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Abstract. This paper presents a study of dynamic behavior and bifurcation analysis of a predator–prey
system with the functional response proposed by Cosner et al. (Theor Popul Biol 56:65–75, 1999) and
Allee effect in prey population. The functional response used is specific in compare with the conventional
functional responses according to its monotonicity for both prey and predator density, and moreover it
increases as predator density increase. This function response describes a behavioral mechanism which
a group of predators foraging in linear formation, contacts and then hunts gathering around the herd or
a school of prey. Mainly, our aim is to demonstrate the impact of strong and weak Allee effect on the
system dynamics. Mathematically our analysis primarily focuses on the stability of coexisting equilibrium
points and all possible bifurcations that the system may exhibit. Actually, we consider the existence of
equilibria and analyze their stability. The possibility of extinction of both populations is also considered, by
studying dynamics of the system near the origin. The bifurcation of the system will be analyzed, including
the occurrence of saddle–node bifurcation, Hopf and degenerate Hopf bifurcation, and Bogdanov–Takens
bifurcation. The theoretical results are verified by numerical simulations. We observe the bi-stability and
tri-stability, so that we further discuss the basins of attraction in all possible cases of existence of multiple
attractors.

1. Introduction

Population biology is a subfield of biology that focuses on the study how populations interact with one
another, including competition, predation, and symbiosis, and how these interactions shape the evolution
of populations over time. Often such studies are vital to decisions made about how to protect endangered
species. Mathematical models play a key part in simulation of the growth and behavior of populations
under different environmental conditions, as well as to investigate the effects of factors such as predation,
competition, disease, and climate change on population dynamics. The predator-prey model is a type of
mathematical model that is commonly used in population biology to study the dynamics of predator and
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prey populations in an ecosystem. The complexity of the model depends solely on the species that are
being observed and behaviour tactics they employ in order to survive. Classic predator-prey models are
given with

ẋ = x f (x) − p(x, y)y
ẏ = 1(p(x, y), y)y

where variables x and y describe densities of predator and prey, respectively. Function f (x) is the per capita
prey growth rate in the absence of predators, while 1(p(x, y), y) is predator growth function. The most
often used example of prey growth rate is the logistic form f (x) = r (1 − x/k) , where the positive constants
r and k refer to the intrinsic growth rate of prey and the carrying capacity of the environment for the prey
population, respectively. The functional response of a predator describes the relationship between the
number of prey it consumes per unit of time and the abundance or density of its prey.

Considering 1(p(x, y), y) = cp(x, y) − µy we get the following model [8]:

ẋ = rx
(
1 −

x
k

)
− p(x, y)y

ẏ = cp(x, y) − µy,
(1)

where, c is the biomass conversion rate while µ is the death rate of predators.
Leslie and Gower [17] proposed a predator-prey model, the so-called Leslie-Gower predator-prey model,

in which the predator growth function is different from the predator predation function. They assumed that
the predator growth is described by a function of the ratio of predators and their prey. Leslie–Gower type
models are characterized by a logistic-type predator growth equation, where the environmental carrying
capacity of predators ky is a function of the available prey quantity [28], that is, ky = k(x) = nx. Leslie-Gower
predator-prey models are given by:

ẋ = rx
(
1 −

x
k

)
− p(x, y)y

ẏ = sy
(
1 −

y
nx

) (2)

where s is intrinsic growth rate of predators and n measures the food quality of the prey for conversion
into predator units. In this type of models, the predator population growth rate depends on the predator
population size ratio to the prey population size and a positive growth rate is predicted when the absolute
prey and predator densities are significantly low. Term y

nx is called Leslie-Gower term. In order to consider
different behavioral characteristics of species in mutual relations different forms of functional response
were introduced. Throughout years different functional responses were observed:

(i) Holling-type I or Lotka-Volterra type, p(x, y) = h(x) = px;

(ii) Holling-type II, p(x, y) = h(x) = px
x+a ;

(iii) Holling-type III, p(x, y) = h(x) = px2

x2+b or generalized Holling-type III p(x, y) = h(x) = px2

ax2+bx+1 ;

(iv) Holling-type IV, p(x, y) = h(x) = px
x2+b or generalized Holling-type IV, p(x, y) = h(x) = px

ax2+bx+1 ;

(v) Ivlev-type, p(x, y) = h(x) = p(1 − e−ax).

(vi) Beddington-DeAngelis, p(x, y) = px
ax+by+c ;

(vii) Hassell-Varley-Holling II, p(x, y) = px
ax+yγ , γ ∈ (0, 1);

(viii) Ratio-Dependant Holling-type II, p(x, y) = h
( y

x

)
=

px
x+ay ;
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(ix) Ratio-Dependant Holling-type III, p(x, y) = h
( y

x

)
=

px2

x2+ay2 ;

Constants a, b, c and p used above are positive, and they have appropriate biological meanings in each
response function (see [31] for (i), [3, 12] for (ii), [16, 20] for (iii), [24, 33] for (iv), [13] for (v), [32] for (vi), [29]
for (vii), [15] for (viii), [18] for (ix)). Functional responses (i)-(v) are prey dependent functional responses,
while (vi) and (vii) are predator and prey dependent functional responses, (viii), (ix) fall into a class of
ratio-dependent functional responses. It is also important to note that functional responses (i)-(iii) and
(v)-(ix) are monotonic, meaning that they are either non-increasing or non-decreasing with respect to either
x or y. On the other hand, functional responses (iv) are non-monotonic, since they are increasing until they
reach the maximum for x∗, after which they are decreasing.

