Filomat 38:4 (2024), 1203–1219 https://doi.org/10.2298/FIL2404203F

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Landau-type theorems for some polyharmonic mappings and log-*p*-harmonic mappings

Xiu-Lian Fu^a, Xi Luo^{b,*}

^aCollege of Computer and Information Engineering, Guangdong Polytechnic of Industry and Commerce, Guangzhou 510510, Guangdong, P. R. China

^bSchool of Mathematics, Jiaying University, Meizhou 514015, Guangdong, P. R. China

Abstract. In this paper, we first establish a sharp version of Landau-type theorem of polyharmonic mappings. Then, we establish two versions of Landau-type theorems of polyharmonic mappings by applying Cauchy-inequality, which improve the corresponding theorems given in Luo et al.(Computational Methods and Function Theory, 23(2):303-325, 2023). Finally, three new Landau-type theorems of log-*p*-harmonic mappings are established, one of which improves upon a result given in Bai et al. (Complex Analysis and Operator Theory, 13(2):321-340, 2019).

1. Introduction

Suppose F(z) = u(z) + iv(z) is a 2*p* times continuously differentiable complex-valued mapping in a domain $D \subseteq \mathbb{C}$, where *p* is a positive integer. Then F(z) is said to be polyharmonic (or *p*-harmonic) in *D* if F(z) satisfies the *p*-harmonic equation

$$\Delta^p F = \Delta(\Delta^{p-1})F = 0,$$

where $\Delta := \Delta^1$ represents the usual complex Laplacian operator

$$\Delta := 4 \frac{\partial^2}{\partial z \partial \overline{z}} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}.$$

Obviously, for p = 1 (resp. p = 2), we obtain the usual class of harmonic (resp. biharmonic) mappings. A complex-value function f(z) is a harmonic mapping in a simply connected domain D if and only if f(z) has the following representation $f(z) = h(z) + \overline{g(z)}$ with f(0) = h(0), g(z) and h(z) being analytic in D (for details see [4]).

It is well-known (cf.[11]) that a mapping F(z) is polyharmonic in a simply connected domain $D \subseteq \mathbb{C}$ if and only if F(z) has the following representation

$$F(z) = \sum_{k=1}^{p} |z|^{2(k-1)} G_{p-k+1}(z),$$

Keywords. Landau-type theorem; Polyharmonic mappings; log-p-harmonic mappings; Univalence.

²⁰²⁰ Mathematics Subject Classification. Primary 30C99; Secondary 30C62.

Received: 28 May 2023; Accepted: 18 August 2023

Communicated by Miodrag Mateljević

Research supported by Guangdong Natural Science Foundation (Grant No. 2021A1515010058).

^{*} Corresponding author: Xi Luo

Email addresses: xxfx1@163.com (Xiu-Lian Fu), 93030910@qq.com (Xi Luo)

where $G_{p-k+1}(z)$ is harmonic on D for each $k \in \{1, ..., p\}$. In particular, F(z) is a biharmonic mapping in a simply connected domain D if and only if F(z) has the following representation

$$F(z) = |z|^2 g(z) + h(z),$$

where g(z), h(z) are harmonic on D (cf.[1]).

A mapping F(z) is called a log-*p*-harmonic mapping if and only if log F(z) is a *p*-harmonic mapping. When p = 1, F(z) is called a log-harmonic mapping. When p = 2, F(z) is called a log-biharmonic mapping. Hence, F(z) is called a log-*p*-harmonic mapping in a simply connected domain $D \subseteq \mathbb{C}$ if and only if F(z) has the following representation

$$F(z) = \prod_{k=1}^{p} g_{p-k+1}(z)^{|z|^{2(k-1)}},$$

where $g_{p-k+1}(z)$ is log-harmonic on *D* for each $k \in \{1, ..., p\}$ (cf. [14]).

For a continuously differentiable mapping F(z) in D, we define the maximum dilation and minimum dilation respectively as follows:

$$\Lambda_F(z) = \max_{0 \le \theta \le 2\pi} |e^{i\theta} F_z(z) + e^{-i\theta} F_{\overline{z}}(z)| = |F_z(z)| + |F_{\overline{z}}(z)|,$$

and

$$\lambda_F(z) = \min_{0 \le \theta \le 2\pi} |e^{i\theta} F_z(z) + e^{-i\theta} F_{\overline{z}}(z)| = ||F_z(z)| - |F_{\overline{z}}(z)||$$

Denote the Jacobian of F by

$$J_F = |F_z(z)|^2 - |F_{\overline{z}}(z)|^2.$$

Let $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$ be the unit disk, and \mathbb{U}_r be the disk with center at the origin and radius r > 0. The classical Landau's theorem states that if f is an analytic function in the unit disk \mathbb{U} with f(0) = f'(0) - 1 = 0 and |f(z)| < M for $z \in \mathbb{U}$, then f is univalent in the disk \mathbb{U}_{ρ_0} with $\rho_0 = \frac{1}{M + \sqrt{M^2 - 1}}$ and $f(\mathbb{U}_{\rho_0})$ contains a disk $|w| < R_0$ with $R_0 = M\rho_0^2$. This result is sharp, with the extremal function $f_0(z) = Mz\frac{1-Mz}{M-z}$. Furthermore, the Bloch theorem asserts the existence of a positive constant number b such that if f is an analytic function on the unit disk \mathbb{U} with f'(0) = 1, then $f(\mathbb{U})$ contains a schlicht disk of radius b, that is, a disk of radius b which is the univalent image of some region in \mathbb{U} . The supremum of all such constants b is called the Bloch constant (for the detail see [6, 12]).

Since Landau's theorems of harmonic mappings were given by Chen et al.([6]) in 2000, many authors are keen on Landau-type theorems for harmonic mappings, biharmonic mappings and polyharmonic mappings ([3, 7, 9, 10, 15–20, 22, 23, 27]). Meanwhile, there are many Bloch's theorems for different functions. In 2002, Mateljević [24] gave a version of Bloch's theorems for quasiregular harmonic mappings. And in 2017, Chen et al. [8] obtained a Landau-Bloch type theorem for harmonic functions in hardy spaces.

There are many good results, but the sharp results are rarely seen. Recently, Luo and Liu ([23]) established following theorem for polyharmonic mappings, which improved the related result of Bai and Liu in [3].

Theorem A([23]) Suppose $F(z) = \sum_{k=1}^{p} |z|^{2(k-1)} G_{p-k+1}(z)$ is a polyharmonic mapping in the unit disk \mathbb{U} , with F(0) = 1 (0) = 1 - 0 and satisfying following conditions:

with $F(0) = \lambda_F(0) - 1 = 0$, and satisfying following conditions:

(i) $G_{p-k+1}(z)$ is harmonic in \mathbb{U} , and $G_{p-k+1}(0) = 0$ for $k \in \{1, \dots, p\}$; (ii) for $k \in \{2, 3, \dots, p\}$, $|G_{p-k+1}(z)| \le M_{p-k+1}$, and $\Lambda_{G_p}(z) \le \Lambda_p$ for $z \in \mathbb{U}$.

Then $M_{p-k+1} \ge 0$, $\Lambda_p \ge 1$, F(z) is univalent in \mathbb{U}_{ρ_1} , and $F(\mathbb{U}_{\rho_1})$ contains a schlicht disk $\mathbb{U}_{\rho_1'}$, where ρ_1 is the minimum root in (0, 1) of the equation

$$\frac{\Lambda_p(1-\Lambda_p r)}{\Lambda_p - r} - \sum_{k=2}^p r^{2(k-1)} \left[\frac{4M_{p-k+1}}{\pi (1-r^2)} + \frac{8(k-1)M_{p-k+1}}{\pi} \right] = 0, \tag{1}$$

and

$$\rho_1' = \Lambda_p^2 \rho_1 + (\Lambda_p^3 - \Lambda_p) \log(1 - \frac{\rho_1}{\Lambda_p}) - \sum_{k=2}^p \rho_1^{2k-1} \frac{4M_{p-k+1}}{\pi}.$$
(2)

When $M_{p-k+1} = 0$, k = 2, ..., p, the result is sharp.

Meanwhile, another two new theorems for polyharmonic mappings were established.

Theorem B([23]) Suppose $F(z) = \sum_{k=1}^{p} |z|^{2(k-1)} G_{p-k+1}(z)$ is a polyharmonic mapping in the unit disk \mathbb{U} , with F(0) = 0, and satisfying following conditions:

(i) for $k \in \{1, \dots, p\}$, $G_{p-k+1}(z)$ is harmonic in \mathbb{U} , and $\lambda_{G_{p-k+1}}(0) - 1 = G_{p-k+1}(0) = 0$;

(ii) for $k \in \{2, \dots, p\}$, $|G_{p-k+1}(z)| \le M_{p-k+1}$, $\Lambda_{G_p}(z) \le \Lambda_p$ for all $z \in \mathbb{U}$.

Then for $k \in \{2, \dots, p\}$, $M_{p-k+1} \ge 1$, $\Lambda_p \ge 1$, F(z) is univalent in \mathbb{U}_{ρ_2} , and $F(\mathbb{U}_{\rho_2})$ contains the schlicht disk $\mathbb{U}_{\rho'_2}$, where ρ_2 is the minimum positive root in (0, 1) of the following equation

$$\frac{\Lambda_p(1-\Lambda_p r)}{\Lambda_p - r} - \sum_{k=2}^p \left[(2k-1)K_1(M_{p-k+1})r^{2k-2} + K_2(M_{p-k+1})r^{2k-1}\frac{2k-(2k-1)r}{(1-r)^2} \right] = 0.$$
(3)

and

$$\rho_{2}^{\prime} = \Lambda_{p}^{2}\rho_{2} + (\Lambda_{p}^{3} - \Lambda_{p})\log(1 - \frac{\rho_{2}}{\Lambda_{p}}) - \sum_{k=2}^{p} \left[K_{1}(M_{p-k+1})\rho_{2}^{2k-1} + K_{2}(M_{p-k+1})\frac{\rho_{2}^{2k}}{1 - \rho_{2}} \right], \tag{4}$$

where

$$K_1(M_{p-k+1}) = \min\left\{\sqrt{2M_{p-k+1}^2 - 1}, \frac{4M_{p-k+1}}{\pi}\right\}, K_2(M_{p-k+1}) = \min\left\{\sqrt{2M_{p-k+1}^2 - 2}, \frac{4M_{p-k+1}}{\pi}\right\}$$

When $M_{p-k+1} = 1, k = 2, ..., p$, the result is sharp.

