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Abstract. Given a matrix, whether it is a nonsingular H-matrix or not is very important in many applica-
tions. In this paper, some new simple criteria, as well as a necessary condition of nonsingular H-matrices,
are proposed. Moreover, they only depend on the elements of a given matrix. Finally, some numerical
examples are given to illustrate the validity of our results.

1. Introduction

The class of H-matrices, proposed by Ostrowski to study the convergence of matrix iterative schemes,
plays an important role in many subjects, such as computational mathematics, mathematical physics,
economics and dynamical system theory[1]. For a given matrix, an interesting problem is to check whether
it is a H-matrix or not, as it can be used in numerical linear algebra, control theory, economic model and
etc.(see [2, 3]).

In 2008, R. Bru et al. proposed a partition in the family of H-matrices, that is, ”invertible class”, ”singular
class” and ”mixed class”. The ”invertible class” contains all H-matrices such that its comparison matrix is
nonsingular, and these H-matrices are invertible, therefore, they also be called ”nonsingular H-matrices”.
The second class contains H-matrices with a singular comparison matrix. Note that the H-matrices in the
third class, the mixed class, all have diagonal elements different from zero, but their comparison matrices are
singular. These matrices may be singular or not, as well as reducible or not[1]. For nonsingular H-matrices,
many criteria for determining nonsingular H-matrices are obtained (see [4–16]). However, most of these
criteria are sufficient conditions.

In this paper, we still focus on the judgement of nonsingular H-matrix. In section 2, several simple
criteria which only depend on the elements of a given matrix are obtained, and a necessary condition for
nonsingular H-matrix is also presented. In section 3, some numerical examples are given to illustrate our
results.

For the convenience of discussion, some notations, definitions and lemmas are listed firstly in the
following.

2020 Mathematics Subject Classification. Primary 15A04; Secondary 15A42, 15A18.
Keywords. H-matrices; Diagonally dominance matrix; Irreducibility; Nonzero elements chain; Nnecessary conditio.
Received: 18 January 2023; Accepted: 21 August 2023
Communicated by Dijana Mosić
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Let n be an integer number, N = {1, 2, . . . ,n} and Cn×n be the set of all complex matrices of order n.
Denote
ri(A) =

∑
j,i
|ai j|,

N1 = {i ∈ N : 0 < |aii| ≤ αri(A)},
N2 = {i ∈ N : αri(A) < |aii| < ri(A)},
N3 = {i ∈ N : |aii| = ri(A)},
N4 = {i ∈ N : |aii| > ri(A)},
where 0 < α < 1.

Definition 1.1. [2] A matrix A = (ai j) ∈ Cn×n is called a diagonally dominant matrix if for each i ∈ N,

|aii| ≥ ri(A). (1)

Definition 1.2. [2] A matrix A = (ai j) ∈ Cn×n is called a strictly diagonally dominant (shortly as SDD) matrix if
for each i ∈ N,

|aii| > ri(A). (2)

Definition 1.3. [17] A matrix A = (ai j) ∈ Rn×n is a nonsingular M-matrix if its inverse is nonnegative and all its
off-diagonal entries are nonpositive.

Definition 1.4. [18] A matrix A = (ai j) ∈ Cn×n is called a nonsingular H-matrix if its comparison matrix µ(A) =
(mi j) ∈ Rn×n,

mi j =

{
|aii|, i = j,
−|ai j|, i , j,

is a nonsingular M-matrix.

From Definition 1.2, it is easy to obtain that A is a nonsingular H-matrix if
3⋃

i=1
Ni = ∅. In addition, for a

nonsingular H-matrix, there exists at least one strict diagonally dominant row, i.e., N4 , ∅ [4].

Definition 1.5. [19] A matrix A = (ai j) ∈ Cn×n is called reducible if there exists a ∅ , S ⊂ N such that ai j = 0, for
any i ∈ S and j < S. Otherwise, A is called irreducible.

Definition 1.6. ([2, 3]) A matrix A = (ai j) ∈ Cn×n is called irreducibly diagonally dominant if A is a irreducible and
diagonally dominant matrix with strict inequality (2) holds for at least one i ∈ N.

Definition 1.7. [5] A matrix A = (ai j) ∈ Cn×n is called a diagonally dominant matrix with nonzero elements chain
if A is a diagonally dominant matrix with at least one strict inequality (2) holds, and for every i ∈ N3, there exists a
nonzero elements chain ai j1 a j1 j2 . . . a jk−1 jk , 0 such that |a jk jk | > r jk (A).

Lemma 1.8. [20] A matrix A = (ai j) ∈ Cn×n is a nonsingular H-matrix if and only if there exists a positive diagonal
matrix X such that AX is an SDD matrix.

