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Abstract. The concept of statistical order convergence of sequences in Riesz spaces was introduced and
studied. In the present paper, we define the statistical order limit points of a sequence (xn) as a vector
x that is the order limit of a subsequence (xk)k∈K of (xn) such that the set K does not have density zero.
Moreover, we introduce the statistical order cluster points of sequences in Riesz spaces, and also, we give
some relations between them.

1. Introduction

Statistical convergence first emerged in the works of Fast in [11] and Steinhaus in [21], where it was
proposed as a generalization of real number convergence. Building upon this idea, Fridy [12] later intro-
duced the notion of statistical limits and cluster points for real sequences, and investigated their properties
concerning closed sets. Subsequently, these results were extended to other spaces, such as topological
spaces, probabilistic normed spaces, and metric lattices, as seen in [8, 14, 18].

In the context of Riesz spaces, Ercan [10] pioneered the study of statistical convergence in Riesz spaces.
Following this, Şençimen and Pehlivan [20] introduced the concept of statistical order convergence. Further
research on various types of statistical convergence in Riesz spaces was conducted, as evidenced by Aydın
[4–7]. The objective of this paper is to introduce the concepts of statistical order limits and statistical order
cluster points for sequences in Riesz spaces. Analogous to Fridy’s earlier findings, we establish fundamental
results for these concepts. It is worth noting that the notion of statistical order limits presented in this paper
is more general than the one in [20].

2. Preliminaries

An ordered vector space denoted by E possesses a real-valued vector space with an order relation ”≤”
that adheres to the properties of antisymmetry, reflexivity, and transitivity. It is defined as an ordered vector
space if, for any elements x and y in E the following conditions hold:

(i) x ≤ y implies x + z ≤ y + z for all z in E,

(ii) x ≤ y implies λx ≤ λy for every λwith 0 ≤ λ ∈ R.
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An ordered vector space E is categorized as a Riesz space or vector lattice when, for any two vectors x and
y in E, the infimum and supremum, denoted as x ∧ y and x ∨ y, respectively, exist in E. To express certain
aspects of the vector lattice E, we introduce the positive part, negative part, and module of an element x as
x+ := x ∨ 0, x− := (−x) ∨ 0, and |x| := x ∨ (−x), respectively. In this paper, the vertical bar | · | is used to
represent the module of elements in the vector lattices.

In a Riesz space E, a sequence (xn) is considered increasing if the elements satisfy the condition x1 ≤ x2 ≤

· · · , and it is termed decreasing if the elements satisfy x1 ≥ x2 ≥ · · · . We represent the increasing sequence
as xn ↑ and the decreasing sequence as xn ↓. Furthermore, if an increasing sequence xn ↑ has a supremum
(i.e., a least upper bound) denoted as x, we write it as xn ↑ x. Similarly, if a decreasing sequence xn ↓ has
an infimum (i.e., a greatest lower bound) denoted as x, we write it as xn ↓ x. Such sequences that are either
increasing or decreasing are referred to as monotonic. One of the fundamental and crucial concepts in the
study of Riesz spaces is order convergence, as stated in Theorem 16.2 [17].

Definition 2.1. A sequence (xn) in a Riesz space E is said to be order convergent to x ∈ E (denoted as xn
o
−→ x) when

there exists a sequence qn ↓ 0 in E such that |xn − x| ≤ qn for all n ∈N.

Moving on to statistical convergence, we define the natural density of a subset K of positive integers as

δ(K) := lim
n→∞

1
n

∣∣∣{k ∈ K : k ≤ n}
∣∣∣,

where |{k ∈ K : k ≤ n}| represents the number of elements in K that do not exceed n. When considering a
vector lattice E and a sequence (xn) in E, the sequence (xn) is labeled:

- statistical monotone convergent to x ∈ E (denoted as xn ↓
st x) if there exists a subset J inN with δ(J) = 1

and xn ↓ x on J,

- statistical order convergent to x ∈ E (denoted as xn
sto
−→ x) if there are a sequence qn ↓

st 0 and a subset J of
Nwith δ(J) = 1 such that |xn − x| ≤ qn for all n ∈ J.

