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Abstract. In the present paper, first we characterize the multiplier algebra, (maximal) ideals, minimal
idempotents and spectrum of the generalized amalgamated Banach algebra A⊠ΘX in terms of A and X and
the bilinear mappingΘ from X×X into A. Then, we show that there are a strong relationship between some
of homological properties of A⊠Θ X, such as Connes-amenability, flatness and projectivity, ϕ-biprojectivity,
and the Banach algebras A and X and the mappingΘ. The results of this paper extend several results in the
literature.

1. Introductions and Preliminaries

Let A and X be Banach algebras and Θ : X × X → A be a bounded bilinear mapping. If also X is an
algebraic Banach A-module with respect to Θ, which is a Banach A-module with compatible operations,
that is for each a, a′ ∈ A and x, x′, x′′ ∈ X

aΘ(x, x′) = Θ(ax, x′),Θ(x, x′)a = Θ(x, x′a),Θ(xa, x′) = Θ(x, ax′),Θ(xx′, x′′) = Θ(x, x′x′′),

in A and
(xx′)a = x(x′a), a(xx′) = (ax)x′, (xa)x′ = x(ax′),Θ(x, x′)x′′ = xΘ(x′, x′′),

in X, then a direct verification shows that the ℓ1-direct product A × X as a linear space with the product

(a, x)(a′, x′) = (aa′ + Θ(x, x′), ax′ + xa′ + xx′) (a, a′ ∈ A, x, x′ ∈ X),

is a Banach algebra. We call this Banach algebra the generalized amalgamated Banach algebra with respect
to Θ and we denote it by A ⊠Θ X in this paper.
If X be an algebraic Banach A-module (that is an algebraic A-module with respect to the zero bilinear
mapping). Then the generalized module extension Banach algebra A ▷◁ X is a generalized amalgamated
Banach algebra with respect to Θ = 0, See [24]. The module extension Banach algebras, unitization of
Banach algebras, Lau product of Banach algebras and direct product of Banach algebras are the main
examples of generalized amalgamated Banach algebras; see for more details about this Banach algebras [4],

2020 Mathematics Subject Classification. Primary 46H25; Secondary 46M18.
Keywords. Amalgamated Banach algebras; Connes-amenable; Flatness; ϕ-biprojective.
Received: 19 April 2023; Accepted: 13 August 2023
Communicated by Dijana Mosić
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[5], [17] and [32].
Many properties of these Banach algebras such as n-weak amenability, Connes amenability, topological
centers, Biflatness, and Biprojectivity and other properties have been studied by many authors, see [1],
[24], [18], [6], [7], [8], [12], [13], [14], [20], [22], [23], [26], [30], [31], [32], [9] and references therein. Another

important class of these Banach algebras is the generalized matrix Banach algebra G =
[ A M

N B
]
, see [16],

where A and B are Banach algebras, M is a (A,B)-module and N is a (B,A)-module can be identify with the
generalized amalgamated Banach algebra (A ⊗ B) ⊠Θ (M ⊗ N), see [15] for details. Also see [16] for some
homological properties of generalized matrix Banach algebras.

Consider also G = A ⊠−π A0 where A0 is A with zero product and the actions of A on A0 are the product
π of the Banach algebra A and Θ = −π (Where A = R this product is the usual product on C). Then G is a
generalized amalgamated Banach algebra.

For a generalized amalgamated Banach algebra A⊠Θ X one can directly checked that the dual (A⊠Θ X)∗

as a Banach (A ⊠Θ X)-module enjoys the following module operations:

( f , 1)(a, x) = ( f a + 1x, 1x + 1a + f .x),
(a, x)( f , 1) = (a f + x1, x1 + a1 + x. f ),

for all a ∈ A, f ∈ A∗ and x ∈ X, 1 ∈ X∗, where ”.” is denoted for the corresponding bilinear mapping induced
by Θ. In the sequel for simply of our notations we omit ”.”.

The generalized amalgamated Banach algebra G = A⊠Θ X was introduced by authors in [15] and many
important properties such as n-weak amenability, topological centers, bounded approximate identity, and
the ideal structure have been studied.
The present paper divides into five sections. In sections 2 and 3, we characterize the multiplier algebra,
(maximal) ideals, minimal idempotents and spectrum of A ⊠Θ X in terms of A and X and the mapping
Θ. Then, in sections 4 and 5, we show that there are a strong relationship between some of homological
properties of generalized amalgamated Banach algebra A ⊠Θ X, such as Connes-amenability, flatness,
projectivity and ϕ-biprojectivity, and the corresponding properties of Banach algebras A and X and the
mapping Θ. These results extend some previous results in this field.

2. Some Primary results on A ⊠Θ X

In this section we obtain some primary results on the generalized amalgamated Banach algebra G =
A ⊠Θ X.

Proposition 2.1. Let G = A ⊠Θ X be a generalized amalgamated Banach algebra. Then the following statements
hold.