Lemma 1.9. [7] Let A = (ai j) ∈ Cn×n, if A is an irreducible diagonally dominant matrix, then it is a nonsingular
H-matrix.

Lemma 1.10. [7] Let A = (ai j) ∈ Cn×n, if A is a nonzero element chain diagonally dominant matrix, then it is a
nonsingular H-matrix.

Lemma 1.11. [6] Let A = (ai j) ∈ Cn×n, if A has nonzero diagonal elements, then A is a nonsingular H-matrix if and
only if A(θ) is a nonsingular H-matrix, where A(θ) be the submatrix of A whose rows and columns are indexed by θ
and θ = {i|i ∈ N, ri(A) > 0}.

Lemma 1.12. [6] Let A = (ai j) ∈ Cn×n and P be a permutation matrix. Then A is a nonsingular H-matrix if and
only if PTAP is a nonsingular H-matrix.
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2. Main results

To begin with, a new criteria for nonsingular H-matrix is introduced in Theorem 2.1.

Theorem 2.1. Let A = (ai j) ∈ Cn×n, if there exists a α ∈ (0, 1) such that A satisfies the following conditions,

|aii| >
αri(A)
|aii|

[ ∑
t∈N1\{i}

|att|

αrt(A)
|ait| +

∑
t∈N2

|att| − αrt(A)
rt(A)

|ait| +
∑
t∈N3

|ait|

+
∑
t∈N4

rt(A)
|att|
|ait|

]
, ( f or all i ∈ N1),

(3)

|aii| >
ri(A)

|aii| − αri(A)

[∑
t∈N1

|att|

αrt(A)
|ait| +

∑
t∈N2\{i}

|att| − αrt(A)
rt(A)

|ait|

+
∑
t∈N3

|ait| +
∑
t∈N4

rt(A)
|att|
|ait|

]
, ( f or all i ∈ N2),

(4)

|aii| >
∑
t∈N1

|att|

αrt(A)
|ait| +

∑
t∈N2

|att| − αrt(A)
rt(A)

|ait| +
∑

t∈N3\{i}

|ait|

+
∑
t∈N4

rt(A)
|att|
|ait|, ( f or all i ∈ N3),

(5)

then A is a nonsingular H-matrix.

Proof. From (3)-(5), we obtain that

Ri =
1∑

t∈N4

|ait|

[
|aii|

αri(A)
|aii| −

∑
t∈N1\{i}

|att|

αrt(A)
|ait| −

∑
t∈N2

|att| − αrt(A)
rt(A)

|ait|

−

∑
t∈N3

|ait| −
∑
t∈N4

rt(A)
|att|
|ait|

]
> 0, ( f or all i ∈ N1),

(6)

Si =
1∑

t∈N4

|ait|

[
|aii| − αri(A)

ri(A)
|aii| −

∑
t∈N1

|att|

αrt(A)
|ait| −

∑
t∈N2\{i}

|att| − αrt(A)
rt(A)

|ait|

−

∑
t∈N3

|ait| −
∑
t∈N4

rt(A)
|att|
|ait|

]
> 0, ( f or all i ∈ N2),

(7)

Pi =
1∑

t∈N4

|ait|

[
|aii| −

∑
t∈N1

|att|

αrt(A)
|ait| −

∑
t∈N2

|att| − αrt(A)
rt(A)

|ait| −
∑

t∈N3\{i}

|ait|

−

∑
t∈N4

rt(A)
|att|
|ait|

]
> 0, ( f or all i ∈ N3).

(8)

If
∑

t∈N4

|ait|=0, we showed Ri = +∞, Si = +∞, Pi = +∞. Obviously, Ri > 0, Si > 0, Pi > 0, for all i ∈
3⋃

i=1
Ni. Then

there exists a positive number ε > 0 such that

0 < ε < min{min
i∈N1

Ri,min
i∈N2

Si,min
i∈N3

Pi}. (9)



Y. Li et al. / Filomat 38:4 (2024), 1375–1387 1378

Construct a matrix X = dia1(x1, . . . , xn), where

xt =


|att |

αrt(A) , t ∈ N1,
|att |−αrt(A)

rt(A) , t ∈ N2,
1, t ∈ N3,

ε + rt(A)
|att |
, t ∈ N4.

As ε , +∞, we obtain xi , +∞, then X is a positive diagonal matrix.
Let B = (bi j) = AX, then bi j = ai jx j, for all i, j ∈ N. Next, we prove that B is an SDD matrix. From the

division of N, the proof can be divided four cases as follows:
Case 1: for all i ∈ N1.
(i) If

∑
t∈N4

|ait| = 0, then ait = 0, for all i ∈ N1, t ∈ N4.