Theorem C([23]) Let $F(z) = \sum_{k=1}^{p} |z|^{2(k-1)}G_{p-k+1}(z)$ be a polyharmonic mapping in the unit disk \mathbb{U} , with $F(0) = \lambda_F(0) - 1 = 0$, and satisfying the following conditions:

(i) for $k \in \{1, \dots, p\}$, $G_{p-k+1}(z)$ is harmonic in **U**, and $G_{p-k+1}(0) = 0$;

(ii) for $k \in \{2, 3, \dots, p\}$, $\Lambda_{G_{p-k+1}}(z) \le \Lambda_{p-k+1}$, and $|G_p(z)| \le M_p$ for $z \in \mathbb{U}$.

Then $\Lambda_{p-k+1} \ge 0$, $M_p \ge 1$, F(z) is univalent in \mathbb{U}_{ρ_3} , and $F(\mathbb{U}_{\rho_3})$ contains a schlicht disk $\mathbb{U}_{\rho'_3}$, where ρ_3 is the unique positive root in (0, 1) of the following equation:

$$1 - K_2(M_p)\frac{2r - r^2}{(1 - r)^2} - \sum_{k=2}^p (2k - 1)\Lambda_{p-k+1}r^{2(k-1)} = 0,$$
(5)

and

$$\rho_3' = \rho_3 - K_2(M_p) \frac{\rho_3^2}{1 - \rho_3} - \sum_{k=2}^p \rho_3^{2k-1} \Lambda_{p-k+1}.$$
(6)

When $M_p = 1$, the result is sharp.

On the other hand, Liu and Luo obtained the sharp results for Landau's theorem of polyharmonic mappings with conditions $\Lambda_{G_p}(z) \leq 1$, and $\Lambda_{G_{p-k+1}}(z) \leq \Lambda_{p-k+1}$, $k \in \{2, 3, \dots, p\}$.

Theorem D([20]) Suppose that *p* is a positive integer, $p \ge 2$, $\Lambda_1, \dots, \Lambda_{p-1} \ge 0$. Let $F(z) = \sum_{k=1}^p |z|^{2(k-1)}G_{p-k+1}(z)$ be a polyharmonic mapping of \mathbb{U} , where all G_{p-k+1} are harmonic on \mathbb{U} , satisfying $G_{p-k+1}(0) = \lambda_F(0) - 1 = 0$ for $k = 1, 2, \dots, p$. If $\Lambda_{G_p}(z) \le 1$, and $\Lambda_{G_{p-k+1}}(z) \le \Lambda_{p-k+1}$, $k \in \{2, 3, \dots, p\}$ for all $z \in \mathbb{U}$. Then F(z) is univalent in \mathbb{U}_{ρ_4} , and $F(\mathbb{U}_{\rho_4})$ contains a schlicht disk $\mathbb{U}_{\rho_4'}$, where

$$\rho_4 = \begin{cases}
1, & \text{if } \sum_{k=1}^{p-1} (2k+1)\Lambda_{p-k} \le 1, \\
\rho_4'', & \text{if } \sum_{k=1}^{p-1} (2k+1)\Lambda_{p-k} > 1,
\end{cases}$$
(7)

and $\rho_4^{\prime\prime}$ is the unique root in (0, 1) of the equation

$$1 - \sum_{k=1}^{p-1} (2k+1)\Lambda_{p-k} r^{2k} = 0,$$
(8)

and $\rho'_4 = \rho_4 - \sum_{k=1}^{p-1} \Lambda_{p-k} \rho_4^{2k+1}$. Moreover, these estimates are sharp, with an extremal function given by

$$F_1'(z) = z - \sum_{k=1}^{p-1} \Lambda_{p-k} |z|^{2k} z.$$
(9)

In 2012, Li and Wang firstly obtained the following Landau's theorem for log-*p*-harmonic mappings with condition of $J_f(0) = 1$.

Theorem E([14]) Let $f(z) = \prod_{k=1}^{p} g_{p-k+1}(z)^{|z|^{2(k-1)}}$ be a log-*p*-harmonic mapping of the unit disk \mathbb{U} , where $g_{p-k+1}(z)$ is log-harmonic with $g_{p-k+1}(0) = g_p(0) = J_f(0) = 1$, $|g_{p-k+1}(z)| < M_1$, for $k \in \{2, \dots, p\}$, and $|g_p(z)| < M_2$, where $M_i \ge 1$ (i = 1, 2) are positive constants. Then there exists $\rho_5 \in (0, 1)$ such that f(z) is univalent in \mathbb{U}_{ρ_5} , where ρ_5 satisfies the following equation

$$\lambda_0(M_2^*) - \frac{T(M_2^*)\rho_5(2-\rho_5)}{(1-\rho_5)^2} - \frac{4M_1^*}{\pi(1-\rho_5)^2} \sum_{k=1}^{p-1} \rho_5^{2k} - 2M_1^* \sum_{k=1}^{p-1} k\rho_5^{2k-1} = 0,$$
(10)

where $M_i^* = \log M_i + \pi$ (*i* = 1, 2).

Moreover, the range $F(\mathbb{U}_{\rho_5})$ contains a univalent disk $\mathbb{U}(z_5, \rho_5'')$, where

$$z_5 = \cosh\left(\frac{\rho_5'}{\sqrt{2}}\right), \quad \rho_5'' = \min\left\{\sinh\left(\frac{\rho_5'}{\sqrt{2}}\right), \cosh\left(\frac{\rho_5'}{\sqrt{2}}\right)\sin\left(\frac{\rho_5'}{\sqrt{2}}\right)\right\},\tag{11}$$

$$\rho_5' = \rho_5 \left[\lambda_0(M_2^*) - \frac{T(M_2^*)\rho_5}{(1-\rho_5)} - \frac{4M_1^*}{\pi(1-\rho_5)} \sum_{k=1}^{p-1} \rho_5^{2k} \right].$$
(12)

In 2019, Bai and Liu improved the Landau theorem of log-*p*-harmonic mapping with the condition of $\lambda_f(0) = 1$.

Theorem F([3]) Let $F(z) = \prod_{k=1}^{p} g_{p-k+1}(z)^{|z|^{2(k-1)}}$ be a log-*p*-harmonic mapping of the unit disk \mathbb{U} , satisfying $f(0) = g_p(0) = \lambda_f(0) = 1$. Suppose that for each $k \in \{1, \dots, p\}$, we have

(i) $g_{p-k+1}(z)$ is log-harmonic in \mathbb{U} ,

(ii) $|g_{p-k+1}(z)| \le M_{p-k+1}$, Let $G_p = \log g_p$ and $\Lambda_{G_p}(z) \le \Lambda_p$, where $M_{p-k+1} \ge 1$, $\Lambda_p > 1$.

Then there is a positive number ρ_6 such that F(z) is univalent in \mathbb{U}_{ρ_6} , where ρ_6 (0 < ρ_6 < 1) satisfies the following equation

$$1 - \frac{4}{\pi(1-r^2)} \sum_{k=1}^{p-1} r^{2k} M_{p-k}^* - \sum_{k=1}^{p-1} k M_{p-k}^* r^{2k} \frac{8}{\pi(1-r)} - \frac{\Lambda_p^2 - 1}{\Lambda_p} \frac{r}{1-r} = 0,$$
(13)

where $M_{p-k+1}^* = \log M_{p-k+1} + \pi$, $k = 2, 3, \dots, p$. Moreover, the range $F(\mathbb{U}_{\rho_6})$ contains a univalent disk $\mathbb{U}(z_6, \rho_6'')$, where

$$z_6 = \cosh\left(\frac{\rho_6'}{\sqrt{2}}\right), \quad \rho_6'' = \min\left\{\sinh\left(\frac{\rho_6'}{\sqrt{2}}\right), \cosh\left(\frac{\rho_6'}{\sqrt{2}}\right)\sin\left(\frac{\rho_6'}{\sqrt{2}}\right)\right\},\tag{14}$$

X.L. Fu, X. Luo / Filomat 38:4 (2024), 1203–1219 1207

$$\rho_6' = \rho_6 + \frac{\Lambda_p^2 - 1}{\Lambda_p} [\rho_6 + \log(1 - \rho_6)] - \sum_{k=1}^{p-1} \rho_6^{2k} \frac{4M_{p-k}^* \rho_6}{\pi(1 - \rho_6)}.$$
(15)

However, Theorem A is not sharp for $M_{p-k+1} > 0, k = 2, 3, ..., p$, and Theorem F is also not sharp. In this paper, we first establish a sharp version of Landau-type theorem for polyharmonic mappings with extremal function given by Example 3.2. For Example 3.2 satisfying with the hypothesis of Theorems A, it is natural to pose a Conjecture. Next, we establish two versions of Landau-type theorems of polyharmonic mappings by applying Cauchy-inequality, which improve the correspondent results for Theorems B and C, respectively. Finally, three new Landau-type theorems of log-*p*-harmonic mappings are established, where Theorems 3.9, 3.10 and 3.11 are the corresponding forms of Theorems 3.4, A and 3.5, respectively.

2. Preliminaries

In order to establish our main results, we need the following lemmas.