In order to better describe the predator-prey interactions additional natural phenomena can be incor-
porated into mathematical models. One of those phenomena is hunting cooperation. It is one of many
strategies that predator population utilizes in order to increase their chance of capturing prey. Different
species have different methods of group hunting. A team of dolphins will try to make fish jump in the
air where they are easy prey for the group. One group of lionesses would drive the fleeing prey to the
second group that patiently awaits hidden. Recently, a few articles have paid attention to derive functional
response to describe the cooperative hunting [2, 4, 8]. One of the first such articles is [8] by Cosner et. al.
They considered several scenarios with prey and predator distribution during the hunt, with each scenario
yielding one corresponding functional response. In one scenario, they assumed that prey forms herds or
schools, while predator hunts in groups, forming a straight line. It is also assumed that, when one predator
makes contact with a prey, it signals to all the other predators, which then converge around the prey herd,
enclosing it. Prey in return disperses, allowing some, but not all of their population to escape. This sort of
behavior is limited by the requirement that the line of foragers must be short enough to allow transmission
of a signal, so the corresponding functional response gives a realistic description of hunting cooperation
probably only at low to moderate predator group sizes. Thus, this assumptions yield in (1) the functional
response

p(x, y) =
Ce0xy

1 + hCe0xy
. (3)

Here, C is the amount of prey captured by predator per each attack, e0 is attack rate coefficient of the
predators, h is handling time per prey. Specific property of this functional response in compare with the
conventional functional responses (see (i) to (ix)), is that the functional response has a monotonicity for both
x and y, and moreover it increases when y increases. The monotonocity and the upper boundedness of this
functional response can be characterized in the following way. As predator population grows large, their
hunting becomes more efficient. But, overpopulation of predators will lead to decrease in their hunting
efficiency, because if the line becomes too large for it to aggregate around the prey, the predation efficiently
is not so good anymore.

There have been very few studies on mathematical models with the functional response (3). To our
knowledge, Ryu et. al. in [21] were first to explore dynamics and bifurcation in the model (1) with the
functional response (3). Considering the possibilities to ensure the coexistence of the two species, Shang
et. al. in [23] included constant-yield harvesting of prey population in the mathematical model from [21].
Tiwari et. al. in [27] considered spatiotemporal model with included double Allee effect on prey population.

Shang et. al. [22] were first to consider the Leslie-Gower model with the functional response (3)

ẋ = rx
(
1 −

x
k

)
−

Cexy
1 + hCexy

y

ẏ = sy
(
1 −

y
nx

)
.

(4)

They showed that system is persistent, it can undergo both Hopf and generalized Hopf bifurcation around
unique interior equilibria. Also, conditions for global asymptotic stability of the coexistence equilibrium
have been determined.
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Results in [21, 23, 27] imply that functional response (3), i.e. hunting cooperation included in this
functional response, induces a strong Allee effect in predator population. A positive relationship between
the per capita population growth rate and population size or density is called a demographic Allee effect
(see [5]), first observed in 1930. by Allee [1]. In fact, the growth function in the logistic form is an positive
function, while per capita growth rate decreases with density. However, for many species, low population
density may induce many problems. For example, in species where mating or cooperation is necessary
for successful reproduction and group defense, individuals may have difficulty finding mates or forming
groups when the population size is too small. Additionally, in some cases, individuals may benefit from the
presence of conspecifics, for example through increased vigilance against predators, and this benefit may
decrease as the population size decreases. It turns out that the growth function of the low density population
is not always positive, and it may be negative when the density of population is less than the minimum
number necessary for the survival of the population, which is called the Allee threshold. Demographic
Allee effects are characterized by a hump-shaped relationship between the per capita population growth
rate and population size or density and can be classified into two types: strong Allee effect and weak Allee
effect. A strong Allee effect indicates that populations may be particularly vulnerable to extinction at low
densities. In fact, in the case of the strong Allee effect, there exists a threshold population level below
which population growth rates become negative [9, 25]. Growth rate commence with negative values, but
increase with density at low density until it reaches its maximum, and then it will decrease. In the case of the
weak Allee effect, per capita growth rate remains positive at low population densities [9, 25]. A population
with a weak Allee effect does not need any critical density for survival. Examples of species that exhibit
a strong Allee effect include some social insects, such as ants and bees, where colony size is an important
determinant of reproductive success, and some marine mammals, such as seals, where populations may be
limited by the availability of suitable breeding sites. Examples of species that exhibit a weak Allee effect
include some plants, where pollination or seed dispersal may be facilitated by a higher population density,
and some fish, where the risk of predation may be reduced by schooling behavior.

With Allee effect included, the Leslie-Gower (2) becomes

ẋ = rx
(
1 −

x
k

)
(x −M) − p(x, y)y

ẏ = sy
(
1 −

y
nx

) (5)

The growth function F(x) = rx(1−x/k)(x−M) has an enhanced growth rate as the population increases above
the Allee effect threshold M of the prey species. If F(0) = 0 and F′(0) ≥ 0, as it is the case with −k ≤ M ≤ 0,
then F(x) represents prey population exhibits a weak Allee effect, whereas if F(0) = 0 and F′(0) < 0, as it is
the case with M > 0, then F(x) represents prey population exhibits a strong Allee effect. Arancibia-Ibarra
et. al. in [3] considered system (5) with a strong Allee effect and Holling-type II functional response:

ẋ = rx
(
1 −

x
k

)
(x −M) −

qxy
x + a

ẏ = sy
(
1 −

y
nx

) (6)

while Shang and Quao in [24] considered Leslie-Gower system (5) with a strong Allee effect and Holling-
type IV functional response:

ẋ = rx
(
1 −

x
K

)
(x −M) −

m1xy
B + x2

ẏ = sy
(
1 −

y
nx

) (7)

The motive of this work is to investigate the dynamical behavior of the Leslie-Gower predator-prey
model with Allee effect in growth of prey population and the function response (3). Our main goal is to see
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how the both weak and strong Allee effect affect the dynamics of the prey-predator model (4) considered
in [22]. Hence, the model to be studied in this paper is described as

ẋ =rx
(
1 −

x
K

)
(x −M) −

Cexy
1 + hCexy

y

ẏ =sy
(
1 −

y
nx

)
,

(8)

Here, the positive constants r and K refer to the intrinsic growth rate of prey and the carrying capacity of the
environment for the prey population, M is the Allee effect threshold, C is the amount of prey captured by
predator per each attack, e0 is attack rate coefficient of the predators, h is handling time per prey, s is intrinsic
growth rate of predators and n measures the food quality of the prey for conversion into predator units.
In order to reduce the number of parameters for stability and bifurcation analysis we scale the coordinates
and constants with following transformations:

t = rKt, x =
x
K
, y = hCeKy, m =

M
K
, a =

1
Cerh2K3 , b =

s
rK
, c =

s
nrhCeK3 .