By (3), we have

ri(B) =
∑

t∈N1\{i}

xt|ait| +
∑
t∈N2

xt|ait| +
∑
t∈N3

xt|ait| +
∑
t∈N4

xt|ait|

=
∑

t∈N1\{i}

|att|

αrt(A)
|ait| +

∑
t∈N2

|att| − αrt(A)
rt(A)

|ait| +
∑
t∈N3

|ait|

<
|aii|

αri(A)
|aii| = |bii|.

(ii) If
∑

t∈N4

|ait| , 0, by (6) and (9), we have

ri(B) =
∑

t∈N1\{i}

xt|ait| +
∑
t∈N2

xt|ait| +
∑
t∈N3

xt|ait| +
∑
t∈N4

xt|ait|

=
∑

t∈N1\{i}

|att|

αrt(A)
|ait| +

∑
t∈N2

|att| − αrt(A)
rt(A)

|ait| +
∑
t∈N3

|ait| +
∑
t∈N4

(ε +
rt(A)
|att|

)|ait|

< Ri

∑
t∈N4

|ait| +
∑

t∈N1\{i}

|att|

αrt(A)
|ait| +

∑
t∈N2

|att| − αrt(A)
rt(A)

|ait| +
∑
t∈N3

|ait| +
∑
t∈N4

rt(A)
|att|
|ait|

=
|aii|

αri(A)
|aii| = |bii|.

Case 2: for all i ∈ N2.
(i) If

∑
t∈N4

|ait| = 0, then ait = 0, for all i ∈ N2, t ∈ N4, similar to the proof of (i) of Case 1, and by (4), we

obtain

ri(B) <
|aii| − αri(A)

ri(A)
|aii| = |bii|.

(ii) If
∑

t∈N4

|ait| , 0, by (7) and (9), we have

ri(B) =
∑
t∈N1

xt|ait| +
∑

t∈N2\{i}

xt|ait| +
∑
t∈N3

xt|ait| +
∑
t∈N4

xt|ait|

=
∑
t∈N1

|att|

αrt(A)
|ait| +

∑
t∈N2\{i}

|att| − αrt(A)
rt(A)

|ait| +
∑
t∈N3

|ait| +
∑
t∈N4

(ε +
rt(A)
|att|

)|ait|

< Si

∑
t∈N4

|ait| +
∑
t∈N1

|att|

αrt(A)
|ait| +

∑
t∈N2\{i}

|att| − αrt(A)
rt(A)

|ait| +
∑
t∈N3

|ait| +
∑
t∈N4

rt(A)
|att|
|ait|

=
|aii| − αri(A)

ri(A)
|aii| = |bii|.
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Case 3: for all i ∈ N3.
(i) If

∑
i∈N4

|ait| = 0, then ait = 0, for all i ∈ N3, t ∈ N4, similar to the proof of (i) of Case 1, and by (5), we have

ri(B) < |aii| = |bii|.

(ii) If
∑

i∈N4

|ait| , 0, by (8) and (9), we have

ri(B) =
∑
t∈N1

xt|ait| +
∑
t∈N2

xt|ait| +
∑

t∈N3\{i}

xt|ait| +
∑
t∈N4

xt|ait|

=
∑
t∈N1

|att|

αrt(A)
|ait| +

∑
t∈N2

|att| − αrt(A)
rt(A)

|ait| +
∑

t∈N3\{i}

|ait| +
∑
t∈N4

(ε +
rt(A)
|att|

)|ait|

< Pi

∑
t∈N4

|ait| +
∑
t∈N1

|att|

αrt(A)
|ait| +

∑
t∈N2

|att| − αrt(A)
rt(A)

|ait| +
∑

t∈N3\{i}

|ait| +
∑
t∈N4

rt(A)
|att|
|ait|

= |aii| = |bii|.

Case 4: for all i ∈ N4, we have |aii| > ri(A), further, it is easy to obtain that

|aii| −
∑

t∈N4\{i}

|ait| > 0, f or all i ∈ N4.

From the definition of N1, N2 and N3, we obtain that

0 <
|att|

αrt(A)
< 1 ( f or all t ∈ N1),

0 <
|att| − αrt(A)

rt(A)
< 1 ( f or all t ∈ N2),

0 <
rt(A)
|att|

< 1 ( f or all t ∈ N4).