(i) G is commutative if and only if both A and X are commutative, X is a symmetric A-bimodule and Θ = Θt.

(ii) Suppose that A,A′,X and X′ are Banach algebras such that X and X′ are algebric Banach A and A′-modles
with respect to Θ and Θ′, respectively and there exist isomomorphisms φ : A→ A′ and ψ : X→ X′ such that
ψ(ax) = φ(a)ψ(x) and ψ(xa) = ψ(x)φ(a) andΘ′(ψ(x), ψ(y)) = φ ◦Θ(x, y). Then the generalized amalgamated
Banach algebras A ⊠Θ X and A′ ⊠Θ′ X′ are isomorphic.

(iii) If A ⊠Θ X has an identity (a0, x0), then A has the identity a0, x0A = Ax0 = 0, a0x + x0x = xa0 + xx0 = x and
Θ(x0, x) = Θ(x, x0) = 0, for each x ∈ X.

(iv) If A is unital and X is a unital Banach A-module, then A ⊠Θ X is unital.

Similar results of the parts (iii) and (iv), can be given for the (left or right) approximate identities.
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Proof. (i) It is obvious.
(ii) It is sufficient to verify that the map F from A ⊠Θ X into A′ ⊠Θ′ X′ defined by F(a, x) = (φ(a), ψ(x)) is

an isomorphism.
(iii) For each a ∈ A and x ∈ X, we have (a, 0) = (a0, x0)(a, 0) = (a0a, x0a) and (0, x) = (a0, x0)(0, x) =

(Θ(x0, x), a0x + x0x). Again repeat this process for (a, 0)(a0, x0) and (0, x)(a0, x0).
(iv) If A has an identity e then (e, 0) is the identity of A ⊠Θ X.

In the following proposition we will characterize the minimal idempotent of generalized amalgamated
Banach algebras.

Proposition 2.2. Suppose that G = A ⊠Θ X is a generalized amalgamated Banach algebra and x0 ∈ X is arbitrary
and fixed. Let Θ(X, x0) = Θ(x0,X) = 0 and x0A = Ax0 ∈ ⟨x0⟩. Then G has a minimal idempotent (a0, x0) if and only
if one of the following items hold.

(i) a0 = 0 and x0 is a minimal idempotent of X.

(ii) a0 is a minimal idempotent of A and for each x ∈ X,

(a0x + x0x)a0 = −(a0x + x0x)x0 and x2
0 + a0x0 + x0a0 = x0.

Proof. (a0, x0) is a minimal idempotent if and only if for each (a, x) ∈ G, we have (a0, x0)2 = (a0, x0) and
(a0, x0)(a, x)(a0, x0) = λa,x(a0, x0), for some λa,x. This is equivalent to

a2
0 + Θ(x0, x0) = a0, (2.1)

x2
0 + a0x0 + x0a0 = x0 (2.2)

and

a0aa0 + Θ(x0, x)a0 + Θ(a0x + x0a + x0x, x0) = λa,xa0, (2.3)
a0xa0 + x0aa0 + x0xa0 + a0ax0 + Θ(x0, x)x0 + a0xx0 + x0ax0 + x0xx0 = λa,xx0 (2.4)

for each a ∈ A and x ∈ X.
Obviously if one of (i) is true, then (a0, x0) is a minimal idempotent. Also if (ii) is true, then since x0A,Ax0 ∈

⟨x0⟩, (a0, x0) is a minimal idempotent.
For the converse, if (a0, x0) is a minimal idempotent, then 2.1 and 2.3 imply that a2

0 = a0 and a0aa0 = λa,xa0,
for each x ∈ X; and for x = 0, we have a0aa0 = λa,0a0. Therefore we have two cases:
• a0 = 0, and from 2.2 and 2.4 with a = 0 we obtain x0 is a minimal idempotent, which is (i).
•• a0 is a minimal idempotent. Putting x = 0 in 2.3, we conclude that λa,x = λa,0, for each a ∈ A and x ∈ X.
Thus by taking a = 0 in 2.4, we have

a0xa0 + x0xa0 + a0xx0 + x0xx0 = λ0,0x0, (2.5)

and by putting x = 0 in (2.5), we have λ0,0 = 0. Therefore (ii) is valid by 2.2 and (2.5).

3. Characters and Spectrum of A ⊠Θ X

In this section, we will obtain a characterization of the left multipliers of A ⊠Θ X and then we conclude
its spectrum. At the end of this section, we will compute its spectrum by computing of both spectrums A
and X.
The following result characterized the left multipliers of A ⊠Θ X which is noted by LM(A ⊠Θ X).

Proposition 3.1. The operator T is in LM(A ⊠Θ X) if and only if there exists some UA ∈ HomA(A,A), UX ∈

HomX(X,A), VX ∈ LM(X) and VA ∈ HomX(A,X) such that for each a, b ∈ A and x ∈ X, we have
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(i) T((a, x)) =
(
UA(a) +UX(x),VA(a) + VX(x)

)
.

