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On Bishop frame of a partially null curve in Minkowski space-time E4
1

Jelena Djordjevića, Emilija Nešovića

aDepartment of Mathematics and Informatics, Faculty of Science, University of Kragujevac, Serbia

Abstract. In this paper, we introduce Bishop frame of a partially null curve α in Minkowski space-timeE4
1.

We prove that such curve has three Bishop frames determined by the particular solutions of the third order
non-linear differential equation. We show that the Frenet frame of α can be obtained by rotating the Bishop
frame that corresponds to the particular solution θ(s) =

∫
κ1(s) ds of the mentioned differential equation.

As an application, we obtain the parametrization of a lightlike hypersurface and focal surface with base
curve α in terms of its Bishop frame. Finally, we prove that a lightlike focal surface along a partially null
helix has no critical value set.

1. Introduction

The Bishop frame (relatively parallel adapted frame, rotation minimizing frame) {T,N1,N2} of a regular
curve in Euclidean 3-space is defined in [1] as a positively oriented frame obtained by rotating the Frenet
frame about the tangential vector field T for an angle of rotation θ(s) =

∫
τ(s) ds, where τ is the torsion

of the curve. After such rotation, the vector fields N′1 and N′2 become collinear with T, which means that
they make no rotations in the planes N⊥1 and N⊥2 , respectively. The Bishop frame of a regular curve is not a
unique and it is well defined even in the points of the curve where the first Frenet curvature vanishes. As
such, it has various applications in rigid body mechanics [2], computer graphics [3], deformation of tubes
[4], sweep surface modeling [5] and in differential geometry in studying different types of curves (see for
example [6–9]).

New versions of the Bishop frames in Euclidean space E3 are introduced in [10, 11]. In the three
dimensional Minkowski space E3

1 and four dimensional Minkowski space-time E4
1, the Bishop frames of

spacelike, timelike, pseudo null and null Cartan curves are defined in [12–17]. The curves in E4
1 along

which the Bishop frame is not defined yet, are partially null curves. Partially null curves are the spacelike
curves that lie in a lightlike hyperplane of E4

1 and whose Frenet frame {T,N,B1,B2} contains two null
binormal vector fields B1 and B2. According to the Frenet frame’s equations, the vector fields T′, B′1 and
B′2 are collinear with the principal normal vector field N at each point of the curve, so they make minimal
rotations in the corresponding hyperplanes T⊥ = span{N,B1,B2}, B⊥1 = span{T,N,B1} and B⊥2 = span{T,N,B2},
respectively. Hence the Frenet frame of a partially null curve α has a rotation minimizing property. In
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this paper, we show that such curve also has another frame with rotation minimizing property and we
called it the Bishop frame. In particular, we prove that there exist three Bishop frames of α determined by
the particular solutions of the corresponding the third order non-linear differential equation. Moreover,
we find that the Frenet frame of α can be obtained by rotating the Bishop frame that corresponds to the
particular solution θ(s) =

∫
κ1(s) ds of the mentioned differential equation, where κ1(s) is the first Frenet

curvature of α.
Lightlike hypersurfaces in Minkowski space En

1 are the ruled submanifolds whose induced first fun-
damental form is a positive semi-definite. Such hypersurfaces are tangent to the lightcone at any regular
point. Their singularities along a spacelike submanifold are classified in [19, 20]. It is known that they
provide models for studying different types of horizons (event, Cauchy, Kruskal) and play an important
role in the quantum theory of gravity. The critical value set of a lightlike hypersurface along a spacelike
submanifold is called the lightlike focal set of the submanifold. Lightlike hypersurfaces and focal surfaces
along a spacelike curve γ in E4

1 whose Frenet frame contains non-null vector fields, are introduced in [20].
Such submanifolds along a partially null curve α in E4

1 are not investigated yet. In this paper, we obtain
their parametrizations in terms of Bishop frame of α obtained by rotating the Frenet frame. We define
the Lorentzian distance-squared function G : I × E4

1 → R along α and prove that a lightlike focal surface
along a partially null helix has no critical value set. The obtained results can be used in classifications of
singularities of lightlike hypersurfaces along partially null curves and in many mathematical and physical
applications related with such curves, such as inextensible flows, Bäcklund transformations, canal surfaces,
etc.