Therefore, we get that∑
t∈N1

|att |

αrt(A) |ait| +
∑

t∈N2

|att |−αrt(A)
rt(A) |ait| +

∑
t∈N3

|ait| +
∑

t∈N4\{i}

rt(A)
|att |
|ait| − ri(A)

≤
∑

t∈N1

|ait| +
∑

t∈N2

|ait| +
∑

t∈N3

|ait| +
∑

t∈N4\{i}
|ait| − ri(A) = 0,

further, we obtain that

1
|aii| −

∑
t∈N4\{i}

|ait|

[∑
t∈N1

|att|

αrt(A)
|ait| +

∑
t∈N2

|att| − αrt(A)
rt(A)

|ait| +
∑
t∈N3

|ait| +
∑

t∈N4\{i}

rt(A)
|att|
|ait| − ri(A)

]
≤ 0.

As ε > 0, then

ε >
1

|aii| −
∑

t∈N4\{i}
|ait|

[∑
t∈N1

|att|

αrt(A)
|ait| +

∑
t∈N2

|att| − αrt(A)
rt(A)

|ait| +
∑
t∈N3

|ait| +
∑

t∈N4\{i}

rt(A)
|att|
|ait| − ri(A)

]
. (10)

From (10), for all i ∈ N4,

|bii| − ri(B) = xi|aii| −
∑
t∈N1

xt|ait| −
∑
t∈N2

xt|ait| −
∑
t∈N3

xt|ait| −
∑

t∈N4\{i}

xt|ait|

= ε(|aii| −
∑

t∈N4\{i}

|ait|) + ri(A) −
∑
t∈N1

|att|

αrt(A)
|ait|

−

∑
t∈N2

|att| − αrt(A)
rt(A)

|ait| −
∑
t∈N3

|ait| −
∑

t∈N4\{i}

rt(A)
|att|
|ait| > 0.
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That is, |bii| > ri(B), for all i ∈ N4.
From Case 1-4, we get that |bii| > ri(B), for all i ∈ N, i.e., B is an SDD matrix, from Lemma 1.8, A is a

nonsingular H-matrix.

Next, based on the conclusion of Lemma 1.9, we have that an irreducible diagonally dominant matrix
is a nonsingular H-matrix, therefore, we obtain the following Theorem 2.2.

Theorem 2.2. Let A = (ai j) ∈ Cn×n be irreducible matrix, if there exists a α ∈ (0, 1) such that

|aii| ≥
αri(A)
|aii|

[ ∑
t∈N1\{i}

|att|

αrt(A)
|ait| +

∑
t∈N2

|att| − αrt(A)
rt(A)

|ait| +
∑
t∈N3

|ait|

+
∑
t∈N4

rt(A)
|att|
|ait|

]
, ( f or all i ∈ N1),

(11)

|aii| ≥
ri(A)

|aii| − αri(A)

[∑
t∈N1

|att|

αrt(A)
|ait| +

∑
t∈N2\{i}

|att| − αrt(A)
rt(A)

|ait|

+
∑
t∈N3

|ait| +
∑
t∈N4

rt(A)
|att|
|ait|

]
, ( f or all i ∈ N2),

(12)

|aii| ≥
∑
t∈N1

|att|

αrt(A)
|ait| +

∑
t∈N2

|att| − αrt(A)
rt(A)

|ait| +
∑

t∈N3\{i}

|ait|

+
∑
t∈N4

rt(A)
|att|
|ait|, ( f or all i ∈ N3),

(13)

and there exists at least one strict inequality holds for i ∈
3⋃

i∈1
Ni, then A is a nonsingular H-matrix.

Proof. By the irreducibility of A, we can get ri(A) > 0, for all i ∈ N. Construct X = dia1(x1, x2, . . . , xn), where

xt =


|att |

αrt(A) , t ∈ N1,
|att |−αrt(A)

rt(A) , t ∈ N2,
1, t ∈ N3,

rt(A)
|att |
, t ∈ N4.

Obviously xi , +∞, then X is a positive diagonal matrix.
Let B = (bi j) = AX, then bi j = ai jx j, for all i, j ∈ N. Similar to the proof of Theorem 2.1, the proof can be

divided four cases as follows:
Case 1: By (11), we have for all i ∈ N1

ri(B) =
∑

t∈N1\{i}

|att|

αrt(A)
|ait| +

∑
t∈N2

|att| − αrt(A)
rt(A)

|ait| +
∑
t∈N3

|ait| +
∑
t∈N4

rt(A)
|att|
|ait|

≤
|aii|

αri(A)
|aii| = |bii|.

Case 2: By (12), we have for all i ∈ N2

ri(B) ≤
|aii| − αri(A)

ri(A)
|aii| = |bii|.
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Case 3: By (13), we have for all i ∈ N3

ri(B) ≤ |aii| = |bii|,

and there exists at least one i ∈
3⋃

i=1
Ni, such that |bii| > ri(B).