Dropping the bars, the system becomes:

ẋ =x(1 − x)(x −m) −
axy2

1 + xy

ẏ =y
(
b − c

y
x

)
.

(9)

It is important to note that −1 ≤ m ≤ 1, where −1 ≤ m ≤ 0 means that prey is under the influence of weak
Allee effect, while for 0 < m ≤ 1 it is under the influence of strong Allee effect.

The rest of this paper is organised as follows. In Section 2, we proved that system is biologically well-
poised. Stability of the equilibria and dynamics of the system near origin were also studied. In Section
3, we analyse the existence and direction of bifurcations which include saddle-node bifurcation, Hopf
bifurcation, generalized Hopf bifurcation and Bogdanov-Takens bifurcation of codimension 2. In Section
4 we provide numerical simulations and bifurcation diagrams for Bogdanov-Takens bifurcation as well as
phase portraits for certain parameter values. Numerical simulations which include bifurcation diagrams
and phase portraits were created using MATLAB software package MatCont (see [10]). Basins of attraction
of multiple attractors were studied in Section 5. Phase portraits illustrated in this section were created
using MATLAB program pplane8. Conclusion with proper biological interpretation is given in Section 6
and Appendixes are given in Section 7.

2. Basic properties and stability analysis

System (9) is not well defined for x = 0. For correct biological interpretation we only consider the
model in the domain Ω = {(x, y) : x > 0, y ≥ 0}. The function, on the right hand side of the system (9)
are continuously differentiable and locally Lipschitz in Ω, implying that the solutions of the initial value
problem with non-negative initial conditions exist on the interval [0, τ), 0 < τ ≤ +∞ and are unique.

2.1. Positivity and Dissipativeness
We can rewrite the system (9) as:

ẋ = x f (x, y) = F(x, y)
ẏ = y1(x, y) = G(x, y).

(10)

where

f (x, y) = (1 − x)(x −m) −
ay2

1 + xy
, 1(x, y) = b − c

y
x
. (11)

In this section, we prove that all the solutions of system (9), starting from a positive initial condition, remain
positive and bounded.
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2.1.1. Positivity
Theorem 2.1. All solutions (x(t), y(t)) of the system (9) with positive initial values at t = 0, remain positive for all
t > 0.

Proof. Assume that (x(0), y(0)) = (x0, y0) such that x0 > 0 and y0 > 0. From the right side equations of the
system (10) we get:

x(t) = x0 exp
(∫ t

0
F(x(s), y(s))ds

)
> 0, y(t) = y0 exp

(∫ t

0
G(x(s), y(s))ds

)
> 0.

This proves the theorem.

2.1.2. Dissipativeness
Theorem 2.2. System (9) is dissipative, and all solutions starting in Ω eventually enter region

Φ =
{
(x, y) : 0 < x < 1, 0 ≤ y < b

c

}
.

Proof. Let the (x(t), y(t)) be arbitrary positive solutions of the system (9) which satisfy positive initial
condition (x(0), y(0)) = (x0, y0), x0 > 0, y0 > 0. From the first equation in (10) we have

x(t) = x0 exp
(∫ t

0
F(x(s), y(s))ds

)
, t ≥ 0. (12)

Here, we observe two cases.

I. Assume that x0 ≤ 1 and prove that x(t) ≤ 1 for all t ≥ 0. Suppose otherwise that there exists positive
real numbers t1, t2 such that x(t1) = 1 and x(t) > 1,∀t ∈ (t1, t2). Then, for all t ∈ (t1, t2) we have that

x(t) = x0 exp
(∫ t

0
F(x(s), y(s))ds

)
= x0 exp

(∫ t1

0
F(x(s), y(s))ds

)
exp

(∫ t

t1

F(x(s), y(s))ds
)

= x(t1) exp
(∫ t

t1

F(x(s), y(s))ds
)
.

(13)

Since 1−x(t) < 0 and x(t)−m > x(t)−1 > 0 for all t ∈ (t1, t2), we conclude that F(x(s), y(s)) < 0, ∀s ∈ (t1, t2).
Hence, from (13), we have that x(t) < x(t1) = 1, for all t ∈ (t1, t2), which contradicts our hypothesis.
Hence, x(t) ≤ 1 for all t ≥ 0.

II. Assume that x0 > 1. Then, either

(i) x(t) > 1 for all t ≥ 0, implying that F(x(s), y(s)) < 0, s ≥ 0 and so from (12) we get x(t) < x(0) = x0,
t ≥ 0,

or

(ii) there exists some point T > 0, such that x(T) = 1, implying from the case (I) that x(t) ≤ 1, ∀t > T.

Hence, combining cases (I) and (II), we can say that any positive solution x(t) which satisfy positive initial
condition x(0) = x0 > 0 satisfies x(t) ≤ max{x(0), 1} for all t ≥ 0 . If we denote xsup = lim supt→∞ x(t), from
the first equation of system (9), we get that

ẋ ≤ x(1 − x)(x −m) ≤ x(1 − x)(xsup −m),

so that lim supt→∞ x(t) ≤ 1. If we substitute x = 1 in the first equation of system (9), we get ẋ = − ay2

1+y < 0.
It follows from here that all trajectories enter and remain in the region Ψ = {(x, y) : 0 < x < 1, y ≥ 0}. We
further obtain from the second equation of system (9) that

ẏ = y
(
b − c

y
x

)
≤ y

(
b − cy

)
⇒ lim

t→∞
sup y(t) ≤

b
c
.
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Since all trajectories enter region Ψ, if we substitute y = b
c in the second equation of system (9), we get

ẏ = y
(
b − b

x

)
< 0. In other words, all trajectories that start in the region Ψ, eventually enter and remain in

the region Φ =
{
(x, y) : 0 < x < 1, 0 ≤ y < b

c

}
. Therefore the model (9) is dissipative.