Lemma 2.1 ([5]) Suppose that $f(z) = f_1(z) + \overline{f_2(z)}$ is a harmonic mapping with $f_1(z) = \sum_{n=1}^{\infty} a_n z^n$ and $f_2(z) = \sum_{n=1}^{\infty} b_n z^n$ being analytic in U. If $|f(z)| \le M$ for all $z \in \mathbb{U}$, then

$$\Lambda_f(z) \le \frac{4M}{\pi(1-|z|^2)}.\tag{1}$$

Lemma 2.2 ([6]) Let *f* be a harmonic mapping of the unit disk \mathbb{U} with f(0) = 0 and $f(\mathbb{U}) \subset \mathbb{U}$. Then

$$|f(z)| \le \frac{4}{\pi} \arctan |z| \le \frac{4}{\pi} |z|, \text{ for } z \in \mathbb{U}.$$

Lemma 2.2 is called Schwarz type Lemma of complex-valued harmonic functions with f(0) = 0. Later, Hethcote[13] obtained sharp inequality by removing the assumption f(0) = 0, and then Mateljević et al. [25][26] gave the improvements of Hethcote's result.

Lemma 2.3 ([22]) Suppose that $f(z) = f_1(z) + f_2(z)$ is a harmonic mapping of the unit disk \mathbb{U} with $f_1(z) = \sum_{n=1}^{\infty} a_n z^n$ and $f_2(z) = \sum_{n=1}^{\infty} b_n z^n$. If f satisfies $|f(z)| \le M$ for all $z \in \mathbb{U}$ and $\lambda_f(0) = 1$, then $M \ge 1$, and

$$|a_1| + |b_1| \le K_1(M) = \min\{\sqrt{2M^2 - 1}, \frac{4M}{\pi}\}.$$
(2)

The inequality (2) is sharp for M = 1, with $f_0(z) = z$ being an extremal mapping.

Lemma 2.4 ([27]) Suppose that $f(z) = f_1(z) + \overline{f_2(z)}$ is a harmonic mapping of the unit disk \mathbb{U} with $f_1(z) = \sum_{n=1}^{\infty} a_n z^n$ and $f_2(z) = \sum_{n=1}^{\infty} b_n z^n$.

(1) If *f* satisfies $|f(z)| \le M$ for all $z \in \mathbb{U}$, then

$$\sum_{n=1}^{\infty} (|a_n| + |b_n|)^2 \le 2M^2.$$
(3)

(2) If *f* satisfies $|f(z)| \le M$ for all $z \in \mathbb{U}$ and $J_f(0) = 1$, then

$$\left(\sum_{n=2}^{\infty} (|a_n| + |b_n|)^2\right)^{\frac{1}{2}} \le \sqrt{M^4 - 1} \cdot \lambda_f(0), \tag{4}$$

where

$$\lambda_f(0) \ge \lambda_0(M) = \begin{cases} \frac{\sqrt{2}}{\sqrt{M^2 - 1} + \sqrt{M^2 + 1}}, & 1 \le M \le M_0 = \frac{\pi}{2\sqrt[4]{2\pi^2 - 16} \approx 1.1296}, \\ \frac{\pi}{4}, & M > M_0. \end{cases}$$
(5)

(3) If *f* satisfies $|f(z)| \le M$ for all $z \in \mathbb{U}$ and $\lambda_f(0) = 1$, then

$$\left(\sum_{n=2}^{\infty} (|a_n| + |b_n|)^2\right)^{\frac{1}{2}} \le \sqrt{2M^2 - 2}.$$
(6)

Lemma 2.5 ([21]) Suppose f(z) = h(z) + g(z) is a harmonic mapping of the unit disk \mathbb{U} with h(z), g(z) are holomorphic in \mathbb{U} , $h(0) = g(0) = \lambda_f(0) - 1 = 0$, $\Lambda_f(z) < \Lambda$ for all $z \in \mathbb{U}$. Then

(i) For two distinct points $z_1, z_2 \in \mathbb{U}_r$ $(r < \frac{1}{\Delta})$,

$$|f(z_1) - f(z_2)| \ge \frac{\Lambda(1 - \Lambda r)}{\Lambda - r} |z_1 - z_2|.$$

(ii) For $z = re^{i\theta} \in \partial \mathbb{U}_r$,

$$|f(z)| \ge \Lambda^2 r + (\Lambda^3 - \Lambda) \ln(1 - \frac{r}{\Lambda}).$$

Lemma 2.6 ([23]) For $z_1, z_2 \in \mathbb{U}_r, k, j \in \mathbb{N}_+$, we have

$$|z_1|^{2k} z_1^j - |z_2|^{2k} z_2^j| \le (2k+j)r^{2k+j-1}|z_1-z_2|.$$

Lemma 2.7 ([23]) Suppose $f(z) = h(z) + \overline{g(z)}$ is a harmonic mapping of the unit disk \mathbb{U} with $\lambda_f(0) = 1$ and f(0) = 0. Then $|f(z)| \le 1$ for all $z \in \mathbb{U}$ if and only if $\Lambda_f(z) \le 1$ for all $z \in \mathbb{U}$.

Lemma 2.8 ([20]) Suppose that *p* is a positive integer and $0 < \sigma < 1, 0 < \rho \le 1$. Let f(z) be a log-*p*-harmonic mapping of \mathbb{U} satisfying $f(0) = \lambda_f(0) = 1$. Suppose that f(z) is univalent in \mathbb{U}_ρ and $F(\mathbb{U}_\rho) \supset \mathbb{U}_\sigma$, where $F(z) = \log f(z)$. Then the range $F(\mathbb{U}_\rho)$ contains a schlicht disk $\mathbb{U}(w_0, r_0) = \{w \in \mathbb{C} : |w - w_0| < r_0\}$, where

 $w_0 = \cosh \sigma, \ r_0 = \sinh \sigma.$

Moreover, if ρ is the biggest univalent radius of f(z), then the radius $r_0 = \sinh \sigma$ is sharp.

3. Main Results

Applying Lemma 2.6, we first establish a sharp version of Landau-type theorem for polyharmonic mappings.

Theorem 3.1 Suppose that $\Lambda_p \ge 1$, $M_{p-k+1} \ge 0$, $|G_{p-k+1}| \le M_{p-k+1}$ for $k \in \{2, \dots, p\}$ and $|G_p| = \Lambda_p$. Let

$$F_1(z) = \sum_{k=2}^p G_{p-k+1} |z|^{2(k-1)} z + G_p \int_0^z \frac{\zeta - \frac{1}{\Lambda_p}}{1 - \frac{\zeta}{\Lambda_p}} d\zeta$$

be a polyharmonic mapping of the unit disk \mathbb{U} . Then $F_1(z)$ is univalent in the disk \mathbb{U}_{r_1} , where r_1 is the unique positive root in (0, 1) of the equation

$$\frac{\Lambda_p(1-\Lambda_p r)}{\Lambda_p-r} - \sum_{k=2}^p (2k-1)M_{p-k+1}r^{2(k-1)} = 0,$$

and $F_1(\mathbb{U}_{r_1})$ contains a schlicht disk \mathbb{U}_{R_1} , with

$$R_1 = \Lambda_p^2 r_1 + (\Lambda_p^3 - \Lambda_p) \log(1 - \frac{r_1}{\Lambda_p}) - \sum_{k=2}^p M_{p-k+1} r_1^{2k-1}.$$

Both of r_1 and R_1 are sharp.

Proof Firstly, we prove $F_1(z)$ is univalent in the disk \mathbb{U}_{r_1} . To this end, we choose two distinct points z_1, z_2 in the disk $\mathbb{U}_r(r < r_1)$. Then, applying Lemma 2.6, we have

$$\begin{aligned} &|F_{1}(z_{1}) - F_{1}(z_{2})| \\ &= \left| \sum_{k=2}^{p} G_{p-k+1} |z_{1}|^{2(k-1)} z_{1} + G_{p} \int_{0}^{z_{1}} \frac{\zeta - \frac{1}{\Lambda_{p}}}{1 - \frac{\zeta}{\Lambda_{p}}} d\zeta - \right. \\ &\left. \sum_{k=2}^{p} G_{p-k+1} |z_{2}|^{2(k-1)} z_{2} - G_{p} \int_{0}^{z_{2}} \frac{\zeta - \frac{1}{\Lambda_{p}}}{1 - \frac{\zeta}{\Lambda_{p}}} d\zeta \right| \\ &\geq \Lambda_{p} \left| \int_{z_{1}}^{z_{2}} \frac{\zeta - \frac{1}{\Lambda_{p}}}{1 - \frac{\zeta}{\Lambda_{p}}} d\zeta \right| - \sum_{k=2}^{p} M_{p-k+1} \left| |z_{1}|^{2(k-1)} z_{1} - |z_{2}|^{2(k-1)} z_{2} \right| \\ &\geq \Lambda_{p} \frac{\frac{1}{\Lambda_{p}} - r}{1 - \frac{r}{\Lambda_{p}}} |z_{1} - z_{2}| - \sum_{k=2}^{p} (2k-1)M_{p-k+1} r^{2(k-1)} |z_{1} - z_{2}| \\ &= \left[\frac{\Lambda_{p} (1 - \Lambda_{p} r)}{\Lambda_{p} - r} - \sum_{k=2}^{p} (2k-1)M_{p-k+1} r^{2(k-1)} \right] |z_{1} - z_{2}| > 0. \end{aligned}$$

Thus, we have $F_1(z_1) \neq F_1(z_2)$, which proves the univalence of $F_1(z)$ in the disk \mathbb{U}_{r_1} .