2. Preliminaries

Minkowski space-time E4
1 is the real vector space E4 equipped with the standard indefinite flat metric

⟨·, ·⟩ given by 〈
x, y
〉
= −x1y1 + x2y2 + x3y3 + x4y4,

for any two vectors x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4) in E4
1. Since ⟨·, ·⟩ is an indefinite metric, a vector

x , 0 in E4
1 can be spacelike, timelike, or null (lightlike), if ⟨x, x⟩ > 0,⟨x, x⟩ < 0, or ⟨x, x⟩ = 0, respectively ([21]).

In particular, the vector x = 0 is said to be a spacelike. The norm (length) of a vector x in E4
1 is given by

∥x∥ =
√
|⟨x, x⟩|.

An arbitrary curve α : I → E4
1 can locally be spacelike, timelike, or null (lightlike), if all of its velocity

vectors α′ are spacelike, timelike, or null, respectively ([21]).
Partially null curve α in E4

1 is a spacelike curve whose Frenet frame {T,N,B1,B2} satisfies the conditions

⟨T,T⟩ = ⟨N,N⟩ = 1, ⟨B1,B1⟩ = ⟨B2,B2⟩ = 0,
⟨T,N⟩ = ⟨T,B1⟩ = ⟨T,B2⟩ = ⟨N,B1⟩ = ⟨N,B2⟩ = 0, ⟨B1,B2⟩ = 1, (1)

⟨T,N × B1 × B2⟩ = det(T,N,B1,B2) = 1,

where T, N, B1 and B2 are the tangent, the principal normal, the first binormal and the second binormal
vector field of α, respectively.

The Frenet frame’s equations read ([22])
T′

N′

B′1
B′2

 =


0 κ1 0 0
−κ1 0 κ2 0

0 0 κ3 0
0 −κ2 0 −κ3




T
N
B1
B2

 . (2)

The curvature functions κ1(s), κ2(s) and κ3(s) = 0 are called the first, the second and the third Frenet curvature
of α, respectively.
The lightcone LCp in E4

1 with vertex at a point p is a lightlike hypersurface defined by ([21])

LCp = {X ∈ E4
1\
{
p
}
| ⟨X − p,X − p⟩ = 0}.
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A hypersurface H ⊂ E4
1 is called a lightlike, if it is tangential to the lightcone at any regular point ([20]).

If γ : I → E4
1 is a spacelike curve with a non-null vector fields T,N,B1 and B2, pseudo-normal space of γ is

defined as ([20])
γ⊥ = {V ∈ E4

1 | ⟨V,T⟩ = 0}.

The unit pseudosphere with respect to a future directed timelike normal vector field nT along γ, is given
by ([20])

N1(γ)p[nT] = {ξ ∈ γ⊥ | ⟨ξ,nT(p)⟩ = 0, ⟨ξ, ξ⟩ = 1},

where p = γ(s). The lightcone Gauss image of pseudosphere N1(γ)p[nT] has parametrization of the form ([20])

LG(nT)(s, θ) = nT(s) + cosθB1(s) + sinθB2(s).

The paramerization of a lightlike hypersurface along γ relative to nT reads

LHγ((s, θ), t) = γ(s) + t(nT(s) + cosθB1(s) + sinθB2(s)).

The Lorentzian distance-squared functions G : I × E4
1 → R on γ are defined as ([20])

G(p, λ) = G(s, λ) = ⟨γ(s) − λ, γ(s) − λ⟩,

where p = γ(s) and λ ∈ E4
1. The discriminant set of order k of G(p, λ) is given by ([20])

Dk
G =
{
λ ∈ R4

1 | ∃s ∈ I, G(s, λ) =
∂G
∂s

(s, λ) = · · · =
∂kG
∂sk

(s, λ) = 0
}
.