2.2. Equilibria and local stability
In this chapter we examine the axial equilibrium points (predator free equilibrium points) as well as

possible number of interior equilibria (coexistence equilibrium points). We also examine the qualitative
behaviour of the system near origin. Since the system (9) is not well defined for x = 0, in the case of the
week Allee affect there is a unique axial equilibria E2(1, 0), while in the case of the strong Allee effect, there
is two axial equilibria E1(m, 0) and E2(1, 0). The Jacobian matrix of the system (9) is given by

J(x, y) =

2x − 3x2 +m(2x − 1) − ay2

(1+xy)2 a
(
−1 + 1

(1+xy)2

)
c y2

x2 b − 2cy
x

 . (14)

(i) The eigenvalues for the Jacobian matrix

J(m, 0) =
(
m(1 −m) 0

0 b

)
,

are λ1 = m(1 −m) and λ2 = b. Since E1 is biologically viable only when m > 0, we deduce that in that
case, both eigenvalues are positive, meaning that E1 is an unstable node.

(ii) The eigenvalues for the Jacobian matrix

J(1, 0) =
(
−1 +m 0

0 b

)
,

are λ1 = −1 + m and λ2 = b. Since b > 0 and −1 < m < 1, we have that E2 is always a hyperbolic
saddle.

Interior equilibria lie in the intersection of non-trivial nullcines of the system (9). Nontrivial prey nullcline
is given with f (x, y) = 0, while nontrivial predator nullcline is given by 1(x, y) = 0, where functions f and 1
are given by (11). Predator nullcline can be rewritten as y = bx/c. If Ep

(
xp, yp

)
, is a positive equilibrium of

system (9), then yp = bxp/c and xp is a positive root of the equation:

L(x) = x4 + L1x3 + L2x2 + L3x + L4, (15)

where coefficients Li, i = 1, 4 are given with:

L1 = −(1 +m), L2 =
ab
c
+

c
b
+m, L3 = −

c(1 +m)
b

, L4 =
cm
b
.

Possible number of interior equilibrium points of system (9) and parametric restrictions under which
equilibrium points exist are very difficult to find. Therefore we must observe possible intersections of non-
trivial predator and prey nullclines. Non-trivial predator nullcline is linear strongly increasing function
and it intersects x-axis in two points: E1 and E2. Numerical simulations show that this nullcline in the first
quadrant has parabolic shape with one maximum at xmax. To determine the number of positive and unique
equilibria, we observe cases of weak and strong Allee effect separately. To discuss the local asymptotic
stability properties of the interior equilibrium points Ep(xp, yp), where yp = bxp/c, we observe the Jacobian
matrix of the system (9) at arbitrary interior point Ep. Since f (xp, yp) = 1(xp, yp) = 0 the Jacobian matrix is
given by

Jp = J(xp, yp) =

xp
∂ f
∂x (xp, yp) xp

∂ f
∂y (xp, yp)

yp
∂1
∂x (x,yp) yp

∂1
∂y (xp, yp)

 = (
J11(Ep) J12(Ep)
J21(Ep) J22(Ep)

)
,
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implying that

Jp = J(xp, yp) =

(1 +m − 2xp)xp +
ab3x4

p

c(c+bx2
p)2 a

(
c2

(c+bx2
p)2 − 1

)
,

b2

c −b


so that the trace and the determinant of the Jacobian matrix Jp are given by:

trace(Jp) = (1 +m − 2xp)xp +
ab3x4

p

c(c + bx2
p)2
− b, det(Jp) = bx2

p

2 +
2ab2(

c + bx2
p

)2

 − bxp(m + 1). (16)

Therefore, for every internal equilibrium, for elements of the Jacobian matrix Jp we have that J21(Ep) > 0,
J22(Ep) < 0. It remain to determine the sign of J11(Ep) and J12(Ep).

2.2.1. Weak Allee Effect
In this case, non-trivial predator nullcline always intersects the prey nullcline. Since non-trivial predator

nullcline is strongly increasing, there exists only one intersection in the first quadrant. This intersection
corresponds to unique interior equilibrium point E3(x3, y3), shown on Figure 1. Let’s emphasize that since
m < 0, point E2(m, 0), at which non-trivial predator nullcline intersects x-axis, falls outside of the first
quadrant. Therefore, non-trivial predator nullcline will have intersection with positive part of y-axis.

Figure 1: Relative positions of prey nullcline (blue colored) and predator nullcline (red colored) in the case of weak Allee
effect. Their intersection corresponds to the unique interior equilibrium point E3(x3, y3). (a) Case when x3 < xmax.
(b) Case when x3 > xmax.

Since the gradient of the tangent of curves f (x, y) = 0 and 1(x, y) = 0 at some point (x0, y0) are respectively

dy( f )

dx
(x0) = −

∂ f
∂x (x0, y0)
∂ f
∂y (x0, y0)

,
dy(1)

dx
(x0) = −

∂1
∂x (x0, y0)
∂1
∂y (x0, y0)

, (17)

we can express the determinant of J3 as follows:

det(J3) = x3y3

(
∂ f
∂x

(x3, y3)
∂1

∂y
(x3, y3) −

∂ f
∂y

(x3, y3)
∂1

∂x
(x3, y3)

)
= x3y3

∂ f
∂y

(x3, y3)
∂1

∂y
(x3, y3)

(
dy(1)

dx
(x3) −

dy( f )

dx
(x3)

)
(18)

The stability of the equilibrium point will be determined by observing the sign of the elements of the
Jacobian matrix J3 and the expressions of trace(J3) and det(J3) given by (16) and (18). Here we distinguish
two subcases.

• Observe the case when x3 < xmax (see Figure 1-(a)). Below the non-trivial prey nullcline we have
that f (x, y) > 0 and above it we have f (x, y) < 0. It follows from here that f (x3 − △x, y3) < 0 and
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f (x3 + △x, y3) > 0. This implies that ∂ f
∂x (x3, y3) > 0. With similar procedure, one can find sign of

∂ f
∂y (x3, y3) > 0, so that using that x3 > 0 and y3 > 0, signs of elements in the matrix J3 are as follows:

Si1n(J3) =
(
+ −

+ −

)
. (19)

At E3, slope of the predator non-trivial nullcline is greater than the slope of prey non-trivial nullcline.