Next, we prove the sharpness of r_1 . Considering the real function

$$f(x) = -\sum_{k=2}^{p} M_{p-k+1} x^{2k-1} - \Lambda_p \int_0^x \frac{\zeta - \frac{1}{\Lambda_p}}{1 - \frac{\zeta}{\Lambda_p}} d\zeta, x \in [0, 1].$$

Then

$$f'(x) = \frac{\Lambda_p(1-\Lambda_p x)}{\Lambda_p - x} - \sum_{k=2}^p (2k-1)M_{p-k+1}x^{2(k-1)}.$$

Because f'(x) is strictly monotone decreasing on [0, 1], and

$$f'(0) = 1, f'(1) = -\Lambda_p - \sum_{k=2}^p (2k-1)M_{p-k+1} < 0,$$

so f'(x) = 0 for $x \in (0, 1)$ if and only if $x = r_1$. Hence f(x) is strictly monotone increasing on $[0, r_1]$ and strictly monotone decreasing on $[r_1, 1]$. For every fixed $r' \in (r_1, 1)$, there exists two distinct points $x_1, x_2 \in (0, r'), f(x_1) = f(x_2)$. Thus, r_1 cannot be replaced by any bigger number.

And for any point $z = r_1 e^{i\theta}$ on $\partial \mathbb{U}_{r_1}$, we have

$$\begin{aligned} |F_{1}(z)| &= \left| \sum_{k=2}^{p} G_{p-k+1} |z|^{2(k-1)} z + G_{p} \int_{0}^{z} \frac{\zeta - \frac{1}{\Lambda_{p}}}{1 - \frac{\zeta}{\Lambda_{p}}} d\zeta \right| \\ &\geq \Lambda_{p} \left| \int_{0}^{z} \frac{\zeta - \frac{1}{\Lambda_{p}}}{1 - \frac{\zeta}{\Lambda_{p}}} d\zeta \right| - \sum_{k=2}^{p} M_{p-k+1} r_{1}^{2k-1} \\ &\geq \Lambda_{p} \int_{0}^{r_{1}} \frac{\frac{1}{\Lambda_{p}} - t}{1 - \frac{t}{\Lambda_{p}}} dt - \sum_{k=2}^{p} M_{p-k+1} r_{1}^{2k-1} \\ &= -\Lambda_{p} \int_{0}^{r_{1}} \frac{t - \frac{1}{\Lambda_{p}}}{1 - \frac{t}{\Lambda_{p}}} dt - \sum_{k=2}^{p} M_{p-k+1} r_{1}^{2k-1} \\ &= \Lambda_{p}^{2} r_{1} + (\Lambda_{p}^{3} - \Lambda_{p}) \log(1 - \frac{r_{1}}{\Lambda_{p}}) - \sum_{k=2}^{p} M_{p-k+1} r_{1}^{2k-1} = R_{1}, \\ f(r_{1}) &= -\Lambda_{p} \int_{0}^{r_{1}} \frac{\zeta - \frac{1}{\Lambda_{p}}}{1 - \frac{\zeta}{\Lambda_{p}}} d\zeta - \sum_{k=2}^{p} M_{p-k+1} r_{1}^{2k-1} \\ &= \Lambda_{p}^{2} r_{1} + (\Lambda_{p}^{3} - \Lambda_{p}) \log(1 - \frac{r_{1}}{\Lambda_{p}}) - \sum_{k=2}^{p} M_{p-k+1} r_{1}^{2k-1} = R_{1}. \end{aligned}$$

Hence R_1 is sharp. This completes the proof.

By the proof of Theorem 3.1, we obtain the extremal function $F_2(z)$ by the following example. **Example 3.2** Suppose that $\Lambda_p \ge 1, M_{p-k+1} \ge 0, k \in \{2, \dots, p\}$. Let

$$F_{2}(z) = -\sum_{k=2}^{p} M_{p-k+1} |z|^{2(k-1)} z - \Lambda_{p} \int_{0}^{z} \frac{\zeta - \frac{1}{\Lambda_{p}}}{1 - \frac{\zeta}{\Lambda_{p}}} d\zeta$$

be a polyharmonic mapping of the unit disk \mathbb{U} . Then $F_2(z)$ is univalent in the disk \mathbb{U}_{r_1} , and $F_2(\mathbb{U}_{r_1})$ contains a schlicht disk \mathbb{U}_{R_1} , where r_1 and R_1 are given by Theorem 3.1. Both of r_1 and R_1 are sharp.

We note that the polyharmonic mappings in Example 3.2 satisfying the hypothesis of Theorem A, it is natural to pose a conjecture as follows:

Conjecture 3.3 Under the hypothesis of Theorem A, F(z) is univalent in \mathbb{U}_{r_1} and $F(\mathbb{U}_{r_1})$ contains a schlicht disk \mathbb{U}_{R_1} . This result is sharp, with r_1 , R_1 , and the extremal mapping are given by Example 3.2.

Next, we establish a new version Landau-type theorem by adding extra conditions $\lambda_{G_{p-k+1}}(0) = 1, k \in \{2, 3, \dots, p\}$ to Theorem A, which is sharp when $M_{p-k+1} = 1$ ($k = 2, 3, \dots, p$). We prove the following result with a method of proof of [27].

Theorem 3.4 Suppose $F(z) = \sum_{k=1}^{p} |z|^{2(k-1)} G_{p-k+1}(z)$ is a polyharmonic mapping in the unit disk \mathbb{U} , with F(0) = 0, and satisfying following conditions:

(i) for $k \in \{1, \dots, p\}$, $G_{p-k+1}(z)$ is harmonic in \mathbb{U} , and $\lambda_{G_{p-k+1}}(0) - 1 = G_{p-k+1}(0) = 0$;

(ii) for $k \in \{2, \dots, p\}, |G_{p-k+1}(z)| \le M_{p-k+1}, \Lambda_{G_p}(z) \le \Lambda_p$ for all $z \in \mathbb{U}$.

Then for $k \in \{2, \dots, p\}$, $M_{p-k+1} \ge 1$, $\Lambda_p \ge 1$, F(z) is univalent in \mathbb{U}_{r_2} , and $F(\mathbb{U}_{r_2})$ contains the schlicht disk

 \mathbb{U}_{R_2} , where r_2 is a unique root in (0, 1) of the equation $A_1(r) = 0$, $A_1(r)$ is defined by the following equation

$$A_{1}(r) = \frac{\Lambda_{p}(1-\Lambda_{p}r)}{\Lambda_{p}-r} - \sum_{k=2}^{p} r^{2(k-1)} \Big[(2k-1)K_{1}(M_{p-k+1}) + \sqrt{2M_{p-k+1}^{2}-2} \Big(\frac{2(k-1)r}{\sqrt{1-r^{2}}} + \frac{r\sqrt{4-3r^{2}+r^{4}}}{(1-r^{2})^{\frac{3}{2}}} \Big) \Big],$$
(1)

$$K_1(M_{p-k+1}) = \min\left\{\sqrt{2M_{p-k+1}^2 - 1}\frac{4M_{p-k+1}}{\pi}\right\},\tag{2}$$

and

$$R_{2} = \Lambda_{p}^{2} r_{2} + (\Lambda_{p}^{3} - \Lambda_{p}) \log(1 - \frac{r_{2}}{\Lambda_{p}}) - \sum_{k=2}^{p} r_{2}^{2k-1} \Big[K_{1}(M_{p-k+1}) + \sqrt{2M_{p-k+1}^{2} - 2} \cdot \frac{r_{2}}{\sqrt{1 - r_{2}^{2}}} \Big].$$
(3)

When $M_{p-k+1} = 1, k = 2, ..., p$, the result is sharp, with an extremal function given by

$$F_{3}(z) = \Lambda_{p} \int_{0}^{z} \frac{\frac{1}{\Lambda_{p}} - \zeta}{1 - \frac{\zeta}{\Lambda_{p}}} d\zeta - \sum_{k=2}^{p} |z|^{2(k-1)} z = \Lambda_{p}^{2} z + (\Lambda_{p}^{3} - \Lambda_{p}) \log(1 - \frac{z}{\Lambda_{p}}) - \sum_{k=2}^{p} |z|^{2(k-1)} z.$$
(4)

Proof By the hypothesis of Theorem 3.4 and Lemma 2.3, we have that $M_{p-k+1} \ge 1$ for $k \in \{2, ..., p\}$, and $\Lambda_p \ge \Lambda_{G_p}(0) \ge \lambda_{G_p}(0) = 1$.

In order to prove the univalence of *F*, we choose two distinct points $z_1, z_2 \in \mathbb{U}_r (0 < r < 1)$. Then we have

$$|F(z_2) - F(z_1)| = \left| \sum_{k=2}^{p} |z_2|^{2(k-1)} G_{p-k+1}(z_2) + G_p(z_2) - \sum_{k=2}^{p} |z_2|^{2(k-1)} G_{p-k+1}(z_1) - G_p(z_1) \right|$$

$$\geq \left| G_p(z_2) - G_p(z_1) \right| - \left| \sum_{k=2}^{p} |z_2|^{2(k-1)} G_{p-k+1}(z_2) - \sum_{k=2}^{p} |z_2|^{2(k-1)} G_{p-k+1}(z_1) \right|.$$

Since $\lambda_F(0) = \left| |(G_p)_z(0)| - |(G_p)_{\overline{z}}(0)| \right| = \lambda_{G_p}(0) = 1, \Lambda_{G_p}(z) < \Lambda_p$, by Lemma 2.5, we have

$$\left|G_p(z_2) - G_p(z_1)\right| \geq \frac{\Lambda_p(1 - \Lambda_p r)}{\Lambda_p - r} |z_2 - z_1|.$$

For any $k \in \{2, ..., p\}$, we give the series form of G_{p-k+1} as follow:

$$G_{p-k+1}(z) = \sum_{j=1}^{\infty} a_{j,p-k+1} z^j + \sum_{j=1}^{\infty} \overline{b_{j,p-k+1}} \overline{z}^j.$$