We recall the notions of statistical limit point and statistical cluster point of a real sequence (xn).

Definition 2.2. Let (xn) be a real sequence.

(1) A real number x is considered a statistical limit point of (xn) if there exists a subsequence (xk)k∈K of (xn) with
δ(K) > 0 and xk → x.

(2) A real number x is identified as a statistical cluster point of (xn) if, for every ε > 0, δ({k ∈N : |xk−x| < ε}) , 0.

Definition 2.3. A sequence (xn) satisfying the property that there exists a positive element u ∈ E+ such that
δ({n ∈N : |xn| ≰ u}) = 0 is calle statistical order bounded sequence.

It is obvious that every order bounded sequence is statistical order bounded, and every statistical order
convergent sequence is statistical order bounded. Now, we present two theorems and a corollary related
to statistical order convergence of sequences in σ-Dedekind complete Riesz spaces (i.e. in which every
countable subset that is bounded above has a supremum and every countable subset that is bounded below
has a infimum), along with their respective proofs.

Theorem 2.4. Let (xn) be a statistical order bounded sequence in a σ-Dedekind complete Riesz space E for which the
density of {n ∈N : xn ≤ xn+1} is one. Then, (xn) is a statistical order convergent sequence.

Proof. Consider the set J := { jn : n ∈ N}. It follows from the statistical order boundedness of (xn) that there
exists a positive element u ∈ E+ such that δ({n ∈ N : |xn| ≰ u}) = 0. Thus, we have δ({ jn ∈ J : |x jn | ≰ u}) = 0.
Take M = { jn ∈ J : |x jn | ≤ u}. Then we have δ(M) = 1 and (xn) is increasing on M since δ({n ∈ N : xn ≤

xn+1}) = 1. Therefore, since E is σ-Dedekind complete and (xn) is order bounded on M, sup
mn∈M

(xmn ) exists.

Assume that sup
mn∈M

(xmn ) = w ∈ E. Thus, we have xmn

o
−→w, and so, we obtain xmn

sto
−→w. Therefore, (xn) is

statistical order convergent to w.
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Theorem 2.5. Let (xn) be a statistical order bounded sequence in a σ-Dedekind complete Riesz space E with δ({n ∈
N : xn+1 ≤ xn}) = 1. Then, (xn) is a statistical order convergent sequence.

Proof. The proof can be obtained using similar arguments as in the proof of Theorem 2.4.

Corollary 2.6. Every monotone and statistical order bounded sequence is statistical order convergent.

This corollary follows from Theorem 2.5 by observing that a sequence with δ({n ∈ N : xn+1 ≤ xn}) = 1 is
a monotone non-increasing sequence, and hence, every monotone and statistical order bounded sequence
is statistical order convergent.

3. Statistical order limit and cluster points

We begin the section with the following basic notion of order convergence.

Definition 3.1. An element x is referred to as an order limit point of a sequence (xn) in a Riesz space if there exists
a subsequence (xk)k∈K of (xn) such that (xk) is order-convergent to x.

Remind that in a Riesz space E, a positive vector e is referred to as an atom when the conditions x∧ y = 0
and x, y ∈ [0, e] imply that either x = 0 or y = 0. Also, a Banach lattice E is classified as a Kantorovich–Banach
space, denoted as a KB-space, if every increasing norm bounded sequence from E+ converges in norm.

Remark 3.2.

(i) Every sequence that is order-convergent has at least one order limit point.
(ii) Every sequence that is norm-convergent in a Banach lattice has an order limit point (see for example Theo-

rem.VII.2.1 [23]).
(iii) Every order-bounded sequence in atomic KB-spaces has an order limit point.

Not all sequences are required to possess a limit point. To illustrate this, let us examine Exercise 105.8
[24].

Example 3.3. Consider Lebesgue measure on Riesz space E := L1 ∪ L∞ with the interval [0, 1]. For any natural
number n ∈N, define the function un as n on the interval [0,n−2] and zero elsewhere. Thus, there does not exist any
subsequence (u jk )

∞

k=1 that converges order to zero. This is due to the fact that 0 ≤ u jk ≤ pk ↓ 0 implies pk ≥ u jm for all
m ≥ k. So, pk would be an unbounded function, which is impossible. Thus, (un) does not have any order limit point.

