotes the Szász-Mirakyan operator given by (2).
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Proof. For the operators Gαn defined in (3), we have

lim
n→∞

(Gαneist)(x) = lim
n→∞

e(eis/n
−1)[nx+αx2(eis/n+1)]

= eisx = (Id eist)(x).

Next, we have

lim
n→∞

(Gαmneisnt)
(x

n

)
= lim

n→∞
e

(eis/m
−1)

[
mx+ αx2

n2 (eis/m+1)
]

= emx(eis/m
−1)

= e−mx
∞∑

k=0

(mx)k

k!
eisk/m = (Smeist)(x),

where Sm is the Szász-Mrakyan operators defined in (2). Thus by [1, Th. 2.1] (also see [2, Th. 1]), we get the
desired result.

Let B2 be the set of all functions satisfying | f (x)| ≤ c(1 + x2), for certain constant c depending on f . Also
suppose Ck

2 denotes the subspace of all functions f ∈ B2 satisfying lim|x|→∞ | f (x)|/(1 + x2) = k, for certain
constant k, then following [5], [12], the moduli is defined by

Ω
(
1, δ

)
= sup

|e|≤δ
x∈R

∣∣∣1 (x + e) − 1 (x)
∣∣∣

(1 + e2) (1 + x2)
, 1 ∈ Ck

2.

Theorem 3.2. Let Gαn : Ẽ→ C[0,∞), where Ẽ represents the space of the functions f having polynomial growth. If
f and f ′′ ∈ Ck

2 ∩ Ẽ, then∣∣∣∣∣∣(Gαn f ) (x) − f (x) −
2αx2

n
f ′(x) −

nx + 4αx2 + 4α2x4

2n2 f ′′ (x)

∣∣∣∣∣∣
≤ 8

(
1 + x2

) (nx + 4αx2 + 4α2x4

n2

)
Ω

 f ′′,

µαn,6(x)

µαn,2(x)

1/4 .
Proof. Using

f (u) = f (x) + (u − x) f ′ (x) +
(u − x)2

2!
f ′′ (x) +

(u − x)2

2!
ε (u, x) ,

ε (u, x) = f ′′ (ξ) − f ′′ (x) , x < ξ < u and ε (u, x)→ 0 as u→ x and applying Lemma 2.3, we have∣∣∣∣∣∣(Gαn f ) (x) − f (x) −
2αx2

n
f ′(x) −

nx + 4αx2 + 4α2x4

n2 f ′′ (x)

∣∣∣∣∣∣
≤

1
2

(
Gαn |ε (u, x)| (u − x)2

)
(x) . (4)

Following [3], for any δ > 0 the following inequality holds:

|ε(u, x)| =
∣∣∣ f ′′ (ξ) − f ′′ (x)

∣∣∣ ≤ 4
(
1 +

(t − x)4

δ4

) (
1 + δ2

)2 (
1 + x2

)
Ω

(
f , δ

)
.

Next, in the factor
(
1 + δ2

)2
taking δ ≤ 1, we get

(
Gαn |ε (u, x)| (u − x)2

)
(x) ≤ 16µαn,2(x)

(
1 + x2

) 1 +
µαn,6(x)

δ4µαn,2(x)

Ω (
f ′′, δ

)
.
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Selecting δ4 = µαn,6(x)/µαn,2(x) ≤ 1, where we can apply Lemma 2.2. Therefore by (4), the required inequality
is proved.

We consider C∗[0,∞), as subspace of C[0,∞) consisting of real-valued continuous functions defined in
[0,∞) and limx→∞ f (x) exists and is finite also it is endowed with uniform norm ||.||∞.

Theorem 3.3. If f ∈ C∗[0,∞) then the following inequality holds:

||(Gαn f ) − f ||∞ ≤ 2ω∗
(

f ,
√

2α1(n) + α2(n)
)
,

where αs(n), s = 1, 2 approaches to zero for a large enough n and

ω∗(h, δ) = sup
|e−t−e−x |≤δ

x,t≥0

|h(t) − h(x)|.

