# Landau-type theorems for some polyharmonic mappings and log-p-harmonic mappings 

Xiu-Lian Fu ${ }^{\text {a }}$, Xi Luo ${ }^{\text {b,* }}$<br>${ }^{a}$ College of Computer and Information Engineering, Guangdong Polytechnic of Industry and Commerce, Guangzhou 510510, Guangdong, P. R. China<br>${ }^{b}$ School of Mathematics, Jiaying University,Meizhou 514015, Guangdong, P. R. China


#### Abstract

In this paper, we first establish a sharp version of Landau-type theorem of polyharmonic mappings. Then, we establish two versions of Landau-type theorems of polyharmonic mappings by applying Cauchy-inequality, which improve the corresponding theorems given in Luo et al.(Computational Methods and Function Theory, 23(2):303-325, 2023). Finally, three new Landau-type theorems of log-pharmonic mappings are established, one of which improves upon a result given in Bai et al. (Complex Analysis and Operator Theory, 13(2):321-340, 2019).


## 1. Introduction

Suppose $F(z)=u(z)+i v(z)$ is a $2 p$ times continuously differentiable complex-valued mapping in a domain $D \subseteq \mathbb{C}$, where $p$ is a positive integer. Then $F(z)$ is said to be polyharmonic (or $p$-harmonic) in $D$ if $F(z)$ satisfies the $p$-harmonic equation

$$
\Delta^{p} F=\Delta\left(\Delta^{p-1}\right) F=0
$$

where $\Delta:=\Delta^{1}$ represents the usual complex Laplacian operator

$$
\Delta:=4 \frac{\partial^{2}}{\partial z \partial \bar{z}}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}
$$

Obviously, for $p=1$ (resp. $p=2$ ), we obtain the usual class of harmonic (resp. biharmonic) mappings. A complex-value function $f(z)$ is a harmonic mapping in a simply connected domain $D$ if and only if $f(z)$ has the following representation $f(z)=h(z)+\overline{g(z)}$ with $f(0)=h(0), g(z)$ and $h(z)$ being analytic in $D$ (for details see [4] ).

It is well-known (cf.[11]) that a mapping $F(z)$ is polyharmonic in a simply connected domain $D \subseteq \mathbb{C}$ if and only if $F(z)$ has the following representation

$$
F(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(z)
$$

[^0]where $G_{p-k+1}(z)$ is harmonic on $D$ for each $k \in\{1, \ldots, p\}$. In particular, $F(z)$ is a biharmonic mapping in a simply connected domain $D$ if and only if $F(z)$ has the following representation
$$
F(z)=|z|^{2} g(z)+h(z)
$$
where $g(z), h(z)$ are harmonic on $D$ (cf.[1] ).
A mapping $F(z)$ is called a $\log -p$-harmonic mapping if and only if $\log F(z)$ is a $p$-harmonic mapping. When $p=1, F(z)$ is called a log-harmonic mapping. When $p=2, F(z)$ is called a log-biharmonic mapping. Hence, $F(z)$ is called a log- $p$-harmonic mapping in a simply connected domain $D \subseteq \mathbb{C}$ if and only if $F(z)$ has the following representation
$$
F(z)=\prod_{k=1}^{p} g_{p-k+1}(z)^{|z|^{2(k-1)}},
$$
where $g_{p-k+1}(z)$ is $\log$-harmonic on $D$ for each $k \in\{1, \ldots, p\}$ (cf. [14] ).
For a continuously differentiable mapping $F(z)$ in $D$, we define the maximum dilation and minimum dilation respectively as follows:
$$
\Lambda_{F}(z)=\max _{0 \leq \theta \leq 2 \pi}\left|e^{i \theta} F_{z}(z)+e^{-i \theta} F_{\bar{z}}(z)\right|=\left|F_{z}(z)\right|+\left|F_{\bar{z}}(z)\right|
$$
and
$$
\lambda_{F}(z)=\min _{0 \leq \theta \leq 2 \pi}\left|e^{i \theta} F_{z}(z)+e^{-i \theta} F_{\bar{z}}(z)\right|=\left\|F_{z}(z)|-| F_{\bar{z}}(z)\right\| .
$$

Denote the Jacobian of $F$ by

$$
J_{F}=\left|F_{z}(z)\right|^{2}-\left|F_{\bar{z}}(z)\right|^{2}
$$

Let $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$ be the unit disk, and $\mathbb{U}_{r}$ be the disk with center at the origin and radius $r>0$. The classical Landau's theorem states that if $f$ is an analytic function in the unit disk $\mathbb{U}$ with $f(0)=f^{\prime}(0)-1=0$ and $|f(z)|<M$ for $z \in \mathbb{U}$, then $f$ is univalent in the disk $\mathbb{U}_{\rho_{0}}$ with $\rho_{0}=\frac{1}{M+\sqrt{M^{2}-1}}$ and $f\left(\mathbb{U}_{\rho_{0}}\right)$ contains a disk $|w|<R_{0}$ with $R_{0}=M \rho_{0}^{2}$. This result is sharp, with the extremal function $f_{0}(z)=M z \frac{1-M z}{M-z}$. Furthermore, the Bloch theorem asserts the existence of a positive constant number $b$ such that if $f$ is an analytic function on the unit disk $\mathbb{U}$ with $f^{\prime}(0)=1$, then $f(\mathbb{U})$ contains a schlicht disk of radius $b$, that is, a disk of radius $b$ which is the univalent image of some region in $\mathbb{U}$. The supremum of all such constants $b$ is called the Bloch constant (for the detail see [6, 12]).

Since Landau's theorems of harmonic mappings were given by Chen et al.([6]) in 2000, many authors are keen on Landau-type theorems for harmonic mappings, biharmonic mappings and polyharmonic mappings ( $[3,7,9,10,15-20,22,23,27]$ ). Meanwhile, there are many Bloch's theorems for different functions. In 2002, Mateljević [24] gave a version of Bloch's theorems for quasiregular harmonic mappings. And in 2017, Chen et al. [8] obtained a Landau-Bloch type theorem for harmonic functions in hardy spaces.

There are many good results, but the sharp results are rarely seen. Recently, Luo and Liu ([23]) established following theorem for polyharmonic mappings, which improved the related result of Bai and Liu in [3].

Theorem $\mathbf{A}([23])$ Suppose $F(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(z)$ is a polyharmonic mapping in the unit disk $\mathbb{U}$, with $F(0)=\lambda_{F}(0)-1=0$, and satisfying following conditions:
(i) $G_{p-k+1}(z)$ is harmonic in $\mathbb{U}$, and $G_{p-k+1}(0)=0$ for $k \in\{1, \cdots, p\}$;
(ii) for $k \in\{2,3, \cdots, p\},\left|G_{p-k+1}(z)\right| \leq M_{p-k+1}$, and $\Lambda_{G_{p}}(z) \leq \Lambda_{p}$ for $z \in \mathbb{U}$.

Then $M_{p-k+1} \geq 0, \Lambda_{p} \geq 1, F(z)$ is univalent in $\mathbb{U}_{\rho_{1}}$, and $F\left(\mathbb{U}_{\rho_{1}}\right)$ contains a schlicht disk $\mathbb{U}_{\rho_{1}^{\prime}}$, where $\rho_{1}$ is the minimum root in $(0,1)$ of the equation

$$
\begin{equation*}
\frac{\Lambda_{p}\left(1-\Lambda_{p} r\right)}{\Lambda_{p}-r}-\sum_{k=2}^{p} r^{2(k-1)}\left[\frac{4 M_{p-k+1}}{\pi\left(1-r^{2}\right)}+\frac{8(k-1) M_{p-k+1}}{\pi}\right]=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho_{1}^{\prime}=\Lambda_{p}^{2} \rho_{1}+\left(\Lambda_{p}^{3}-\Lambda_{p}\right) \log \left(1-\frac{\rho_{1}}{\Lambda_{p}}\right)-\sum_{k=2}^{p} \rho_{1}^{2 k-1} \frac{4 M_{p-k+1}}{\pi} . \tag{2}
\end{equation*}
$$

When $M_{p-k+1}=0, k=2, \ldots, p$, the result is sharp.
Meanwhile, another two new theorems for polyharmonic mappings were established.
Theorem $\mathbf{B}([23])$ Suppose $F(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(z)$ is a polyharmonic mapping in the unit disk $\mathbb{U}$, with $F(0)=0$, and satisfying following conditions:
(i) for $k \in\{1, \cdots, p\}, G_{p-k+1}(z)$ is harmonic in $\mathbb{U}$, and $\lambda_{G_{p-k+1}}(0)-1=G_{p-k+1}(0)=0$;
(ii) for $k \in\{2, \cdots, p\},\left|G_{p-k+1}(z)\right| \leq M_{p-k+1}, \Lambda_{G_{p}}(z) \leq \Lambda_{p}$ for all $z \in \mathbb{U}$.

Then for $k \in\{2, \cdots, p\}, M_{p-k+1} \geq 1, \Lambda_{p} \geq 1, F(z)$ is univalent in $\mathbb{U}_{\rho_{2}}$, and $F\left(\mathbb{U}_{\rho_{2}}\right)$ contains the schlicht disk $\mathbb{U}_{\rho_{\rho^{\prime}}}$ where $\rho_{2}$ is the minimum positive root in $(0,1)$ of the following equation

$$
\begin{equation*}
\frac{\Lambda_{p}\left(1-\Lambda_{p} r\right)}{\Lambda_{p}-r}-\sum_{k=2}^{p}\left[(2 k-1) K_{1}\left(M_{p-k+1}\right) r^{2 k-2}+K_{2}\left(M_{p-k+1}\right) r^{2 k-1} \frac{2 k-(2 k-1) r}{(1-r)^{2}}\right]=0 . \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho_{2}^{\prime}=\Lambda_{p}^{2} \rho_{2}+\left(\Lambda_{p}^{3}-\Lambda_{p}\right) \log \left(1-\frac{\rho_{2}}{\Lambda_{p}}\right)-\sum_{k=2}^{p}\left[K_{1}\left(M_{p-k+1}\right) \rho_{2}^{2 k-1}+K_{2}\left(M_{p-k+1}\right) \frac{\rho_{2}^{2 k}}{1-\rho_{2}}\right], \tag{4}
\end{equation*}
$$

where

$$
K_{1}\left(M_{p-k+1}\right)=\min \left\{\sqrt{2 M_{p-k+1}^{2}-1}, \frac{4 M_{p-k+1}}{\pi}\right\}, K_{2}\left(M_{p-k+1}\right)=\min \left\{\sqrt{2 M_{p-k+1}^{2}-2}, \frac{4 M_{p-k+1}}{\pi}\right\} .
$$

When $M_{p-k+1}=1, k=2, \ldots, p$, the result is sharp.
Theorem $\mathbf{C}([23]) \quad$ Let $F(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(z)$ be a polyharmonic mapping in the unit disk $\mathbb{U}$, with $F(0)=\lambda_{F}(0)-1=0$, and satisfying the following conditions:
(i) for $k \in\{1, \cdots, p\}, G_{p-k+1}(z)$ is harmonic in $\mathbb{U}$, and $G_{p-k+1}(0)=0$;
(ii) for $k \in\{2,3, \cdots, p\}, \Lambda_{G_{p-k+1}}(z) \leq \Lambda_{p-k+1}$, and $\left|G_{p}(z)\right| \leq M_{p}$ for $z \in \mathbb{U}$.