Therefore, we have that dy(1)

dx (x3)− dy( f )

dx (x3) > 0. Considering the signs of other factors in (18), we deduce
that det(J3) > 0. Hence the stability of this E3 depends upon the sign of trace(J3). If trace(J3) < 0, then
E3 is locally asymptotically stable, otherwise it is unstable.

• Observe the case when x3 > xmax (see Figure 1-(b)). Using similar approach as in the previous case,
we determine that signs of the elements of the Jacobian matrix J3 are given by:

Si1n(J3) =
(
− −

+ −

)
. (20)

Similarly, we have that det(J3) > 0. In this case, however, it is clear that tr(J3) < 0. Therefore,
equilibrium point E3 is always locally asymptotically stable.

2.2.2. Strong Allee Effect
In the case of strong Allee effect, there are three possible outcomes when it comes to predator and prey

non-trivial nullcline intersections, as shown in Figure 2. The number of intersections varies from zero to
two. If nontrivial nullclines do not intersect (Figure 2-(a)), the system has no interior equilibria. Prey and
predator non-trivial nullcline touch each other at the unique interior equilibrium (Figure 2-(b)). There exist
two interior equilibria E4(x4, y4) and E5(x5, y5), where x4 < x5, if non-trivial nullclines intersect in the first
quadrant.

Figure 2: Number of equilibrium points in the case of strong Allee effect, based on relative positions of prey and
predator non-trivial nullclines. Number of equilibrium points varies from zero to two. If non-trivial nullclines
intersect in the first quadrant, we observe two cases: (c) x4 < x5 < xmax; (d) x4 < xmax < x5.

Discussing the stability of E4 (see Figure 2-(c) and Figure 2-(d)) we follow similar procedure as in the
case of weak Allee effect and find that signs of the elements of the Jacobian matrix J4 at equilibrium point
E4 are as follows:

Si1n(J4) =
(
+ −

+ −

)
.

Prey non-trivial nullcline has greater slope than the predator non-trivial nullcline at equilibrium point E4.

Therefore, dy(1)

dx (x4) − dy( f )

dx (x4) < 0. Considering the signs of other entries in J4, we deduce that det(J4) < 0.
This means that E4 is always a hyperbolic saddle. For the stability of E5, as in the case of weak Allee effect
we observe two separate subcases: x4 < x5 < xmax (see Figure 2-(c)) and x4 < xmax < x5 (see Figure 2-(d)),
and signs of the elements of the Jacobian matrix J5 are the same as Si1n(J3) in (19) and (20), respectively,
implying the same conclusion about the stability of this equilibrium point in these two cases.
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2.2.3. Qualitative behaviour near the origin of the system
In order to determine in which cases the extinction of both populations can be avoided, we explore

qualitative dynamics of the system (9) in the neighbourhood of the origin and in the cases where the origin
acts as an local attractor, we study its basin of attraction. The basin of attractionB(x⋆) of the stable equilibra
x⋆ is the set of all points in phase space that converge to x⋆ in forward time.

We introduce time scaling dτ = dt
x(1+xy) to transform system (9) into

ẋ = x2
(
(1 − x)(x −m)(1 + xy) − ay2

)
ẏ = y

(
bx(1 + xy) − cy(1 + xy)

)
,

(21)

which is topologically equivalent to the system (9). If we set x = 0, from the second equation of the system
(21), we get ẏ = −cy2 < 0. Therefore, y-axis is an invariant line which converges to the origin. On the other
hand, if we set y = 0, we get ẋ = x2(1 − x)(x − m). In the case when m < 0, orbits with initial values on the
x-axis will diverge from the origin provided that x(0) < 1. In the case when m > 0, orbits along the x-axis
will converge towards the origin only if x(0) < m, otherwise they will diverge. The case when m = 0 is
analysed later. The Jacobian matrix of system (21), calculated at the origin is zero matrix, meaning that the
origin is non-hyperbolic. To desingularize the origin, we use the blow-up method described in [11]. More
precisely, we blow-up the origin in x-direction. Blow-up in y-direction is omitted due to not providing new
insights into dynamics of the system near origin. Using the transformations

x = u, y = uv, τ = t/x (22)

the origin is blown up into the entire u-axis. System (21) is transformed into

du
dτ
= u

(
u +m(u − 1)(u2v + 1) − u2(1 + (u − 1)uv + av2)

)
dv
dτ
= v

(
b +m − (m + 1)u − cv + u2 + u2v(b +m − (1 +m)u + u2 + v(a − c))

)
.

(23)

System (23) has two equilibria on v-axis: U0(0, 0) and U1

(
0, b+m

c

)
. Jacobian matrices of the system (23) in U0

and U1 are given with

J0 = J(0, 0) =
(
−m 0
0 b +m

)
, J1 = J

(
0, b+m

c

)
=

(
−m 0

−
(m+1)(b+m)

c −b −m

)
.

The Jacobian matrix J0 has two real eigenvalues λ1 = −m and λ2 = b + m, while the eigenvalues of the
Jacobian matrix J1 are λ3 = −m and λ4 = −(b +m). We observe the following cases:

(1) b +m > 0 (2) b +m < 0 (3) b +m = 0 (4) m = 0.

(Case 1.) b +m > 0. We separate two subcases.

(1-a) In the case when m > 0, we have that λ1 < 0 and λ2 > 0, indicating that U0 is a saddle. Right branch of
the stable manifold of U0 is contained in the u-axis, while the upper branch of the unstable manifold
is contained in the v-axis. Since λ3 < 0 and λ4 < 0, U1 is locally asymptotically stable node. Two
branches of the stable manifold of U1 tangent to the fast stable subspace of the linear system w′ = J1w
are contained in the v-axis, while the one branch of the stable manifold of U1 tangent to the slow
stable subspace of the linear system at U1, belongs to the open first quadrant. Dynamics of the system
(23) are depicted in the Figure 3-(a) (note that the curve Ws(U1) is a local approximation of the stable
manifold of U1). By taking the inverse transformations

u = x, v =
y
x
, t = τu (24)
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the line u = 0 is collapsed to the origin of the system, while the line v = 0 is mapped to y = 0 and the
curve Ws(U1) is mapped to some curve Γs(E1) in the open first quadrant.