3. Bishop frame of a partially null curve in E4
1

In this section, we introduce Bishop frame {N0,N1,N2,N3} of a partially null curve α in E4
1 with the

Frenet curvatures κ1(s) , 0, κ2(s) , 0 and κ3(s) = 0. We find the relation between the Frenet and Bishop
frame of α and derive the Bishop frame’s equations. We show that Bishop frame and Bishop curvatures are
determined by the particular solutions of the corresponding the third order non-linear differential equation.
We prove that the Frenet frame of α can be obtained by rotating the Bishop frame that corresponds to the
particular solution θ(s) =

∫
κ1(s)ds about timelike plane spanned by {N2,N3}.

Let us consider a partially null curve α in E4
1 parameterized by arc-length s with the Frenet frame

{T,N,B1,B2}. Denote by {N0,N1,N2,N3} a new frame along α, satisfying the conditions

⟨N2,N2⟩ = ⟨N3,N3⟩ = 0, ⟨N0,N0⟩ = ⟨N1,N1⟩ = ⟨N2,N3⟩ = 1,
⟨N0,N1⟩ = ⟨N0,N2⟩ = ⟨N0,N3⟩ = ⟨N1,N2⟩ = ⟨N1,N3⟩ = 0, (3)

where N3 = B2 and

⟨N0,N1 ×N2 ×N3⟩ = det(N0,N1,N2,N3) = 1. (4)

We introduce relatively parallel vector fields along α as follows.

Definition 3.1. The vector fields N0, N1 and N2 along a partially null curve α in E4
1 satisfying the conditions (3)

and (4) are said to be relatively parallel, if their derivatives N′0, N′1 and N′2 are collinear with N2 at each point the
curve.

According to Definition 3.1, the vector fields N′0, N′1 and N′2 make minimal rotations in the hyperplanes
N⊥0 = span{N1,N2,N3}, N⊥1 = span{N0,N2,N3} and N⊥2 = span{N0,N1,N2}, respectively.

Definition 3.2. The Bishop frame of a partially null curve α in E4
1 is the frame {N0,N1,N2,N3} containing the

second binormal vector field N3 = B2 and relatively parallel vector fields N0, N1 and N2 satisfying the conditions (3)
and (4).
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In what follows, we define the curvature functions of α with respect to the Bishop frame and we called
them the Bishop curvatures.

Definition 3.3. Let α be a partially null curve in E4
1 with Bishop frame {N0,N1,N2,N3}. The Bishop curvatures of

α are given by

σ1 = −⟨N′0,N3⟩, σ2 = −⟨N′1,N3⟩, σ3 = −⟨N′2,N3⟩. (5)

In the next theorem, we derive the Bishop frame’s equations. Analogous Bishop frame’s equations for
another types of curves in E4

1, can be found in [12–14].

Theorem 3.4. If α is a partially null curve in E4
1 with the Bishop frame {N0,N1,N2,N3}, then the Bishop frame’s

equations read
N′0(s)
N′1(s)
N′2(s)
N′3(s)

 =


0 0 −σ1(s) 0
0 0 −σ2(s) 0
0 0 −σ3(s) 0
σ1(s) σ2(s) 0 σ3(s)




N0(s)
N1(s)
N2(s)
N3(s)

 . (6)

Proof. Assume that α is a partially null curve parameterized by arc length parameter s with the Bishop
frame {N0,N1,N2,N3}. Since N0 is a relatively parallel vector field, according to Definition 1, we have

N′0(s) = c0(s)N2(s), (7)

where c0(s) is some differentiable function. By using the relations (3), (5) and (7), we find

⟨N′0(s),N3(s)⟩ = c0(s) = −σ1(s).

