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Abstract. In this paper, we first establish a sharp version of Landau-type theorem of polyharmonic
mappings. Then, we establish two versions of Landau-type theorems of polyharmonic mappings by
applying Cauchy-inequality, which improve the corresponding theorems given in Luo et al.(Computational
Methods and Function Theory, 23(2):303-325, 2023). Finally, three new Landau-type theorems of log-p-
harmonic mappings are established, one of which improves upon a result given in Bai et al. (Complex
Analysis and Operator Theory, 13(2):321-340, 2019).

1. Introduction

Suppose F(z) = u(z) + iv(z) is a 2p times continuously differentiable complex-valued mapping in a
domain D ⊆ C, where p is a positive integer. Then F(z) is said to be polyharmonic (or p-harmonic) in D if
F(z) satisfies the p-harmonic equation

∆pF = ∆(∆p−1)F = 0,

where ∆ := ∆1 represents the usual complex Laplacian operator

∆ := 4
∂2

∂z∂z
=
∂2

∂x2 +
∂2

∂y2 .

Obviously, for p = 1 (resp. p = 2), we obtain the usual class of harmonic (resp. biharmonic) mappings.
A complex-value function f (z) is a harmonic mapping in a simply connected domain D if and only if f (z)
has the following representation f (z) = h(z) + 1(z) with f (0) = h(0), 1(z) and h(z) being analytic in D (for
details see [4] ).

It is well-known (cf.[11]) that a mapping F(z) is polyharmonic in a simply connected domain D ⊆ C if
and only if F(z) has the following representation

F(z) =
p∑

k=1

|z|2(k−1)Gp−k+1(z),
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where Gp−k+1(z) is harmonic on D for each k ∈ {1, . . . , p}. In particular, F(z) is a biharmonic mapping in a
simply connected domain D if and only if F(z) has the following representation

F(z) = |z|21(z) + h(z),

where 1(z), h(z) are harmonic on D (cf.[1] ).
A mapping F(z) is called a log-p-harmonic mapping if and only if log F(z) is a p-harmonic mapping.

When p = 1, F(z) is called a log-harmonic mapping. When p = 2, F(z) is called a log-biharmonic mapping.
Hence, F(z) is called a log-p-harmonic mapping in a simply connected domain D ⊆ C if and only if F(z) has
the following representation

F(z) =
p∏

k=1

1p−k+1(z)|z|
2(k−1)
,

where 1p−k+1(z) is log-harmonic on D for each k ∈ {1, . . . , p}(cf. [14] ).
For a continuously differentiable mapping F(z) in D, we define the maximum dilation and minimum

dilation respectively as follows:

ΛF(z) = max
0≤θ≤2π

|eiθFz(z) + e−iθFz(z)| = |Fz(z)| + |Fz(z)|,

and
λF(z) = min

0≤θ≤2π
|eiθFz(z) + e−iθFz(z)| = ||Fz(z)| − |Fz(z)||.

Denote the Jacobian of F by
JF = |Fz(z)|2 − |Fz(z)|2.

LetU = {z ∈ C : |z| < 1} be the unit disk, andUr be the disk with center at the origin and radius r > 0. The
classical Landau’s theorem states that if f is an analytic function in the unit diskUwith f (0) = f ′(0)− 1 = 0
and | f (z)| < M for z ∈ U, then f is univalent in the diskUρ0 with ρ0 =

1
M+
√

M2−1
and f (Uρ0 ) contains a disk

|w| < R0 with R0 = Mρ2
0. This result is sharp, with the extremal function f0(z) = Mz 1−Mz

M−z . Furthermore, the
Bloch theorem asserts the existence of a positive constant number b such that if f is an analytic function
on the unit disk U with f ′(0) = 1, then f (U) contains a schlicht disk of radius b, that is, a disk of radius b
which is the univalent image of some region inU. The supremum of all such constants b is called the Bloch
constant (for the detail see [6, 12]).

Since Landau’s theorems of harmonic mappings were given by Chen et al.([6]) in 2000, many authors are
keen on Landau-type theorems for harmonic mappings, biharmonic mappings and polyharmonic mappings
([3, 7, 9, 10, 15–20, 22, 23, 27]). Meanwhile, there are many Bloch’s theorems for different functions. In 2002,
Mateljević [24] gave a version of Bloch’s theorems for quasiregular harmonic mappings. And in 2017, Chen
et al. [8] obtained a Landau-Bloch type theorem for harmonic functions in hardy spaces.

There are many good results, but the sharp results are rarely seen. Recently, Luo and Liu ([23]) established
following theorem for polyharmonic mappings, which improved the related result of Bai and Liu in [3].

Theorem A([23]) Suppose F(z) =
p∑

k=1
|z|2(k−1)Gp−k+1(z) is a polyharmonic mapping in the unit disk U,

with F(0) = λF(0) − 1 = 0, and satisfying following conditions:
(i) Gp−k+1(z) is harmonic inU, and Gp−k+1(0) = 0 for k ∈ {1, · · · , p};
(ii) for k ∈ {2, 3, · · · , p}, |Gp−k+1(z)| ≤Mp−k+1, and ΛGp (z) ≤ Λp for z ∈ U.

Then Mp−k+1 ≥ 0, Λp ≥ 1, F(z) is univalent in Uρ1 , and F(Uρ1 ) contains a schlicht disk Uρ′1 , where ρ1 is
the minimum root in (0, 1) of the equation

Λp(1 −Λpr)
Λp − r

−

p∑
k=2

r2(k−1)
[ 4Mp−k+1

π(1 − r2)
+

8(k − 1)Mp−k+1

π

]
= 0, (1)

and

ρ′1 = Λ
2
pρ1 + (Λ3

p −Λp) log(1 −
ρ1

Λp
) −

p∑
k=2

ρ2k−1
1

4Mp−k+1

π
. (2)
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When Mp−k+1 = 0, k = 2, . . . , p, the result is sharp.

Meanwhile, another two new theorems for polyharmonic mappings were established.

Theorem B([23]) Suppose F(z) =
p∑

k=1
|z|2(k−1)Gp−k+1(z) is a polyharmonic mapping in the unit disk U,

with F(0) = 0, and satisfying following conditions:
(i) for k ∈ {1, · · · , p}, Gp−k+1(z) is harmonic inU, and λGp−k+1 (0) − 1 = Gp−k+1(0) = 0;
(ii) for k ∈ {2, · · · , p}, |Gp−k+1(z)| ≤Mp−k+1, ΛGp (z) ≤ Λp for all z ∈ U.