(ii) UA

(
aa′
)
= aUA(a′), and VA(aa′) = aVA(a′) .

(iii) UX(xx′) +UA(Θ(x, x′)) = Θ(x,VX(x′)) and VX(xx′) + VA(Θ(x, x′)) = xUX(x′) + xVX(x′).

(iv) UA(xa′) = xUX(a′) + Θ(x,VA(a′)) and VA(xa′) = xUA(a′) + xVA(a′).

(v) UX(ax′) = aUX(x′) and VX(ax′) = aVX(x′).

Proof. Assume that T ∈ LM(A ⊠Θ X). Then, there exists bounded linear maps U : A ⊠Θ X → A and
V : A ⊠Θ X → A such that T = (U,V). Taking UA(a) = U((a, 0)), VA(a) = V((a, 0)) for each a ∈ A, and
UX(x) = U((0, x)), VX(x) = V((0, x)), for each x ∈ A. Then clearly these mappings are linear and satisfy in (i).
For another parts, we have

T((a, x)(a′, x′)) = T((aa′ + Θ(x, x′), ax′ + xa′ + xx′))
=
(
UA(aa′ + Θ(x, x′)) +UX(ax′ + xa′ + xx′)

,VA(aa′ + Θ(x, x′)) + VX(ax′ + xa′ + xx′)
) (3.1)

and

(a, x)T((a′, x′)) = (a, x)
(
UA(a′) +UX(x′),VA(a′) + VX(x′)

)
=
(
aUA(a′) + aUX(x′) + Θ(x,VA(a′) + VX(x′))

, aVA(a′) + aVX(x′) + xUA(a′) + xUX(x′) + xVA(a′) + xVX(x′)
)
,

(3.2)

for each a, a′ ∈ A and x, x′ ∈ X. From (3.1) and (3.2), we get

UA(aa′ + Θ(x, x′)) +UX(ax′ + xa′ + xx′) = aUA(a′) + aUX(x′) + Θ(x,VA(a′) + VX(x′)) (3.3)

and

VA(aa′ + Θ(x, x′)) + VX(ax′ + xa′ + xx′) = aVA(a′) + aVX(x′) + xUA(a′)
+xUX(x′) + xVA(a′) + xVX(x′), (3.4)

for each a, a′ ∈ A and x, x′ ∈ X. Putting x = x′ = 0 in (3.3) and (3.4), we have the statement (ii), again taking
a = a′ = 0 in (3.4) and (3.4), we get (iii). For the parts of (iv) and (v), put a = 0, x′ = 0 and a′ = 0, x = 0, in
(3.3) and (3.4) respectively.

The converse can be prove easily.

A similar argument as the proof of the last proposition implies the following proposition, which we omit
its proof.

Proposition 3.2. (α, β) ∈ σ(A ⊠Θ X) if and only if for each a, b ∈ A and x, y ∈ X, the following conditions hold.

(i) α ◦Θ(x, y) + β(xy) = β(x)β(y).

(ii) α(ab) = α(a)α(b).

(iii) α(a)β(x) = β(ax).

(iv) β(x)α(a) = β(xa).

In the next theorem, we characterize the character space of A⊠ΘM, where M is a closed ideal of X. Note
that A ⊠Θ M is a Banach algebra, if AM ∪MA ⊆M.
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Theorem 3.3. Suppose that σ(A) , ∅ and span(AM ∪MA) =M, where M is a closed ideal of X. If for each α ∈ σ(A),
α ◦Θ|M×M = 0, then σ(A ⊠Θ M) = U ∪ V, where

U = {(m.β, β) : β ∈ σ(M), m ∈M, β(m) = 1, m.β ◦Θ|M×M = 0},

V = {(α, 0) : α ∈ σ(A), α ◦Θ = 0}.

Proof. Obviously V ⊆ σ(A ⊠Θ M) and sincce for each m ∈ M and β ∈ σ(M) with β(m) = 1 we have
β(mm′) = β(m′m), therefore U ⊆ σ(A ⊠Θ M) and thus U ∪ V ⊆ σ(A ⊠Θ M).
Now let (α, β) ∈ σ(A ⊠Θ M) and (a,m), (a′,m′) ∈ A ⊠Θ M. Then

⟨(α, β), (a,m).(a′,m′)⟩ = ⟨(α, β), (aa′ + Θ(m,m′), am′ +ma′ +mm′)⟩
= α(aa′) + α(Θ(m,m′)) + β(am′) + β(ma′) + β(mm′). (3.5)

On the other hand,

⟨(α, β), (a,m).(a′,m′)⟩ = (α, β)(a,m) × (α, β)(a′,m′)
= (α(a) + β(m))(α(a′) + β(m′))
= α(a)α(a′) + α(a)β(m′) + β(m)α(a′) + β(m)β(m′).