Proof. Following [11], if we denote

||(Gαne−st) − e−sx
||∞ = αs(n), s = 0, 1, 2,

then for f ∈ C∗[0,∞), we have

||(Gαn f ) − f ||∞ ≤ || f ||∞α0(n) + (2 + α0(n)) · ω∗
(

f ,
√
α0(n) + 2α1(n) + α2(n)

)
.

Here we have α0(n) = 0, because Gαn preserve constant function. Next for s = 1, 2, we can write

(Gαne−st)(x) = e(e−s/n
−1)[nx+αx2(e−s/n+1)]

= exp
(
(e−s/n

− 1)[nx + αx2(e−s/n + 1)]
)

= exp

 ∞∑
r=1

(−s)r

r!nr−1 x +
∞∑

r=1

(−s)r

r!nr αx2(e−s/n + 1)

 ,
implying

αs(n) = || exp

 ∞∑
r=2

(−s)r

r!nr−1 x +
∞∑

r=1

(−s)r

r!nr αx2(e−s/n + 1)

 ||∞.
the right hand side approaches to zero for sufficiently large n.
This leads to the proof of result.

Theorem 3.4. If f , f ′′ belongs to C∗[0,∞), then for x ∈ [0,∞), the following inequality exists:∣∣∣∣∣∣n [
(Gαn f )(x) − f (x)

]
− 2αx2 f ′(x) −

nx + 4αx2 + 4α2x4

2n
f ′′(x)

∣∣∣∣∣∣
≤

1
2
ω∗

(
f ′′,

1
√

n

) [nx + 4αx2 + 4α2x4

n

+

(
[nx + 16αx2 + 3n2x2 + 32αnx3 + 112α2x4 + 24α2nx5 + 96α3x6 + 16α4x8]1/2

n

)
[
n2

(
Gαn

( 1
ex −

1
et

)4)
(x)

]1/2]
.
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Proof. By Taylor’s expansion

f (t) =

2∑
k=0

(t − x)k

k!
f (k)(x) + η(t, x)(e1 − xe0)2,

where

η(t, x) :=
f ′′(δ) − f ′′(x)

2
.

Using Lemma 2.2, we have∣∣∣∣∣∣n [
(Gαn f )(x) − f (x)

]
− 2αx2 f ′(x) −

nx + 4αx2 + 4α2x4

2n
f ′′(x)

∣∣∣∣∣∣
≤ n

(
Gαn

∣∣∣η(t, x)
∣∣∣ (e1 − e0x)2

)
(x).

Using the property of ω∗( f , δ) given by

| f (t) − f (x)| ≤
(
1 +

1
δ2

( 1
ex −

1
et

)2)
ω∗( f , δ),

we obtain ∣∣∣η(t, x)
∣∣∣ ≤ 1

2

(
1 +

1
δ2

( 1
ex −

1
et

)2)
ω∗

(
f ′′, δ

)
.

Applying Cauchy-Schwarz inequality and choosing δ = 1
√

n
, we get

n
(
Gαn

∣∣∣η(t, x)
∣∣∣ (e1 − xe0)2

)
(x)

≤
1
2
ω∗

(
f ′′,n−1/2

) [
nµαn,2(x) +

√
n2

(
Gαn (e−x − e−t)4

)
(x)

√
n2µαn,4(x)

]
.

Finally, we obtain the required outcome by using Lemma 2.2.

Remark 3.5. The convergence of the operator Gαn in the preceding theorem takes place for n large enough. By using
Lemma 2.2, we have

lim
n→∞

n2
(
Gαn

(
e−x
− e−t

)4
)

(x)

= lim
n→∞

n2
[
e−4x
− 4e−3xe(e−1/n

−1)[nx+αx2(e−1/n+1)] + 6e−2xe(e−2/n
−1)[nx+αx2(e−2/n+1)]

−4e−xe(e−3/n
−1)[nx+αx2(e−3/n+1)] + e(e−4/n

−1)[nx+αx2(e−4/n+1)]
]

= 3e−4xx2.