Definition 3.4. Let E be a Riesz space, and (xn) be a sequence in E. We define the following notions:

(i) Statistical order limit point of (xn): An element x ∈ E is termed a statistical order limit point of (xn) if there
exists a subsequence (xk)k∈K of (xn) with the property that (xk) is order-convergent to x (i.e., xk

o
−→ x), and the set

K has positive lower density δ(K) = w > 0.
(ii) Statistical order cluster point of (xn): An element x ∈ E is called a statistical order cluster point of (xn) if there

exists another sequence qn decreasing to zero, such that the set {n ∈N : |xn−x| ≤ qn} has positive lower density.

In simpler terms, a statistical order limit point of (xn) is an element x to which a certain subsequence of
(xn) converges in order, and the subsequence is sufficiently dense in the sense of positive lower density. On
the other hand, a statistical order cluster point of (xn) is an element x around which the terms of the sequence
(xn) cluster in order, with the clustering controlled by the decreasing sequence qn of positive numbers. For
a sequence x = (xn), we denote the sets of all order limit points, statistical order limit points, and statistical
order cluster points of x as OL(x),SOL(x), and SOC(x), respectively.

Remark 3.5. Consider E as the Riesz space R equipped with the order relation ”≤”. In this case:

(i) Every order limit point of a sequence is also a limit point of the sequence.
(ii) Every statistical order limit point of a sequence is also a statistical limit point of the sequence.
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(iii) Every statistical order cluster point is a statistical cluster point of the sequence.

In other words, when we consider the Riesz space R with the order relation ”≤”, the notions of order
limit points, statistical order limit points, and statistical order cluster points coincide with their respective
limit point counterparts.

It is obvious that SOL(x) ⊆ OL(x). However, the reverse inclusion is not valid. This can be illustrated
with the following instance.

Example 3.6. Consider the Riesz space E := R2, which is equipped with the coordinatewise ordering. Let (xk) be a
sequence in E defined as follows:

xk =

(0, 1 +
1
k

), k = n2

(0, 0), otherwise

where k,n belong to the set of natural numbers, N. Now, we will demonstrate that (0, 1) ∈ OL(x). To do this, we
consider the indexes kn = n2, and we form the subsequence xkn = (0, 1 + 1

k2
n
) of (xk). As a result, we observe that

|xkn − (0, 1)| = |(0, 1
k2

n
)| = (0, 1

k2
n
) ↓ (0, 0). Therefore, we conclude that (0, 1) ∈ OL(x). On the other hand, it is essential

to note that (0, 1) < SOL(x) due to the reason that δ(K) = 0.

In the next study, we explore the relationship between SOL(x) and SOC(x).

Theorem 3.7. SOL(x) ⊆ SOC(x) holds for any sequence x in Riesz spaces.

Proof. Let’s assume that x = (xk) is a sequence in a Riesz space E, and e belongs to SOL(x). Thus, there exists
a subsequence (xkn )kn∈K of x, where xkn

o
−→ e and δ(K) > 0. From the fact that xkn

o
−→ e, we can find a sequence

ykn ↓ 0 in E such that for every kn ∈ K, the inequality |xkn − e| ≤ ykn holds. Additionally, the given condition
δ(K) > 0 implies that

lim
n→∞

1
n
|{kn ∈ K : kn ≤ n} = w > 0.

Thus, we observe the following inclusion

{kn ∈ K : kn ≤ n} ⊆ {k ∈N : |xk − e| < yk}.

Therefore, we get

lim
n→∞

1
n

∣∣∣{kn ∈ K : kn ≤ n}
∣∣∣ < lim

n→∞

1
n

∣∣∣{k ∈N : |xk − e| < yk}
∣∣∣.

Hence, it follows that δ({k ∈ N : |xk − e| < yk}) > 0, which ultimately implies that e belongs to SOC(x). This
concludes the proof.

It should be noted that the converse statement of Theorem 3.7 may not necessarily be true in all cases.
To demonstrate this, an example presented in Example 3 [12] can be considered.