Case 4: Since 0 < |att |

αrt(A) < 1 (for all t ∈ N1), 0 < |att |−αrt(A)
rt(A) < 1 (for all t ∈ N2), 0 < rt(A)

|att |
< 1 (for all

t ∈ N4), from the irreducibility of A, we get that for all i ∈ N4

ri(A) −
∑
t∈N1

|att|

αrt(A)
|ait| −

∑
t∈N2

|att| − αrt(A)
rt(A)

|ait| −
∑
t∈N3

|ait| −
∑

t∈N4\{i}

rt(A)
|att|
|ait| ≥ 0.

Therefore

|bii| − ri(B) = xi|aii| −
∑
t∈N1

xt|ait| −
∑
t∈N2

xt|ait| −
∑
t∈N3

xt|ait| −
∑

t∈N4\{i}

xt|ait|

= ri(A) −
∑
t∈N1

|att|

αrt(A)
|ait| −

∑
t∈N2

|att| − αrt(A)
rt(A)

|ait|

−

∑
t∈N3

|ait| −
∑

t∈N4\{i}

rt(A)
|att|
|ait| ≥ 0,

and we obtain |bii| ≥ ri(B), for all i ∈ N4.
From Case 1-4, we get that |bii| ≥ ri(B), for all i ∈ N, i.e. B is a diagonally dominant matrix. In addition,

since A is irreducible, then we get B is also irreducible. Hence, B is an irreducible diagonally dominant
matrix. By Lemma 1.9, we conclude that B is a nonsingular H-matrix, and then there exists a positive
diagonal matrix X1, such that BX1 is an SDD matrix, that is, BX1=A(XX1) and (XX1) is a positive diagonal
matrix, then we get that A is a nonsingular H-matrix.

It is shown that a diagonally dominant matrix with nonzero elements chain is a nonsingular H-matrix
by Lemma 1.10, therefore, the following Theorem 2.3 is obtained.

Let

J1 =
{
i ∈ N1 : |aii| >

αri(A)
|aii|

[ ∑
t∈N1\{i}

|att|

αrt(A)
|ait| +

∑
t∈N2

|att| − αrt(A)
rt(A)

|ait| +
∑
t∈N3

|ait| +
∑
t∈N4

rt(A)
|att|
|ait|

]}
,

J2 =
{
i ∈ N2 : |aii| >

ri(A)
|aii| − αri(A)

[∑
t∈N1

|att|

αrt(A)
|ait| +

∑
t∈N2\{i}

|att| − αrt(A)
rt(A)

|ait| +
∑
t∈N3

|ait|

+
∑
t∈N4

rt(A)
|att|
|ait|

]}
,

J3 =
{
i ∈ N3 : |aii| >

∑
t∈N1

|att|

αrt(A)
|ait| +

∑
t∈N2

|att| − αrt(A)
rt(A)

|ait| +
∑

t∈N3\{i}

|ait|

+
∑
t∈N4

rt(A)
|att|
|ait|

}
,

J4 =
{
i ∈ N4 : |aii| >

|aii|

αri(A)

[∑
t∈N1

|att|

αrt(A)
|ait| +

∑
t∈N2

|att| − αrt(A)
rt(A)

|ait| +
∑
t∈N3

|ait| +
∑

t∈N4\{i}

rt(A)
|att|
|ait|

]}
.
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Theorem 2.3. Let A = (ai j) ∈ Cn×n, if there exists a α ∈ (0, 1)such that

|aii| ≥
αri(A)
|aii|

[ ∑
t∈N1\{i}

|att|

αrt(A)
|ait| +

∑
t∈N2

|att| − αrt(A)
rt(A)

|ait| +
∑
t∈N3

|ait|

+
∑
t∈N4

rt(A)
|att|
|ait|

]
, ( f or all i ∈ N1),

(14)

|aii| ≥
ri(A)

|aii| − αri(A)

[∑
t∈N1

|att|

αrt(A)
|ait| +

∑
t∈N2\{i}

|att| − αrt(A)
rt(A)

|ait|

+
∑
t∈N3

|ait| +
∑
t∈N4

rt(A)
|att|
|ait|

]
, ( f or all i ∈ N2),

(15)

|aii| ≥
∑
t∈N1

|att|

αrt(A)
|ait| +

∑
t∈N2

|att| − αrt(A)
rt(A)

|ait| +
∑

t∈N3\{i}

|ait|

+
∑
t∈N4

rt(A)
|att|
|ait|, ( f or all i ∈ N3),

(16)

and if for all i ∈
4⋃

i=1
[Ni − Ji], there exists a nonzero elements chain ai j1 a j1 j2 . . . a jk−1k , 0 such that k ∈

4⋃
i=1

Ji, then A is a

nonsingular H-matrix.