For f ∈ U∗[0,∞) and A > 0 be real, let us consider

ω1( f , δ,A) = sup
u≥0,h≤δ

| f (u) − f (u + h)|e−Au, δ > 0,

as the modulus of continuity of first order defined by Ditzian [4] and

U∗[0,∞) := { f ∈ C[0,∞) : ∥ f ∥A = sup
u≥0
| f (u)e−Au

| < ∞}.

Further, for β ∈ (0, 1], consider the following Lipschitz space:

Lipβ(A) = { f ∈ U∗[0,∞) : ω1( f , δ,A) ≤ Cδβ, ∀δ < 1}.
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Theorem 3.6. Let f ∈ U∗[0,∞) ∩ C2[0,∞), f ′′ ∈ Lipβ(A), β ∈ (0, 1], then for x ∈ [0,∞), we have∣∣∣∣∣∣(Gαn f ) (x) − f (x) −
2αx2

n
f ′(x) −

nx + 4αx2 + 4α2x4

2n2 f ′′ (x)

∣∣∣∣∣∣
≤ ω1

(
f ′′, h,A

)
·

[
2e2A,α,x + C(A, α, x) +

√
C(2A, α, x)

]
·

(
nx + 4αx2 + 4α2x4

2n2

)
,

where

h =
1
n

(
nx + 16αx2 + 3n2x2 + 32αnx3 + 112α2x4 + 24α2nx5 + 96α3x6 + 16α4x8

nx + 4αx2 + 4α2x4

)1/2

.

Proof. According to Taylor’s expansion, η exists between x and t such that

f (t) =

2∑
k=0

(t − x)k

k!
f (k)(x) + ϵ(t, x)(e1 − xe0)2, (5)

where

ϵ(t, x) :=
f ′′(η) − f ′′(x)

2
.

On applying the operator Gαn to (5) and also using Lemma 2.2, we get

∣∣∣∣∣∣(Gαn f ) (x) − f (x) −
2αx2

n
f ′(x) −

nx + 4αx2 + 4α2x4

2n2 f ′′ (x)

∣∣∣∣∣∣
≤

(
Gαn |ϵ(t, x)|(e1 − xe0)2

)
(x). (6)

Following [10, pp. 101], we get∣∣∣ϵ(t, x)|(e1 − xe0)2
∣∣∣ ≤ 1

2

(
e2Ax + eAt

) (
1 +
|t − x|

h

)
ω1

(
f ′′, h,A

)
|t − x|2.

Consequently(
Gαn |ϵ(t, x)|(e1 − xe0)2

)
(x) ≤

1
2

[
Gαn

((
e2Ax + eAt

)
.

(
|t − x|2 +

|t − x|3

h

)
; x

)]
ω1

(
f ′′, h,A

)
≤

e2Ax

2

[
(Gαn(t − x)2)(x) +

1
h

(Gαn |t − x|3)(x)
]

+
1
2

[
(GαneAt(t − x)2)(x) +

1
h

(GαneAt
|t − x|3)(x)

]
ω1

(
f ′′, h,A

)
≤

e2Ax

2

[
µαn,2(x) +

1
h

(µαn,2(x).µαn,4(x))1/2
]

+
1
2

[
(GαneAt(t − x)2)(x) +

1
h

((Gαne2At(t − x)2)(x).µαn,4(x))1/2
]
ω1

(
f ′′, h,A

)
.

Considering h :=

√
µαn,4(x)

µαn,2(x)
, using Lemma 2.2, Lemma 2.3 in above and substituting in (6), we obtain the

desired result.

Remark 3.7. In the recent years certain operators have been studied which preserve exponential functions, see for
instance [6], [8]. We can extend the results of present paper along such lines. Also other results can be achieved
similar to [7]. This work may appear in forthcoming papers.
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