Then $\Lambda_{p-k+1} \geq 0, M_{p} \geq 1, F(z)$ is univalent in $\mathbb{U}_{\rho_{3}}$, and $F\left(\mathbb{U}_{\rho_{3}}\right)$ contains a schlicht disk $\mathbb{U}_{\rho_{3}^{\prime}}$, where $\rho_{3}$ is the unique positive root in $(0,1)$ of the following equation:

$$
\begin{equation*}
1-K_{2}\left(M_{p}\right) \frac{2 r-r^{2}}{(1-r)^{2}}-\sum_{k=2}^{p}(2 k-1) \Lambda_{p-k+1} r^{2(k-1)}=0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho_{3}^{\prime}=\rho_{3}-K_{2}\left(M_{p}\right) \frac{\rho_{3}^{2}}{1-\rho_{3}}-\sum_{k=2}^{p} \rho_{3}^{2 k-1} \Lambda_{p-k+1} . \tag{6}
\end{equation*}
$$

When $M_{p}=1$, the result is sharp.
On the other hand, Liu and Luo obtained the sharp results for Landau's theorem of polyharmonic mappings with conditions $\Lambda_{G_{p}}(z) \leq 1$, and $\Lambda_{G_{p-k+1}}(z) \leq \Lambda_{p-k+1}, k \in\{2,3, \cdots, p\}$.

Theorem $\mathbf{D}([20]) \quad$ Suppose that $p$ is a positive integer, $p \geq 2, \Lambda_{1}, \cdots, \Lambda_{p-1} \geq 0$. Let $F(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(z)$ be a polyharmonic mapping of $\mathbb{U}$, where all $G_{p-k+1}$ are harmonic on $\mathbb{U}$, satisfying $G_{p-k+1}(0)=\lambda_{F}(0)-1=0$ for $k=1,2, \cdots, p$. If $\Lambda_{G_{p}}(z) \leq 1$, and $\Lambda_{G_{p-k+1}}(z) \leq \Lambda_{p-k+1}, k \in\{2,3, \cdots, p\}$ for all $z \in \mathbb{U}$. Then $F(z)$ is univalent in $\mathbb{U}_{\rho_{4}}$, and $F\left(\mathbb{U}_{\rho_{4}}\right)$ contains a schlicht disk $\mathbb{U}_{\rho_{4}^{\prime}}$, where

$$
\rho_{4}= \begin{cases}1, & \text { if } \sum_{\substack{k=1 \\ p-1 \\ p-1}}^{p-1) \Lambda_{p-k} \leq 1}  \tag{7}\\ \rho_{4}^{\prime \prime}, & \text { if } \sum_{k=1}^{p}(2 k+1) \Lambda_{p-k}>1\end{cases}
$$

and $\rho_{4}^{\prime \prime}$ is the unique root in $(0,1)$ of the equation

$$
\begin{equation*}
1-\sum_{k=1}^{p-1}(2 k+1) \Lambda_{p-k} r^{2 k}=0, \tag{8}
\end{equation*}
$$

and $\rho_{4}^{\prime}=\rho_{4}-\sum_{k=1}^{p-1} \Lambda_{p-k} \rho_{4}^{2 k+1}$. Moreover, these estimates are sharp, with an extremal function given by

$$
\begin{equation*}
F_{1}^{\prime}(z)=z-\sum_{k=1}^{p-1} \Lambda_{p-k}|z|^{2 k} z . \tag{9}
\end{equation*}
$$

In 2012, Li and Wang firstly obtained the following Landau's theorem for log-p-harmonic mappings with condition of $J_{f}(0)=1$.

Theorem $\mathbf{E}([14])$ Let $f(z)=\prod_{k=1}^{p} g_{p-k+1}(z)^{\mid z 2(k-1)}$ be a log-p-harmonic mapping of the unit disk $\mathbb{U}$, where $g_{p-k+1}(z)$ is $\log$-harmonic with $g_{p-k+1}(0)=g_{p}(0)=J_{f}(0)=1,\left|g_{p-k+1}(z)\right|<M_{1}$, for $k \in\{2, \cdots, p\}$, and $\left|g_{p}(z)\right|<M_{2}$, where $M_{i} \geq 1(i=1,2)$ are positive constants. Then there exists $\rho_{5} \in(0,1)$ such that $f(z)$ is univalent in $\mathbb{U}_{\rho_{5}}$, where $\rho_{5}$ satisfies the following equation

$$
\begin{equation*}
\lambda_{0}\left(M_{2}^{*}\right)-\frac{T\left(M_{2}^{*}\right) \rho_{5}\left(2-\rho_{5}\right)}{\left(1-\rho_{5}\right)^{2}}-\frac{4 M_{1}^{*}}{\pi\left(1-\rho_{5}\right)^{2}} \sum_{k=1}^{p-1} \rho_{5}^{2 k}-2 M_{1}^{*} \sum_{k=1}^{p-1} k \rho_{5}^{2 k-1}=0, \tag{10}
\end{equation*}
$$

where $M_{i}^{*}=\log M_{i}+\pi(i=1,2)$.
Moreover, the range $F\left(\mathbb{U}_{\rho_{5}}\right)$ contains a univalent disk $\mathbb{U}\left(z_{5}, \rho_{5}^{\prime \prime}\right)$, where

$$
\begin{align*}
& z_{5}=\cosh \left(\frac{\rho_{5}^{\prime}}{\sqrt{2}}\right), \quad \rho_{5}^{\prime \prime}=\min \left\{\sinh \left(\frac{\rho_{5}^{\prime}}{\sqrt{2}}\right), \cosh \left(\frac{\rho_{5}^{\prime}}{\sqrt{2}}\right) \sin \left(\frac{\rho_{5}^{\prime}}{\sqrt{2}}\right)\right\},  \tag{11}\\
& \rho_{5}^{\prime}=\rho_{5}\left[\lambda_{0}\left(M_{2}^{*}\right)-\frac{T\left(M_{2}^{*}\right) \rho_{5}}{\left(1-\rho_{5}\right)}-\frac{4 M_{1}^{*}}{\pi\left(1-\rho_{5}\right)} \sum_{k=1}^{p-1} \rho_{5}^{2 k}\right] . \tag{12}
\end{align*}
$$

In 2019, Bai and Liu improved the Landau theorem of log-p-harmonic mapping with the condition of $\lambda_{f}(0)=1$.

Theorem $\mathbf{F}([3])$ Let $F(z)=\prod_{k=1}^{p} g_{p-k+1}(z)^{\mid z]^{2(k-1)}}$ be a log-p-harmonic mapping of the unit disk $\mathbb{U}$, satisfying $f(0)=g_{p}(0)=\lambda_{f}(0)=1$. Suppose that for each $k \in\{1, \cdots, p\}$, we have
(i) $g_{p-k+1}(z)$ is log-harmonic in $\mathbb{U}$,
(ii) $\left|g_{p-k+1}(z)\right| \leq M_{p-k+1}$, Let $G_{p}=\log g_{p}$ and $\Lambda_{G_{p}}(z) \leq \Lambda_{p}$, where $M_{p-k+1} \geq 1, \Lambda_{p}>1$.

Then there is a positive number $\rho_{6}$ such that $F(z)$ is univalent in $\mathbb{U}_{\rho_{6}}$, where $\rho_{6}\left(0<\rho_{6}<1\right)$ satisfies the following equation

$$
\begin{equation*}
1-\frac{4}{\pi\left(1-r^{2}\right)} \sum_{k=1}^{p-1} r^{2 k} M_{p-k}^{*}-\sum_{k=1}^{p-1} k M_{p-k}^{*} r^{2 k} \frac{8}{\pi(1-r)}-\frac{\Lambda_{p}^{2}-1}{\Lambda_{p}} \frac{r}{1-r}=0, \tag{13}
\end{equation*}
$$

where $M_{p-k+1}^{*}=\log M_{p-k+1}+\pi, k=2,3, \cdots, p$. Moreover, the range $F\left(\mathbb{U}_{\rho_{6}}\right)$ contains a univalent disk $\mathbb{U}\left(z_{6}, \rho_{6}^{\prime \prime}\right)$, where

$$
\begin{equation*}
z_{6}=\cosh \left(\frac{\rho_{6}^{\prime}}{\sqrt{2}}\right), \quad \rho_{6}^{\prime \prime}=\min \left\{\sinh \left(\frac{\rho_{6}^{\prime}}{\sqrt{2}}\right), \cosh \left(\frac{\rho_{6}^{\prime}}{\sqrt{2}}\right) \sin \left(\frac{\rho_{6}^{\prime}}{\sqrt{2}}\right)\right\} \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\rho_{6}^{\prime}=\rho_{6}+\frac{\Lambda_{p}^{2}-1}{\Lambda_{p}}\left[\rho_{6}+\log \left(1-\rho_{6}\right)\right]-\sum_{k=1}^{p-1} \rho_{6}^{2 k} \frac{4 M_{p-k}^{*} \rho_{6}}{\pi\left(1-\rho_{6}\right)} . \tag{15}
\end{equation*}
$$

However, Theorem A is not sharp for $M_{p-k+1}>0, k=2,3, \ldots, p$, and Theorem F is also not sharp. In this paper, we first establish a sharp version of Landau-type theorem for polyharmonic mappings with extremal function given by Example 3.2. For Example 3.2 satisfying with the hypothesis of Theorems A , it is natural to pose a Conjecture. Next, we establish two versions of Landau-type theorems of polyharmonic mappings by applying Cauchy-inequality, which improve the correspondent results for Theorems B and C, respectively. Finally, three new Landau-type theorems of log-p-harmonic mappings are established, where Theorems 3.9, 3.10 and 3.11 are the corresponding forms of Theorems 3.4, A and 3.5, respectively.

## 2. Preliminaries

In order to establish our main results, we need the following lemmas.
Lemma 2.1 ([5]) Suppose that $f(z)=f_{1}(z)+\overline{f_{2}(z)}$ is a harmonic mapping with $f_{1}(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$ and $f_{2}(z)=\sum_{n=1}^{\infty} b_{n} z^{n}$ being analytic in $\mathbb{U}$. If $|f(z)| \leq M$ for all $z \in \mathbb{U}$, then

$$
\begin{equation*}
\Lambda_{f}(z) \leq \frac{4 M}{\pi\left(1-|z|^{2}\right)} \tag{1}
\end{equation*}
$$

Lemma 2.2 ([6]) Let $f$ be a harmonic mapping of the unit disk $\mathbb{U}$ with $f(0)=0$ and $f(\mathbb{U}) \subset \mathbb{U}$. Then

$$
|f(z)| \leq \frac{4}{\pi} \arctan |z| \leq \frac{4}{\pi}|z|, \text { for } z \in \mathbb{U}
$$

Lemma 2.2 is called Schwarz type Lemma of complex-valued harmonic functions with $f(0)=0$. Later, Hethcote[13] obtained sharp inequality by removing the assumption $f(0)=0$, and then Mateljević et al. [25][26] gave the improvements of Hethcote's result.