Proof. From Lemma 1.11, we assume that ri(A) > 0 (for all i ∈ N). Construct X = dia1(x1, x2, . . . , xn), where

xt =


|att |

αrt(A) , t ∈ N1,
|att |−αrt(A)

rt(A) , t ∈ N2,
1, t ∈ N3,

rt(A)
|att |
, t ∈ N4.

Obviously xi , +∞, thus X is a diagonal matrix that has positive diagonal entries. Let B = (bi j) = AX, we
can write bi j = ai jx j, for all i, j ∈ N. This proof is similar to the proof of Theorem 2.2, we can obtain that
|bii| ≥ ri(B), for all i ∈ N, and there exists at least an i ∈

⋃3
i=1 Ni such that |bii| > ri(B).

The other hand, if |bii| = ri(B), then for all i ∈
⋃4

i=1[Ni − Ji], by the hypotheses, we get that there exists a
non-zero entries chain of A, which is ai j1 a j1 j2 . . . a jk−1k , 0 such that k ∈

⋃4
i=1 Ji. Then there exists a non-zero

entries chain of B, which is bi j1 b j1 j2 . . . b jk−1k , 0, such that k ∈
⋃4

i=1 Ji satisfying |bkk| > rk(B). This means
that B is a nonsingular H-matrix. By a similar proof of Theorem 2.2, we obtain that A is a nonsingular
H-matrix.

Theorem 2.4. Let A = (ai j) ∈ Cn×n, if there exists a α ∈ (0, 1) such that for all j ∈ N4, t ∈
3⋃

i=1
Ni, a jt = 0 and

|aii| >
αri(A)
|aii|

[ ∑
t∈N1\{i}

|att|

αrt(A)
|ait| +

∑
t∈N2

|att| − αrt(A)
rt(A)

|ait|

+
∑
t∈N3

|ait|

]
, ( f or all i ∈ N1),
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|aii| >
ri(A)

|aii| − αri(A)

[∑
t∈N1

|att|

αrt(A)
|ait| +

∑
t∈N2\{i}

|att| − αrt(A)
rt(A)

|ait|

+
∑
t∈N3

|ait|

]
, ( f or all i ∈ N2),

|aii| >
∑
t∈N1

|att|

αrt(A)
|ait| +

∑
t∈N2

|att| − αrt(A)
rt(A)

|ait| +
∑

t∈N3\{i}

|ait|, ( f or all i ∈ N3),

then A is a nonsingular H-matrix.

Proof. By assuming that there exists a positive number k > 0 such that

Ri =
1∑

t∈N4

|ait|

[
|aii|

αri(A)
|aii| −

∑
t∈N1\{i}

|att|

αrt(A)
|ait| −

∑
t∈N2

|att| − αrt(A)
rt(A)

|ait|

−

∑
t∈N3

|ait| −
1
k

∑
t∈N4

rt(A)
|att|
|ait|

]
> 0, ( f or all i ∈ N1),

Si =
1∑

t∈N4

|ait|

[
|aii| − αri(A)

ri(A)
|aii| −

∑
t∈N1

|att|

αrt(A)
|ait| −

∑
t∈N2\{i}

|att| − αrt(A)
rt(A)

|ait|

−

∑
t∈N3

|ait| −
1
k

∑
t∈N4

rt(A)
|att|
|ait|

]
> 0, ( f or all i ∈ N2),

Pi =
1∑

t∈N4

|ait|

[
|aii| −

∑
t∈N1

|att|

αrt(A)
|ait| −

∑
t∈N2

|att| − αrt(A)
rt(A)

|ait| −
∑

t∈N3\{i}

|ait|

−
1
k

∑
t∈N4

rt(A)
|att|
|ait|

]
> 0, ( f or all i ∈ N3).

Then there exists a positive number ε > 0 such that

0 < ε < min{min
i∈N1

Ri,min
i∈N2

Si,min
i∈N3

Pi}.

Construct a matrix X = dia1(x1, . . . , xn), where

xt =


|att |

αrt(A) , t ∈ N1,
|att |−αrt(A)

rt(A) , t ∈ N2,
1, t ∈ N3,

ε + rt(A)
k|att |
, t ∈ N4.

As ε , +∞, so we get xi , +∞, then X has positive diagonal elements and it is a diagonal matrix. Let
B = (bi j) = AX, where bi j = ai jx j, for all i, j ∈ N, this proof is similar to the proof of Theorem 2.1, we obtain
that A is a nonsingular H-matrix.