Using Lemmas 2.3, 2.4 and 2.6, we have

$$\begin{aligned} \left| \sum_{k=2}^{p} |z_2|^{2(k-1)} G_{p-k+1}(z_2) - \sum_{k=2}^{p} |z_1|^{2(k-1)} G_{p-k+1}(z_1) \right| \\ &= \left| \sum_{k=2}^{p} \sum_{j=1}^{\infty} \left(a_{j,p-k+1} (|z_2|^{2(k-1)} z_2^j - |z_1|^{2(k-1)} z_1^j) + b_{j,p-k+1} (|z_2|^{2(k-1)} \overline{z_2}^j - |z_1|^{2(k-1)} \overline{z_1}^j) \right) \right| \\ &\leq \sum_{k=2}^{p} \sum_{j=1}^{\infty} (|a_{j,p-k+1}| + |b_{j,p-k+1}|) ||z_2|^{2(k-1)} z_2^j - |z_1|^{2(k-1)} z_1^j| \end{aligned}$$

$$\leq \sum_{k=2}^{p} \sum_{j=1}^{\infty} (|a_{j,p-k+1}| + |b_{j,p-k+1}|)(2k+j-2)r^{2k+j-3}|z_1 - z_2|$$

$$\leq \sum_{k=2}^{p} r^{2(k-1)} \Big[(2k-1)K_1(M_{p-k+1}) + 2(k-1) \Big(\sum_{j=2}^{\infty} (|a_{j,p-k+1}| + |b_{j,p-k+1}|) \Big)^{\frac{1}{2}} \Big(\sum_{j=2}^{\infty} r^{2(j-1)} \Big)^{\frac{1}{2}}$$

$$+ \Big(\sum_{j=2}^{\infty} (|a_{j,p-k+1}| + |b_{j,p-k+1}|) \Big)^{\frac{1}{2}} \Big(\sum_{j=2}^{\infty} j^2 r^{2(j-1)} \Big)^{\frac{1}{2}} \Big] |z_1 - z_2|$$

$$= \sum_{k=2}^{p} r^{2(k-1)} \Big[(2k-1)K_1(M_{p-k+1}) + \sqrt{2M_{p-k+1}^2 - 2} \Big(\frac{2(k-1)r}{\sqrt{1-r^2}} + \frac{r\sqrt{4-3r^2+r^4}}{(1-r^2)^{\frac{3}{2}}} \Big) \Big] |z_1 - z_2|.$$

Hence,

$$|F(z_1) - F(z_2)| \ge A_1(r)|z_1 - z_2|,$$

where $A_1(r)$ is defined by (1).

It is not difficult to verify that $A_1(r)$ is strictly decreasing in (0, 1), and

$$\lim_{r \to 0} A_1(r) = 1, \quad \lim_{r \to 1} A_1(r) = -\infty.$$

Hence there exists a unique root r_2 in (0, 1) of the equation $A_1(r) = 0$. This shows that

$$|F(z_2) - F(z_1)| > 0$$

for any two distinct points $z_1, z_2 \in \mathbb{U}_{r_2}$. Thus *F* is univalent in \mathbb{U}_{r_2} . Next, for any point $z = r_2 e^{i\theta}$ on $\partial \mathbb{U}_{r_2}$, by Lemmas 2.3, 2.4 and 2.5, we have

$$\begin{split} |F(z)| &= \left| G_p(z) + \sum_{k=2}^p |z|^{2(k-1)} G_{p-k+1}(z) \right| \\ &= \left| G_p(z) + \sum_{k=2}^p |z|^{2(k-1)} \sum_{j=1}^\infty a_{j,p-k+1} z^j + \sum_{j=1}^\infty \overline{b_{j,p-k+1}} \overline{z}^j \right| \\ &\geq \Lambda_p^2 r_2 + (\Lambda_p^3 - \Lambda_p) \log(1 - \frac{r_2}{\Lambda_p}) \\ &\quad - \sum_{k=2}^p |z|^{2(k-1)} \Big[\left(|a_{1,p-k+1}z| + |b_{1,p-k+1}z| \right) + \sum_{j=2}^\infty \left(|a_{j,p-k+1}z^j| + |b_{j,p-k+1}z^j| \right) \Big] \\ &\geq \Lambda_p^2 r_2 + (\Lambda_p^3 - \Lambda_p) \log(1 - \frac{r_2}{\Lambda_p}) \\ &\quad - \sum_{k=2}^p r_2^{2(k-1)} \Big[K_1(M_{p-k+1})r_2 + \sqrt{2M_{p-k+1}^2 - 2} \cdot \frac{r_2^2}{\sqrt{1 - r_2^2}} \Big] = R_2. \end{split}$$

Hence, $F(\mathbb{U}_{r_2})$ contains a schlicht disk \mathbb{U}_{R_2} .

When $M_{p-k+1} = 1$, $\Lambda_p \ge 1$ for k = 2, ..., p, the result is sharp with an extremal function $F_3(z)$, which is given by (4). This completes the proof.

The equation $A_1(r) = 0$ which $A_1(r)$ is defined by (1) cannot be solved explicitly. The Computer Algebra System Mathematica has calculated the numerical solutions to equations (1), (3), (3) and (4). Table 1 shows the approximate values of r_2 , R_2 and ρ_2 , ρ'_2 that correspond to different choice of the constants M_1 and Λ_2 , which shows that $r_2 > \rho_2$ and $R_2 > \rho'_2$, that is, Theorem 3.4 is an improvement of Theorem B.

	$M_1 = \Lambda_2 = 1.1$	$M_1 = 1.5, \Lambda_2 = 2$	$M_1 = \Lambda_2 = 2$	$M_1 = 2.5, \Lambda_2 = 3$	$M_1 = \Lambda_2 = 3$			
ρ_2	0.397736	0.261255	0.234962	0.190024	0.180374			
r_2	0.422555	0.268498	0.241163	0.192773	0.182519			
ρ'_2	0.275692	0.161787	0.147208	0.112778	0.107824			
$\overline{R_2}$	0.286601	0.164292	0.149431	0.113631	0.108473			

Table 1: The values of ρ_2 , ρ'_2 and r_2 , R_2 are in Theorems B and Theorem 3.4

And then, changing some hypothesis of Theorem 3.4, we establish a new version of Landau-type theorems of polyharmonic mappings as follows.

Theorem 3.5 Let $F(z) = \sum_{k=1}^{p} |z|^{2(k-1)} G_{p-k+1}(z)$ be a polyharmonic mapping in the unit disk \mathbb{U} , with $f(0) = \lambda_{T}(0) = 1 = 0$ and satisfying the following conditions:

 $F(0) = \lambda_F(0) - 1 = 0, \text{ and satisfying the following conditions:}$ (i) for $k \in \{1, \dots, p\}$, $G_{p-k+1}(z)$ is harmonic in \mathbb{U} , and $G_{p-k+1}(0) = 0$;

(ii) for $k \in \{2, 3, \dots, p\}$, $\Lambda_{G_{p-k+1}}(z) \le \Lambda_{p-k+1}$, and $|G_p(z)| \le M_p$ for $z \in \mathbb{U}$.

Then $\Lambda_{p-k+1} \ge 0$, $M_p \ge 1$, F(z) is univalent in \mathbb{U}_{r_3} , and $F(\mathbb{U}_{r_3})$ contains a schlicht disk \mathbb{U}_{R_3} , where r_3 is the unique positive root in (0, 1) of the following equation:

$$1 - \sqrt{2M_p^2 - 2} \cdot \frac{r\sqrt{r^4 - 3r^2 + 4}}{(1 - r^2)^{\frac{3}{2}}} - \sum_{k=2}^p (2k - 1)\Lambda_{p-k+1}r^{2(k-1)} = 0,$$
(5)

and

$$R_3 = r_3 - \sqrt{2M_p^2 - 2} \cdot \frac{r_3^2}{\sqrt{1 - r_3^2}} - \sum_{k=2}^p r_3^{2k-1} \Lambda_{p-k+1}.$$
 (6)

When $M_p = 1$, the result is sharp, with an extremal function $F'_1(z)$, which is given by (9).

Proof By the hypothesis of Theorem 3.5 and Lemma 2.4, we have $\Lambda_{p-k+1} \ge 0$ and $M_p \ge 1$ for $k \in \{2, \dots, p\}$, and $G_p(z)$ has the following series form

$$G_p(z) = \sum_{n=1}^{\infty} a_n z^n + \sum_{n=1}^{\infty} \overline{b_n z^n}.$$

Then we have $\lambda_{G_p}(0) = \left| |(G_p)_z(0)| - |(G_p)_{\overline{z}}(0)| \right| = \left| |a_1| - |b_1| \right| = \lambda_F(0) = 1.$

By Lemma 2.4, we have $\left(\sum_{n=2}^{\infty} (|a_n| + |b_n|)^2\right)^{\frac{1}{2}} \le \sqrt{2M_p^2 - 2}, n \ge 2.$