Then for k ∈ {2, · · · , p},Mp−k+1 ≥ 1,Λp ≥ 1, F(z) is univalent inUρ2 , and F(Uρ2 ) contains the schlicht disk
Uρ′2 , where ρ2 is the minimum positive root in (0, 1) of the following equation

Λp(1 −Λpr)
Λp − r

−

p∑
k=2

[
(2k − 1)K1(Mp−k+1)r2k−2 + K2(Mp−k+1)r2k−1 2k − (2k − 1)r

(1 − r)2

]
= 0. (3)

and

ρ′2 = Λ
2
pρ2 + (Λ3

p −Λp) log(1 −
ρ2

Λp
) −

p∑
k=2

[
K1(Mp−k+1)ρ2k−1

2 + K2(Mp−k+1)
ρ2k

2

1 − ρ2

]
, (4)

where

K1(Mp−k+1) = min
{√

2M2
p−k+1 − 1,

4Mp−k+1

π

}
,K2(Mp−k+1) = min

{√
2M2

p−k+1 − 2,
4Mp−k+1

π

}
.

When Mp−k+1 = 1, k = 2, . . . , p, the result is sharp.

Theorem C([23]) Let F(z) =
p∑

k=1
|z|2(k−1)Gp−k+1(z) be a polyharmonic mapping in the unit disk U, with

F(0) = λF(0) − 1 = 0, and satisfying the following conditions:
(i) for k ∈ {1, · · · , p}, Gp−k+1(z) is harmonic inU, and Gp−k+1(0) = 0;
(ii) for k ∈ {2, 3, · · · , p}, ΛGp−k+1 (z) ≤ Λp−k+1, and |Gp(z)| ≤Mp for z ∈ U.

Then Λp−k+1 ≥ 0,Mp ≥ 1, F(z) is univalent in Uρ3 , and F(Uρ3 ) contains a schlicht disk Uρ′3 , where ρ3 is
the unique positive root in (0, 1) of the following equation:

1 − K2(Mp)
2r − r2

(1 − r)2 −

p∑
k=2

(2k − 1)Λp−k+1r2(k−1) = 0, (5)

and

ρ′3 = ρ3 − K2(Mp)
ρ2

3

1 − ρ3
−

p∑
k=2

ρ2k−1
3 Λp−k+1. (6)

When Mp = 1, the result is sharp.

On the other hand, Liu and Luo obtained the sharp results for Landau’s theorem of polyharmonic
mappings with conditions ΛGp (z) ≤ 1, and ΛGp−k+1 (z) ≤ Λp−k+1, k ∈ {2, 3, · · · , p}.

Theorem D([20]) Suppose that p is a positive integer, p ≥ 2, Λ1, · · · , Λp−1 ≥ 0. Let F(z) =
∑p

k=1 |z|
2(k−1)Gp−k+1(z)

be a polyharmonic mapping ofU, where all Gp−k+1 are harmonic onU, satisfying Gp−k+1(0) = λF(0) − 1 = 0
for k = 1, 2, · · · , p. If ΛGp (z) ≤ 1, and ΛGp−k+1 (z) ≤ Λp−k+1, k ∈ {2, 3, · · · , p} for all z ∈ U. Then F(z) is univalent
inUρ4 , and F(Uρ4 ) contains a schlicht diskUρ′4 , where

ρ4 =


1, if

p−1∑
k=1

(2k + 1)Λp−k ≤ 1,

ρ′′4 , if
p−1∑
k=1

(2k + 1)Λp−k > 1 ,
(7)
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and ρ′′4 is the unique root in (0, 1) of the equation

1 −
p−1∑
k=1

(2k + 1)Λp−kr2k = 0, (8)

and ρ′4 = ρ4 −
∑p−1

k=1 Λp−kρ2k+1
4 . Moreover, these estimates are sharp, with an extremal function given by

F′1(z) = z −
p−1∑
k=1

Λp−k|z|2kz. (9)

In 2012, Li and Wang firstly obtained the following Landau’s theorem for log-p-harmonic mappings
with condition of J f (0) = 1.

Theorem E([14]) Let f (z) =
p∏

k=1
1p−k+1(z)|z|

2(k−1)
be a log-p-harmonic mapping of the unit disk U, where

1p−k+1(z) is log-harmonic with 1p−k+1(0) = 1p(0) = J f (0) = 1 , |1p−k+1(z)| < M1, for k ∈ {2, · · · , p}, and
|1p(z)| < M2, where Mi ≥ 1 (i = 1, 2) are positive constants. Then there exists ρ5 ∈ (0, 1) such that f (z) is
univalent inUρ5 , where ρ5 satisfies the following equation

λ0(M∗

2) −
T(M∗

2)ρ5(2 − ρ5)

(1 − ρ5)2 −
4M∗

1

π(1 − ρ5)2

p−1∑
k=1

ρ2k
5 − 2M∗

1

p−1∑
k=1

kρ2k−1
5 = 0, (10)

where M∗

i = log Mi + π (i = 1, 2).
Moreover, the range F(Uρ5 ) contains a univalent diskU(z5, ρ′′5 ), where

z5 = cosh
( ρ′5
√

2

)
, ρ′′5 = min

{
sinh

( ρ′5
√

2

)
, cosh

( ρ′5
√

2

)
sin
( ρ′5
√

2

)}
, (11)

ρ′5 = ρ5

[
λ0(M∗

2) −
T(M∗

2)ρ5

(1 − ρ5)
−

4M∗

1

π(1 − ρ5)

p−1∑
k=1

ρ2k
5

]
. (12)

In 2019, Bai and Liu improved the Landau theorem of log-p-harmonic mapping with the condition of
λ f (0) = 1.

Theorem F([3]) Let F(z) =
p∏

k=1
1p−k+1(z)|z|

2(k−1)
be a log-p-harmonic mapping of the unit diskU, satisfying

f (0) = 1p(0) = λ f (0) = 1. Suppose that for each k ∈ {1, · · · , p},we have
(i) 1p−k+1(z) is log-harmonic inU,
(ii) |1p−k+1(z)| ≤Mp−k+1, Let Gp = log 1p and ΛGp (z) ≤ Λp , where Mp−k+1 ≥ 1,Λp > 1.

Then there is a positive number ρ6 such that F(z) is univalent inUρ6 , where ρ6 (0 < ρ6 < 1) satisfies the
following equation

1 −
4

π(1 − r2)

p−1∑
k=1

r2kM∗

p−k −

p−1∑
k=1

kM∗

p−kr2k 8
π(1 − r)

−

Λ2
p − 1

Λp

r
1 − r

= 0, (13)

where M∗

p−k+1 = log Mp−k+1+π, k = 2, 3, · · · , p.Moreover, the range F(Uρ6 ) contains a univalent diskU(z6, ρ′′6 ),
where

z6 = cosh
( ρ′6
√

2

)
, ρ′′6 = min

{
sinh

( ρ′6
√

2

)
, cosh

( ρ′6
√

2

)
sin
( ρ′6
√

2

)}
, (14)
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ρ′6 = ρ6 +
Λ2

p − 1

Λp
[ρ6 + log(1 − ρ6)] −

p−1∑
k=1

ρ2k
6

4M∗

p−kρ6

π(1 − ρ6)
. (15)

However, Theorem A is not sharp for Mp−k+1 > 0, k = 2, 3, ..., p, and Theorem F is also not sharp. In
this paper, we first establish a sharp version of Landau-type theorem for polyharmonic mappings with
extremal function given by Example 3.2. For Example 3.2 satisfying with the hypothesis of Theorems A, it
is natural to pose a Conjecture. Next, we establish two versions of Landau-type theorems of polyharmonic
mappings by applying Cauchy-inequality, which improve the correspondent results for Theorems B and C,
respectively. Finally, three new Landau-type theorems of log-p-harmonic mappings are established, where
Theorems 3.9, 3.10 and 3.11 are the corresponding forms of Theorems 3.4, A and 3.5, respectively.