Substituting this in (7), we obtain

N′0(s) = −σ1(s)N2(s). (8)

In a similar way, we get

N′1(s) = −σ2(s)N2(s),
N′2(s) = −σ3(s)N2(s), (9)
N′3(s) = σ1(s)N0(s) + σ2(s)N1(s) + σ3(s)N3(s).

Hence relations (8) and (9) imply relation (6).

Next, we obtain the relation between Bishop frame and Frenet frame, as well as between the curvature
functions with respect to these frames. Similar relations between the frames of another types of curves in
E4

1, are obtained in [12–14].

Theorem 3.5. Let α be a partially null curve in E4
1 parameterized by arc-length s, with the Frenet curvatures

κ1(s) , 0, κ2(s) , 0, κ3(s) = 0 and Bishop curvatures σ1(s), σ2(s) and σ3(s). Then:

(i) the Bishop curvatures of α have the form

σ1(s) = κ2(s) cosθ(s),
σ2(s) = κ2(s) sinθ(s), (10)

σ3(s) =
κ2(s)
θ′(s)

(κ1(s) − θ′(s)
κ2(s)

)′
,

where θ(s) , constant satisfies the third order non-linear differential equation( 1
θ′(s)

(κ1(s) − θ′(s)
κ2(s)

)′)′
=
θ′ 2(s) − κ2

1(s)

2κ2(s)
−
κ2(s)

2θ′ 2(s)

(κ1(s) − θ′(s)
κ2(s)

)′ 2
; (11)
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(ii) the Bishop frame and the Frenet frame of α are related by

N0 = − sinθT − cosθN +
[

sinθ
(θ′ − κ1

κ2

)
− cosθ

( 1
θ′

(κ1 − θ′

κ2

)′)]
B2,

N1 = cosθT − sinθN −
[

cosθ
(θ′ − κ1

κ2

)
+ sinθ

( 1
θ′

(κ1 − θ′

κ2

)′)]
B2, (12)

N2 =
(θ′ − κ1

κ2

)
T +

1
θ′

(θ′ − κ1

κ2

)′
N + B1 −

1
2

[(θ′ − κ1

κ2

)2
+
( 1
θ′

(θ′ − κ1

κ2

)′)2]
B2,

N3 = B2.

Proof. Assume that {N0,N1,N2,N3} is the Bishop frame of a partially null curve α parameterized by arc
length s. Differentiating the equation N3 = B2 with respect to s and using (2) and (6), we find

N′3 = B′2 = σ1N0 + σ2N1 + σ3N3 = −κ2N.

The last relation gives

N = −
σ1

κ2
N0 −

σ2

κ2
N1 −

σ3

κ2
N3. (13)

By using the condition ⟨N,N⟩ = 1 and relations (3) and (13), we obtain

σ2
1 + σ

2
2 = κ

2
2. (14)

Up to a parametrization, we may assume that

σ1 = κ2 cosθ, σ2 = κ2 sinθ, (15)

where θ is some differentiable function in s. Next we may consider two cases:

(A) θ = θ0 ∈ R.

By using the relations θ = θ0, (13) and (15), we obtain

N = − cosθ0N0 − sinθ0N1 −
σ3

k2
N3. (16)

Decompose the tangent vector field T of α as

T = λN0 + µN1 + νN2 + ωN3, (17)

where λ, µ, ν and ω are some differentiable functions in s. Relations (16), (17) and the conditions ⟨T,T⟩ = 1,
⟨T,N⟩ = ⟨T,B2⟩ = 0 give

ν = 0, −λ cosθ0 − µ sinθ0 = 0, λ2 + µ2 = 1. (18)

Up to a parametrization, the solution of the previous system of equations reads

λ = − sinθ0, µ = cosθ0. (19)

Substituting (19) and ν = 0 in (17), we get

T = − sinθ0N0 + cosθ0N1 + ωN3. (20)

Relations (2) and (16) yield

T′ = κ1N = −κ1

(
cosθ0N0 + sinθ0N1 +

σ3

κ2
N3

)
. (21)
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On the other hand, differentiating the relation (20) with respect to s and using (6), (15) and (21), we find