Lemma 2.3 ([22]) Suppose that $f(z)=f_{1}(z)+\overline{f_{2}(z)}$ is a harmonic mapping of the unit disk $\mathbb{U}$ with $f_{1}(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$ and $f_{2}(z)=\sum_{n=1}^{\infty} b_{n} z^{n}$. If $f$ satisfies $|f(z)| \leq M$ for all $z \in \mathbb{U}$ and $\lambda_{f}(0)=1$, then $M \geq 1$, and

$$
\begin{equation*}
\left|a_{1}\right|+\left|b_{1}\right| \leq K_{1}(M)=\min \left\{\sqrt{2 M^{2}-1}, \frac{4 M}{\pi}\right\} \tag{2}
\end{equation*}
$$

The inequality (2) is sharp for $M=1$, with $f_{0}(z)=z$ being an extremal mapping.
Lemma $2.4([27])$ Suppose that $f(z)=f_{1}(z)+\overline{f_{2}(z)}$ is a harmonic mapping of the unit disk $\mathbb{U}$ with $f_{1}(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$ and $f_{2}(z)=\sum_{n=1}^{\infty} b_{n} z^{n}$.
(1) If $f$ satisfies $|f(z)| \leq M$ for all $z \in \mathbb{U}$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right)^{2} \leq 2 M^{2} \tag{3}
\end{equation*}
$$

(2) If $f$ satisfies $|f(z)| \leq M$ for all $z \in \mathbb{U}$ and $J_{f}(0)=1$, then

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right)^{2}\right)^{\frac{1}{2}} \leq \sqrt{M^{4}-1} \cdot \lambda_{f}(0) \tag{4}
\end{equation*}
$$

where

$$
\lambda_{f}(0) \geq \lambda_{0}(M)= \begin{cases}\frac{\sqrt{2}}{\sqrt{M^{2}-1}+\sqrt{M^{2}+1}}, & 1 \leq M \leq M_{0}=\frac{\pi}{2 \sqrt[4]{2 \pi^{2}-16} \approx 1.1296}  \tag{5}\\ \frac{\pi}{4}, & M>M_{0}\end{cases}
$$

(3) If $f$ satisfies $|f(z)| \leq M$ for all $z \in \mathbb{U}$ and $\lambda_{f}(0)=1$, then

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right)^{2}\right)^{\frac{1}{2}} \leq \sqrt{2 M^{2}-2} \tag{6}
\end{equation*}
$$

Lemma 2.5 ([21]) Suppose $f(z)=h(z)+\overline{g(z)}$ is a harmonic mapping of the unit disk $\mathbb{U}$ with $h(z), g(z)$ are holomorphic in $\mathbb{U}, h(0)=g(0)=\lambda_{f}(0)-1=0, \Lambda_{f}(z)<\Lambda$ for all $z \in \mathbb{U}$. Then
(i) For two distinct points $z_{1}, z_{2} \in \mathbb{U}_{r}\left(r<\frac{1}{\Lambda}\right)$,

$$
\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right| \geq \frac{\Lambda(1-\Lambda r)}{\Lambda-r}\left|z_{1}-z_{2}\right|
$$

(ii) For $z=r e^{i \theta} \in \partial \mathbb{U}_{r}$,

$$
|f(z)| \geq \Lambda^{2} r+\left(\Lambda^{3}-\Lambda\right) \ln \left(1-\frac{r}{\Lambda}\right)
$$

Lemma 2.6 ([23]) For $z_{1}, z_{2} \in \mathbb{U}_{r}, k, j \in \in N_{+}$, we have

$$
\left|\left|z_{1}\right|^{2 k} z_{1}^{j}-\left|z_{2}\right|^{2 k} z_{2}^{j}\right| \leq(2 k+j) r^{2 k+j-1}\left|z_{1}-z_{2}\right|
$$

Lemma 2.7 ([23]) Suppose $f(z)=h(z)+\overline{g(z)}$ is a harmonic mapping of the unit disk $\mathbb{U}$ with $\lambda_{f}(0)=1$ and $f(0)=0$. Then $|f(z)| \leq 1$ for all $z \in \mathbb{U}$ if and only if $\Lambda_{f}(z) \leq 1$ for all $z \in \mathbb{U}$.

Lemma 2.8 ([20]) Suppose that $p$ is a positive integer and $0<\sigma<1,0<\rho \leq 1$. Let $f(z)$ be a log-pharmonic mapping of $\mathbb{U}$ satisfying $f(0)=\lambda_{f}(0)=1$. Suppose that $f(z)$ is univalent in $\mathbb{U}_{\rho}$ and $F\left(\mathbb{U}_{\rho}\right) \supset \mathbb{U}_{\sigma}$, where $F(z)=\log f(z)$. Then the range $F\left(\mathbb{U}_{\rho}\right)$ contains a schlicht disk $\mathbb{U}\left(w_{0}, r_{0}\right)=\left\{w \in \mathbb{C}:\left|w-w_{0}\right|<r_{0}\right\}$, where

$$
w_{0}=\cosh \sigma, \quad r_{0}=\sinh \sigma
$$

Moreover, if $\rho$ is the biggest univalent radius of $f(z)$, then the radius $r_{0}=\sinh \sigma$ is sharp.

## 3. Main Results

Applying Lemma 2.6, we first establish a sharp version of Landau-type theorem for polyharmonic mappings.

Theorem 3.1 Suppose that $\Lambda_{p} \geq 1, M_{p-k+1} \geq 0,\left|G_{p-k+1}\right| \leq M_{p-k+1}$ for $k \in\{2, \cdots, p\}$ and $\left|G_{p}\right|=\Lambda_{p}$. Let

$$
F_{1}(z)=\sum_{k=2}^{p} G_{p-k+1}|z|^{2(k-1)} z+G_{p} \int_{0}^{z \zeta-\frac{1}{\Lambda_{p}}} \frac{\zeta}{1-\frac{\zeta}{\Lambda_{p}}} d \zeta
$$

be a polyharmonic mapping of the unit disk $\mathbb{U}$. Then $F_{1}(z)$ is univalent in the disk $\mathbb{U}_{r_{1}}$, where $r_{1}$ is the unique positive root in $(0,1)$ of the equation

$$
\frac{\Lambda_{p}\left(1-\Lambda_{p} r\right)}{\Lambda_{p}-r}-\sum_{k=2}^{p}(2 k-1) M_{p-k+1} r^{2(k-1)}=0
$$

and $F_{1}\left(\mathbb{U}_{r_{1}}\right)$ contains a schlicht disk $\mathbb{U}_{R_{1}}$, with

$$
R_{1}=\Lambda_{p}^{2} r_{1}+\left(\Lambda_{p}^{3}-\Lambda_{p}\right) \log \left(1-\frac{r_{1}}{\Lambda_{p}}\right)-\sum_{k=2}^{p} M_{p-k+1} r_{1}^{2 k-1}
$$

Both of $r_{1}$ and $R_{1}$ are sharp.

Proof Firstly, we prove $F_{1}(z)$ is univalent in the disk $\mathbb{U}_{r_{1}}$. To this end, we choose two distinct points $z_{1}, z_{2}$ in the disk $\mathbb{U}_{r}\left(r<r_{1}\right)$. Then, applying Lemma 2.6 , we have

$$
\begin{aligned}
& \left|F_{1}\left(z_{1}\right)-F_{1}\left(z_{2}\right)\right| \\
= & \left.\left|\sum_{k=2}^{p} G_{p-k+1}\right| z_{1}\right|^{2(k-1)} z_{1}+G_{p} \int_{0}^{z_{1} \zeta-\frac{1}{\Lambda_{p}}} \frac{1-\frac{\zeta}{\Lambda_{p}}}{1 \zeta-} \\
& \left.\sum_{k=2}^{p} G_{p-k+1}\left|z_{2}\right|^{2(k-1)} z_{2}-G_{p} \int_{0}^{z_{2} \zeta-\frac{1}{\Lambda_{p}}} \frac{1-\frac{\zeta}{\Lambda_{p}}}{1 \zeta} \right\rvert\, \\
\geq & \left.\Lambda_{p}\left|\int_{z_{1}}^{z_{2} \zeta-\frac{1}{\Lambda_{p}}} \frac{1-\frac{\zeta}{\Lambda_{p}}}{1 \zeta \mid}\right|-\left.\sum_{k=2}^{p} M_{p-k+1}| | z_{1}\right|^{2(k-1)} z_{1}-\left|z_{2}\right|^{2(k-1)} z_{2} \right\rvert\, \\
\geq & \Lambda_{p} \frac{\frac{1}{\Lambda_{p}}-r}{1-\frac{r}{\Lambda_{p}}}\left|z_{1}-z_{2}\right|-\sum_{k=2}^{p}(2 k-1) M_{p-k+1} r^{2(k-1)}\left|z_{1}-z_{2}\right| \\
= & {\left[\frac{\Lambda_{p}\left(1-\Lambda_{p} r\right)}{\Lambda_{p}-r}-\sum_{k=2}^{p}(2 k-1) M_{p-k+1} r^{2(k-1)}\right]\left|z_{1}-z_{2}\right|>0 . }
\end{aligned}
$$

Thus, we have $F_{1}\left(z_{1}\right) \neq F_{1}\left(z_{2}\right)$, which proves the univalence of $F_{1}(z)$ in the disk $\mathbb{U}_{r_{1}}$.
Next, we prove the sharpness of $r_{1}$. Considering the real function

$$
f(x)=-\sum_{k=2}^{p} M_{p-k+1} x^{2 k-1}-\Lambda_{p} \int_{0}^{x} \frac{\zeta-\frac{1}{\Lambda_{p}}}{1-\frac{\zeta}{\Lambda_{p}}} d \zeta, x \in[0,1] .
$$

Then

$$
f^{\prime}(x)=\frac{\Lambda_{p}\left(1-\Lambda_{p} x\right)}{\Lambda_{p}-x}-\sum_{k=2}^{p}(2 k-1) M_{p-k+1} x^{2(k-1)}
$$

Because $f^{\prime}(x)$ is strictly monotone decreasing on $[0,1]$, and

$$
f^{\prime}(0)=1, f^{\prime}(1)=-\Lambda_{p}-\sum_{k=2}^{p}(2 k-1) M_{p-k+1}<0
$$

so $f^{\prime}(x)=0$ for $x \in(0,1)$ if and only if $x=r_{1}$. Hence $f(x)$ is strictly monotone increasing on [ $0, r_{1}$ ] and strictly monotone decreasing on $\left[r_{1}, 1\right]$. For every fixed $r^{\prime} \in\left(r_{1}, 1\right)$, there exists two distinct points $x_{1}, x_{2} \in\left(0, r^{\prime}\right), f\left(x_{1}\right)=f\left(x_{2}\right)$. Thus, $r_{1}$ cannot be replaced by any bigger number.