2. Preliminaries

In order to establish our main results, we need the following lemmas.
Lemma 2.1 ([5]) Suppose that f (z) = f1(z) + f2(z) is a harmonic mapping with f1(z) =

∑
∞

n=1 anzn and
f2(z) =

∑
∞

n=1 bnzn being analytic inU. If | f (z)| ≤M for all z ∈ U, then

Λ f (z) ≤
4M

π(1 − |z|2)
. (1)

Lemma 2.2 ([6]) Let f be a harmonic mapping of the unit diskUwith f (0) = 0 and f (U) ⊂ U. Then

| f (z)| ≤
4
π

arctan |z| ≤
4
π
|z|, for z ∈ U.

Lemma 2.2 is called Schwarz type Lemma of complex-valued harmonic functions with f (0) = 0. Later,
Hethcote[13] obtained sharp inequality by removing the assumption f (0) = 0, and then Mateljević et al.
[25][26] gave the improvements of Hethcote’s result.

Lemma 2.3 ([22]) Suppose that f (z) = f1(z) + f2(z) is a harmonic mapping of the unit disk U with
f1(z) =

∑
∞

n=1 anzn and f2(z) =
∑
∞

n=1 bnzn. If f satisfies | f (z)| ≤M for all z ∈ U and λ f (0) = 1, then M ≥ 1, and

|a1| + |b1| ≤ K1(M) = min{
√

2M2 − 1,
4M
π
}. (2)

The inequality (2) is sharp for M = 1, with f0(z) = z being an extremal mapping.
Lemma 2.4 ([27]) Suppose that f (z) = f1(z) + f2(z) is a harmonic mapping of the unit disk U with

f1(z) =
∑
∞

n=1 anzn and f2(z) =
∑
∞

n=1 bnzn.
(1) If f satisfies | f (z)| ≤M for all z ∈ U, then

∞∑
n=1

(|an| + |bn|)2
≤ 2M2. (3)

(2) If f satisfies | f (z)| ≤M for all z ∈ U and J f (0) = 1, then

( ∞∑
n=2

(|an| + |bn|)2
) 1

2

≤

√

M4 − 1 · λ f (0), (4)

where

λ f (0) ≥ λ0(M) =


√

2
√

M2−1+
√

M2+1
, 1 ≤M ≤M0 =

π

2
4√

2π2−16≈1.1296
,

π
4 , M >M0.

(5)



X.L. Fu, X. Luo / Filomat 38:4 (2024), 1203–1219 1208

(3) If f satisfies | f (z)| ≤M for all z ∈ U and λ f (0) = 1, then( ∞∑
n=2

(|an| + |bn|)2
) 1

2

≤

√

2M2 − 2. (6)

Lemma 2.5 ([21]) Suppose f (z) = h(z) + 1(z) is a harmonic mapping of the unit disk U with h(z), 1(z)
are holomorphic inU, h(0) = 1(0) = λ f (0) − 1 = 0, Λ f (z) < Λ for all z ∈ U. Then

(i) For two distinct points z1, z2 ∈ Ur (r < 1
Λ ),

| f (z1) − f (z2)| ≥
Λ(1 −Λr)
Λ − r

|z1 − z2|.

(ii) For z = reiθ
∈ ∂Ur,

| f (z)| ≥ Λ2r + (Λ3
−Λ) ln(1 −

r
Λ

).

Lemma 2.6 ([23]) For z1, z2 ∈ Ur, k, j ∈∈ N+, we have∣∣∣∣∣|z1|
2kz j

1 − |z2|
2kz j

2

∣∣∣∣∣ ≤ (2k + j)r2k+ j−1
|z1 − z2|.

Lemma 2.7 ([23]) Suppose f (z) = h(z) + 1(z) is a harmonic mapping of the unit diskU with λ f (0) = 1
and f (0) = 0. Then | f (z)| ≤ 1 for all z ∈ U if and only if Λ f (z) ≤ 1 for all z ∈ U.

Lemma 2.8 ([20]) Suppose that p is a positive integer and 0 < σ < 1, 0 < ρ ≤ 1. Let f (z) be a log-p-
harmonic mapping ofU satisfying f (0) = λ f (0) = 1. Suppose that f (z) is univalent inUρ and F(Uρ) ⊃ Uσ,
where F(z) = log f (z). Then the range F(Uρ) contains a schlicht disk U(w0, r0) = {w ∈ C : |w − w0| < r0},
where

w0 = cosh σ, r0 = sinh σ.

Moreover, if ρ is the biggest univalent radius of f (z), then the radius r0 = sinh σ is sharp.

3. Main Results

Applying Lemma 2.6, we first establish a sharp version of Landau-type theorem for polyharmonic
mappings.

Theorem 3.1 Suppose that Λp ≥ 1, Mp−k+1 ≥ 0, |Gp−k+1| ≤Mp−k+1 for k ∈ {2, · · · , p} and |Gp| = Λp. Let

F1(z) =
p∑

k=2

Gp−k+1|z|2(k−1)z + Gp

∫ z

0

ζ − 1
Λp

1 − ζ
Λp

dζ

be a polyharmonic mapping of the unit disk U. Then F1(z) is univalent in the disk Ur1 , where r1 is the
unique positive root in (0, 1) of the equation

Λp(1 −Λpr)
Λp − r

−

p∑
k=2

(2k − 1)Mp−k+1r2(k−1) = 0,

and F1(Ur1 ) contains a schlicht diskUR1 , with

R1 = Λ
2
pr1 + (Λ3

p −Λp) log(1 −
r1

Λp
) −

p∑
k=2

Mp−k+1r2k−1
1 .