In order to prove the univalence of *F*, we choose two distinct points $z_1, z_2 \in \mathbb{U}_r (0 < r < 1)$. Then we have

$$|F(z_1) - F(z_2)| = \left| \int_{[z_1, z_2]} F_z(z) dz + F_{\overline{z}}(z) d\overline{z} \right|$$

$$\geq \left| \int_{[z_1, z_2]} (G_p)_z(0) dz + (G_p)_{\overline{z}}(0) d\overline{z} \right|$$

$$\begin{aligned} &- \left| \int_{[z_{1},z_{2}]} [(G_{p})_{z}(z) - (G_{p})_{z}(0)] dz + [(G_{p})_{\overline{z}}(z) - (G_{p})_{\overline{z}}(0)] d\overline{z} \right| \\ &- \left| \sum_{k=2}^{p} \int_{[z_{1},z_{2}]} |z|^{2(k-1)} [(G_{p-k+1})_{z}(z) dz + (G_{p-k+1})_{\overline{z}}(z) d\overline{z}] \right| \\ &- \left| \sum_{k=2}^{p} \int_{[z_{1},z_{2}]} (k-1) G_{p-k+1}(z) (\overline{z}^{k-1} z^{k-2} dz + \overline{z}^{k-2} z^{k-1} d\overline{z}) \right| \\ \geq &| z_{1} - z_{2} | \left(\lambda_{G_{p}}(0) - \sum_{n=2}^{\infty} n(|a_{n}| + |b_{n}|)r^{n-1} - \sum_{k=2}^{p} r^{2k-1} \Lambda_{G_{p-k+1}} \right) \\ &- \sum_{k=2}^{p} \int_{[z_{1},z_{2}]} (k-1) |G_{p-k+1}(z)| (|\overline{z}^{k-1} z^{k-2}||dz| + |\overline{z}^{k-2} z^{k-1}||d\overline{z}||) \\ \geq &| z_{1} - z_{2} | \left[1 - \left(\sum_{n=2}^{\infty} (|a_{n}| + |b_{n}|)^{2} \right)^{\frac{1}{2}} \left(\sum_{n=2}^{\infty} n^{2} r^{2(n-1)} \right)^{\frac{1}{2}} \\ &- \sum_{k=2}^{p} (2k-1) \Lambda_{p-k+1} r^{2(k-1)} \right] \\ \geq &| z_{1} - z_{2} | \left[1 - \sqrt{2M_{p}^{2} - 2} \cdot \frac{r \sqrt{r^{4} - 3r^{2} + 4}}{(1-r^{2})^{\frac{3}{2}}} - \sum_{k=1}^{p-1} (2k+1) \Lambda_{p-k} r^{2k} \right] \\ = &A_{2}(r) |z_{1} - z_{2} |. \end{aligned}$$

It is not difficult to verify that $A_2(r)$ is strictly decreasing in (0, 1), and

$$\lim_{r \to 0} A_2(r) = 1, \quad \lim_{r \to 1} A_2(r) = -\infty.$$

Hence there exists an unique root r_3 in (0, 1) of the equation $A_2(r) = 0$. This shows that $|F(z_1) - F(z_2)| > 0$ for any two distinct points $z_1, z_2 \in \mathbb{U}_{r_3}$. Then F(z) is univalent in \mathbb{U}_{r_3} . Next, we prove $F(\mathbb{U}_{r_3}) \supset \mathbb{U}_{R_3}$. For $z = r_3 e^{i\theta} \in \partial \mathbb{U}_{r_3}$, we have

$$\begin{aligned} |F(z)| &= \left| \sum_{n=1}^{\infty} (a_n z^n + \overline{b_n} \overline{z^n}) + \sum_{k=2}^{p} |z|^{2(k-1)} G_{p-k+1}(z) \right| \\ &\ge |a_1 z + \overline{b_1} \overline{z}| - \left| \sum_{n=2}^{\infty} (a_n z^n + \overline{b_n} \overline{z^n}) \right| - \sum_{k=2}^{p} |z|^{2(k-1)} |G_{p-k+1}(z)| \\ &\ge r_3 - \sqrt{2M_p^2 - 2} \cdot \frac{r_3^2}{\sqrt{1 - r_3^2}} - \sum_{k=2}^{p} r_3^{2k-1} \Lambda_{p-k+1} = R_3. \end{aligned}$$

Finally, when $M_p = 1$, $\sqrt{2M_p^2 - 2} = 0$. Since $\lambda_{G_p}(0) - 1 = G_p(0) = 0$, it follows from Lemma 2.7 that $\Lambda_{G_v}(z) \leq 1$ for all $z \in U$. Thus, by using Theorem D, we obtain that the result is sharp. This completes the proof.

The equation $A_2(r) = 0$ which $A_2(r)$ is defined by (5) cannot be solved explicitly. The Computer Algebra System Mathematica has calculated the numerical solutions to equations (5), (6), (5) and (6). Table 2 shows the approximate values of r_3 , R_3 and ρ_3 , ρ'_3 that correspond to different choice of the constants M_2 and Λ_1 when p = 2, which shows that $r_3 > \rho_3$ and $R_3 > \rho'_3$, that is, Theorem 3.5 is an improvement of Theorems C.

		,			
	$M_2 = 1.1, \Lambda_1 = 1.1$	$M_2 = 1.1, \Lambda_1 = 0.1$	$M_2 = 2, \Lambda_1 = 2$	$M_2 = 3, \Lambda_1 = 2$	$M_2 = 3, \Lambda_1 = 3$
ρ_3	0.304897	0.365167	0.14212	0.103741	0.101139
<i>r</i> ₃	0.365621	0.504695	0.165365	0.113638	0.109897
ρ'_3	0.187046	0.224169	0.0787076	0.0556412	0.0545667
R_3	0.21878	0.300625	0.0884032	0.0587119	0.0573114

Table 2: The values of ρ_3 , ρ'_2 and r_3 , R_3 are in Theorems C and Theorems 3.5 when p = 2

Using the analogous proof of Theorem 3.4 and 3.5, we can obtain the following corollaries.

Corollary 3.6 Let $F(z) = \sum_{k=1}^{p} |z|^{2(k-1)} G_{p-k+1}(z)$ be a *p*-harmonic mapping of the unit disk \mathbb{U} , with F(0) = $J_F(0) - 1 = 0$, and satisfying the following conditions:

(i) $G_{p-k+1}(z)$ is harmonic in \mathbb{U} , and $G_{p-k+1}(0) = 0$ for $k \in \{1, \dots, p\}$; (ii) $\Lambda_{G_{p-k+1}}(z) \leq \Lambda_{p-k+1}$ for $k \in \{2, \dots, p\}$ and $|G_p(z)| \leq M_p$.

Then $\Lambda_{p-k+1} \ge 0$, $M_p \ge 1$, F(z) is univalent in \mathbb{U}_{τ_1} , and $F(\mathbb{U}_{\tau_1})$ contains a univalent disk $\mathbb{U}_{\tau'_1}$, where τ_1 is the unique positive root in (0, 1) of the equation

$$\lambda_0(M_p) - \lambda_0(M_p) \sqrt{M_p^4 - 1} \cdot \frac{r\sqrt{r^4 - 3r^2 + 4}}{(1 - r^2)^{\frac{3}{2}}} - \sum_{k=2}^p (2k - 1)\Lambda_{p-k+1}r^{2(k-1)} = 0, \tag{7}$$

 $\lambda_0(M_p)$ is defined by (5), and

$$\tau_1' = \lambda_0(M_p) \left[\tau_1 - \sqrt{M_p^4 - 1} \cdot \frac{\tau_1^2}{\sqrt{1 - \tau_1^2}} \right] - \sum_{k=2}^p \Lambda_{p-k+1} \tau_1^{2(k-1)}.$$
(8)

When $M_p = 1$, the result is sharp.

Corollary 3.7 Suppose $F(z) = \sum_{k=1}^{p} |z|^{2(k-1)} G_{p-k+1}(z)$ is a polyharmonic mapping in the unit disk \mathbb{U} , with $F(0) = \lambda_F(0) - 1 = 0$. and satisfying following conditions:

(i) for $k \in \{1, \dots, p\}$, $G_{p-k+1}(z)$ is harmonic in \mathbb{U} , and $\lambda_{G_{p-k+1}}(0) - 1 = G_{p-k+1}(0) = 0$;

(ii) for $k \in \{2, \dots, p\}, |G_{p-k+1}(z)| \le M_{p-k+1}, |G_p(z)| \le M_p$ for all $z \in \mathbb{U}$.

Then for $k \in \{2, \dots, p\}$, $M_{p-k+1} \ge 1$, $M_p \ge 1$, F(z) is univalent in \mathbb{U}_{τ_2} , and $F(\mathbb{U}_{\tau_2})$ contains the schlicht disk $\mathbb{U}_{\tau'_2}$, where τ_2 is a unique root in (0, 1) of the equation

$$1 - \sqrt{2M_p^2 - 2} \cdot \frac{r\sqrt{r^4 - 3r^2 + 4}}{(1 - r^2)^{\frac{3}{2}}} - \sum_{k=2}^p r^{2(k-1)} \Big[(2k - 1)K_1(M_{p-k+1}) \\ + \sqrt{2M_{p-k+1}^2 - 2} \Big(\frac{2(k - 1)r}{\sqrt{1 - r^2}} + \frac{r\sqrt{4 - 3r^2 + r^4}}{(1 - r^2)^{\frac{3}{2}}} \Big) \Big] = 0$$

and

$$\tau_2' = \tau_2 - \sqrt{2M_p^2 - 2} \cdot \frac{\tau_2^2}{\sqrt{1 - \tau_2^2}} - \sum_{k=2}^p \tau_2^{2k-1} \Big[K_1(M_{p-k+1}) + \sqrt{2M_{p-k+1}^2 - 2} \cdot \frac{\tau_2}{\sqrt{1 - \tau_2^2}} \Big],$$

and $K_1(M_{p-k+1})$ is defined by (2).

When $M_{p-k+1} = 1, k = 1, 2, \dots, p$, the result is sharp.

Corollary 3.8 Suppose $F(z) = \sum_{k=1}^{p} |z|^{2(k-1)} G_{p-k+1}(z)$ is a polyharmonic mapping in the unit disk \mathbb{U} , with $F(0) = J_F(0) - 1 = 0$, and satisfying

(i) for $k \in \{1, \dots, p\}$, $G_{p-k+1}(z)$ is harmonic in \mathbb{U} , and $\lambda_{G_{p-k+1}}(0) - 1 = G_{p-k+1}(0) = 0$;

(ii) for $k \in \{2, \dots, p\}$, $|G_{p-k+1}(z)| \le M_{p-k+1}$, $|G_p(z)| \le M_p$ for all $z \in \mathbb{U}$.