(3.6)

From equality of (3.5) and (3.6), for a = a′ = 0, we have α(Θ(m,m′)) + β(mm′) = β(m)β(m′). Since for each
α ∈ σ(A), α ◦Θ|M×M = 0, we get β(mm′) = β(m)β(m′). So β ∈ σ(A) ∪ {0}.
Again, by equality of (3.5) and (3.6), for m = m′ = 0, we have α(a, a′) = α(a)α(a′). So α ∈ σ(M) ∪ {0}. Using
(3.5) and (3.6), α = 0 implies that β(am′) + β(ma′) = 0 for each a, a′ ∈ A, m,m′ ∈ M, and so β(am′ +ma′) = 0.
Which implies β = 0 on span(AM ∪MA) = M. This is a contradiction by (α, β) ∈ σ(A ⊠Θ M). Thus we have
two cases:
• If β = 0 then form equality of (3.5) and (3.6), we have α◦Θ = 0 on M×M and so (α, β) ∈ V, thus α ∈ σ(A).
•• If β , 0 then by equality of (3.5) and (3.6), we have

α(Θ(m,m′)) + β(am′) + β(ma′) + β(mm′) = α(a)β(m′) + β(m)α(a′) + β(m)β(m′),

and by a′ = 0, m = 0, we have
β(am′) = α(a)β(m′),

for each a ∈ A, m′ ∈ M. Choose m′ ∈ M such that β(m′) = 1, then for each a ∈ A, we have α(a) = β(am′) =
(m′.β)(a). Therefore (α, β) ∈ U.

Taking Θ = 0 in Theorem 3.3, we obtain the following result.

Corollary 3.4. Suppose that σ(A) , ∅ and span(AM ∪MA) =M, where M is a closed ideal of X. Then σ(A ▷◁ M) =
U ∪ V, where

U = {(m.β, β) : β ∈ σ(M), m ∈M, β(m) = 1}, V = {(α, 0) : α ∈ σ(A)}.

For each θ-Lau product of Banach algebra A ×θ B, we have the following characterization.

Corollary 3.5. [31, Proposition 2.4] Suppose that σ(A) , ∅ and θ ∈ σ(A). Then σ(A ×θ X) = U ∪ V, where

U = {(θ, β) : β ∈ σ(M)}, V = {(α, 0) : α ∈ σ(A)}.

Also we have the following characterization.

Corollary 3.6. [22, Theorem 5.1] Let θ : A→ X be a homomorphism, σ(A) , ∅ and θ(A)M ∪Mθ(A) =M, where
M is a closed ideal of X. Then σ(A ×θ B) = U ∪ V, where

U = {((m.β) ◦ θ, β) : β ∈ σ(M), m ∈M, β(m) = 1}, V = {(α, 0) : α ∈ σ(A)}.
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4. Connes-amenability of A ⊠Θ X

The concept of amenability for W∗-algebras was defined by Johnson et al. in [19]. Then Connes in [2] and
[3], introduced another notion of amenability which is called Connes-amenability by Helemskii [10]. Next
Runde in [27] extended this notion of Connes-amenability from W∗-algebras to dual Banach algebras. Any
Connes-amenable dual Banach algebra A, is unital. In Theorem 4.4.8 of [27] it is proved that for any Arens
regular Banach algebra A which is an ideal in A∗∗, A is amenable if and only if A∗∗ is Connes-amenable.
In this section we will characterize Connes-amenability of A⊠Θ X in terms of Connes-amenability of A and
X and the mapping Θ.

Definition 4.1. Let f : X × Y → X (or Y) be a bilinear map and V ⊆ X (or W ⊆ Y) as a subspace. We say that f is
stable on V (or W) if f (V,Y) ⊆ V (or f (X,W) ⊆W).

Definition 4.2. [27]

(i) A Banach algebra A is called a dual Banach algebra if there exists a closed submodule A∗ of A∗ such that
A � (A∗)∗.

(ii) suppose that A is a dual Banach algebra and E is a dual Banach A-bimodule. An element x ∈ E is normal if the
following maps from A into E are w∗-w∗-continuous:

a 7→ a.x and a 7→ x.a.

E is normal, if any element of E is normal.

(iii) A dual Banach algebra A is Connes-amenable if, for every normal, dual Banach A-bimodule E, every w∗-w∗-
continuous derivation D ∈ Z1(A,E) is inner.

Lemma 4.3. Let A and X be dual Banach algebrs and G = A ⊠Θ X. If π∗ℓ, π
t∗
r , Θ

∗ and Θt∗ are stable on X∗ and πt∗
ℓ

and π∗r are stable on A∗, then G is a dual Banach algebra.

Proof. It is easy to see that (A∗ ×X∗) is a closed submodule of A∗ ×X∗ � (A⊠Θ X)∗ = G∗ such that (A×X∗)∗ �
G.