Both of r1 and R1 are sharp.
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Proof Firstly, we prove F1(z) is univalent in the disk Ur1 . To this end, we choose two distinct points
z1, z2 in the diskUr(r < r1). Then, applying Lemma 2.6, we have

|F1(z1) − F1(z2)|

=

∣∣∣∣∣ p∑
k=2

Gp−k+1|z1|
2(k−1)z1 + Gp

∫ z1

0

ζ − 1
Λp

1 − ζ
Λp

dζ −

p∑
k=2

Gp−k+1|z2|
2(k−1)z2 − Gp

∫ z2

0

ζ − 1
Λp

1 − ζ
Λp

dζ
∣∣∣∣∣

≥ Λp

∣∣∣∣ ∫ z2

z1

ζ − 1
Λp

1 − ζ
Λp

dζ
∣∣∣∣ − p∑

k=2

Mp−k+1

∣∣∣∣|z1|
2(k−1)z1 − |z2|

2(k−1)z2

∣∣∣∣
≥ Λp

1
Λp
− r

1 − r
Λp

|z1 − z2| −

p∑
k=2

(2k − 1)Mp−k+1r2(k−1)
|z1 − z2|

=
[Λp(1 −Λpr)
Λp − r

−

p∑
k=2

(2k − 1)Mp−k+1r2(k−1)
]
|z1 − z2| > 0.

Thus, we have F1(z1) , F1(z2), which proves the univalence of F1(z) in the diskUr1 .

Next, we prove the sharpness of r1. Considering the real function

f (x) = −
p∑

k=2

Mp−k+1x2k−1
−Λp

∫ x

0

ζ − 1
Λp

1 − ζ
Λp

dζ, x ∈ [0, 1].

Then

f ′(x) =
Λp(1 −Λpx)
Λp − x

−

p∑
k=2

(2k − 1)Mp−k+1x2(k−1).

Because f ′(x) is strictly monotone decreasing on [0, 1], and

f ′(0) = 1, f ′(1) = −Λp −

p∑
k=2

(2k − 1)Mp−k+1 < 0,

so f ′(x) = 0 for x ∈ (0, 1) if and only if x = r1. Hence f (x) is strictly monotone increasing on [0, r1]
and strictly monotone decreasing on [r1, 1]. For every fixed r′ ∈ (r1, 1), there exists two distinct points
x1, x2 ∈ (0, r′), f (x1) = f (x2). Thus, r1 cannot be replaced by any bigger number.
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And for any point z = r1eiθ on ∂Ur1 , we have

|F1(z)| =
∣∣∣∣ p∑

k=2

Gp−k+1|z|2(k−1)z + Gp

∫ z

0

ζ − 1
Λp

1 − ζ
Λp

dζ
∣∣∣∣

≥ Λp

∣∣∣∣ ∫ z

0

ζ − 1
Λp

1 − ζ
Λp

dζ
∣∣∣∣ − p∑

k=2

Mp−k+1r2k−1
1

≥ Λp

∫ r1

0

1
Λp
− t

1 − t
Λp

dt −
p∑

k=2

Mp−k+1r2k−1
1

= −Λp

∫ r1

0

t − 1
Λp

1 − t
Λp

dt −
p∑

k=2

Mp−k+1r2k−1
1

= Λ2
pr1 + (Λ3

p −Λp) log(1 −
r1

Λp
) −

p∑
k=2

Mp−k+1r2k−1
1 = R1,

f (r1) = −Λp

∫ r1

0

ζ − 1
Λp

1 − ζ
Λp

dζ −
p∑

k=2

Mp−k+1r2k−1
1

= Λ2
pr1 + (Λ3

p −Λp) log(1 −
r1

Λp
) −

p∑
k=2

Mp−k+1r2k−1
1 = R1.

Hence R1 is sharp. This completes the proof. □

By the proof of Theorem 3.1, we obtain the extremal function F2(z) by the following example.
Example 3.2 Suppose that Λp ≥ 1,Mp−k+1 ≥ 0, k ∈ {2, · · · , p}. Let

F2(z) = −
p∑

k=2

Mp−k+1|z|2(k−1)z −Λp

∫ z

0

ζ − 1
Λp

1 − ζ
Λp

dζ

be a polyharmonic mapping of the unit diskU. Then F2(z) is univalent in the diskUr1 , and F2(Ur1 ) contains
a schlicht diskUR1 , where r1 and R1 are given by Theorem 3.1. Both of r1 and R1 are sharp.

We note that the polyharmonic mappings in Example 3.2 satisfying the hypothesis of Theorem A, it is
natural to pose a conjecture as follows:

Conjecture 3.3 Under the hypothesis of Theorem A, F(z) is univalent in Ur1 and F(Ur1 ) contains a
schlicht diskUR1 . This result is sharp, with r1,R1, and the extremal mapping are given by Example 3.2.

Next, we establish a new version Landau-type theorem by adding extra conditions λGp−k+1 (0) = 1, k ∈
{2, 3, · · · , p} to Theorem A, which is sharp when Mp−k+1 = 1 (k = 2, 3, · · · , p). We prove the following result
with a method of proof of [27].

Theorem 3.4 Suppose F(z) =
p∑

k=1
|z|2(k−1)Gp−k+1(z) is a polyharmonic mapping in the unit disk U, with

F(0) = 0, and satisfying following conditions:
(i) for k ∈ {1, · · · , p}, Gp−k+1(z) is harmonic inU, and λGp−k+1 (0) − 1 = Gp−k+1(0) = 0;
(ii) for k ∈ {2, · · · , p}, |Gp−k+1(z)| ≤Mp−k+1, ΛGp (z) ≤ Λp for all z ∈ U.

Then for k ∈ {2, · · · , p},Mp−k+1 ≥ 1,Λp ≥ 1, F(z) is univalent inUr2 , and F(Ur2 ) contains the schlicht disk
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UR2 , where r2 is a unique root in (0, 1) of the equation A1(r) = 0, A1(r) is defined by the following equation

A1(r) =
Λp(1 −Λpr)
Λp − r

−

p∑
k=2

r2(k−1)
[
(2k − 1)K1(Mp−k+1)

+
√

2M2
p−k+1 − 2

(2(k − 1)r
√

1 − r2
+

r
√

4 − 3r2 + r4

(1 − r2)
3
2

)]
, (1)

K1(Mp−k+1) = min
{√

2M2
p−k+1 − 1

4Mp−k+1

π

}
, (2)

and

R2 = Λ
2
pr2 + (Λ3

p −Λp) log(1 −
r2

Λp
) −

p∑
k=2

r2k−1
2

[
K1(Mp−k+1) +

√
2M2

p−k+1 − 2 ·
r2√

1 − r2
2

]
. (3)

When Mp−k+1 = 1, k = 2, . . . , p, the result is sharp, with an extremal function given by

F3(z) = Λp

∫ z

0

1
Λp
− ζ

1 − ζ
Λp

dζ −
p∑

k=2

|z|2(k−1)z = Λ2
pz + (Λ3

p −Λp) log(1 −
z
Λp

) −
p∑

k=2

|z|2(k−1)z. (4)

Proof By the hypothesis of Theorem 3.4 and Lemma 2.3, we have that Mp−k+1 ≥ 1 for k ∈ {2, . . . , p}, and
Λp ≥ ΛGp (0) ≥ λGp (0) = 1.