T′ = ωκ2 cosθ0N0 + ωκ2 sinθ0N1 + (ω′ + ωσ3)N3. (22)

By using (21) and (22), we obtain

ω = −
κ1

κ2
, −

(κ1

κ2

)′
−
κ1

κ2
σ3 = −

κ1

κ2
σ3. (23)

so relation (23) implies

κ1

κ2
= constant. (24)

However, this is a contradiction, since the Frenet curvatures κ1 and κ2 of α do not satisfy relation (24) in a
general case.

(B) θ , constant.

Substituting (15) in (13), we obtain

N = − cosθN0 − sinθN1 −
σ3

k2
N3. (25)

By using (2) and (25), we find

T′ = κ1N = −κ1(cosθN0 + sinθN1 +
σ3

k2
N3). (26)

Differentiating the relation (25) with respect to s yields

N′ = (θ′ sinθ − σ3 cosθ)N0 − (θ′ cosθ + σ3 sinθ)N1 + κ2N2 −
((σ3

κ2

)′
+
σ2

3

κ2

)
N3. (27)

According to (2), we have

N′ = −κ1T + κ2B1. (28)

Relations (1), (3), (27) and (28) give

⟨N′,N′⟩ = κ2
1 = θ

′ 2
− σ2

3 − 2κ2

(σ3

κ2

)′
.

Consequently,(σ3

κ2

)′
=

1
2κ2

(θ′ 2 − κ2
1 − σ

2
3). (29)

By using the conditions ⟨T,T⟩ = 1, ⟨T,N⟩ = 0, ⟨T,B2⟩ = 0 and relation (25), we find

T = − sinθN0 + cosθN1 + dN3, (30)

where d is some differentiable function in s. Differentiating relation (30) with respect to s and using (15),
we get

T′ = (−θ′ cosθ + dκ2 cosθ)N0 + (−θ′ sinθ + dκ2 sinθ)N1 + (d′ + dσ3)N3. (31)

Next from relations (26) and (31) we obtain

d =
θ′ − k1

k2
, d′ + dσ3 = −

κ1

κ2
σ3. (32)
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Hence the third Bishop curvature of α can be expressed as

σ3 =
κ2

θ′

(κ1 − θ′

κ2

)′
. (33)

Therefore, relations (15) and (33) imply that relation (10) holds. In particular, substituting (33) in (29), we
obtain the third order non-linear differential equation (11), which proves statement (i).

Multiplying relation (30) with − sinθ, relation (25) with − cosθ, adding the obtained equations and
using (32) and (33), we find

N0 = − sinθT − cosθN +
[

sinθ
(θ′ − κ1

κ2

)
− cosθ

( 1
θ′

(κ1 − θ′

κ2

)′)]
B2. (34)

Analogously, multiplying relation (30) with cosθ, relation (25) with − sinθ, adding the obtained equations
and using (32) and (33), we get

N1 = cosθT − sinθN −
[

cosθ
(θ′ − κ1

κ2

)
+ sinθ

( 1
θ′

(κ1 − θ′

κ2

)′)]
B2. (35)

Substituting (34) and (35) in (27) and using (28) yields

N2 =
(θ′ − κ1

κ2

)
T +

1
θ′

(θ′ − κ1

κ2

)′
N + B1 −

1
2

[(θ′ − κ1

κ2

)2
+
( 1
θ′

(θ′ − κ1

κ2

)′)2]
B2.

The last relation together with (34) and (35) gives relation (12), which proves statement (ii).

According to Theorem 3.5, every particular solution of the third order non-linear differential equation
(11) provides the corresponding Bishop frame and Bishop curvatures. It can be easily seen that θ(s) =∫
κ1(s) ds is one particular solution. In general case, it is not always possible to get all three particular

solutions explicitly. In the next theorem, we prove that the Frenet frame of α can be obtained by rotating
the Bishop frame that corresponds to the particular solution θ(s) =

∫
k1(s) ds.