Lemma 4.4. Let G be a dual Banach algebra. Then A is a dual Banach algebra. If πℓ and πr are zero, then X is a dual
Banach algebra.

Proof. Let V be a closed submodule of G∗ such that V∗ = G. Put VA = {a∗ ∈ A∗ : (a∗, 0) ∈ V}. Suppose that
{a∗α} is a net in VA, such that a∗α → a∗. Then (a∗α, 0)→ (a∗, 0) and since V is closed, (a∗, 0) ∈ V, i.e. a∗ ∈ VA and
so VA is closed. Also

(a∗a, 0) = (a∗, 0).(a, 0) ⊆ VG ⊆ V,

for each a∗ ∈ VA. Thus a∗a ∈ VA, for each a ∈ A, and similarly aa∗ ∈ VA, for each a ∈ A.
On the other hand A∗∗ = V∗A ⊕ V⊥A and G∗∗ = V∗ ⊕ V⊥, where

V⊥A = {a
∗∗
∈ A∗∗ : a∗∗(a∗) = 0, ∀a∗ ∈ VA}

= {a∗∗ ∈ A∗∗ : (a∗∗, 0)(a∗, b∗) = 0, ∀(a∗, b∗) ∈ V}
= {a∗∗ ∈ A∗∗ : (a∗∗, 0) ∈ V⊥}.

Therefore, V∗A = {a
∗∗
∈ A∗∗ : (a∗∗, 0) ∈ V∗ = G} = A.

Similarly V∗X = X and VX is closed. Also if πℓ and πr are zero, then VX is a submodule of X∗.
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Remark 4.5. Note that in the proof of Lemma 2.2 in [26], V∗A is not submodule unless A = 0 or θ = 0; indeed if
V∗A = 0, then A = 0 and it is A-submodule. If V∗A , 0 and it is A-submodule, then for each a ∈ A and b ∈ B and
nonzero v ∈ V∗A we have

0 = ⟨(0, b), av⟩
= ⟨(0, b), (a, 0)v⟩
= ⟨(0, b)(a, 0), v⟩
= ⟨(θ(b)a, 0), v⟩
= ⟨θ(b)a, f ⟩
= θ(b)⟨a, f ⟩.

Where similar to the proof of Lemma 2.2 in [26], we consider v = ( f , 0) ∈ A∗ × 0. This implies that θ = 0 or A = 0.

The following results generalize Theorem 2.4 in [26].

Theorem 4.6. Let G = A ⊠Θ X be a dual Banach algebra and Connes-amenable. Then we have the following
statements.

(i) A is Connes-amenable if for each w∗-w∗-continuous derivation d from A to a normal dual Banach A-module,
d ◦Θ = 0.

(ii) Let πℓ and πr be the left and right module actions of A on X, respectively. Then X is Connes-amenable if for
each normal dual Banach X-module E, we can consider E as an A-module with the left and right module actions
πA
ℓ and πA

r such that for each w∗-w∗-continuous derivation d from X to E, we have d ◦ πℓ = πA
ℓ ◦ (iA × d) and

d ◦ πr = πA
r ◦ (d × iA).

Proof. From Lemma 4.4, A is a dual Banach algebra. Let E be a normal dual Banach A-module and
let d : A → E be a w∗-w∗-continuous derivation. Consider E as a G-bimodule by the actions e(a, x) =
ea, (a, x)e = ae. Define D : G → E by D(a, x) = d(a). Then D is a w∗-w∗-continuous derivation, and so
d(a) = D((a, x)) = e(a, x)−(a, x)e = ea−ae, for some e ∈ E. Hence A is Connes-amenable. Similarly, let d : X→ E
be a w∗-w∗-continuous derivation. By defining the actions e(a, x) = πA

r (e, a) + ex and (a, x)e = πA
ℓ (a, e) + xe, E

is a G-bimodule. Now define D : G → E by D(a, x) = d(x), which is a w∗-w∗-continuous derivation. Then
similar above we can conclude that X is Connes-amenable.

Corollary 4.7. If, in Theorem 4.6, we put Θ = 0, then A ⊠Θ X = A ▷◁ X and Connes-amenability of A ▷◁ X implies
Connes-amenability of A. Moreover if πℓ and πr are zero or πℓ(a, x) = θ(a)x = πr(x, a), for some θ ∈ σ(A), then
Connes-amenability of A ⊠Θ X implies Connes-amenability of X.