Remark: For a matrix A of the form A11 A12

0 A22


3⋃

i=1
Ni

N4

,
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if the inequalities in Theorem 2.4 hold in A11, then A is a nonsingular H-matrix, no matter how large the
elements of A12 are.

In theorem 2.1-2.4, we obtain several simple criteria for nonsingular H-matrix. Finally, a necessary
condition for nonsingular H-matrix is given in theorem 2.5.

Theorem 2.5. If A = (ai j) ∈ Cn×n is a nonsingular H-matrix, then there exists at least one i ∈ N such that for i ∈ N1,

|aii| >
αri(A)
|aii|

[ ∑
t∈N1\{i}

|att|

αrt(A)
|ait| +

∑
t∈N2

|att| − αrt(A)
rt(A)

|ait| +
∑
t∈N3

|ait|

]
, (17)

or for i ∈ N2,

|aii| >
ri(A)

|aii| − αri(A)

[∑
t∈N1

|att|

αrt(A)
|ait| +

∑
t∈N2\{i}

|att| − αrt(A)
rt(A)

|ait| +
∑
t∈N3

|ait|

]
, (18)

or for i ∈ N3,

|aii| >
∑
t∈N1

|att|

αrt(A)
|ait| +

∑
t∈N2

|att| − αrt(A)
rt(A)

|ait| +
∑

t∈N3\{i}

|ait|, (19)

holds, where α ∈ (0, 1).

Proof. We prove the opposite. Let us assume inequations (17)-(19) are all false, we construct X = dia1(x1, x2, . . . , xn),
where

xt =


|att |

αrt(A) , t ∈ N1,
|att |−αrt(A)

rt(A) , t ∈ N2,
1, t ∈ N3,
1, t ∈ N4.

Obviously, xi , +∞ and X is a positive diagonal entries. Let B = (bi j) = AX, where bi j = ai jx j, for all i, j ∈ N.
Because inequations (17)-(19) are all invalid, we known that

|b j j| ≤
∑

t∈
3⋃

i=1
Ni,t, j

|b jt|, ( f or all j ∈
3⋃

i=1

Ni). (20)

The other hand, because A is a nonsingular H-matrix, and so is B. Let P be a permutation matrix, such that

PTBP =

 B11 B12

B21 B22


3⋃

i=1
Ni

N4

.

By Lemma1.12, we know that

 B11 B12

B21 B22


3⋃

i=1
Ni

N4

is a nonsingular H-matrix. Then

 B11 0

B21 B22


3⋃

i=1
Ni

N4

is a nonsingular H-matrix. Therefore, B11 is a nonsingular H-matrix, which contradicts inequation (20).
Then the conclusion follows.
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3. Example

In this section, some numerical examples are given to illustrate our results.

Example 3.1. Let

A1 =


3 0 0 2 4
0 6 0 5 3
1 2 3 0 0
1 1 1 100 0
1 1 1 0 100

 .
We choose α = 1

2 and by simple calculation, it is easy to obtain that N1 = {1},N2 = {2},N3 = {3},N4 = {4, 5}, and
r1(A1) = 6, r2(A1) = 8, r3(A1) = 3, r4(A1) = 3, r5(A1) = 3.
For all i ∈ N1,

|a11| = 3 >
9

50
=

1
2 r1(A1)
|a11|

[
|a22| −

1
2 r2(A1)

r2(A1)
|a12| + |a13| +

r4(A1)
|a44|

|a14| +
r5(A1)
|a55|

|a15|],

for all i ∈ N2,

|a22| = 6 >
24
25
=

r2(A1)
|a22| −

1
2 r2(A1)

[
|a11|

1
2 r1(A1)

|a21| + |a23| +
r4(A1)
|a44|

|a24| +
r5(A1)
|a55|

|a25|],

and for all i ∈ N3,

|a33| = 3 >
3
2
=
|a11|

1
2 r1(A1)

|a31| +
|a22| −

1
2 r2(A1)

r2(A1)
|a32| +

r4(A1)
|a44|

|a34| +
r5(A1)
|a55|

|a35|,

therefore, from Theorem 2.1 it is easy to obtain that A is a nonsingular H-matrix. In fact, let X = dia1{1, 0.25, 1, 0.18, 0.18},
one can also obtain that A is a nonsingular H-matrix from Lemma 1.8.

Next, we compare the Theorem 1.1 in [21] with our Theorem 2.1.