Theorem 3.6. The Frenet frame of a partially null curve α in E4
1 with Frenet curvatures κ1(s) , 0, κ2(s) , 0,

κ3(s) = 0 can be obtained by rotating the Bishop frame that corresponds to the particular solution θ(s) =
∫

k1(s) ds of
differential equation (11) about timelike plane spanned by {N2,N3} for the hyperbolic angle ω(s) = −θ(s) − 90◦.

Proof. Assume that α is a partially null curve in E4
1 with Frenet curvatures κ1(s) , 0, κ2(s) , 0 and κ3(s) = 0.

Substituting the particular solution θ(s) =
∫

k1(s) ds of differential equation (11) in relation (12), we obtain
that Bishop frame of α has the form

N0 = − sinθT − cosθN,
N1 = cosθT − sinθN, (36)
N2 = B1,

N3 = B2.

It can be easily seen that relation (36) implies

T = − sinθN0 + cosθN1,

N = − cosθN0 − sinθN1, (37)
B1 = N2,

B2 = N3.

Hence the Frenet frame of α is obtained by rotating the Bishop frame about timelike plane spanned by
{N2,N3} for the hyperbolic angle ω(s) = −θ(s) − 90◦.
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Example 3.7. Let us consider partially null helix α in E4
1 with parameter equation

α(s) = (sin(s) + cos(s) − 2s, sin(s) + cos(s) − 2s, cos(s), sin(s)).

The Frenet curvatures of α have the form

κ1(s) = 1, κ2(s) = −2, κ3(s) = 0. (38)

A straightforward calculation shows that the Frenet frame of α reads

T(s) = (cos(s) − sin(s) − 2, cos(s) − sin(s) − 2,− sin(s), cos(s)),
N(s) = (− sin(s) − cos(s),− sin(s) − cos(s),− cos(s),− sin(s)),
B1(s) = (1, 1, 0, 0),

B2(s) = (2 cos(s) − 2 sin(s) −
7
2
, 2 cos(s) − 2 sin(s) −

5
2
,−2 sin(s) − 1, 2 cos(s) − 1).

Substituting (38) in (11), we obtain the third order non-linear differential equation

−2θ′θ′′′ + 3θ′′ 2 − θ′ 2(θ′ 2 − 1) = 0. (39)

Putting θ′(s) = t(s), where t(s) is some differentiable function, the previous differential equation reduces to differential
equation

−2tt′′ + 3t′ 2 − t2(t2
− 1) = 0.

Putting t′(s) = p(s), where p(s) is some differentiable function, the last differential equation reduces to the first order
Bernoulli differential equation, and then to linear differential equation. A straightforward calculation shows that
differential equation (39) has three particular solutions θ(s) = s, θ(s) = −s and

θ(s) = 2 arctan
(√

5 tan(
s
2

) − 2
)
. (40)

By using the relations θ(s) = −s, (10) and (38), we find that Bishop curvatures of α have the form

σ1(s) = −2 cos(s), σ2(s) = 2 sin(s), σ3(s) = 0.

Relation (12) implies that the Bishop frame which corresponds to the particular solution θ(s) = −s, reads

N0(s) = sin(s)T(s) − cos(s)N(s) − sin(s)B2(s),
N1(s) = cos(s)T(s) + sin(s)N(s) − cos(s)B2(s), (41)

N2(s) = T(s) + B1(s) −
1
2

B2(s),

N3(s) = B2(s).

Substituting the second particular solution θ(s) = s in (10) and using (38), we get

σ1(s) = −2 cos s, σ2(s) = −2 sin s, σ3(s) = 0.

In this case, the Bishop frame of α has the form

N0(s) = − sin(s)T(s) − cos(s)N(s),
N1(s) = cos(s)T(s) − sin(s)N(s), (42)
N2(s) = B1(s),
N3(s) = B2(s).