And for any point $z=r_{1} e^{i \theta}$ on $\partial \mathbb{U}_{r_{1}}$, we have

$$
\begin{aligned}
\left|F_{1}(z)\right| & \left.=\left.\left|\sum_{k=2}^{p} G_{p-k+1}\right| z\right|^{2(k-1)} z+G_{p} \int_{0}^{z} \frac{\zeta-\frac{1}{\Lambda_{p}}}{1-\frac{\zeta}{\Lambda_{p}}} d \zeta \right\rvert\, \\
& \geq \Lambda_{p}\left|\int_{0}^{z \zeta-\frac{1}{\Lambda_{p}}} \frac{\frac{\zeta}{\Lambda_{p}}}{1 \zeta \mid}\right|-\sum_{k=2}^{p} M_{p-k+1} r_{1}^{2 k-1} \\
& \geq \Lambda_{p} \int_{0}^{r_{1}} \frac{\frac{1}{\Lambda_{p}}-t}{1-\frac{t}{\Lambda_{p}}} d t-\sum_{k=2}^{p} M_{p-k+1} r_{1}^{2 k-1} \\
& =-\Lambda_{p} \int_{0}^{r_{1}} \frac{t-\frac{1}{\Lambda_{p}}}{1-\frac{t}{\Lambda_{p}}} d t-\sum_{k=2}^{p} M_{p-k+1} r_{1}^{2 k-1} \\
& =\Lambda_{p}^{2} r_{1}+\left(\Lambda_{p}^{3}-\Lambda_{p}\right) \log \left(1-\frac{r_{1}}{\Lambda_{p}}\right)-\sum_{k=2}^{p} M_{p-k+1} r_{1}^{2 k-1}=R_{1}, \\
f\left(r_{1}\right) & =-\Lambda_{p} \int_{0}^{r_{1} \zeta-\frac{1}{\Lambda_{p}}} \frac{1-\frac{\zeta}{\Lambda_{p}}}{l \zeta}-\sum_{k=2}^{p} M_{p-k+1} r_{1}^{2 k-1} \\
& =\Lambda_{p}^{2} r_{1}+\left(\Lambda_{p}^{3}-\Lambda_{p}\right) \log \left(1-\frac{r_{1}}{\Lambda_{p}}\right)-\sum_{k=2}^{p} M_{p-k+1} r_{1}^{2 k-1}=R_{1} .
\end{aligned}
$$

Hence $R_{1}$ is sharp. This completes the proof.
By the proof of Theorem 3.1, we obtain the extremal function $F_{2}(z)$ by the following example.
Example 3.2 Suppose that $\Lambda_{p} \geq 1, M_{p-k+1} \geq 0, k \in\{2, \cdots, p\}$. Let

$$
F_{2}(z)=-\sum_{k=2}^{p} M_{p-k+1}|z|^{2(k-1)} z-\Lambda_{p} \int_{0}^{z \zeta-\frac{1}{\Lambda_{p}}} \frac{\frac{\zeta}{\Lambda_{p}}}{1-\frac{1}{} . \frac{1}{} .}
$$

be a polyharmonic mapping of the unit disk $\mathbb{U}$. Then $F_{2}(z)$ is univalent in the disk $\mathbb{U}_{r_{1}}$, and $F_{2}\left(\mathbb{U}_{r_{1}}\right)$ contains a schlicht disk $\mathbb{U}_{R_{1}}$, where $r_{1}$ and $R_{1}$ are given by Theorem 3.1. Both of $r_{1}$ and $R_{1}$ are sharp.

We note that the polyharmonic mappings in Example 3.2 satisfying the hypothesis of Theorem A, it is natural to pose a conjecture as follows:

Conjecture 3.3 Under the hypothesis of Theorem A, $F(z)$ is univalent in $\mathbb{U}_{r_{1}}$ and $F\left(\mathbb{U}_{r_{1}}\right)$ contains a schlicht disk $\mathbb{U}_{R_{1}}$. This result is sharp, with $r_{1}, R_{1}$, and the extremal mapping are given by Example 3.2.

Next, we establish a new version Landau-type theorem by adding extra conditions $\lambda_{G_{p-k+1}}(0)=1, k \in$ $\{2,3, \cdots, p\}$ to Theorem A, which is sharp when $M_{p-k+1}=1(k=2,3, \cdots, p)$. We prove the following result with a method of proof of [27].

Theorem 3.4 Suppose $F(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(z)$ is a polyharmonic mapping in the unit disk $\mathbb{U}$, with $F(0)=0$, and satisfying following conditions:
(i) for $k \in\{1, \cdots, p\}, G_{p-k+1}(z)$ is harmonic in $\mathbb{U}$, and $\lambda_{G_{p-k+1}}(0)-1=G_{p-k+1}(0)=0$;
(ii) for $k \in\{2, \cdots, p\},\left|G_{p-k+1}(z)\right| \leq M_{p-k+1}, \Lambda_{G_{p}}(z) \leq \Lambda_{p}$ for all $z \in \mathbb{U}$.

Then for $k \in\{2, \cdots, p\}, M_{p-k+1} \geq 1, \Lambda_{p} \geq 1, F(z)$ is univalent in $\mathbb{U}_{r_{2}}$, and $F\left(\mathbb{U}_{r_{2}}\right)$ contains the schlicht disk
$\mathbb{U}_{R_{2}}$, where $r_{2}$ is a unique root in $(0,1)$ of the equation $A_{1}(r)=0, A_{1}(r)$ is defined by the following equation

$$
\begin{align*}
& \begin{aligned}
A_{1}(r)=\frac{\Lambda_{p}\left(1-\Lambda_{p} r\right)}{\Lambda_{p}-r}- & \sum_{k=2}^{p} r^{2(k-1)}\left[(2 k-1) K_{1}\left(M_{p-k+1}\right)\right. \\
& \left.+\sqrt{2 M_{p-k+1}^{2}-2}\left(\frac{2(k-1) r}{\sqrt{1-r^{2}}}+\frac{r \sqrt{4-3 r^{2}+r^{4}}}{\left(1-r^{2}\right)^{\frac{3}{2}}}\right)\right]
\end{aligned} \\
& K_{1}\left(M_{p-k+1}\right)=\min \left\{\sqrt{2 M_{p-k+1}^{2}-1} \frac{4 M_{p-k+1}}{\pi}\right\}, \tag{1}
\end{align*}
$$

and

$$
\begin{equation*}
R_{2}=\Lambda_{p}^{2} r_{2}+\left(\Lambda_{p}^{3}-\Lambda_{p}\right) \log \left(1-\frac{r_{2}}{\Lambda_{p}}\right)-\sum_{k=2}^{p} r_{2}^{2 k-1}\left[K_{1}\left(M_{p-k+1}\right)+\sqrt{2 M_{p-k+1}^{2}-2} \cdot \frac{r_{2}}{\sqrt{1-r_{2}^{2}}}\right] \tag{3}
\end{equation*}
$$

When $M_{p-k+1}=1, k=2, \ldots, p$, the result is sharp, with an extremal function given by

$$
\begin{equation*}
F_{3}(z)=\Lambda_{p} \int_{0}^{z} \frac{\frac{1}{\Lambda_{p}}-\zeta}{1-\frac{\zeta}{\Lambda_{p}}} d \zeta-\sum_{k=2}^{p}|z|^{2(k-1)} z=\Lambda_{p}^{2} z+\left(\Lambda_{p}^{3}-\Lambda_{p}\right) \log \left(1-\frac{z}{\Lambda_{p}}\right)-\sum_{k=2}^{p}|z|^{2(k-1)} z \tag{4}
\end{equation*}
$$

Proof By the hypothesis of Theorem 3.4 and Lemma 2.3, we have that $M_{p-k+1} \geq 1$ for $k \in\{2, \ldots, p\}$, and $\Lambda_{p} \geq \Lambda_{G_{p}}(0) \geq \lambda_{G_{p}}(0)=1$.

In order to prove the univalence of $F$, we choose two distinct points $z_{1}, z_{2} \in \mathbb{U}_{r}(0<r<1)$. Then we have

$$
\begin{aligned}
\left|F\left(z_{2}\right)-F\left(z_{1}\right)\right| & =\left.\left|\sum_{k=2}^{p}\right| z_{2}\right|^{2(k-1)} G_{p-k+1}\left(z_{2}\right)+G_{p}\left(z_{2}\right)-\sum_{k=2}^{p}\left|z_{2}\right|^{2(k-1)} G_{p-k+1}\left(z_{1}\right)-G_{p}\left(z_{1}\right) \mid \\
& \geq\left|G_{p}\left(z_{2}\right)-G_{p}\left(z_{1}\right)\right|-\left.\left|\sum_{k=2}^{p}\right| z_{2}\right|^{2(k-1)} G_{p-k+1}\left(z_{2}\right)-\sum_{k=2}^{p}\left|z_{2}\right|^{2(k-1)} G_{p-k+1}\left(z_{1}\right) \mid
\end{aligned}
$$

Since $\lambda_{F}(0)=\left|\left|\left(G_{p}\right)_{z}(0)\right|-\left|\left(G_{p}\right)_{\bar{z}}(0)\right|\right|=\lambda_{G_{p}}(0)=1, \Lambda_{G_{p}}(z)<\Lambda_{p}$, by Lemma 2.5, we have

$$
\left|G_{p}\left(z_{2}\right)-G_{p}\left(z_{1}\right)\right| \geq \frac{\Lambda_{p}\left(1-\Lambda_{p} r\right)}{\Lambda_{p}-r}\left|z_{2}-z_{1}\right|
$$

For any $k \in\{2, \ldots, p\}$, we give the series form of $G_{p-k+1}$ as follow:

$$
G_{p-k+1}(z)=\sum_{j=1}^{\infty} a_{j, p-k+1} z^{j}+\sum_{j=1}^{\infty} \overline{b_{j, p-k+1}} \bar{z}^{j}
$$