Then for $k \in \{2, \dots, p\}$, $M_{p-k+1} \ge 1$, $M_p \ge 1$, F(z) is univalent in \mathbb{U}_{τ_3} , and $F(\mathbb{U}_{\tau_3})$ contains the schlicht disk $\mathbb{U}_{\tau'_3}$, where τ_3 is a unique root in (0, 1) of the equation

$$\lambda_0(M_p) - \lambda_0(M_p) \sqrt{M_p^4 - 1} \cdot \frac{r \sqrt{r^4 - 3r^2 + 4}}{(1 - r^2)^{\frac{3}{2}}} - \sum_{k=2}^p r^{2(k-1)} \left[(2k-1)K_1(M_{p-k+1}) + \sqrt{2M_{p-k+1}^2 - 2} \left(\frac{2(k-1)r}{\sqrt{1 - r^2}} + \frac{r \sqrt{4 - 3r^2 + r^4}}{(1 - r^2)^{\frac{3}{2}}} \right) \right] = 0,$$

and

$$\tau_{3}' = \lambda_{0}(M_{p}) \left[\tau_{3} - \sqrt{M_{p}^{4} - 1} \cdot \frac{\tau_{3}^{2}}{\sqrt{1 - \tau_{3}^{2}}} \right] - \sum_{k=2}^{p} \tau_{3}^{2k-1} \left[K_{1}(M_{p-k+1}) + \sqrt{2M_{p-k+1}^{3} - 2} \cdot \frac{\tau_{3}}{\sqrt{1 - \tau_{3}^{2}}} \right]$$

and $K_1(M_{p-k+1})$ is defined by (2), $\lambda_0(M_p)$ is defined by (5).

When $M_{p-k+1} = 1, k = 1, 2, \dots, p$, the result is sharp.

Meanwhile, we establish three forms of Landau-type theorems for some log-p-harmonic mappings. Firstly, We establish one form of Landau-type theorems for certain log-p-harmonic mappings by applying the method of our proof of Theorem 3.4 in[20].

Theorem 3.9 Suppose $f(z) = \prod_{k=1}^{p} g_{p-k+1}(z)^{|z|^{2(k-1)}}$ is a log-*p*-harmonic mapping in the unit disk \mathbb{U} , with $f(0) = \lambda_f(0) = 0$, and satisfying

(i) for $k \in \{1, \dots, p\}$, $g_{p-k+1}(z)$ is log-harmonic in \mathbb{U} , $g_{p-k+1}(0) = 1$, (ii) let $G_{p-k+1} = \log g_{p-k+1}$, for $k \in \{2, \dots, p\}$, $\lambda_{G_{p-k+1}}(0) - 1 = G_{p-k+1}(0) = 0$, and $|G_{p-k+1}(z)| \le M_{p-k+1}$, $\Lambda_{G_p}(z) \le \Lambda_p$ for all $z \in \mathbb{U}$.

Then for $k \in \{2, \dots, p\}$, $M_{p-k+1} \ge 1$, $\Lambda_p \ge 1$, f(z) is univalent in \mathbb{U}_{r_2} , where r_2 is the unique root in (0, 1) of the equation $A_1(r) = 0$, $A_1(r)$ is defined by (1). Moreover, the range $F(\mathbb{U}_{r_2})$ contains a univalent disk $\mathbb{U}(w_2, r'_2)$, where R_2 is given by (3), and

$$w_2 = \cosh R_2, \ r'_2 = \sinh R_2. \tag{9}$$

When $M_{p-k+1} = 1, k = 2, ..., p$, these estimates are sharp with $r_2 = \tilde{r_2}, r'_2 = \sinh R_2 = \sinh \tilde{R_2}$, where $\tilde{r_2}$ is the unique root in (0, 1) of the equation

$$\frac{\Lambda_p (1 - \Lambda_p r)}{\Lambda_p - r} - \sum_{k=2}^p (2k - 1) r^{2(k-1)} = 0,$$
(10)

and

$$\widetilde{R_2} = \Lambda_p^2 \widetilde{r_2} + (\Lambda_p^3 - \Lambda_p) \log(1 - \frac{\widetilde{r_2}}{\Lambda_p}) - \sum_{k=2}^p \widetilde{r_2}^{2k-1}.$$
(11)

Proof Let $F(z) = \sum_{k=1}^{p} |z|^{2(k-1)} G_{p-k+1}(z)$, for each $k \in \{1, 2, \dots, p\}$.

Then it follows from the hypothesis of Theorem 3.9 and the definition of log-harmonic mappings that $G_{p-k+1}(z) = \log g_{p-k+1}(z)$ is harmonic mappings in \mathbb{U} for each $k \in \{1, 2, \dots, p\}$. Thus $F = \log f$ is a polyharmonic mapping in \mathbb{U} .

We know that

$$\lambda_f(0) = \left| |f_z(0)| - |f_{\overline{z}}(0)| \right| = |f(0)| \left| |F_z(0)| - |F_{\overline{z}}(0)| \right|,$$

and f(0) = 1, so it follows from $g_p(0) = \lambda_f(0) = 1$, we have $G_p(0) = \lambda_F(0) - 1 = 0$.

In order to prove the univalence of f, we fix r with 0 < r < 1 and choose two distinct points $z_1, z_2 \in \mathbb{U}_r$. Let $\Gamma = \{(z_1 - z_2)t + z_2 : 0 \le t \le 1\}$.

Then it follows from our proof of Theorem 3.4 and the hypothesis of Theorem 3.9 that

$$\begin{aligned} |\log f(z_1) - \log f(z_2)| &= |F(z_1) - F(z_2)| = \left| \int_{\Gamma} F_z(z) dz + F_{\overline{z}}(z) d\overline{z} \right| \\ &\geq |z_1 - z_2| \left\{ \frac{\Lambda_p (1 - \Lambda_p r)}{\Lambda_p - r} - \sum_{k=2}^p r^{2(k-1)} \Big[(2k-1)K_1(M_{p-k+1}) + \sqrt{2M_{p-k+1}^2 - 2} \Big(\frac{2(k-1)r}{\sqrt{1 - r^2}} + \frac{r\sqrt{4 - 3r^2 + r^4}}{(1 - r^2)^{\frac{3}{2}}} \Big) \Big] \right\} > 0. \end{aligned}$$

From the proof of Theorem 3.4, we know that there is a unique $r_2 \in (0, 1)$ satisfying the equation $A_1(r) = 0$, $A_1(r)$ is defined by (1), such that

$$|\log f(z_1) - \log f(z_2)| > 0$$

for any two distinct points z_1, z_2 in $|z| < r_2$, which shows that f is univalent in \mathbb{U}_{r_2} .

Next, for any point $z = r_2 e^{i\theta}$ on $\partial \mathbb{U}_{r_2}$, by our proof of Theorem 3.4, we have

$$\begin{aligned} |\log f(z)| &= |F(z)| = \left| G_p(z) + \sum_{k=2}^{p} |z|^{2(k-1)} G_{p-k+1}(z) \right| \\ &\geq \Lambda_p^2 r_2 + (\Lambda_p^3 - \Lambda_p) \log(1 - \frac{r_2}{\Lambda_p}) \\ &- \sum_{k=2}^{p} r_2^{2(k-1)} \Big[K_1(M_{p-k+1}) r_2 + \sqrt{2M_{p-k+1}^2 - 2} \cdot \frac{r_2^2}{\sqrt{1 - r_2^2}} \Big] = R_2, \end{aligned}$$

where R_2 is given by (3).

By Lemma 2.8, we obtain that the range $f(U_{r_2})$ contains a schlicht disk $\mathbb{U}(w_2, r'_2)$, where w_2 and r'_2 are defined by (9).

Next, we prove that the univalent radius r_2 and $r'_2 = \sinh R_2$ are sharp when $M_{p-k+1} = 1, k = 2, ..., p$, by means of the method as in the proof of Theorem 3.4 in [20]. For the convenience of readers, we give the detail of the proof.

Firstly, we consider the log-*p* harmonic mapping $f_3(z) = e^{F_3(z)}$, where $F_3(z)$ is given by (4). It is easy to verify that $f_3(z)$ satisfies the hypothesis of Theorem 3.9, thus we obtain that $f_3(z)$ is univalent in the disk U_{r_2} , and the range $f_3(U_{r_2})$ contains a univalent disk $\mathbb{U}(w_2, r'_2)$.

To prove that the univalent radius r_2 is sharp with $r_2 = \tilde{r_2}$, we need to prove that $f_3(z)$ is not univalent in U_r for each $r \in (\tilde{r_2}, 1]$. In fact, if we fix $r \in (\tilde{r_2}, 1]$, by our proof of Theorem 3.1, we know that $F_3(z)$ is is not univalent in U_r , thus there exist two distinct points $z_1, z_2 \in U_r$ such that $F_3(z_1) = F_3(z_2)$, which implies that $f_3(z_1) = e^{F_3(z_1)} = e^{F_3(z_2)} = f_3(z_2)$, that is $f_3(z)$ is not univalent in U_r for each $r \in (\tilde{r_2}, 1]$. Hence, the univalent radius r_2 is sharp.

Next, we prove that the radius $r'_2 = \sinh R_2$ is sharp with $R_2 = \overline{R_2}$. For $r \in [0, 1]$, considering the continuous function

$$g_1(r) = \frac{\Lambda_p(1 - \Lambda_p r)}{\Lambda_p - r} - \sum_{k=2}^p (2k - 1)r^{2(k-1)},$$

it is easy to verify that $g_1(r)$ is strictly decreasing on [0, 1], $g_1(0) = 1 > 0$ and

$$g_1(\frac{1}{\Lambda_p}) = -\sum_{k=2}^p (2k-1)(\frac{1}{\Lambda_p})^{2(k-1)} \le 0.$$

Thus we have $0 < \widetilde{r_2} \leq \frac{1}{\Delta r}$.