In order to prove the univalence of F, we choose two distinct points z1, z2 ∈ Ur(0 < r < 1). Then we have

|F(z2) − F(z1)| =
∣∣∣∣∣ p∑

k=2

|z2|
2(k−1)Gp−k+1(z2) + Gp(z2) −

p∑
k=2

|z2|
2(k−1)Gp−k+1(z1) − Gp(z1)

∣∣∣∣∣
≥

∣∣∣Gp(z2) − Gp(z1)
∣∣∣ − ∣∣∣∣∣ p∑

k=2

|z2|
2(k−1)Gp−k+1(z2) −

p∑
k=2

|z2|
2(k−1)Gp−k+1(z1)

∣∣∣∣∣.
Since λF(0) =

∣∣∣∣|(Gp)z(0)| − |(Gp)z(0)|
∣∣∣∣ = λGp (0) = 1, ΛGp (z) < Λp, by Lemma 2.5, we have

∣∣∣Gp(z2) − Gp(z1)
∣∣∣ ≥ Λp(1 −Λpr)

Λp − r
|z2 − z1|.

For any k ∈ {2, . . . , p}, we give the series form of Gp−k+1 as follow:

Gp−k+1(z) =
∞∑
j=1

a j,p−k+1z j +

∞∑
j=1

b j,p−k+1z j.

Using Lemmas 2.3, 2.4 and 2.6, we have∣∣∣∣∣ p∑
k=2

|z2|
2(k−1)Gp−k+1(z2) −

p∑
k=2

|z1|
2(k−1)Gp−k+1(z1)

∣∣∣∣∣
=

∣∣∣∣∣ p∑
k=2

∞∑
j=1

(
a j,p−k+1(|z2|

2(k−1)z j
2 − |z1|

2(k−1)z j
1) + b j,p−k+1(|z2|

2(k−1)z2
j
− |z1|

2(k−1)z1
j)
)∣∣∣∣∣

≤

p∑
k=2

∞∑
j=1

(|a j,p−k+1| + |b j,p−k+1|)||z2|
2(k−1)z j

2 − |z1|
2(k−1)z j

1|
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≤

p∑
k=2

∞∑
j=1

(|a j,p−k+1| + |b j,p−k+1|)(2k + j − 2)r2k+ j−3
|z1 − z2|

≤

p∑
k=2

r2(k−1)
[
(2k − 1)K1(Mp−k+1) + 2(k − 1)

( ∞∑
j=2

(
|a j,p−k+1| + |b j,p−k+1|

)) 1
2
( ∞∑

j=2

r2( j−1)
) 1

2

+
( ∞∑

j=2

(
|a j,p−k+1| + |b j,p−k+1|

)) 1
2
( ∞∑

j=2

j2r2( j−1)
) 1

2
]
|z1 − z2|

=

p∑
k=2

r2(k−1)
[
(2k − 1)K1(Mp−k+1) +

√
2M2

p−k+1 − 2
(2(k − 1)r
√

1 − r2
+

r
√

4 − 3r2 + r4

(1 − r2)
3
2

)]
|z1 − z2|.

Hence,

|F(z1) − F(z2)| ≥ A1(r)|z1 − z2|,

where A1(r) is defined by (1).
It is not difficult to verify that A1(r) is strictly decreasing in (0, 1), and

lim
r→0

A1(r) = 1, lim
r→1

A1(r) = −∞.

Hence there exists a unique root r2 in (0, 1) of the equation A1(r) = 0. This shows that

|F(z2) − F(z1)| > 0

for any two distinct points z1, z2 ∈ Ur2 . Thus F is univalent inUr2 .
Next, for any point z = r2eiθ on ∂Ur2 , by Lemmas 2.3, 2.4 and 2.5, we have

|F(z)| =
∣∣∣∣∣Gp(z) +

p∑
k=2

|z|2(k−1)Gp−k+1(z)
∣∣∣∣∣

=

∣∣∣∣∣Gp(z) +
p∑

k=2

|z|2(k−1)
∞∑
j=1

a j,p−k+1z j +

∞∑
j=1

b j,p−k+1z j
∣∣∣∣∣

≥ Λ2
pr2 + (Λ3

p −Λp) log(1 −
r2

Λp
)

−

p∑
k=2

|z|2(k−1)
[(
|a1,p−k+1z| + |b1,p−k+1z|

)
+

∞∑
j=2

(
|a j,p−k+1z j

| + |b j,p−k+1z j
|

)]
≥ Λ2

pr2 + (Λ3
p −Λp) log(1 −

r2

Λp
)

−

p∑
k=2

r2(k−1)
2

[
K1(Mp−k+1)r2 +

√
2M2

p−k+1 − 2 ·
r2

2√
1 − r2

2

]
= R2.

Hence, F(Ur2 ) contains a schlicht diskUR2 .
When Mp−k+1 = 1,Λp ≥ 1 for k = 2, . . . , p, the result is sharp with an extremal function F3(z), which is

given by (4). This completes the proof. □

The equation A1(r) = 0 which A1(r) is defined by (1) cannot be solved explicitly. The Computer Algebra
System Mathematica has calculated the numerical solutions to equations (1), (3), (3) and (4). Table 1 shows
the approximate values of r2,R2 and ρ2, ρ′2 that correspond to different choice of the constants M1 and Λ2,
which shows that r2 > ρ2 and R2 > ρ′2, that is, Theorem 3.4 is an improvement of Theorem B.
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Table 1: The values of ρ2, ρ′2 and r2,R2 are in Theorems B and Theorem 3.4

M1 = Λ2 = 1.1 M1 = 1.5,Λ2 = 2 M1 = Λ2 = 2 M1 = 2.5,Λ2 = 3 M1 = Λ2 = 3
ρ2 0.397736 0.261255 0.234962 0.190024 0.180374
r2 0.422555 0.268498 0.241163 0.192773 0.182519
ρ′2 0.275692 0.161787 0.147208 0.112778 0.107824
R2 0.286601 0.164292 0.149431 0.113631 0.108473

And then, changing some hypothesis of Theorem 3.4, we establish a new version of Landau-type
theorems of polyharmonic mappings as follows.

Theorem 3.5 Let F(z) =
p∑

k=1
|z|2(k−1)Gp−k+1(z) be a polyharmonic mapping in the unit disk U, with

F(0) = λF(0) − 1 = 0, and satisfying the following conditions:
(i) for k ∈ {1, · · · , p}, Gp−k+1(z) is harmonic inU, and Gp−k+1(0) = 0;
(ii) for k ∈ {2, 3, · · · , p}, ΛGp−k+1 (z) ≤ Λp−k+1, and |Gp(z)| ≤Mp for z ∈ U.