Using Lemmas 2.3, 2.4 and 2.6, we have

$$
\begin{aligned}
& \left.\left|\sum_{k=2}^{p}\right| z_{2}\right|^{2(k-1)} G_{p-k+1}\left(z_{2}\right)-\sum_{k=2}^{p}\left|z_{1}\right|^{2(k-1)} G_{p-k+1}\left(z_{1}\right) \mid \\
= & \left|\sum_{k=2}^{p} \sum_{j=1}^{\infty}\left(a_{j, p-k+1}\left(\left|z_{2}\right|^{2(k-1)} z_{2}^{j}-\left|z_{1}\right|^{2(k-1)} z_{1}^{j}\right)+b_{j, p-k+1}\left(\left|z_{2}\right|^{2(k-1)} \bar{z}_{2}^{j}-\left|z_{1}\right|^{2(k-1)} \bar{z}_{1}^{j}\right)\right)\right| \\
\leq & \left.\sum_{k=2}^{p} \sum_{j=1}^{\infty}\left(\left|a_{j, p-k+1}\right|+\left|b_{j, p-k+1}\right|\right)| | z_{2}\right|^{2(k-1)} z_{2}^{j}-\left|z_{1}\right|^{2(k-1)} z_{1}^{j} \mid
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{k=2}^{p} \sum_{j=1}^{\infty}\left(\left|a_{j, p-k+1}\right|+\left|b_{j, p-k+1}\right|\right)(2 k+j-2) r^{2 k+j-3}\left|z_{1}-z_{2}\right| \\
& \leq \sum_{k=2}^{p} r^{2(k-1)}\left[(2 k-1) K_{1}\left(M_{p-k+1}\right)+2(k-1)\left(\sum_{j=2}^{\infty}\left(\left|a_{j, p-k+1}\right|+\left|b_{j, p-k+1}\right|\right)\right)^{\frac{1}{2}}\left(\sum_{j=2}^{\infty} r^{2(j-1)}\right)^{\frac{1}{2}}\right. \\
& \left.+\left(\sum_{j=2}^{\infty}\left(\left|a_{j, p-k+1}\right|+\left|b_{j, p-k+1}\right|\right)\right)^{\frac{1}{2}}\left(\sum_{j=2}^{\infty} j^{2} r^{2(j-1)}\right)^{\frac{1}{2}}\right]\left|z_{1}-z_{2}\right| \\
& =\sum_{k=2}^{p} r^{2(k-1)}\left[(2 k-1) K_{1}\left(M_{p-k+1}\right)+\sqrt{2 M_{p-k+1}^{2}-2}\left(\frac{2(k-1) r}{\sqrt{1-r^{2}}}+\frac{r \sqrt{4-3 r^{2}+r^{4}}}{\left(1-r^{2}\right)^{\frac{3}{2}}}\right)\right]\left|z_{1}-z_{2}\right| .
\end{aligned}
$$

Hence,

$$
\left|F\left(z_{1}\right)-F\left(z_{2}\right)\right| \geq A_{1}(r)\left|z_{1}-z_{2}\right|
$$

where $A_{1}(r)$ is defined by (1).
It is not difficult to verify that $A_{1}(r)$ is strictly decreasing in $(0,1)$, and

$$
\lim _{r \rightarrow 0} A_{1}(r)=1, \quad \lim _{r \rightarrow 1} A_{1}(r)=-\infty
$$

Hence there exists a unique root $r_{2}$ in $(0,1)$ of the equation $A_{1}(r)=0$. This shows that

$$
\left|F\left(z_{2}\right)-F\left(z_{1}\right)\right|>0
$$

for any two distinct points $z_{1}, z_{2} \in \mathbb{U}_{r_{2}}$. Thus $F$ is univalent in $\mathbb{U}_{r_{2}}$.
Next, for any point $z=r_{2} e^{i \theta}$ on $\partial \mathbb{U}_{r_{2}}$, by Lemmas 2.3, 2.4 and 2.5, we have

$$
\begin{aligned}
|F(z)|= & \left.\left|G_{p}(z)+\sum_{k=2}^{p}\right| z\right|^{2(k-1)} G_{p-k+1}(z) \mid \\
= & \left.\left|G_{p}(z)+\sum_{k=2}^{p}\right| z\right|^{2(k-1)} \sum_{j=1}^{\infty} a_{j, p-k+1} z^{j}+\sum_{j=1}^{\infty} \overline{b_{j, p-k+1}} z^{j} \mid \\
\geq & \Lambda_{p}^{2} r_{2}+\left(\Lambda_{p}^{3}-\Lambda_{p}\right) \log \left(1-\frac{r_{2}}{\Lambda_{p}}\right) \\
& -\sum_{k=2}^{p}|z|^{2(k-1)}\left[\left(\left|a_{1, p-k+1} z\right|+\left|b_{1, p-k+1} z\right|\right)+\sum_{j=2}^{\infty}\left(\left|a_{j, p-k+1} z^{j}\right|+\left|b_{j, p-k+1} z^{j}\right|\right)\right] \\
\geq & \Lambda_{p}^{2} r_{2}+\left(\Lambda_{p}^{3}-\Lambda_{p}\right) \log \left(1-\frac{r_{2}}{\Lambda_{p}}\right) \\
& -\sum_{k=2}^{p} r_{2}^{2(k-1)}\left[K_{1}\left(M_{p-k+1}\right) r_{2}+\sqrt{2 M_{p-k+1}^{2}-2} \cdot \frac{r_{2}^{2}}{\sqrt{1-r_{2}^{2}}}\right]=R_{2} .
\end{aligned}
$$

Hence, $F\left(\mathbb{U}_{r_{2}}\right)$ contains a schlicht disk $\mathbb{U}_{R_{2}}$.
When $M_{p-k+1}=1, \Lambda_{p} \geq 1$ for $k=2, \ldots, p$, the result is sharp with an extremal function $F_{3}(z)$, which is given by (4). This completes the proof.

The equation $A_{1}(r)=0$ which $A_{1}(r)$ is defined by (1) cannot be solved explicitly. The Computer Algebra System Mathematica has calculated the numerical solutions to equations (1), (3), (3) and (4). Table 1 shows the approximate values of $r_{2}, R_{2}$ and $\rho_{2}, \rho_{2}^{\prime}$ that correspond to different choice of the constants $M_{1}$ and $\Lambda_{2}$, which shows that $r_{2}>\rho_{2}$ and $R_{2}>\rho_{2}^{\prime}$, that is, Theorem 3.4 is an improvement of Theorem B.

Table 1: The values of $\rho_{2}, \rho_{2}^{\prime}$ and $r_{2}, R_{2}$ are in Theorems B and Theorem 3.4

|  | $M_{1}=\Lambda_{2}=1.1$ | $M_{1}=1.5, \Lambda_{2}=2$ | $M_{1}=\Lambda_{2}=2$ | $M_{1}=2.5, \Lambda_{2}=3$ | $M_{1}=\Lambda_{2}=3$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\rho_{2}$ | 0.397736 | 0.261255 | 0.234962 | 0.190024 | 0.180374 |
| $r_{2}$ | 0.422555 | 0.268498 | 0.241163 | 0.192773 | 0.182519 |
| $\rho_{2}^{\prime}$ | 0.275692 | 0.161787 | 0.147208 | 0.112778 | 0.107824 |
| $R_{2}$ | 0.286601 | 0.164292 | 0.149431 | 0.113631 | 0.108473 |

And then, changing some hypothesis of Theorem 3.4, we establish a new version of Landau-type theorems of polyharmonic mappings as follows.

Theorem 3.5 Let $F(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(z)$ be a polyharmonic mapping in the unit disk $\mathbb{U}$, with $F(0)=\lambda_{F}(0)-1=0$, and satisfying the following conditions:
(i) for $k \in\{1, \cdots, p\}, G_{p-k+1}(z)$ is harmonic in $\mathbb{U}$, and $G_{p-k+1}(0)=0$;
(ii) for $k \in\{2,3, \cdots, p\}, \Lambda_{G_{p-k+1}}(z) \leq \Lambda_{p-k+1}$, and $\left|G_{p}(z)\right| \leq M_{p}$ for $z \in \mathbb{U}$.

Then $\Lambda_{p-k+1} \geq 0, M_{p} \geq 1, F(z)$ is univalent in $\mathbb{U}_{r_{3}}$, and $F\left(\mathbb{U}_{r_{3}}\right)$ contains a schlicht disk $\mathbb{U}_{R_{3}}$, where $r_{3}$ is the unique positive root in $(0,1)$ of the following equation:

$$
\begin{equation*}
1-\sqrt{2 M_{p}^{2}-2} \cdot \frac{r \sqrt{r^{4}-3 r^{2}+4}}{\left(1-r^{2}\right)^{\frac{3}{2}}}-\sum_{k=2}^{p}(2 k-1) \Lambda_{p-k+1} r^{2(k-1)}=0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{3}=r_{3}-\sqrt{2 M_{p}^{2}-2} \cdot \frac{r_{3}^{2}}{\sqrt{1-r_{3}^{2}}}-\sum_{k=2}^{p} r_{3}^{2 k-1} \Lambda_{p-k+1} \tag{6}
\end{equation*}
$$

When $M_{p}=1$, the result is sharp, with an extremal function $F_{1}^{\prime}(z)$, which is given by (9).
Proof By the hypothesis of Theorem 3.5 and Lemma 2.4, we have $\Lambda_{p-k+1} \geq 0$ and $M_{p} \geq 1$ for $k \in$ $\{2, \cdots, p\}$, and $G_{p}(z)$ has the following series form

$$
G_{p}(z)=\sum_{n=1}^{\infty} a_{n} z^{n}+\sum_{n=1}^{\infty} \overline{b_{n} z^{n}}
$$

Then we have $\lambda_{G_{p}}(0)=\left|\left|\left(G_{p}\right)_{z}(0)\right|-\left|\left(G_{p}\right)_{\bar{z}}(0)\right|\right|=\left|\left|a_{1}\right|-\left|b_{1}\right|\right|=\lambda_{F}(0)=1$.
By Lemma 2.4, we have $\left(\sum_{n=2}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right)^{2}\right)^{\frac{1}{2}} \leq \sqrt{2 M_{p}^{2}-2}, n \geq 2$.
In order to prove the univalence of $F$, we choose two distinct points $z_{1}, z_{2} \in \mathbb{U}_{r}(0<r<1)$. Then we have

$$
\begin{aligned}
\left|F\left(z_{1}\right)-F\left(z_{2}\right)\right| & =\left|\int_{\left[z_{1}, z_{2}\right]} F_{z}(z) d z+F_{\bar{z}}(z) d \bar{z}\right| \\
& \geq\left|\int_{\left[z_{1}, z_{2}\right]}\left(G_{p}\right)_{z}(0) d z+\left(G_{p}\right)_{\bar{z}}(0) d \bar{z}\right|
\end{aligned}
$$

$$
\begin{aligned}
& -\left|\int_{\left[z_{1}, z_{2}\right]}\left[\left(G_{p}\right)_{z}(z)-\left(G_{p}\right)_{z}(0)\right] d z+\left[\left(G_{p}\right)_{z}(z)-\left(G_{p}\right)_{\bar{z}}(0)\right] d \bar{z}\right| \\
& -\left.\left|\sum_{k=2}^{p} \int_{\left[z_{1}, z_{2}\right]}\right| z\right|^{2(k-1)}\left[\left(G_{p-k+1}\right)_{z}(z) d z+\left(G_{p-k+1}\right)_{\bar{z}}(z) d \bar{z}\right] \mid \\
& -\left|\sum_{k=2}^{p} \int_{\left[z_{1}, z_{2}\right]}(k-1) G_{p-k+1}(z)\left(\bar{z}^{k-1} z^{k-2} d z+\bar{z}^{k-2} z^{k-1} d \bar{z}\right)\right| \\
\geq & \left.\left|z_{1}-z_{2}\right| \mid \lambda_{G_{p}}(0)-\sum_{n=2}^{\infty} n\left(\left|a_{n}\right|+\left|b_{n}\right|\right) r^{n-1}-\sum_{k=2}^{p} r^{2 k-1} \Lambda_{G_{p-k+1}}\right) \\
& \left.-\sum_{k=2}^{p} \int_{\left[z_{1}, z_{2}\right]}(k-1)\left|G_{p-k+1}(z)\right|\left(\left|z^{k-1} z^{k-2}\right||d z|+\left|\bar{z}^{k-2} z^{k-1}\right| \mid d \bar{z}\right) \mid\right) \\
\geq & \left|z_{1}-z_{2}\right| \left\lvert\, 1-\left(\sum_{n=2}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right)^{2}\right)^{\frac{1}{2}}\left(\sum_{n=2}^{\infty} n^{2} r^{2(n-1)}\right)^{\frac{1}{2}}\right. \\
& \left.-\sum_{k=2}^{p}(2 k-1) \Lambda_{p-k+1} r^{2(k-1)}\right] \\
\geq & \left|z_{1}-z_{2}\right|\left[1-\sqrt{2 M_{p}^{2}-2} \cdot \frac{r \sqrt{r^{4}-3 r^{2}+4}}{\left(1-r^{2}\right)^{\frac{3}{2}}}-\sum_{k=1}^{p-1}(2 k+1) \Lambda_{p-k} r^{2 k}\right] \\
= & A_{2}(r)\left|z_{1}-z_{2}\right| .
\end{aligned}
$$