5. ψ-biprojectivity and (α, β)-biprojectivity of A ⊠Θ X

The concepts of biflatness and biprojectivity of Banach algebras were defined by A. Ya. Helemskii in
[10]; see also [27] and [5] for more details. Using this concept, he showed that every Banach algebra A is
amenable if and only if it is biflat and has a bounded approximate identity. The sufficient and necessary
conditions for Biflatness and biprojectivity of many classes of Banach algebras such as C∗-algebras, the
group algebra L1(G) of a locally compact group G and the second dual of Banach algebras have been
obtained in [27], [28], and [21]. For the other approaches, see [25], [8], and references therein. Medghalchi

and Sattari in [20] proved that any triangular Banach algebra T =
[ A M

0 B
]
, is biflat (resp. biprojective)

if and only if the corner Banach algebras A and B are biflat (resp. biprojective) and M = 0, where M is an
essential (A,B)-module, that is, AM = M = MB. Afterward, Khodami and Vishki in [11] showed that each
θ-Lau product of Banach algebra A ×θ B is biflat (resp. biprojective) if and only if the Banach algebras A
and B are biflat (resp. biprojective), where A is unital Banach algebra and θ ∈ σ(B). See also [1] and [9] for
a generalization of this work.

In the following, we consider A,X and Θ as before and we characterize ϕ-biprojectivity of A ⊠Θ X.
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Remark 5.1. Note that the product of a Banach algebra A dose not effect on injectivity, projectivity and flatness of A
as a C-module, so Theorems 3.4–3.7 in [26] are true for G = A ⊠Θ X. Indeed G � A ⊗θ X for θ ∈ σ(A) as a Banach
space. That is G is injective (respectively, projective, and flat) if and only if A and X have the corresponding properties
with the module actions defined before the same Theorems in [26]. For the definition of these concepts see [10], [29]
and [26].

The generalized amalgamated Banach algebra G = A⊠Θ X is a Banach A-bimodule under the following
module actions.

c.(a, x) =: (c, 0).(a, x) and (a, x).c =: (a, x).(c, 0), where a, c ∈ A and x ∈ X. we can be made G into a Banach
X-bimodule in a similar way.

We define the usual projections PA : G → A by PA(a, x) = a and PX : G → X by PX(a, x) = x, a ∈
A, x ∈ X. Also, the usual injections JA : A → G by JA(a) = (a, 0) and JX : X → G by JX(x) = (0, x),
a ∈ A, x ∈ X. The mappings PA and JA are A-bimodule. JX is a X-bimodule if and only if Θ = 0, and PX
is not X-bimodule in general. The unique induced mapping PX ⊗ PX from G⊗̂G into X⊗̂X is defined by
(PX ⊗ PX)

(
(a, x) ⊗ (a′, x′)

)
= x ⊗ x′, and the unique induced mapping JX ⊗ JX from X⊗̂X into G⊗̂G is defined

by (JX ⊗ JX)(x ⊗ x′) = (0, x) ⊗ (0, x′).

Definition 5.2. (i) [27] A Banach algebra A is said to be biprojective if for ∆A : A⊗̂A→ A there exists a bounded
A-bimodule map λA : A→ A⊗̂A which is a right inverse of ∆A i.e. ∆A ◦ λA = idA, where ∆A(a ⊗ b) = ab.

(ii) [30] Let ψ ∈ σ(A). Then the Banach algebra A is called ψ-biprojective if there is a bounded A-bimodule map
λA : A→ A ⊗ A such that ψ ◦ ∆A ◦ λA(a) = ψ(a), for any a ∈ A.

Note that it is easy to see that every biprojective Banach algebra is biflat; see 2.8.41(i)-[5], and also in
Theorem 2.9.65 in [5] one can see that A is amenable Banach algebra if and only if it is biflat and has a
bounded approximate identity.

Theorem 5.3. Let G = A ⊠Θ X be (α, β)-biprojective and there are A-bimodule maps S : X → A,L : A → X,K :
A→ A and T : A→ A such that T is also a homomorphism and for each a, b ∈ A and x, y ∈ X we have

(i) S(x)S(y) = S(xy) + T(Θ(x, y)).

(ii) S(x)T(a) = S(xa) and T(a)S(x) = S(ax).

(iii) α ◦ T = α = α ◦ K + β ◦ L and α ◦ S = β.

Then A is α-biprojective.

Proof. Consider the G-bimodule map λG : G → G ⊗ G such that (α, β)∆GλG = (α, β). Define P : G → A,
J : A→ G and λA : A→ A⊗A by P((a, x)) = T(a)+S(x), J(a) = (K(a),L(a)) and λA = (P⊗P)λG J. Then it is easy
to verify that (i) and (ii) imply that ∆A(P ⊗ P) = P∆G and then we conclude that α∆AλA = α, by (iii). Note
that since K,L,T and S are A-module maps, J and P are also A-bimodule maps and so λA is an A-bimodule
map.

Theorem 5.4. Let (α, β) ∈ σ(G). If A is α-biprojective and there are bounded linear maps S : X→ A,L : A→ X,K :
A→ A and T : A→ A such that for each a, b ∈ A and x, y ∈ X we have

(i) θ(L(a),L(b)) + K(a)K(b) = K(ab).