Thus, the basin of attraction B(U1) is mapped to the open region Ω. Since time rescaling preserves
time-orientation of the orbits in the first quadrant, every orbit in this open region approaches to the
origin of the system (9) in the forward time. Hence, we deduce that the origin of the system (9) is a
local attractor with a parabolic attracting sector in the first quadrant. Dynamics of the system (9) in
this case is depicted in the Figure 3-(b).

Figure 3: Dynamics of the system near the origin when b + m > 0 and m > 0. (a) For the system (23). (b) For the
system (9).

(1-b) In the case when m < 0, we have that λ1 > 0 and λ2 > 0, which indicates that U0 is an unstable node.
One branch of the unstable manifold of U0, tangent to the fast stable subspace of the linear system
at U0 is contained in the u-axis, while the one branch of the unstable manifold of U0, tangent to the
slow stable subspace of the linear system at U0 is contained in the v-axis. At the same time, λ3 > 0
and λ4 < 0, indicating that U1 is a saddle. Both branches of the stable manifold of U1 are contained
in the v-axis, while the one branch of the unstable manifold of U1 belongs to the open first quadrant.
Dynamics of the system (23) is depicted in the Figure 4-(a).
By taking the inverse transformations (24), the curve Wu(U1) which is a local approximation of the
unstable manifold of U1 is mapped to some curve Γu(E1), which belongs to the regionΩ. Orientation
of the orbits in the first quadrant is preserved, and therefore we deduce that the origin of the system
(9) is a local repeller with one hyperbolic sector and one parabolic repelling sector in the first quadrant.
Curve Γu(E1) and y−axis serve as separatrix curves for a hyperbolic sector. Dynamics of the system
(9) in this case is depicted in the Figure 4-(b).

Figure 4: Dynamics of the system near the origin when b + m > 0 and m < 0:(a) for the system (23) (b) for the
system (9).

(Case 2.) b + m < 0. Since we know that b > 0, the case where b + m < 0 is only possible when m < 0. In



P. Z. Djordjević, J. V. Manojlović / Filomat 38:4 (2024), 1221–1254 1232

this case, equilibrium point U0 is a saddle, while equilibrium point U1 is an unstable node. However, the
second coordinate of U1 is less than zero and both branches of the unstable manifold of U1 are contained in
the exterior of the first quadrant. Hence, by ‘blowing-down’ to the system (9), we conclude that dynamic of
the systems (23) and (9) is similar, depicted in the Figure 5-(a) and 5-(b), respectively. The origin is a repeller
with a hyperbolic sector in Ωwhose separatrices are axis.

Figure 5: Dynamics of the system near the origin when b +m < 0: (a) For the system (23). (b) For the system (9).

Next, we determine the dynamics of system (23) when two special cases can occur: b +m = 0 and m = 0.
(Case 3.) If b+m = 0, equilibrium points U1 collides with the origin U0. Eigenvalues of the J0 are λ1 = b > 0
and λ2 = 0, meaning that U0 is non-hyperbolic. In this case, one branch of the unstable manifold Wu(U0) is
contained in the u-axis, while the center manifold Wc(U0) can be locally approximated with v-axis. From
centre manifolds theory, the dynamics near equilibrium U0 is dominated by the vector field restricted to
its centre manifold v̇ = −cv2. It follows that the origin of the system (23) is a saddle-node with a hyperbolic
sector in the first quadrant. Dynamics of the systems (23) and (9) therefore match with the ones shown in
the Figure 5.

(Case 4.) If m = 0, there exist two equilibrium points, U0(0, 0) and U1

(
0, b

c

)
. Eigenvalues of J0 are λ1 = b > 0

and λ2 = 0, while eigenvalues of J1 are λ3 = 0 and λ4 = −b < 0. Both U0 and U1 are non-hyperbolic.
One branch of the unstable manifold Wu(U0) is contained in the v-axis, while the central manifold Wc(U0)
near U0 can locally be approximated as u-axis. The dynamics of the system (23) near equilibrium U0
dominated by the vector field restricted to its centre manifold

u̇
∣∣∣∣
Wc(U0)

= u2
− u3.

It follows that U0 is a saddle-node of the system (23), with a hyperbolic sector in the first quadrant.
One branch of the stable manifold Ws(U1) is contained in the v-axis, while the central manifold Wc(U1) near
U1 can locally be approximated with:

Ĝ =
{
(u, v) : v = h(u) =

b
c
+

ab3 + c2(1 + b)
bc

u2 +
5ab3 + c2(1 + 3b)

b2 u3 +O(u4)
}

The dynamics of the system (23) near equilibrium U1 restricted to the central manifold is given by:

u̇
∣∣∣∣
Wc(U1)

= cu2
−

(
1 +

ab2

c2

)
u3 +O(u4).