It is not difficult to verify that $A_{2}(r)$ is strictly decreasing in $(0,1)$, and

$$
\lim _{r \rightarrow 0} A_{2}(r)=1, \quad \lim _{r \rightarrow 1} A_{2}(r)=-\infty
$$

Hence there exists an unique root $r_{3}$ in $(0,1)$ of the equation $A_{2}(r)=0$. This shows that $\left|F\left(z_{1}\right)-F\left(z_{2}\right)\right|>0$ for any two distinct points $z_{1}, z_{2} \in \mathbb{U}_{r_{3}}$. Then $F(z)$ is univalent in $\mathbb{U}_{r_{3}}$.

Next, we prove $F\left(\mathbb{U}_{r_{3}}\right) \supset \mathbb{U}_{R_{3}}$. For $z=r_{3} e^{i \theta} \in \partial \mathbb{U}_{r_{3}}$, we have

$$
\begin{aligned}
|F(z)| & =\left.\left|\sum_{n=1}^{\infty}\left(a_{n} z^{n}+\overline{b_{n}} \overline{z^{n}}\right)+\sum_{k=2}^{p}\right| z\right|^{2(k-1)} G_{p-k+1}(z) \mid \\
& \geq\left|a_{1} z+\overline{b_{1}} \bar{z}\right|-\left|\sum_{n=2}^{\infty}\left(a_{n} z^{n}+\overline{b_{n}} \overline{z^{n}}\right)\right|-\sum_{k=2}^{p}|z|^{2(k-1)}\left|G_{p-k+1}(z)\right| \\
& \geq r_{3}-\sqrt{2 M_{p}^{2}-2} \cdot \frac{r_{3}^{2}}{\sqrt{1-r_{3}^{2}}}-\sum_{k=2}^{p} r_{3}^{2 k-1} \Lambda_{p-k+1}=R_{3} .
\end{aligned}
$$

Finally, when $M_{p}=1, \sqrt{2 M_{p}^{2}-2}=0$. Since $\lambda_{G_{p}}(0)-1=G_{p}(0)=0$, it follows from Lemma 2.7 that $\Lambda_{G_{p}}(z) \leq 1$ for all $z \in U$. Thus, by using Theorem D , we obtain that the result is sharp. This completes the proof.

The equation $A_{2}(r)=0$ which $A_{2}(r)$ is defined by (5) cannot be solved explicitly. The Computer Algebra System Mathematica has calculated the numerical solutions to equations (5), (6), (5) and (6). Table 2 shows the approximate values of $r_{3}, R_{3}$ and $\rho_{3}, \rho_{3}^{\prime}$ that correspond to different choice of the constants $M_{2}$ and $\Lambda_{1}$ when $p=2$, which shows that $r_{3}>\rho_{3}$ and $R_{3}>\rho_{3}^{\prime}$, that is, Theorem 3.5 is an improvement of Theorems C.

Table 2: The values of $\rho_{3}, \rho_{3}^{\prime}$ and $r_{3}, R_{3}$ are in Theorems C and Theorems 3.5 when $p=2$

|  | $M_{2}=1.1, \Lambda_{1}=1.1$ | $M_{2}=1.1, \Lambda_{1}=0.1$ | $M_{2}=2, \Lambda_{1}=2$ | $M_{2}=3, \Lambda_{1}=2$ | $M_{2}=3, \Lambda_{1}=3$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\rho_{3}$ | 0.304897 | 0.365167 | 0.14212 | 0.103741 | 0.101139 |
| $r_{3}$ | 0.365621 | 0.504695 | 0.165365 | 0.113638 | 0.109897 |
| $\rho_{3}^{\prime}$ | 0.187046 | 0.224169 | 0.0787076 | 0.0556412 | 0.0545667 |
| $R_{3}$ | 0.21878 | 0.300625 | 0.0884032 | 0.0587119 | 0.0573114 |

Using the analogous proof of Theorem 3.4 and 3.5, we can obtain the following corollaries.
Corollary 3.6 Let $F(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(z)$ be a $p$-harmonic mapping of the unit disk $\mathbb{U}$, with $F(0)=$ $J_{F}(0)-1=0$, and satisfying the following conditions:
(i) $\quad G_{p-k+1}(z)$ is harmonic in $\mathbb{U}$, and $G_{p-k+1}(0)=0$ for $k \in\{1, \cdots, p\}$;
(ii) $\Lambda_{G_{p-k+1}}(z) \leq \Lambda_{p-k+1}$ for $k \in\{2, \cdots, p\}$ and $\left|G_{p}(z)\right| \leq M_{p}$.

Then $\Lambda_{p-k+1} \geq 0, M_{p} \geq 1, F(z)$ is univalent in $\mathbb{U}_{\tau_{1}}$, and $F\left(\mathbb{U}_{\tau_{1}}\right)$ contains a univalent disk $\mathbb{U}_{\tau_{1}^{\prime}}$, where $\tau_{1}$ is the unique positive root in $(0,1)$ of the equation

$$
\begin{equation*}
\lambda_{0}\left(M_{p}\right)-\lambda_{0}\left(M_{p}\right) \sqrt{M_{p}^{4}-1} \cdot \frac{r \sqrt{r^{4}-3 r^{2}+4}}{\left(1-r^{2}\right)^{\frac{3}{2}}}-\sum_{k=2}^{p}(2 k-1) \Lambda_{p-k+1} r^{2(k-1)}=0 \tag{7}
\end{equation*}
$$

$\lambda_{0}\left(M_{p}\right)$ is defined by (5), and

$$
\begin{equation*}
\tau_{1}^{\prime}=\lambda_{0}\left(M_{p}\right)\left[\tau_{1}-\sqrt{M_{p}^{4}-1} \cdot \frac{\tau_{1}^{2}}{\sqrt{1-\tau_{1}^{2}}}\right]-\sum_{k=2}^{p} \Lambda_{p-k+1} \tau_{1}^{2(k-1)} \tag{8}
\end{equation*}
$$

When $M_{p}=1$, the result is sharp.
Corollary 3.7 Suppose $F(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(z)$ is a polyharmonic mapping in the unit disk $\mathbb{U}$, with $F(0)=\lambda_{F}(0)-1=0$. and satisfying following conditions:
(i) for $k \in\{1, \cdots, p\}, G_{p-k+1}(z)$ is harmonic in $\mathbb{U}$, and $\lambda_{G_{p-k+1}}(0)-1=G_{p-k+1}(0)=0$;
(ii) for $k \in\{2, \cdots, p\},\left|G_{p-k+1}(z)\right| \leq M_{p-k+1},\left|G_{p}(z)\right| \leq M_{p}$ for all $z \in \mathbb{U}$.

Then for $k \in\{2, \cdots, p\}, M_{p-k+1} \geq 1, M_{p} \geq 1, F(z)$ is univalent in $\mathbb{U}_{\tau_{2}}$, and $F\left(\mathbb{U}_{\tau_{2}}\right)$ contains the schlicht disk $\mathbb{U}_{\tau_{2}^{\prime}}$, where $\tau_{2}$ is a unique root in $(0,1)$ of the equation

$$
\begin{aligned}
1-\sqrt{2 M_{p}^{2}-2} & \cdot \frac{r \sqrt{r^{4}-3 r^{2}+4}}{\left(1-r^{2}\right)^{\frac{3}{2}}}-\sum_{k=2}^{p} r^{2(k-1)}\left[(2 k-1) K_{1}\left(M_{p-k+1}\right)\right. \\
& \left.+\sqrt{2 M_{p-k+1}^{2}-2}\left(\frac{2(k-1) r}{\sqrt{1-r^{2}}}+\frac{r \sqrt{4-3 r^{2}+r^{4}}}{\left(1-r^{2}\right)^{\frac{3}{2}}}\right)\right]=0
\end{aligned}
$$

and

$$
\tau_{2}^{\prime}=\tau_{2}-\sqrt{2 M_{p}^{2}-2} \cdot \frac{\tau_{2}^{2}}{\sqrt{1-\tau_{2}^{2}}}-\sum_{k=2}^{p} \tau_{2}^{2 k-1}\left[K_{1}\left(M_{p-k+1}\right)+\sqrt{2 M_{p-k+1}^{2}-2} \cdot \frac{\tau_{2}}{\sqrt{1-\tau_{2}^{2}}}\right]
$$

and $K_{1}\left(M_{p-k+1}\right)$ is defined by (2).
When $M_{p-k+1}=1, k=1,2, \ldots, p$, the result is sharp.
Corollary 3.8 Suppose $F(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(z)$ is a polyharmonic mapping in the unit disk $\mathbb{U}$, with $F(0)=J_{F}(0)-1=0$, and satisfying
(i) for $k \in\{1, \cdots, p\}, G_{p-k+1}(z)$ is harmonic in $\mathbb{U}$, and $\lambda_{G_{p-k+1}}(0)-1=G_{p-k+1}(0)=0$;
(ii) for $k \in\{2, \cdots, p\},\left|G_{p-k+1}(z)\right| \leq M_{p-k+1},\left|G_{p}(z)\right| \leq M_{p}$ for all $z \in \mathbb{U}$.