By (10) and (11), it is easy to verify that $\widetilde{R_2} > 0$. Next we can prove $\widetilde{R_2} < 1$. Let $h(r) = \Lambda_p^2 r + (\Lambda_p^3 - \Lambda_p) \log(1 - \frac{r}{\Lambda_p}), 0 < r \leq \frac{1}{\Lambda_p}$, then

$$h'(r) = \Lambda_p^2 + \frac{1 - \Lambda_p^2}{1 - \frac{r}{\Lambda_p}} = \Lambda_p \frac{\frac{1}{\Lambda_p} - r}{1 - \frac{r}{\Lambda_p}} \ge 0, , 0 < r \le \frac{1}{\Lambda_p},$$

which implies that h(r) is increasing in $(0, \frac{1}{\Delta_n}]$. Therefore,

$$\begin{split} \widetilde{R_2} &= \Lambda_p^2 \widetilde{r_2} + (\Lambda_p^3 - \Lambda_p) \log(1 - \frac{\widetilde{r_2}}{\Lambda_p}) - \sum_{k=2}^p \widetilde{r_2}^{2k-1} \\ &\leq h(\widetilde{r_2}) \leq h(\frac{1}{\Lambda_p}) = \Lambda_p + (\Lambda_p^3 - \Lambda_p) \log(1 - \frac{1}{\Lambda_p^2}) \\ &< \Lambda_p + (\Lambda_p^3 - \Lambda_p) \cdot (-\frac{1}{\Lambda_p^2}) = \frac{1}{\Lambda_p} < 1. \end{split}$$

Hence, $0 < \widetilde{R_2} < 1$.

Because the univalent radius r_2 is sharp with $r_2 = \widetilde{r_2}$ when $M_{p-k+1} = 1, k = 2, ..., p$, the sharpness of the radius $r'_2 = \sinh R_2 = \sinh \widetilde{R_2}$ follows from Lemma 2.8 and the fact that $0 < \widetilde{R_2} < 1$. The proof is complete. \Box

By means of Theorem 1 in [23] and the same method as the proof of Theorem 3.4 in [20], applying the same method as the proof of Theorem 3.9, it is not difficult to prove following Theorem.

Theorem 3.10 Suppose $f(z) = \prod_{k=1}^{p} g_{p-k+1}(z)^{|z|^{2(k-1)}}$ is a log-*p*-harmonic mapping in the unit disk \mathbb{U} , with $f(0) = \lambda_f(0) = 0$, and satisfying

(i) for $k \in \{1, \dots, p\}$, $g_{p-k+1}(z)$ is log-harmonic in \mathbb{U} , $g_{p-k+1}(0) = 1$,

(ii) let $G_{p-k+1} = \log g_{p-k+1}$, for $k \in \{2, \dots, p\}$, $|G_{p-k+1}(z)| \le M_{p-k+1}$, $\Lambda_{G_p}(z) \le \Lambda_p$ for all $z \in \mathbb{U}$.

Then for $k \in \{2, \dots, p\}$, $M_{p-k+1} \ge 0$, $\Lambda_p \ge 1$, f(z) is univalent in \mathbb{U}_{ρ_1} , where ρ_1 is the unique root in (0, 1) of the equation which is defined by (1). Moreover, the range $F(\mathbb{U}_{\rho_1})$ contains a univalent disk $\mathbb{U}(w'_1, \rho'_1)$, where ρ'_1 is given by (2), and

$$w_1' = \cosh \rho_1', \ \rho_1' = \sinh \rho_1'.$$

When $M_{p-k+1} = 0, k = 2, ..., p$, the radii ρ_1 and $\tilde{\rho'_1} = \sinh \rho'_1$ are sharp.

By means of Theorem 3.5 and the same method as the proof of Theorem 3.2 and Theorem 3.5 in [20], applying the same method as the proof of Theorem 3.9, we have following Theorem.

Theorem 3.11 Suppose $f(z) = \prod_{k=1}^{p} g_{p-k+1}(z)^{|z|^{2(k-1)}}$ is a log-*p*-harmonic mapping in the unit disk \mathbb{U} , with $f(0) = \lambda_f(0) = 0$, and satisfying

(i) for $k \in \{1, \dots, p\}$, $g_{p-k+1}(z)$ is log-harmonic in \mathbb{U} , $g_{p-k+1}(0) = 1$,

(ii) and let $G_{p-k+1} = \log g_{p-k+1}$, for $k \in \{2, \dots, p\}$, $\Lambda_{G_{p-k+1}}(z) \le \Lambda_{p-k+1}, |G_p(z)| \le M_p$ for all $z \in \mathbb{U}$.

Then for $k \in \{2, \dots, p\}$, $\Lambda_{p-k+1} \ge 0$, $M_p \ge 1$, F(z) is univalent in \mathbb{U}_{r_3} , where r_3 is the unique positive root in (0, 1) of the equation which is defined by (5). Moreover, the range $F(\mathbb{U}_{r_3})$ contains a univalent disk $\mathbb{U}(w_3, r'_3)$, where R_3 is given by (6), and

 $w_3 = \cosh R_3, r'_3 = \sinh R_3.$

When $M_p = 1$, the radii r_3 and $r'_3 = \sinh R_3$ are sharp.

References

- [1] Z. Abdulhadi,Y. Muhanna, S. Khuri, On univalent solutions of the biharmonic equations, J. Inequal. Appl., 5(2005), 469-478.
- [2] Z. Abdulhadi, Y. Muhanna, Landau's Theorem for Biharmonic Mappings, J. Math. Anal. Appl., 338(2008), 705-709.
- [3] X.X. Bai and M.S. Liu, Landau-type theorems of polyharmonic mappings and log-*p*-harmonic mappings, *Complex Anal. Oper. Theory*, 13(2)(2019), 321-340.
- [4] J. G. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. AI., 9(1984), 3-25.
- [5] F. Colonna, The Bloch constant of bounded harmonic mappings, Indiana Univ. Math. J., 38(4)(1989), 829-840.
- [6] H. H. Chen, P.M. Gauthier and W. Hengartner, Bloch constants for planar harmonic mappings, Proc. Amer. Math. Soc., 128(11)(2000), 3231-3240.
- [7] J. Chen, A. Rasila, X. Wang, Landau's theorems for polyharmonic mappings, J. Math. Anal. Appl., 409(2014), 934-945.
- [8] Sh.Chen, M. Mateljević, S. Ponnusamy and X.Wang, Lipschitz type spaces and Landau-Bloch theorems for harmonic functions, Acta. Math. Sinica, Chinese Series, 60(6)(2017), 1025-1036.
- [9] Sh. Chen, S. Ponnusamy and X. Wang, Landau's theorems for certain biharmonic mappings, *Appl. Math. Comput.*, 208(2)(2009), 427-433.
- [10] Sh. Chen, S. Ponnusamy and X. Wang, Properties of some classes of planar harmonic and planar biharmonic mappings, Complex Anal. Oper. Theory, 5(2011), 901-916.
- [11] S.L. Chen, S. Ponnusamy and X.T. Wang, Bloch constant and Landau's theorem for planar p-harmonic mappings, J. Math. Appl. Appl., 373(2011), 102-110.
- [12] I. Graham and G. Kohr, Geometric Function Theory in One and Higher Dimensions, Marcel Dekker Inc, New York, 2003.
- [13] H. W. Hethcote, Schwarz lemma analogues for harmonic functions, Int. J. Math. Educ. Sci. Technol., 8(1)(1977),65-67.
- [14] P. Li, X. Wang, Landau's theorem for *log-p*-harmonic mappings, *Appl. Math. Comput.*, 218(2012), 4806-4812.
- [15] M.S. Liu, Landau's theorems for biharmonic mappings, Complex Vari. Elliptic Equa., 53(9)(2008), 843-855.
- [16] M.S. Liu, Z.X. Liu, Laudau-type theorems for p-harmonic mappings or log-p-harmonic mappings, Appl. Anal., 51(1)(2014), 81-87.
- [17] M.S. Liu, F. Wu and Y. Yang, Sharp estimates of quasi-convex mappings of type B and order alpa, Acta Mathematica Scientia, 39B(5)(2019), 1265-1276.
- [18] M.S. Liu, L. Xie and L.M. Yang, Landau's theorems for biharmonic mappings(II), Math. Methods Appl. Sci., 40(7)(2017), 2582-2595.
- [19] M.S. Liu, H.H. Chen, The Landau-Bloch type theorems for planar harmonic mappings with bounded dilation, J. Math. Anal. Appl., 468(2)(2018), 1066-1081.
- [20] M.S. Liu, L.F. Luo, Precise values of the Bloch constants of certain log-p-harmonic mappings, Acta Mathematica Scientia, 41B(1)(2021),297-310.
- [21] M.S. Liu, L.F. Luo, Landau-type theorems for certain bounded biharmonic mappings. Result Math., 74(4)(2019), Art. 170.
- [22] X. Luo, M.S. Liu, Landau-Bloch type theorems for certain biharmonic mappings, *Complex Vari. Elliptic Equa.*, 65(11)(2020),1938-1949.
- [23] X. Luo, M.S. Liu, Landau-Bloch Type Theorems for Certain Subclasses for Polyharmonic Mappings, Computational Methods and Function Theory, 2023, 23(2),303-325.
- [24] M. Mateljević, A version of Bloch theorem for quasiregular harmonic mappings, Rev. Roum. Math. Pures. Appl. 47(2002),705-707.
- [25] M. Mateljević and A. Khalfalah, On some Schwarz type inequalities, J. Inequal. Appl. 2020(2020), Art 164.
- [26] M. Mateljević and M. Svetlik, Hyperbolic metric on the strip and the Schwarz lemma for HQR mappings, Appl. Anal. Discrete Math., 14(2020),150-168
- [27] Y.C. Zhu, M.S. Liu, Landau-type theorems for certain planar harmonic mappings or biharmonic mappings, Complex Vari. Elliptic Equa., 58(12)(2013), 1667-1676.