Example 3.2. Let

A2 =


3 5 1 0 0
0 6 0 5 3
1 2 3 0 0
1 1 1 100 0
1 1 1 0 100

 .
We choose α = 1

2 and by calculation, we have N1 = {1},N2 = {2},N3 = {3},N4 = {4, 5} and r1(A2) = 6, r2(A2) =
8, r3(A2) = 3, r4(A2) = 3, r5(A2) = 3.
For all i ∈ N1,

|a11| = 3 >
9
4
=

1
2 r1(A2)
|a11|

[
|a22| −

1
2 r2(A2)

r2(A2)
|a12| + |a13| +

r4(A2)
|a44|

|a14| +
r5(A2)
|a55|

|a15|],

for all i ∈ N2,

|a22| = 6 >
24
25
=

r2(A2)
|a22| −

1
2 r2(A2)

[
|a11|

1
2 r1(A2)

|a21| + |a23| +
r4(A2)
|a44|

|a24| +
r5(A2)
|a55|

|a25|],

and for all i ∈ N3,

|a33| = 3 >
3
2
=
|a11|

1
2 r1(A2)

|a31| +
|a22| −

1
2 r2(A2)

r2(A2)
|a32| +

r4(A2)
|a44|

|a34| +
r5(A2)
|a55|

|a35|.

Therefore, from Theorem 2.1, we get A2 is a nonsingular H-matrix.
However, it is difficult to prove whether A2 is a nonsingular H-matrix using [21]. Since it is hard to find

parameters α that satisfy the condition, we will illustrate using the following two figures.
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Figure 1: The parameter α that satisfies
all conditions of Theorem 2.1.

Figure 2: Parameter α that does not satisfy
the condition of Theorem 1.1 in [21].

In figures 1 and 2, 1 signifies the parameter α that matches the criterion of Theorem 2.1, while 0 indicates
parameter α that does not conform to the stipulations of Theorem 1.1 as mentioned in [21]. It is easy to
observe when implementing Theorem 2.1 to assess whether A2 is a nonsingular H-matrix, a substantial
number of α values fulfill the prerequisites when the 0.5 < α < 0.7 and the step size is 0.01.

While applying Theorem 1.1 from [21] to check whether A2 is a nonsingular H-matrix, it is extremely
challenging to locate a value of 0 < α < 1 that satisfies the condition when the step size is set to 0.01.
Consequently, our criterion yield better results in determining parameter α for A2.

At the same time, using Theorem 1 in [6], it is not possible to determine whether matrix A2 is a
nonsingular H-matrix since |a11| = 3 < 9.5 = r1(A2)

|a11 |
[ |a22 |

r2(A2) |a12| +
|a33 |

r3(A2) |a13| +
r4(A2)
|a44 |
|a14| +

r5(A2)
|a55 |
|a15|].

And the use of Theorem 2 in [7] does not provide a definitive judgment on whether matrix A2 is a
nonsingular H-matrix since |a11|

|a11 |

r1(A2)−|a11 |
= 3 < 5.375 = |a12|

r2(A2)+|a22 |

2r2(A2) + |a13|.

Finally, we have verified Theorem 1 in [20], since |a11| = 3 < 4.5 = r1(A2)
|a11 |

[ r2(A2)−|a22 |

r2(A2) |a12| + |a13| +
r4(A2)
|a44 |
|a14| +

r5(A2)
|a55 |
|a15|], then it is impossible to determine if matrix A2 is a nonsingular H-matrix.

Example 3.3. Let

A3 =


2 5 0 0 0
2 6 5 0 0
0 0 3 3 0
0 0 4 4 0
0 0 0 1 10

 .
We choose α = 1

2 , and by calculation, it is easy to obtain that N1 = {1},N2 = {2},N3 = {3, 4},N4 = {5}, and
r1(A3) = 5, r2(A3) = 7, r3(A3) = 3, r4(A3) = 4, r5(A3) = 1. We get that for all i ∈ N1,

|a11| = 2 ≤
125
56
=

1
2 r1(A3)
|a11|

[
|a22| −

1
2 r2(A3)

r2(A3)
|a12| + |a13|],

for all i ∈ N2,

|a22| = 6 ≤
462
25
=

r2(A3)
|a22| −

1
2 r2(A3)

[
|a11|

1
2 r1(A3)

|a21| + |a23|],

and for all i ∈ N3,

|a33| = 3 = 3 =
|a11|

1
2 r1(A3)

|a31| +
|a22| −

1
2 r2(A3)

r2(A3)
|a32| + |a34|,

|a44| = 4 = 4 =
|a11|

1
2 r1(A3)

|a41| +
|a22| −

1
2 r2(A3)

r2(A3)
|a42| + |a43|.
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From Theorem 2.5, we obtain that A3 is not nonsingular H-matrix. In fact, it is easy to verify that A3 is not
nonsingular H-matrix, since its comparison matrix µ(A3) = (mi j) ∈ Rn×n is a singular matrix, that is det(µ(A3)) = 0.
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