Hence it is obtained by rotating the Frenet frame about timelike plane spanned by {B1,B2}. Finally, substituting the
third particular solution (40) in (10) and using (38), we get

σ1(s) = −2 cos(2 arctan(
√

5 tan(
s
2

) − 2)), σ2(s) = −2 sin(2 arctan(
√

5 tan(
s
2

) − 2)), σ3(s) =
2 cos s

2 sin s −
√

5
.
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In this case, the Bishop frame of α has the form

N0 = − sinθT − cosθN +
[

sinθ
(1 − θ′

2

)
− cosθ

( 1
θ′

(θ′ − 1
2

)′)]
B2,

N1 = cosθT − sinθN −
[

cosθ
(1 − θ′

2

)
+ sinθ

( 1
θ′

(θ′ − 1
2

)′)]
B2, (43)

N2 =
(
1 −
θ′

2

)
T +

1
θ′

(1 − θ′
2

)′
N + B1 −

1
2

[(1 − θ′
2

)2
+
( 1
θ′

(1 − θ′
2

)′)2]
B2,

N3 = B2

where θ = θ(s) is given by (40). It can be verified that the Bishop frames given by (41), (42) and (43) satisfy relation
(6).

4. Lightlike hypersurfaces and focal surfaces along a partially null curve

Lightlike hypersurfaces and focal surfaces along a spacelike curve γ with a non-null Frenet frame’s
vector fields in E4

1 are defined in [20]. It is proved in [20] that the discriminant set of order 1 and 2 of the
Lorentzian distance-squared functions along γ represents a lightlike hypersurface LHγ and a lightlike focal
surface LFγ, respectively. Such submanifolds according to a partially null curve in the same space are not
investigated yet. In this section, we obtain their parametrizations in terms of the Bishop frame given by
relation (36). We also prove that a lightlike focal surface along a partially null helix has no critical value set.

According to [20], the image of a lightlike hypersurface along a spacelike curve γ is independent of the
choice of a unit future-directed timelike normal vector field along the curve. The same property holds for
the image of a lightlike hypersurface along a partially null curve α. In relation to that, let us choose

nT =

√
2

2
(B1 − B2), (44)

to be a unit future-directed timelike normal vector field along α, where B1 and B2 are the first and the second
binormal vector fields. Denote by

α⊥ = {V ∈ E4
1 | ⟨α

′,V⟩ = 0}

the 3-dimensional pseudo-normal space of α. The 2-dimensional unit pseudosphere with respect to nT is
given by

N1(α)p[nT] = {ξ ∈ α⊥ | ⟨ξ,nT(p)⟩ = 0, ⟨ξ, ξ⟩ = 1}.

Hence a lightcone Gauss image of pseudosphere N1(α)p[nT] has parametrization of the form

LG[nT](s, ϕ) = nT(s) + cosϕN(s) +

√
2

2
sinϕ(B1(s) + B2(s)). (45)

A lightlike hypersurface LHα(nT) : N1(α)p[nT] × R → E4
1 along a spacelike curve α(s) relative to nT has

paramerization of the form ([20])

LHα((s, ϕ), t) = α(s) + tLG[nT](s, ϕ). (46)

In the next theorem, we obtain the parametrization of a lightlike hypersurface along a partially null
curve.

Theorem 4.1. Let α be a partially null curve in E4
1 with Bishop frame given by (36). Then a lightlike hypersurface

along α is parameterized by

LHα((s, ϕ), t) = α(s)+t
[
−cosϕ cosθN0(s)−cosϕ sinθN1(s)+

√
2

2
(1+sinϕ)N2(s)+

√
2

2
(sinϕ−1)N3(s)

]
, (47)

where θ(s) =
∫
κ1(s) ds.
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Proof. By using the relations (44), (45) and (46), it follows that a lightlike hypersurface along partially null
curve α relative to nT, has parametrization of the form

LHα((s, ϕ), t) = α(s) + t
[ √2

2
(B1(s) − B2(s)) + cosϕN(s) +

√
2

2
sinϕ(B1(s) + B2(s))

]
. (48)

Substituting (37) in (48), we get (47).