Then for $k \in\{2, \cdots, p\}, M_{p-k+1} \geq 1, M_{p} \geq 1, F(z)$ is univalent in $\mathbb{U}_{\tau_{3}}$, and $F\left(\mathbb{U}_{\tau_{3}}\right)$ contains the schlicht disk $\mathbb{U}_{\tau_{3}^{\prime}}$, where $\tau_{3}$ is a unique root in $(0,1)$ of the equation

$$
\begin{aligned}
& \lambda_{0}\left(M_{p}\right)-\lambda_{0}\left(M_{p}\right) \sqrt{M_{p}^{4}-1} \cdot \frac{r \sqrt{r^{4}-3 r^{2}+4}}{\left(1-r^{2}\right)^{\frac{3}{2}}} \\
- & \sum_{k=2}^{p} r^{2(k-1)}\left[(2 k-1) K_{1}\left(M_{p-k+1}\right)+\sqrt{2 M_{p-k+1}^{2}-2}\left(\frac{2(k-1) r}{\sqrt{1-r^{2}}}+\frac{r \sqrt{4-3 r^{2}+r^{4}}}{\left(1-r^{2}\right)^{\frac{3}{2}}}\right)\right]=0,
\end{aligned}
$$

and

$$
\tau_{3}^{\prime}=\lambda_{0}\left(M_{p}\right)\left[\tau_{3}-\sqrt{M_{p}^{4}-1} \cdot \frac{\tau_{3}^{2}}{\sqrt{1-\tau_{3}^{2}}}\right]-\sum_{k=2}^{p} \tau_{3}^{2 k-1}\left[K_{1}\left(M_{p-k+1}\right)+\sqrt{2 M_{p-k+1}^{3}-2} \cdot \frac{\tau_{3}}{\sqrt{1-\tau_{3}^{2}}}\right]
$$

and $K_{1}\left(M_{p-k+1}\right)$ is defined by (2), $\lambda_{0}\left(M_{p}\right)$ is defined by (5).
When $M_{p-k+1}=1, k=1,2, \ldots, p$, the result is sharp.
Meanwhile, we establish three forms of Landau-type theorems for some log-p-harmonic mappings. Firstly, We establish one form of Landau-type theorems for certain log-p-harmonic mappings by applying the method of our proof of Theorem $3.4 \mathrm{in}[20]$.

Theorem 3.9 Suppose $f(z)=\prod_{k=1}^{p} g_{p-k+1}(z)^{|z|^{2(k-1)}}$ is a log-p-harmonic mapping in the unit disk $\mathbb{U}$, with $f(0)=\lambda_{f}(0)=0$, and satisfying
(i) for $k \in\{1, \cdots, p\}, g_{p-k+1}(z)$ is log-harmonic in $\mathbb{U}, g_{p-k+1}(0)=1$,
(ii) let $G_{p-k+1}=\log g_{p-k+1}$, for $k \in\{2, \cdots, p\}, \lambda_{G_{p-k+1}}(0)-1=G_{p-k+1}(0)=0$, and $\left|G_{p-k+1}(z)\right| \leq M_{p-k+1}, \Lambda_{G_{p}}(z) \leq \Lambda_{p}$ for all $z \in \mathbb{U}$.

Then for $k \in\{2, \cdots, p\}, M_{p-k+1} \geq 1, \Lambda_{p} \geq 1, f(z)$ is univalent in $\mathbb{U}_{r_{2}}$, where $r_{2}$ is the unique root in $(0,1)$ of the equation $A_{1}(r)=0, A_{1}(r)$ is defined by (1). Moreover, the range $F\left(\mathbb{U}_{r_{2}}\right)$ contains a univalent disk $\mathbb{U}\left(w_{2}, r_{2}^{\prime}\right)$, where $R_{2}$ is given by (3), and

$$
\begin{equation*}
w_{2}=\cosh R_{2}, \quad r_{2}^{\prime}=\sinh R_{2} \tag{9}
\end{equation*}
$$

When $M_{p-k+1}=1, k=2, \ldots, p$, these estimates are sharp with $r_{2}=\widetilde{r_{2}}, r_{2}^{\prime}=\sinh R_{2}=\sinh \widetilde{R_{2}}$, where $\widetilde{r_{2}}$ is the unique root in $(0,1)$ of the equation

$$
\begin{equation*}
\frac{\Lambda_{p}\left(1-\Lambda_{p} r\right)}{\Lambda_{p}-r}-\sum_{k=2}^{p}(2 k-1) r^{2(k-1)}=0 \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{R_{2}}=\Lambda_{p}^{2} \widetilde{r_{2}}+\left(\Lambda_{p}^{3}-\Lambda_{p}\right) \log \left(1-\frac{\widetilde{r_{2}}}{\Lambda_{p}}\right)-\sum_{k=2}^{p}{\widetilde{r_{2}}}^{2 k-1} \tag{11}
\end{equation*}
$$

Proof Let $F(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(z)$, for each $k \in\{1,2, \cdots, p\}$.
Then it follows from the hypothesis of Theorem 3.9 and the definition of log-harmonic mappings that $G_{p-k+1}(z)=\log g_{p-k+1}(z)$ is harmonic mappings in $\mathbb{U}$ for each $k \in\{1,2, \cdots, p\}$.
Thus $F=\log f$ is a polyharmonic mapping in $\mathbb{U}$.
We know that

$$
\lambda_{f}(0)=\left|\left|f_{z}(0)\right|-\left|f_{\bar{z}}(0)\right|\right|=|f(0)|| | F_{z}(0)\left|-\left|F_{\bar{z}}(0)\right|\right|
$$

and $f(0)=1$, so it follows from $g_{p}(0)=\lambda_{f}(0)=1$, we have $G_{p}(0)=\lambda_{F}(0)-1=0$.

In order to prove the univalence of $f$, we fix $r$ with $0<r<1$ and choose two distinct points $z_{1}, z_{2} \in \mathbb{U}_{r}$. Let $\Gamma=\left\{\left(z_{1}-z_{2}\right) t+z_{2}: 0 \leq t \leq 1\right\}$.
Then it follows from our proof of Theorem 3.4 and the hypothesis of Theorem 3.9 that

$$
\begin{aligned}
\left|\log f\left(z_{1}\right)-\log f\left(z_{2}\right)\right|= & \left|F\left(z_{1}\right)-F\left(z_{2}\right)\right|=\left|\int_{\Gamma} F_{z}(z) d z+F_{\bar{z}}(z) d \bar{z}\right| \\
\geq & \left|z_{1}-z_{2}\right|\left\{\frac{\Lambda_{p}\left(1-\Lambda_{p} r\right)}{\Lambda_{p}-r}-\sum_{k=2}^{p} r^{2(k-1)}\left[(2 k-1) K_{1}\left(M_{p-k+1}\right)\right.\right. \\
& \left.\left.+\sqrt{2 M_{p-k+1}^{2}-2}\left(\frac{2(k-1) r}{\sqrt{1-r^{2}}}+\frac{r \sqrt{4-3 r^{2}+r^{4}}}{\left(1-r^{2}\right)^{\frac{3}{2}}}\right)\right]\right\}>0
\end{aligned}
$$

From the proof of Theorem 3.4, we know that there is a unique $r_{2} \in(0,1)$ satisfying the equation $A_{1}(r)=0$, $A_{1}(r)$ is defined by (1), such that

$$
\left|\log f\left(z_{1}\right)-\log f\left(z_{2}\right)\right|>0
$$

for any two distinct points $z_{1}, z_{2}$ in $|z|<r_{2}$, which shows that $f$ is univalent in $\mathbb{U}_{r_{2}}$.
Next, for any point $z=r_{2} e^{i \theta}$ on $\partial \mathbb{U}_{r_{2}}$, by our proof of Theorem 3.4, we have

$$
\begin{aligned}
|\log f(z)|= & |F(z)|=\left.\left|G_{p}(z)+\sum_{k=2}^{p}\right| z\right|^{2(k-1)} G_{p-k+1}(z) \mid \\
\geq & \Lambda_{p}^{2} r_{2}+\left(\Lambda_{p}^{3}-\Lambda_{p}\right) \log \left(1-\frac{r_{2}}{\Lambda_{p}}\right) \\
& -\sum_{k=2}^{p} r_{2}^{2(k-1)}\left[K_{1}\left(M_{p-k+1}\right) r_{2}+\sqrt{2 M_{p-k+1}^{2}-2} \cdot \frac{r_{2}^{2}}{\sqrt{1-r_{2}^{2}}}\right]=R_{2},
\end{aligned}
$$

where $R_{2}$ is given by (3).
By Lemma 2.8, we obtain that the range $f\left(U_{r_{2}}\right)$ contains a schlicht disk $\mathbb{U}\left(w_{2}, r_{2}^{\prime}\right)$, where $w_{2}$ and $r_{2}^{\prime}$ are defined by (9).

Next, we prove that the univalent radius $r_{2}$ and $r_{2}^{\prime}=\sinh R_{2}$ are sharp when $M_{p-k+1}=1, k=2, \ldots, p$, by means of the method as in the proof of Theorem 3.4 in [20]. For the convenience of readers, we give the detail of the proof.

Firstly, we consider the log-p harmonic mapping $f_{3}(z)=e^{F_{3}(z)}$, where $F_{3}(z)$ is given by (4). It is easy to verify that $f_{3}(z)$ satisfies the hypothesis of Theorem 3.9 , thus we obtain that $f_{3}(z)$ is univalent in the disk $U_{r_{2}}$, and the range $f_{3}\left(U_{r_{2}}\right)$ contains a univalent disk $\mathbb{U}\left(w_{2}, r_{2}^{\prime}\right)$.

To prove that the univalent radius $r_{2}$ is sharp with $r_{2}=\widetilde{r_{2}}$, we need to prove that $f_{3}(z)$ is not univalent in $U_{r}$ for each $r \in\left(\widetilde{r_{2}}, 1\right]$. In fact, if we fix $r \in\left(\widetilde{r_{2}}, 1\right]$, by our proof of Theorem 3.1, we know that $F_{3}(z)$ is is not univalent in $U_{r}$, thus there exist two distinct points $z_{1}, z_{2} \in U_{r}$ such that $F_{3}\left(z_{1}\right)=F_{3}\left(z_{2}\right)$, which implies that $f_{3}\left(z_{1}\right)=e^{F_{3}\left(z_{1}\right)}=e^{F_{3}\left(z_{2}\right)}=f_{3}\left(z_{2}\right)$, that is $f_{3}(z)$ is not univalent in $U_{r}$ for each $r \in\left(\widetilde{r_{2}}, 1\right]$. Hence, the univalent radius $r_{2}$ is sharp.