Then Λp−k+1 ≥ 0,Mp ≥ 1, F(z) is univalent inUr3 , and F(Ur3 ) contains a schlicht diskUR3 , where r3 is the
unique positive root in (0, 1) of the following equation:

1 −
√

2M2
p − 2 ·

r
√

r4 − 3r2 + 4

(1 − r2)
3
2

−

p∑
k=2

(2k − 1)Λp−k+1r2(k−1) = 0, (5)

and

R3 = r3 −

√
2M2

p − 2 ·
r2

3√
1 − r2

3

−

p∑
k=2

r2k−1
3 Λp−k+1. (6)

When Mp = 1, the result is sharp, with an extremal function F′1(z), which is given by (9).

Proof By the hypothesis of Theorem 3.5 and Lemma 2.4, we have Λp−k+1 ≥ 0 and Mp ≥ 1 for k ∈
{2, · · · , p}, and Gp(z) has the following series form

Gp(z) =
∞∑

n=1

anzn +

∞∑
n=1

bnzn.

Then we have λGp (0) =
∣∣∣∣|(Gp)z(0)| − |(Gp)z(0)|

∣∣∣∣ = ∣∣∣∣|a1| − |b1|

∣∣∣∣ = λF(0) = 1.

By Lemma 2.4, we have
(
∞∑

n=2
(|an| + |bn|)2

) 1
2

≤

√
2M2

p − 2,n ≥ 2.

In order to prove the univalence of F, we choose two distinct points z1, z2 ∈ Ur(0 < r < 1). Then we have

|F(z1) − F(z2)| =
∣∣∣∣∣ ∫

[z1,z2]
Fz(z)dz + Fz(z)dz

∣∣∣∣∣
≥

∣∣∣∣∣ ∫
[z1,z2]

(Gp)z(0)dz + (Gp)z(0)dz
∣∣∣∣∣
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−

∣∣∣∣∣ ∫
[z1,z2]

[(Gp)z(z) − (Gp)z(0)]dz + [(Gp)z(z) − (Gp)z(0)]dz
∣∣∣∣∣

−

∣∣∣∣∣ p∑
k=2

∫
[z1,z2]

|z|2(k−1)[(Gp−k+1)z(z)dz + (Gp−k+1)z(z)dz]
∣∣∣∣∣

−

∣∣∣∣∣ p∑
k=2

∫
[z1,z2]

(k − 1)Gp−k+1(z)(zk−1zk−2dz + zk−2zk−1dz)
∣∣∣∣∣

≥ |z1 − z2|

(
λGp (0) −

∞∑
n=2

n(|an| + |bn|)rn−1
−

p∑
k=2

r2k−1ΛGp−k+1

)
−

p∑
k=2

∫
[z1,z2]

(k − 1)|Gp−k+1(z)|(|zk−1zk−2
||dz| + |zk−2zk−1

||dz)|)

≥ |z1 − z2|

[
1 −
( ∞∑

n=2

(|an| + |bn|)2
) 1

2
( ∞∑

n=2

n2r2(n−1)
) 1

2

−

p∑
k=2

(2k − 1)Λp−k+1r2(k−1)
]

≥ |z1 − z2|

[
1 −
√

2M2
p − 2 ·

r
√

r4 − 3r2 + 4

(1 − r2)
3
2

−

p−1∑
k=1

(2k + 1)Λp−kr2k
]

= A2(r)|z1 − z2|.

It is not difficult to verify that A2(r) is strictly decreasing in (0, 1), and

lim
r→0

A2(r) = 1, lim
r→1

A2(r) = −∞.

Hence there exists an unique root r3 in (0, 1) of the equation A2(r) = 0. This shows that |F(z1) − F(z2)| > 0 for
any two distinct points z1, z2 ∈ Ur3 . Then F(z) is univalent inUr3 .

Next, we prove F(Ur3 ) ⊃ UR3 . For z = r3eiθ
∈ ∂Ur3 , we have

|F(z)| =
∣∣∣∣∣ ∞∑

n=1

(anzn + bnzn) +
p∑

k=2

|z|2(k−1)Gp−k+1(z)
∣∣∣∣∣

≥ |a1z + b1z| −
∣∣∣∣∣ ∞∑

n=2

(anzn + bnzn)
∣∣∣∣∣ − p∑

k=2

|z|2(k−1)
|Gp−k+1(z)|

≥ r3 −

√
2M2

p − 2 ·
r2

3√
1 − r2

3

−

p∑
k=2

r2k−1
3 Λp−k+1 = R3.

Finally, when Mp = 1,
√

2M2
p − 2 = 0. Since λGp (0) − 1 = Gp(0) = 0, it follows from Lemma 2.7 that

ΛGp (z) ≤ 1 for all z ∈ U. Thus, by using Theorem D, we obtain that the result is sharp. This completes the
proof. □

The equation A2(r) = 0 which A2(r) is defined by (5) cannot be solved explicitly. The Computer Algebra
System Mathematica has calculated the numerical solutions to equations (5), (6), (5) and (6). Table 2 shows
the approximate values of r3,R3 and ρ3, ρ′3 that correspond to different choice of the constants M2 and Λ1
when p = 2, which shows that r3 > ρ3 and R3 > ρ′3, that is, Theorem 3.5 is an improvement of Theorems C.
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Table 2: The values of ρ3, ρ′3 and r3,R3 are in Theorems C and Theorems 3.5 when p = 2

M2 = 1.1,Λ1 = 1.1 M2 = 1.1,Λ1 = 0.1 M2 = 2,Λ1 = 2 M2 = 3,Λ1 = 2 M2 = 3,Λ1 = 3
ρ3 0.304897 0.365167 0.14212 0.103741 0.101139
r3 0.365621 0.504695 0.165365 0.113638 0.109897
ρ′3 0.187046 0.224169 0.0787076 0.0556412 0.0545667
R3 0.21878 0.300625 0.0884032 0.0587119 0.0573114

Using the analogous proof of Theorem 3.4 and 3.5, we can obtain the following corollaries.

Corollary 3.6 Let F(z) =
p∑

k=1
|z|2(k−1)Gp−k+1(z) be a p-harmonic mapping of the unit disk U, with F(0) =

JF(0) − 1 = 0, and satisfying the following conditions:
(i) Gp−k+1(z) is harmonic inU, and Gp−k+1(0) = 0 for k ∈ {1, · · · , p};
(ii) ΛGp−k+1 (z) ≤ Λp−k+1 for k ∈ {2, · · · , p} and |Gp(z)| ≤Mp.

Then Λp−k+1 ≥ 0,Mp ≥ 1, F(z) is univalent inUτ1 , and F(Uτ1 ) contains a univalent diskUτ′1 , where τ1 is
the unique positive root in (0, 1) of the equation

λ0(Mp) − λ0(Mp)
√

M4
p − 1 ·

r
√

r4 − 3r2 + 4

(1 − r2)
3
2

−

p∑
k=2

(2k − 1)Λp−k+1r2(k−1) = 0, (7)

λ0(Mp) is defined by (5), and

τ′1 = λ0(Mp)
[
τ1 −

√
M4

p − 1 ·
τ2

1√
1 − τ2

1

]
−

p∑
k=2

Λp−k+1τ
2(k−1)
1 . (8)

When Mp = 1, the result is sharp.