Next we obtain the parametrization of a lightlike focal surface LFα along α which represents a critical
value set of the lightlike hypersurface LHα. It is shown in [20] that the discriminant set of order 2 of the
Lorentzian distance-squared function along a spacelike curve γ represents lightlike focal surface LFγ along
γ. In relation to that, let us define the Lorentzian distance-squared functions G : I ×E4

1 → R along partially
null curve α as

G(p, λ) = G(s, λ) = ⟨α(s) − λ, α(s) − λ⟩,

where λ ∈ E4
1 and p = α(s). If λ = λ0 is fixed, let us put G(p, λ0) = 1(p). By taking the first and the second

derivative of 1(p) with respect to s, we obtain

1′(p) = 2⟨α′(s), α(s) − λ0⟩,

1′′(p) = 2(⟨α′′(s), α(s) − λ0⟩ + 1). (49)

The parametrization of a lightlike focal surface along a spacelike curve in E4
1 is obtained in [20]. In the

next theorem, we obtain the parametrization of a lightlike focal surface along a partially null curve.

Theorem 4.2. Let α be a partially null curve in E4
1 with Bishop frame given by (36). Then a lightlike focal surface

along α has parametrization of the form

LFα(s, ϕ) = α(s) +

√
2

2θ′ cosϕ
[−
√

2 cosϕ cosθN0(s) −
√

2 cosϕ sinθN1(s) + (1 + sinϕ)N2(s)

+ (sinϕ − 1)N3(s)], (50)

where cosϕ , 0 and θ′(s) = κ1(s) , 0.

Proof. Let λ0 be a fixed point on a lightlike hypersurface along αwith parametrization (48). Then we have

λ0 = α(s) + t
[B1(s) − B2(s)

√
2

+ cosϕN(s) + sinϕ
(B1(s) + B2(s)

√
2

)]
.

The previous relation gives

α(s) − λ0 = −t
[B1(s) − B2(s)

√
2

+ cosϕN(s) + sinϕ
(B1(s) + B2(s)

√
2

)]
. (51)

Substituting (51) and α′′(s) = κ1(s)N(s) = θ′(s)N(s) in (49) and using (1), we obtain

1′′(p) = 2(1 − tθ′(s) cosϕ).

Hence 1′′(p) = 0 if and only if

t =
1

θ′(s) cosϕ
, (52)

where θ′(s) = κ1(s) , 0 and cosϕ , 0. Substituting (52) in (48) we obtain

LFα(s, ϕ) = α(s) +

√
2

2θ′(s) cosϕ
[B1(s) − B2(s) +

√

2 cosϕN(s) + sinϕ(B1(s) + B2(s))]. (53)

In particular, substituting (37) in (53), we get (50).
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It is proved in [20] that discriminant set of order 3 of the corresponding Lorentzian distance-squared
function is the critical value set of a lightlike focal surface along a spacelike curve inE4

1. In the last theorem,
we prove that a lightlike focal surface LFα(s, ϕ) along a partially null helix has no critical value set, which
represents the discriminant set of order 3 of G(p, λ).

Theorem 4.3. Let α be a partially null helix in E4
1 with the Bishop frame given by (36). Then a lightlike focal surface

along α has no critical value set.

Proof. Assume that α is a partially null helix. Differentiating the relation (49) with respect to s, we find

1′′′(p) =

√
2κ2(s)(1 − sinϕ)

cosϕ
,

where cosϕ , 0. Then 1′′′(p) = 0 if and only if sinϕ = 1. This implies cosϕ = 0, which is a contradiction.
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[14] K. Ilarslan, E. Nešović, On the Bishop frame of a null Cartan curve in Minkowski space-time, Int. J. Geom. Meth. Mod. Phys. 15(8)

(2018), 16 pages.
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