(ii) L(ab) = K(a)L(b) + L(a)K(b) + L(a)L(b).

(iii) α ◦ T = α = α ◦ K + β ◦ L and α ◦ S = β.

(iv) T is a homomorphism and S(x)S(y) = S(xy) + T(Θ(x, y)).

(v) S(x)T(a) = S(xa) and T(a)S(x) = S(ax).

(vi) K(T(a)b) = aK(b),K(bT(a)) = K(b)a,K(S(x)b) = Θ(x,L(b)),K(bS(x)) = Θ(L(b), x).
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(vii) L(T(a)b) = aL(b),L(bT(a)) = L(b)a,L(S(x)b) = xK(b) + xL(b),L(bS(x)) = K(b)x + L(b)x.

Then G is (α, β)-biprojective.

Proof. Consider P and J as the latter theorem and consider A-bimodule map λA : A → A ⊗ A such that
α∆AλA = α. Define λG : G → G ⊗ G by λG = (J ⊗ J)λAP. Then it is easy to verify that by (i) and (ii)
∆G(J ⊗ J) = J∆A and by (iii) (α, β)J = α and αP = (α, β). Therefore we conclude that (α, β)∆GλG = (α, β). Also
(iv)–(v) imply that P is a homomorphism and so λG is a G-bimodule, by (vi)–(vii).

Corollary 5.5. Suppose that G = A ▷◁ X is (α, 0)-biprojective, where α ∈ σ(A). Then A is α-biprojective. Moreover,
if both of πℓ and πr are zero and A is α-biprojective, then G is (α, 0)-biprojective.

Proof. In Theorem 5.3 Put Θ = 0,L = 0,S = 0,T = K = idA.

Remark 5.6. Corollary 5.5 is the modified and generalized form of Theorem 4.4 in [26]. Note that in the proof of that
theorem, the mapping µ̃ is not A ×θ B-module morphism; indeed, we have

µ̃((a, b)(c, d)) = (qB ⊗ qB)(µ(bd))
= (qB ⊗ qB)(bµ(d))

=
∑

(0, bbi) ⊗ (0, di).

and

(a, b)µ̃((c, d)) = (a, b)(qB ⊗ qB)(µ(d))

=
∑

(a, b)(0, bi) ⊗ (0, di)

=
∑

(aθ(bi), bbi) ⊗ (0, di),

where µ(d) =
∑

bi ⊗ di. Therefore if θ , 0 and A , 0, then it may be T is not A ×θ B-bimodule morphism.

Theorem 5.7. Let X be unital and β-biprojective and there are bounded linear maps R : X→ A and T : X→ X and
α ∈ σ(A) such that for each x, y ∈ X,

(i) α ◦Θ = 0, β(ax) = α(a)β(x) = β(xa).

(ii) R(xy) = R(x)R(y) + Θ(T(x)T(y)),T(xy) = R(x)T(y) + T(x)R(y) + T(x)T(y).

(iii) β ◦ T + α ◦ R = β.

Then there is a left G-module λG : G→ G ⊗ G such that (α, β)∆GλG = (α, β).

Proof. Consider X-bimoduleλX : X→ X⊗X such that β∆XλX = β. Define U : X→ G with U(x) = (R(x),T(x))
and λG : G → G ⊗ G by λG((a, x)) = (a, x)(U ⊗ U)λX(1X). Then (i) implies that (α, β) ∈ σ(G) and (ii) implies
that ∆G(U ⊗U) = U∆X. Combining with (iii) we conclude that

(α, β)∆GλG(a, x) = (α, β)∆G((a, x)(U ⊗U)λX(1X))
= (α, β)((a, x)(U∆XλX(1X))
= (α, β)((a, x))(α, β)(U∆XλX(1X))
= (α, β)((a, x))β(∆XλX(1X))
= (α, β)((a, x))β(1X)
= (α, β)((a, x)).

Obviously λG is a left G-module.
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Theorem 5.8. Let G be (α, β)-biprojective and αΘ = 0. Then X is β-biprojective if there are bounded linear maps
M : A→ X,N : X→ X,R : X→ A and T : X→ X such that for each x, y ∈ X and a ∈ A,

(i) M is a homomorphism, N(ax) =M(a)N(x),N(xa) = N(x)M(a) and N(x)N(y) = N(xy) +M(Θ(x, y)).

(ii) β ◦M = α, β ◦ n = β = α ◦ R + β ◦ T.

(iii) Θ(T(x), y) = R(xy) = Θ(x,T(y)), xR(y) + xT(y) = T(xy) = R(x)y + T(x)y.

(iv) N(x)y =M(xy) +N(xy) = xN(y),N(xa) = xM(a),N(ax) =M(a)x.