Theorem 3.8. Let x = (xn) and y = (yn) be two sequences in a Riesz space E. If the density of δ({n ∈N : xn , yn})
equals zero, then SOL(x) = SOL(y) and SOC(x) = SOC(y).

Proof. Let e ∈ SOL(x). This implies that there exists a subsequence (xkn )kn∈K of sequence x such that xkn

o
−→ e

and the density δ(K) > 0. Since xkn

o
−→ e, we can find another sequence akn ↓ 0 in E such that |xkn − e| < akn

holds for every kn ∈ K. It is important to note that the set {kn ∈ K : xkn , ykn } is a subset of {k ∈ N : xk , yk}.
Thus, we have

δ({k ∈N : xk , yk}) ≥ δ({kn ∈ K : xkn , ykn }),
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which implies that δ({kn ∈ K : xkn , ykn }) = 0. Given that δ(K) > 0, it follows that δ(M) > 0, where
M := {kn ∈ K : xkn = ykn }) > 0. Consequently, for the sequence y, we can select the subsequence (ykn )kn∈M

such that ykn

o
−→ e and the measure δ(M) > 0. This implies e ∈ SOL(y). By employing similar arguments, we

can demonstrate that SOL(y) ⊆ SOL(x).
Next, let’s consider an element e ∈ SOC(x). This means there exists a sequence qn ↓ 0 such that

the measure δ({k ∈ N : |xk − e| < qk}) > 0. Given that δ({kn ∈ N : xkn = ykn }) = 0, we can deduce
that δ({kn ∈ N : |ykn − e| < qkn }) > 0. This implies that e ∈ SOC(y). Similarly, it can be shown that
SOC(y) ⊆ SOC(x).

Theorem 3.9. Let x = (xn) be a sequence in a Riesz space E. Then, SOL(x) is closed under the statistical order
convergence.

Proof. Let (pn) be a sequence in SOL(x), and let (pn) statistically order converge to p ∈ E. We aim to show

that p also belongs to SOL(x). Since pn
sto
−→ p ∈ E, there is a sequence qn ↓

st 0 with a subset δ(J) = 1 ofN such
that |p j − p| ≤ q j for all j ∈ J. Now, consider an arbitrary index j ∈ J. There exists a subsequence (xkn )kn∈K of
(xn) such that xkn

o
−→ p j, and δ(K) > 0 due to the fact that p j ∈ SOL(x). Therefore, there exists another sequence

yn ↓ 0 in E such that |xkn − p j| ≤ ykn holds for all kn ∈ K. We can then deduce that:

|xkn − p| ≤ |xkn − p j| + |p j − p| ≤ ykn + q j

for each kn ∈ K. Therefore, we obtain that |xm − p| ≤ ym + qm for all m ∈ M, where M is the set K ∩ J. Since
δ(M) = 1 and (ym + qm)m∈M ↓ 0, we get xm

o
−→ p, i.e., we have p ∈ SOL(x).

Theorem 3.10. The set SOC(x) is closed under the statistical order convergence for any sequence x = (xn) in a Riesz
space.

Proof. Suppose that (wn) is a sequence in SOC(x) and wn
sto
−→w for a sequence x = (xn) in a Riesz space E.

Then, we have a sequence qn ↓
st 0 with a subset J ofN such that δ(J) = 1 and |w j − w| ≤ q j for all j ∈ J. For

any fixed index j ∈ J, there exists a sequence tn ↓ 0 in E such that δ
(
{k ∈ N : |xk − w j| ≤ tk}

)
> 0 because of

w j ∈ SOC(x). It follows from the inequality

|xk − w| ≤ |xk − w j| + |w j − w| ≤ tk + q j

that we have the following inclusion {k ∈N : |xk−w j| ≤ tk}∩ { j ∈ J : |w j−w| ≤ q j} ⊆ {k ∈N : |xk−w| ≤ tk+qk}.
Therefore, we obtain that δ

(
{k ∈N : |xk−w| ≤ tk+ qk}

)
> 0. Since (tk+ q j)(k, j)∈K×J ↓ 0, we have w ∈ SOC(x).
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