Corollary 3.7 Suppose F(z) =
p∑

k=1
|z|2(k−1)Gp−k+1(z) is a polyharmonic mapping in the unit disk U, with

F(0) = λF(0) − 1 = 0. and satisfying following conditions:
(i) for k ∈ {1, · · · , p}, Gp−k+1(z) is harmonic inU, and λGp−k+1 (0) − 1 = Gp−k+1(0) = 0;
(ii) for k ∈ {2, · · · , p}, |Gp−k+1(z)| ≤Mp−k+1, |Gp(z)| ≤Mp for all z ∈ U.

Then for k ∈ {2, · · · , p},Mp−k+1 ≥ 1,Mp ≥ 1, F(z) is univalent inUτ2 , and F(Uτ2 ) contains the schlicht disk
Uτ′2 , where τ2 is a unique root in (0, 1) of the equation

1 −
√

2M2
p − 2 ·

r
√

r4 − 3r2 + 4

(1 − r2)
3
2

−

p∑
k=2

r2(k−1)
[
(2k − 1)K1(Mp−k+1)

+
√

2M2
p−k+1 − 2

(2(k − 1)r
√

1 − r2
+

r
√

4 − 3r2 + r4

(1 − r2)
3
2

)]
= 0,

and

τ′2 = τ2 −

√
2M2

p − 2 ·
τ2

2√
1 − τ2

2

−

p∑
k=2

τ2k−1
2

[
K1(Mp−k+1) +

√
2M2

p−k+1 − 2 ·
τ2√

1 − τ2
2

]
,

and K1(Mp−k+1) is defined by (2).
When Mp−k+1 = 1, k = 1, 2, . . . , p, the result is sharp.

Corollary 3.8 Suppose F(z) =
p∑

k=1
|z|2(k−1)Gp−k+1(z) is a polyharmonic mapping in the unit disk U, with

F(0) = JF(0) − 1 = 0, and satisfying
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(i) for k ∈ {1, · · · , p}, Gp−k+1(z) is harmonic inU, and λGp−k+1 (0) − 1 = Gp−k+1(0) = 0;
(ii) for k ∈ {2, · · · , p}, |Gp−k+1(z)| ≤Mp−k+1, |Gp(z)| ≤Mp for all z ∈ U.

Then for k ∈ {2, · · · , p},Mp−k+1 ≥ 1,Mp ≥ 1, F(z) is univalent inUτ3 , and F(Uτ3 ) contains the schlicht disk
Uτ′3 , where τ3 is a unique root in (0, 1) of the equation

λ0(Mp) − λ0(Mp)
√

M4
p − 1 ·

r
√

r4 − 3r2 + 4

(1 − r2)
3
2

−

p∑
k=2

r2(k−1)
[
(2k − 1)K1(Mp−k+1) +

√
2M2

p−k+1 − 2
(2(k − 1)r
√

1 − r2
+

r
√

4 − 3r2 + r4

(1 − r2)
3
2

)]
= 0,

and

τ′3 = λ0(Mp)
[
τ3 −

√
M4

p − 1 ·
τ2

3√
1 − τ2

3

]
−

p∑
k=2

τ2k−1
3

[
K1(Mp−k+1) +

√
2M3

p−k+1 − 2 ·
τ3√

1 − τ2
3

]
,

and K1(Mp−k+1) is defined by (2), λ0(Mp) is defined by (5).
When Mp−k+1 = 1, k = 1, 2, . . . , p, the result is sharp.

Meanwhile, we establish three forms of Landau-type theorems for some log-p-harmonic mappings.
Firstly, We establish one form of Landau-type theorems for certain log-p-harmonic mappings by applying
the method of our proof of Theorem 3.4 in[20].

Theorem 3.9 Suppose f (z) =
p∏

k=1
1p−k+1(z)|z|

2(k−1)
is a log-p-harmonic mapping in the unit disk U, with

f (0) = λ f (0) = 0, and satisfying
(i) for k ∈ {1, · · · , p}, 1p−k+1(z) is log-harmonic inU, 1p−k+1(0) = 1,
(ii) let Gp−k+1 = log 1p−k+1, for k ∈ {2, · · · , p}, λGp−k+1 (0)−1 = Gp−k+1(0) = 0, and |Gp−k+1(z)| ≤Mp−k+1,ΛGp (z) ≤ Λp
for all z ∈ U.

Then for k ∈ {2, · · · , p}, Mp−k+1 ≥ 1,Λp ≥ 1, f (z) is univalent in Ur2 , where r2 is the unique root in (0, 1)
of the equation A1(r) = 0, A1(r) is defined by (1). Moreover, the range F(Ur2 ) contains a univalent disk
U(w2, r′2), where R2 is given by (3), and

w2 = cosh R2, r′2 = sinh R2. (9)

When Mp−k+1 = 1, k = 2, . . . , p, these estimates are sharp with r2 = r̃2, r′2 = sinh R2 = sinh R̃2, where r̃2 is the
unique root in (0, 1) of the equation

Λp(1 −Λpr)
Λp − r

−

p∑
k=2

(2k − 1)r2(k−1) = 0, (10)

and

R̃2 = Λ
2
pr̃2 + (Λ3

p −Λp) log(1 −
r̃2

Λp
) −

p∑
k=2

r̃2
2k−1. (11)

Proof Let F(z) =
p∑

k=1
|z|2(k−1)Gp−k+1(z), for each k ∈ {1, 2, · · · , p}.

Then it follows from the hypothesis of Theorem 3.9 and the definition of log-harmonic mappings that
Gp−k+1(z) = log 1p−k+1(z) is harmonic mappings inU for each k ∈ {1, 2, · · · , p}.
Thus F = log f is a polyharmonic mapping inU.

We know that
λ f (0) =

∣∣∣∣| fz(0)| − | fz(0)|
∣∣∣∣ = | f (0)|

∣∣∣∣|Fz(0)| − |Fz(0)|
∣∣∣∣,

and f (0) = 1, so it follows from 1p(0) = λ f (0) = 1,we have Gp(0) = λF(0) − 1 = 0.
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In order to prove the univalence of f , we fix r with 0 < r < 1 and choose two distinct points z1, z2 ∈ Ur.
Let Γ = {(z1 − z2)t + z2 : 0 ≤ t ≤ 1}.
Then it follows from our proof of Theorem 3.4 and the hypothesis of Theorem 3.9 that

| log f (z1) − log f (z2)| = |F(z1) − F(z2)| =
∣∣∣∣∣ ∫
Γ

Fz(z)dz + Fz(z)dz
∣∣∣∣∣

≥ |z1 − z2|

{Λp(1 −Λpr)
Λp − r

−

p∑
k=2

r2(k−1)
[
(2k − 1)K1(Mp−k+1)

+
√

2M2
p−k+1 − 2

(2(k − 1)r
√

1 − r2
+

r
√

4 − 3r2 + r4

(1 − r2)
3
2

)]}
> 0.