Proof. Since α◦Θ = 0, we have β ∈ σ(X) by Theorem 3.2. Now consider the G-bimodule map λG : G→ G⊗G
such that (α, β)∆GλG = (α, β). Define Φ : G → X by Φ((a, x)) = M(a) + N(x), U : X → G as before theorem
and λX : X → X ⊗ X by λX = (Φ ⊗ Φ)λGU. Then (i) implies that ∆X(Φ ⊗ Φ) = Φ∆G and (ii) implies that
βΦ = (α, β) and (α, β)U = β. Therefore β∆XλX = β. Now (iii) implies that U(x)(0, y) = U(xy) = (0, x)U(y) and
(iv) implies that Φ((0, x)1) = xΦ(1) and Φ(1(0, x)) = Φ(1)x, for each 1 ∈ G and x ∈ X. This implies that λX is
an X-bimodule.

Corollary 5.9. Let G = A ▷◁ X, X is unital and 1Xa = a1X. Suppose that (α, β) ∈ σ(G). Then X is β-biprojective if
and only if G is (α, β)-biprojective.

Proof. In Theorems 5.7 and 5.8 define Θ = 0,R = 0,T = N = idX and M(a) = a1X, for each a ∈ A.

Theorem 5.10. Suppose (α, β) ∈ σ(G) and α ◦ Θ = 0. Let A be α-biprojective and X be β-biprojective and unital.
Then there is a map λG : G→ G⊗G with ∆GλG = idG, if there exist bounded linear maps S : X→ X and T : X→ A
and a homomorphism K : A→ A such that for each a, b ∈ A and x, y ∈ X, we have

(i) Θ ◦ (1XK(a), 1XK(b)) = 0.

(ii) T(xy) = T(x)T(y) + Θ(S(x),S(y)) and S(xy) + S(x)S(y) + S(x)T(y) + T(x)S(y).

(iii) α ◦ T + β ◦ S = β.

Proof. Theorem 3.2 says that since α ◦ Θ = 0 we have β ∈ σ(X). Consider the A-bimodule λA : A → A ⊗ A
and the X-bimodule λX : X → X ⊗ X such that ∆AλA = idA and ∆XλX = idX. Define ξ : A → G by
ξ(a) = (K(a),−1XK(a)), for each a ∈ A, and U : X → G by U(x) = (T(x),S(x)) Put λG(a, x) = (ξ ⊗ ξ) ◦ λA(a) +
(a, x)(U ⊗U) ◦ λX(1X). Then ∆G ◦ (ξ⊗ ξ) = ξ ◦∆A, ∆G ◦ (U ⊗U) = U ◦∆X and (α, β)U = β, by (i), (ii) and (iii),
respectively. Also we have for each a ∈ A,

(α, β)ξ(a) = α(K(a)) + β(−1XK(a)) = α(K(a))(1 − β(1X)) = 0.

Therefore we have

(α, β)∆G ◦ λG((a, x)) = (α, β)∆G

(
(ξ ⊗ ξ) ◦ λA(a) + (a, x) ◦ (U ⊗U) ◦ λX(1X)

)
= (α, β)(ξ ◦ ∆A ◦ λA(a) + (a, x)U ◦ ∆X ◦ λX(1X))
= (α, β)((a, x)U ◦ ∆X ◦ λX(1X))
= (α, β)((a, x))(α, β)(U ◦ ∆X ◦ λX(1X))
= (α, β)((a, x))β(1X)
= (a, x).
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Remark 5.11. In the latter theorem, let we have also for each a ∈ A, Θ(x, 1XK(a)) = 0 and λA ◦ Θ = 0. Then we
have for each a, b ∈ A and x, y ∈ X

(0, x)(ξ ⊗ ξ)λA = 0,

and

(ξ ⊗ ξ) ◦ λA(ab + Θ(x, y)) = (a, 0)((ξ ⊗ ξ) ◦ λA(b)
= (a, 0)((ξ ⊗ ξ) ◦ λA(b) + (0, x)(ξ ⊗ ξ)λA(b)
= (a, x)((ξ ⊗ ξ) ◦ λA(b).

Therefore

λG((a, x)(b, y)) = (ξ ⊗ ξ) ◦ λA(ab + Θ(x, y)) + (a, x)(b, y)(U ⊗U) ◦ λX(1X)
= (a, 0)((ξ ⊗ ξ) ◦ λA(b) + (b, y) ◦ (U ⊗U) ◦ λX(1X))
= (a, x)λG((b, y)).

So we get λG is a left G-module map. Also, If in addition Θ(1K(a), x) = 0 and (U ⊗ U) ◦ λX(1X) commutes with
elements of G, we can show similarly it is a right G-module map.

Corollary 5.12. Let (α, β) ∈ σ(A ▷◁ X), A be α-biprojective and X be β-biprojective and unital. Then G = A ▷◁ X is
(α, β)-biprojective.

Proof. In Theorem 5.10 and Remark 5.11 put K = idA,T = 0,S = idX and Θ = 0.
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