Next, we prove that the radius $r_{2}^{\prime}=\sinh R_{2}$ is sharp with $R_{2}=\widetilde{R_{2}}$.
For $r \in[0,1]$, considering the continuous function

$$
g_{1}(r)=\frac{\Lambda_{p}\left(1-\Lambda_{p} r\right)}{\Lambda_{p}-r}-\sum_{k=2}^{p}(2 k-1) r^{2(k-1)},
$$

it is easy to verify that $g_{1}(r)$ is strictly decreasing on $[0,1], g_{1}(0)=1>0$ and

$$
g_{1}\left(\frac{1}{\Lambda_{p}}\right)=-\sum_{k=2}^{p}(2 k-1)\left(\frac{1}{\Lambda_{p}}\right)^{2(k-1)} \leq 0
$$

Thus we have $0<\widetilde{r_{2}} \leq \frac{1}{\Lambda_{p}}$.
By (10) and (11), it is easy to verify that $\widetilde{R_{2}}>0$. Next we can prove $\widetilde{R_{2}}<1$.
Let $h(r)=\Lambda_{p}^{2} r+\left(\Lambda_{p}^{3}-\Lambda_{p}\right) \log \left(1-\frac{r}{\Lambda_{p}}\right), 0<r \leq \frac{1}{\Lambda_{p}}$, then

$$
h^{\prime}(r)=\Lambda_{p}^{2}+\frac{1-\Lambda_{p}^{2}}{1-\frac{r}{\Lambda_{p}}}=\Lambda_{p} \frac{\frac{1}{\Lambda_{p}}-r}{1-\frac{r}{\Lambda_{p}}} \geq 0,, 0<r \leq \frac{1}{\Lambda_{p}}
$$

which implies that $h(r)$ is increasing in $\left(0, \frac{1}{\Lambda_{p}}\right]$. Therefore,

$$
\begin{aligned}
\widetilde{R_{2}} & =\Lambda_{p}^{2} \widetilde{r_{2}}+\left(\Lambda_{p}^{3}-\Lambda_{p}\right) \log \left(1-\frac{\widetilde{r_{2}}}{\Lambda_{p}}\right)-\sum_{k=2}^{p}{\widetilde{r_{2}}}^{2 k-1} \\
& \leq h\left(\widetilde{r_{2}}\right) \leq h\left(\frac{1}{\Lambda_{p}}\right)=\Lambda_{p}+\left(\Lambda_{p}^{3}-\Lambda_{p}\right) \log \left(1-\frac{1}{\Lambda_{p}^{2}}\right) \\
& <\Lambda_{p}+\left(\Lambda_{p}^{3}-\Lambda_{p}\right) \cdot\left(-\frac{1}{\Lambda_{p}^{2}}\right)=\frac{1}{\Lambda_{p}}<1
\end{aligned}
$$

Hence, $0<\widetilde{R_{2}}<1$.
Because the univalent radius $r_{2}$ is sharp with $r_{2}=\widetilde{r_{2}}$ when $M_{p-k+1}=1, k=2, \ldots, p$, the sharpness of the radius $r_{2}^{\prime}=\sinh R_{2}=\sinh \widetilde{R_{2}}$ follows from Lemma 2.8 and the fact that $0<\widetilde{R_{2}}<1$. The proof is complete.

By means of Theorem 1 in [23] and the same method as the proof of Theorem 3.4 in [20], applying the same method as the proof of Theorem 3.9, it is not difficult to prove following Theorem.

Theorem 3.10 Suppose $f(z)=\prod_{k=1}^{p} g_{p-k+1}(z)^{|z|^{(k-1)}}$ is a log-p-harmonic mapping in the unit disk $\mathbb{U}$, with $f(0)=\lambda_{f}(0)=0$, and satisfying
(i) for $k \in\{1, \cdots, p\}, g_{p-k+1}(z)$ is log-harmonic in $\mathbb{U}, g_{p-k+1}(0)=1$,
(ii) let $G_{p-k+1}=\log g_{p-k+1}$, for $k \in\{2, \cdots, p\},\left|G_{p-k+1}(z)\right| \leq M_{p-k+1}, \Lambda_{G_{p}}(z) \leq \Lambda_{p}$ for all $z \in \mathbb{U}$.

Then for $k \in\{2, \cdots, p\}, M_{p-k+1} \geq 0, \Lambda_{p} \geq 1, f(z)$ is univalent in $\mathbb{U}_{\rho_{1}}$, where $\rho_{1}$ is the unique root in $(0,1)$ of the equation which is defined by (1). Moreover, the range $F\left(\mathbb{U}_{\rho_{1}}\right)$ contains a univalent disk $\mathbb{U}\left(w_{1}^{\prime}, \widetilde{\rho_{1}^{\prime}}\right)$, where $\rho_{1}^{\prime}$ is given by (2), and

$$
w_{1}^{\prime}=\cosh \rho_{1}^{\prime}, \widetilde{\rho_{1}^{\prime}}=\sinh \rho_{1}^{\prime}
$$

When $M_{p-k+1}=0, k=2, \ldots, p$, the radii $\rho_{1}$ and $\widetilde{\rho_{1}^{\prime}}=\sinh \rho_{1}^{\prime}$ are sharp.
By means of Theorem 3.5 and the same method as the proof of Theorem 3.2 and Theorem 3.5 in [20], applying the same method as the proof of Theorem 3.9, we have following Theorem.

Theorem 3.11 Suppose $f(z)=\prod_{k=1}^{p} g_{p-k+1}(z)^{|z|^{2(k-1)}}$ is a log-p-harmonic mapping in the unit disk $\mathbb{U}$, with $f(0)=\lambda_{f}(0)=0$, and satisfying
(i) for $k \in\{1, \cdots, p\}, g_{p-k+1}(z)$ is log-harmonic in $\mathbb{U}, g_{p-k+1}(0)=1$,
(ii) and let $G_{p-k+1}=\log g_{p-k+1}$, for $k \in\{2, \cdots, p\}, \Lambda_{G_{p-k+1}}(z) \leq \Lambda_{p-k+1},\left|G_{p}(z)\right| \leq M_{p}$ for all $z \in \mathbb{U}$.

Then for $k \in\{2, \cdots, p\}, \Lambda_{p-k+1} \geq 0, M_{p} \geq 1, F(z)$ is univalent in $\mathbb{U}_{r_{3}}$, where $r_{3}$ is the unique positive root in $(0,1)$ of the equation which is defined by $(5)$. Moreover, the range $F\left(\mathbb{U}_{r_{3}}\right)$ contains a univalent disk $\mathbb{U}\left(w_{3}, r_{3}^{\prime}\right)$, where $R_{3}$ is given by (6), and

$$
w_{3}=\cosh R_{3}, \quad r_{3}^{\prime}=\sinh R_{3}
$$

When $M_{p}=1$, the radii $r_{3}$ and $r_{3}^{\prime}=\sinh R_{3}$ are sharp.

## References

[1] Z. Abdulhadi,Y. Muhanna, S. Khuri, On univalent solutions of the biharmonic equations, J. Inequal. Appl., 5(2005), 469-478.
[2] Z. Abdulhadi, Y. Muhanna, Landau's Theorem for Biharmonic Mappings, J. Math. Anal. Appl., 338(2008), 705-709.
[3] X.X. Bai and M.S. Liu, Landau-type theorems of polyharmonic mappings and log-p-harmonic mappings, Complex Anal. Oper. Theory, 13(2)(2019), 321-340.
[4] J. G. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. AI., 9(1984), 3-25.
[5] F. Colonna, The Bloch constant of bounded harmonic mappings, Indiana Univ. Math. J., 38(4)(1989), 829-840.
[6] H. H. Chen, P.M. Gauthier and W. Hengartner, Bloch constants for planar harmonic mappings, Proc. Amer. Math. Soc., 128(11)(2000), 3231-3240.
[7] J. Chen, A. Rasila, X. Wang, Landau's theorems for polyharmonic mappings, J. Math. Anal. Appl., 409(2014), 934-945.
[8] Sh.Chen, M. Mateljević, S. Ponnusamy and X.Wang, Lipschitz type spaces and Landau-Bloch theorems for harmonic functions, Acta. Math. Sinica, Chinese Series, 60(6)(2017), 1025-1036.
[9] Sh. Chen, S. Ponnusamy and X. Wang, Landau's theorems for certain biharmonic mappings, Appl. Math. Comput., 208(2)(2009), 427-433.
[10] Sh. Chen, S. Ponnusamy and X. Wang, Properties of some classes of planar harmonic and planar biharmonic mappings, Complex Anal. Oper. Theory, 5(2011), 901-916.
[11] S.L. Chen, S. Ponnusamy and X.T. Wang, Bloch constant and Landau's theorem for planar p-harmonic mappings, J. Math. Appl. Appl., 373(2011), 102-110.
[12] I. Graham and G. Kohr, Geometric Function Theory in One and Higher Dimensions, Marcel Dekker Inc, New York, 2003.
[13] H. W. Hethcote, Schwarz lemma analogues for harmonic functions, Int. J. Math. Educ. Sci. Technol., 8(1)(1977),65-67.
[14] P. Li, X. Wang, Landau's theorem for log-p-harmonic mappings, Appl. Math. Comput., 218(2012), 4806-4812.
[15] M.S. Liu, Landau's theorems for biharmonic mappings, Complex Vari. Elliptic Equa., 53(9)(2008), 843-855.
[16] M.S. Liu, Z.X. Liu, Laudau-type theorems for p-harmonic mappings or log-p-harmonic mappings,Appl.Anal., 51(1)(2014), 81-87.
[17] M.S. Liu, F. Wu and Y. Yang, Sharp estimates of quasi-convex mappings of type B and order alpa, Acta Mathematica Scientia, 39B(5)(2019), 1265-1276.
[18] M.S. Liu, L. Xie and L.M. Yang, Landau's theorems for biharmonic mappings(II), Math. Methods Appl. Sci., 40(7)(2017), 2582-2595.
[19] M.S. Liu, H.H. Chen, The Landau-Bloch type theorems for planar harmonic mappings with bounded dilation, J. Math. Anal. Appl., 468(2)(2018), 1066-1081.
[20] M.S. Liu, L.F. Luo, Precise values of the Bloch constants of certain log-p-harmonic mappings, Acta Mathematica Scientia, 41B(1)(2021),297-310.
[21] M.S. Liu, L.F. Luo, Landau-type theorems for certain bounded biharmonic mappings. Result Math., 74(4)(2019),Art. 170.
[22] X. Luo, M.S. Liu, Landau-Bloch type theorems for certain biharmonic mappings,Complex Vari. Elliptic Equa., 65(11)(2020),19381949.
[23] X. Luo, M.S. Liu, Landau-Bloch Type Theorems for Certain Subclasses for Polyharmonic Mappings, Computational Methods and Function Theory, 2023, 23(2),303-325.
[24] M. Mateljević, A version of Bloch theorem for quasiregular harmonic mappings, Rev. Roum. Math. Pures. Appl. 47(2002),705-707.
[25] M. Mateljević and A. Khalfalah, On some Schwarz type inequalities, J. Inequal. Appl. 2020(2020),Art 164.
[26] M. Mateljević and M. Svetlik, Hyperbolic metric on the strip and the Schwarz lemma for HQR mappings, Appl. Anal. Discrete Math., 14(2020),150-168
[27] Y.C. Zhu, M.S. Liu, Landau-type theorems for certain planar harmonic mappings or biharmonic mappings, Complex Vari. Elliptic Equa., 58(12)(2013), 1667-1676.


[^0]:    2020 Mathematics Subject Classification. Primary 30C99; Secondary 30C62.
    Keywords. Landau-type theorem; Polyharmonic mappings; log-p-harmonic mappings; Univalence.
    Received: 28 May 2023; Accepted: 18 August 2023
    Communicated by Miodrag Mateljević
    Research supported by Guangdong Natural Science Foundation (Grant No. 2021A1515010058).

    * Corresponding author: Xi Luo

    Email addresses: xxfxl@163.com (Xiu-Lian Fu), 93030910@qq.com (Xi Luo)