Therefore, equilibrium point U1 is saddle-node with two hyperbolic sectors in the first quadrant, while the
curve Ĝ serves as a local separatrix between two sectors. The desired dynamics of the system (9) is obtained
by ‘blowing-down’ the dynamics of the system (23) back to the system (9). In fact, by ”blowing-down”
Wc(U0), one obtains the x−axis, while in a neighbourhood of the origin in (9), using by (24), the inverse
image of the curve Ĝ is the invariant curve

Γ =
{
(x, y) : y =

b
c

x +
ab3 + c2(1 + b)

bc
x3 +

5ab3 + c2(1 + 3b)
b2 x4 +O(x5)

}
Therefore, we get that the origin of the system (9) is a local repeller with one hyperbolic sector and one
parabolic repelling sector in the first quadrant. Curve Γ and y-axis serve as separatrices for a hyperbolic
sector. Dynamics of the system (9) matches the one depicted in the Figure 4-(b).
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In conclusion, in the case of strong Allee effect, with m > 0, the origin is always a local attractor; see
the basin of attraction B(0, 0) in Figure 3-(b). Earlier it was stated that number of interior equilibria in
system (9), when under the influence of strong Allee effect, varies between zero and two. If the system
has no interior equilibria, given that axial equilibria E1,E2 are unstable and all solution of the system with
positive initial value end up in the bounded regionΦ, by Poincarè-Bendixon theorem, the origin is globally
asymptotically stable in the first quadrant.
On the other hand, for a weak Allee effect, with m ≤ 0, extinction is avoided, shown in Figures 4-(b) and
5-(b). Given that predator-free equilibria E3 is hyperbolic saddle, system will be persistent.

3. Bifurcation analysis

3.1. Saddle-node bifurcation
Analyzing the relative position of non-trivial nullclines in the case of strong Allee effect, we concluded

that number of interior equilibria varies from zero to two. It is clear that, under some conditions, saddle-
node bifurcation occurs. We consider the existence of saddle-node bifurcation around interior equilibrium
by taking m as bifurcation parameter. The bifurcation threshold value for which saddle-node bifurcation
occurs is denoted by msn. Interior equilibria E4 and E5 will collide to Esn(xsn, ysn) when L(x), given by
(15), has double root in the interval (m, 1). We assume that the polynomial L(x) has a positive double root
xsn ∈ (m, 1) for some threshold value m = msn. Then, L(xsn) = L′(xsn) = 0 and L′′(xsn) , 0. Geometrically, this
means that the prey non-trivial nullcline touches the predator non-trivial nullcline at the point Esn(xsn, ysn).
Since the slopes of non-trivial nullclines are same at Esn, we have that

dy( f )

dx
(xsn)

∣∣∣∣∣
m=msn

=
dy(1)

dx
(xsn)

∣∣∣∣∣
m=msn

,

which using (18) implies that det(J(xsn, ysn))
∣∣∣
m=msn

= 0. Therefore, JSN = J(xsn, ysn)
∣∣∣
m=msn

has zero eigenvalue.
Since saddle-node bifurcation is only possible in the case of the strong Allee effect, we need to show that

threshold value of parameter m falls in the interval (0, 1). To verify this, we simply need to check that, for
m = msn, slope of prey non-trivial nullcline is positive at the point Esn. From (17) we get that:

dy( f )

dx
(xsn)

∣∣∣∣∣
m=msn

= −

∂ f
∂x (x, y)
∂ f
∂y (x, y)

∣∣∣∣∣
m=msn,x=xsn,y=ysn

=
b
c
> 0,

which confirms that msn ∈ (0, 1).
To check corresponding transversality conditions of saddle-node bifurcation, we determine the eigen-

vectors corresponding to the zero eigenvalue of matrices JSN and JT
SN:

v =
(
v1
v2

)
=

(
c
b
1

)
, w =

(
w1
w2

)
=

− (c+bx2
sn)2

ax2
sn(2c+bxsn)

1

 .
The vector field of the system (10) is given by F (x, y) = (x f (x, y), y1(x, y))T. Differentiating the vector
function F (x, y) with respect to the bifurcation parameter m we obtain the function Fm(x, y) = (x ∂ f (x,y)

∂m , 0)T.
The transversality conditions for saddle-node bifurcation are verified as follows:

wT
Fm(x, y)

∣∣∣
m=msn,x=xsn,y=ysn

= −
(xsn − 1)(c + bx2

sn)2

axsn(2c + bx2
sn)

, 0,

wTD2
F (x, y)(v, v)

∣∣∣
m=msn,x=xsn,y=ysn

=
2c2(ab2(c − 3bx2

sn) + (c + bx2
sn)3)

ab2xsn(c + bx2
sn)(2c + bx2

sn)
.

Therefore, by Sotomayor theorem [19], the system (9) undergoes saddle-node bifurcation if ab2(3bx2
sn − c) ,

(c + bx2
sn)3 and the following theorem is proved.
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Theorem 3.1. System (9) undergoes saddle-node bifurcation with respect to the bifurcation parameter m, through
which two interior equilibria E4 and E5 collide to Esn(xsn, ysn) at bifurcation threshold m = msn, if ab2(3bx2

sn − c) ,
(c + bx2

sn)3

3.2. Hopf bifurcation
When discussing the stability of the interior equilibria E3 for weak Allee effect, we concluded that E3 is

always locally asymptotically stable if x3 > xmax. The change of stability of the interior equilibrium point
E3 may occur if x3 < xmax, in which case stability depends on the sign of the trace of the Jacobian matrix J3.
In the same way, in the case of strong Allee effect, the change of stability of the interior equilibrium point
E5 may occur if x5 < xmax. This suggests that Hopf bifurcation occurs at one interior equilibrium point,
regardless of the intensity of Allee effect. We explore the possibility of occurrence of Hopf bifurcation and
its direction around the interior equilibrium point Eh (̂x(m), ŷ(m)), where ŷ(m) = bx̂(m)/c, with respect to
the bifurcating parameter m. We investigate the threshold value mh and the corresponding transversality
conditions. The Jacobian matrix at (̂x(m), ŷ(m)) is given by

JH = J
(̂
x(m), ŷ(m)

)
=

̂x(m)
(
1 +m − 2x̂(m) + ab3x̂(m)3

c(c+bx̂(m)2)2

)
a
(

c2

(c+bx̂(m)2)2 − 1
)

b2/c −b

 .
Theorem 3.2. The interior equilibrium point Eh (̂x(m), ŷ(m)) changes its stability through the Hopf-bifurcation at
the threshold m = mh such that

(i) T(m)
∣∣∣∣
m=mh

= 0 (ii) D(m)
∣∣∣∣
m=mh

> 0 (iii)
dT(m)

dm

∣∣∣∣∣
m=mh

, 0, (25)

where T(m) = trace(JH) and D(mh) = det(JH).