From the proof of Theorem 3.4, we know that there is a unique r2 ∈ (0, 1) satisfying the equation A1(r) = 0,
A1(r) is defined by (1), such that

| log f (z1) − log f (z2)| > 0

for any two distinct points z1, z2 in |z| < r2, which shows that f is univalent inUr2 .
Next, for any point z = r2eiθ on ∂Ur2 , by our proof of Theorem 3.4, we have

| log f (z)| = |F(z)| =
∣∣∣∣∣Gp(z) +

p∑
k=2

|z|2(k−1)Gp−k+1(z)
∣∣∣∣∣

≥ Λ2
pr2 + (Λ3

p −Λp) log(1 −
r2

Λp
)

−

p∑
k=2

r2(k−1)
2

[
K1(Mp−k+1)r2 +

√
2M2

p−k+1 − 2 ·
r2

2√
1 − r2

2

]
= R2,

where R2 is given by (3).
By Lemma 2.8, we obtain that the range f (Ur2 ) contains a schlicht disk U(w2, r′2) , where w2 and r′2 are

defined by (9).
Next, we prove that the univalent radius r2 and r′2 = sinh R2 are sharp when Mp−k+1 = 1, k = 2, . . . , p, by

means of the method as in the proof of Theorem 3.4 in [20]. For the convenience of readers, we give the
detail of the proof.

Firstly, we consider the log-p harmonic mapping f3(z) = eF3(z), where F3(z) is given by (4). It is easy to
verify that f3(z) satisfies the hypothesis of Theorem 3.9, thus we obtain that f3(z) is univalent in the disk
Ur2 , and the range f3(Ur2 ) contains a univalent diskU(w2, r′2).

To prove that the univalent radius r2 is sharp with r2 = r̃2, we need to prove that f3(z) is not univalent
in Ur for each r ∈ (r̃2, 1]. In fact, if we fix r ∈ (r̃2, 1], by our proof of Theorem 3.1, we know that F3(z) is is not
univalent in Ur, thus there exist two distinct points z1, z2 ∈ Ur such that F3(z1) = F3(z2), which implies that
f3(z1) = eF3(z1) = eF3(z2) = f3(z2), that is f3(z) is not univalent in Ur for each r ∈ (r̃2, 1]. Hence, the univalent
radius r2 is sharp.

Next, we prove that the radius r′2 = sinh R2 is sharp with R2 = R̃2.
For r ∈ [0, 1], considering the continuous function

11(r) =
Λp(1 −Λpr)
Λp − r

−

p∑
k=2

(2k − 1)r2(k−1),

it is easy to verify that 11(r) is strictly decreasing on [0, 1], 11(0) = 1 > 0 and

11(
1
Λp

) = −
p∑

k=2

(2k − 1)(
1
Λp

)2(k−1)
≤ 0.
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Thus we have 0 < r̃2 ≤
1
Λp

.

By (10) and (11), it is easy to verify that R̃2 > 0. Next we can prove R̃2 < 1.
Let h(r) = Λ2

pr + (Λ3
p −Λp) log(1 − r

Λp
), 0 < r ≤ 1

Λp
, then

h′(r) = Λ2
p +

1 −Λ2
p

1 − r
Λp

= Λp

1
Λp
− r

1 − r
Λp

≥ 0, , 0 < r ≤
1
Λp
,

which implies that h(r) is increasing in (0, 1
Λp

]. Therefore,

R̃2 = Λ2
pr̃2 + (Λ3

p −Λp) log(1 −
r̃2

Λp
) −

p∑
k=2

r̃2
2k−1

≤ h(r̃2) ≤ h(
1
Λp

) = Λp + (Λ3
p −Λp) log(1 −

1
Λ2

p
)

< Λp + (Λ3
p −Λp) · (−

1
Λ2

p
) =

1
Λp
< 1.

Hence, 0 < R̃2 < 1.
Because the univalent radius r2 is sharp with r2 = r̃2 when Mp−k+1 = 1, k = 2, . . . , p, the sharpness of the

radius r′2 = sinh R2 = sinh R̃2 follows from Lemma 2.8 and the fact that 0 < R̃2 < 1. The proof is complete. □
By means of Theorem 1 in [23] and the same method as the proof of Theorem 3.4 in [20], applying the

same method as the proof of Theorem 3.9, it is not difficult to prove following Theorem.

Theorem 3.10 Suppose f (z) =
p∏

k=1
1p−k+1(z)|z|

2(k−1)
is a log-p-harmonic mapping in the unit disk U, with

f (0) = λ f (0) = 0, and satisfying
(i) for k ∈ {1, · · · , p}, 1p−k+1(z) is log-harmonic inU, 1p−k+1(0) = 1,
(ii) let Gp−k+1 = log 1p−k+1, for k ∈ {2, · · · , p}, |Gp−k+1(z)| ≤Mp−k+1, ΛGp (z) ≤ Λp for all z ∈ U.

Then for k ∈ {2, · · · , p},Mp−k+1 ≥ 0,Λp ≥ 1, f (z) is univalent in Uρ1 , where ρ1 is the unique root in (0, 1)
of the equation which is defined by (1). Moreover, the range F(Uρ1 ) contains a univalent disk U(w′1, ρ̃

′

1),
where ρ′1 is given by (2), and

w′1 = coshρ′1, ρ̃
′

1 = sinhρ′1.

When Mp−k+1 = 0, k = 2, . . . , p, the radii ρ1 and ρ̃′1 = sinhρ′1 are sharp.

By means of Theorem 3.5 and the same method as the proof of Theorem 3.2 and Theorem 3.5 in [20],
applying the same method as the proof of Theorem 3.9, we have following Theorem.

Theorem 3.11 Suppose f (z) =
p∏

k=1
1p−k+1(z)|z|

2(k−1)
is a log-p-harmonic mapping in the unit disk U, with

f (0) = λ f (0) = 0, and satisfying
(i) for k ∈ {1, · · · , p}, 1p−k+1(z) is log-harmonic inU, 1p−k+1(0) = 1,
(ii) and let Gp−k+1 = log 1p−k+1, for k ∈ {2, · · · , p}, ΛGp−k+1 (z) ≤ Λp−k+1, |Gp(z)| ≤Mp for all z ∈ U.

Then for k ∈ {2, · · · , p},Λp−k+1 ≥ 0,Mp ≥ 1, F(z) is univalent inUr3 , where r3 is the unique positive root in
(0, 1) of the equation which is defined by (5). Moreover, the range F(Ur3 ) contains a univalent diskU(w3, r′3),
where R3 is given by (6), and

w3 = cosh R3, r′3 = sinh R3.

When Mp = 1, the radii r3 and r′3 = sinh R3 are sharp.
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