Proof. The Hopf bifurcation threshold value mh is obtained from T(m) = 0, so that m = mh is a solution of
the equation:

(1 +m − 2x̂(m))̂x(m) +
ab3x̂(m)4

c(c + bx̂(m)2)2
− b = 0.

It follows from the discussion in Sections 2.2.1 and 2.2.2 that D(mh) > 0, therefore condition (ii) is satisfied.
If (i) and (ii) hold, the characteristic equation λ2 + D(mh) = 0 has two purely imaginary roots λ1,2 =

±θ0 = ±i
√

D(mh). To check the transversality condition for Hopf bifurcation let at any point m in the
neighbourhood of mh the eigenvalues of the Jacobian matrix are λ1,2 = ξ(m) ± θ(m), where ξ(m) = 1

2 T(m)
and θ(m) = 1

2

√
4D(m) − T2(m). Then, if

d
dm
ξ(m)

∣∣∣∣∣
m=mh

=
1
2

dT(m)
dm

∣∣∣∣∣
m=mh

, 0

the transversality condition is satisfied and the system undergoes Hopf-bifurcation at m = mh satisfying
(25).

The stability of the limit cycle is determined by the sign of the first Lyapunov coefficient. We determine
the expression for the first Lyapunov coefficient ℓ1, by using the method described in Kuznetsov [14].
Hopf-bifurcation is supercritical if ℓ1 < 0 and it is subcritical if ℓ1 > 0. It is to be noted that when ℓ1 = 0,
the system exhibits generalized Hopf-bifurcation (Bautin bifurcation). Since it is difficult to provide the
explicit parametric expression for the coordinates of the interior equilibrium point, an analytic expression
for the threshold as well as condition for parameters under which sign of the first Lyapunov coefficient
can change, are very difficult to obtain. However, numerically, we have investigated that in both cases of
strong (see Figures 6,7) and weak Allee effect (see Figures 8,9), the system undergoes both supercritical and
subcritical Hopf-bifurcation as we vary the bifurcation parameter m.
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• Fix parameter values a = 0.669286, b = c = 0.15. Threshold value is mh = 0.23569 at which system (9)
has an equilibrium point Eh(0.490672, 0.490672) with eigenvalues λ1,2 = ±0.112609i. First Lyapunov
coefficient at equilibrium point Eh for these parameter values is equal to ℓ1 = 0.291261 > 0. Therefore,
subcritical Hopf bifurcation occurs around Eh. For fixed value m = 0.2361 > mh, system (9) has
two interior equilibrium points E3(0.34421, 0.34421) and E4(0.489448, 0.489448). Eigenvalues of the
Jacobian matrix calculated at E3 are λ1 = 0.121963 and λ2 = −0.0759361, meaning E3 is a saddle point.
Eigenvalues corresponding to the equilibrium point E4 are λ1,2 = 0.000442971 ± 0.111451i, meaning
E4 is unstable focus. Phase portrait is shown on Figure 6-(a). As m = 0.2353 decreases below it’s
threshold value mh, E4(0.491814, 0.491814) becomes locally asymptotically stable focus, while unstable
limit cycle appears around it, as shown on Figure 6-(b).

Figure 6: Subcritical Hopf bifurcation in the case of strong Allee effect: Phase portraits of the system
(9) for fixed values of parameters a = 0.669286, b = c = 0.15. The system exhibits subcritical Hopf-bifurcations at
mh = 0.23569. (a) Fixed value m = 0.2361 > mh. Equilibrium point is unstable focus and there is no limit cycles.
(b) Fixed value m = 0.2353 < mh. Unstable limit cycle around stable interior equilibrium point.

• Fix parameter values a = 0.901249, b = c = 0.15. Threshold value is mh = 0.174919 at which
system (9) has an equilibrium point Eh(0.448322, 0.448322) with eigenvalues λ1,2 = ±0.137704i. First
Lyapunov coefficient at equilibrium point Eh is equal ℓ1 = −0.699092 < 0. Therefore, supercritical
Hopf bifurcation occurs around Eh. For fixed value m = 0.1756 > mh, system (9) has two interior
equilibrium points E3(0.240457, 0.240457) and E4(0.446984, 0.446984). Equilibrium point E3 is saddle
with eigenvalues λ1 = 0.115617 and λ2 = −0.0958825. Equilibrium point E4 is unstable focus with
eigenvalues λ1,2 = 0.000438404 ± 0.136541i. For m = 0.1756 > mh above its threshold value, E4 is
unstable focus around which exists stable limit cycle, depicted on Figure 7-(a). As m decreases below
it’s threshold value mh, for m = 0.1745 < mh, limit cycle disappears while E4(0.449143, 0.449143)
becomes locally asymptotically stable focus, as shown on Figure 7-(b).

Figure 7: SupercriticalHopf bifurcation in the case of strong Allee effect: Phase portraits of the system
(9) for fixed values of parameters a = 0.901249, b = c = 0.15. The system exhibits supercritical Hopf-bifurcations at
mh = 0.174919. a) Fixed value m = 0.1756 > mh. Stable limit cycle around unstable interior equilibrium point. b)
Fixed value m = 0.1745 < mh. Equilibrium point is locally asymptotically stable focus and there is no limit cycles.
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• Fix parameter values a = 14, b = c = 0.08. Threshold value is mh = −0.086351 at which system (9)
has an equilibrium point Eh(0.11313, 0.11313) with eigenvalues λ1,2 = ±0.147402i. First Lyapunov
coefficient at equilibrium point Eh for these parameter values is equal to ℓ1 = 1.17687 > 0. Therefore,
subcritical Hopf bifurcation occurs around Eh. For fixed value m = −0.11 < mh, system (9) has one
interior equilibrium point E3(0.12139, 0.12139). Eigenvalues corresponding to the equilibrium point
E3 are λ1,2 = 0.000759134 ± 0.16053i, meaning E3 is unstable focus, depicted on Figure 8-(a). As m
increases above it’s threshold value mh, for m = −0.07 > mh, E3(0.106814, 0.106814) becomes locally
asymptotically stable focus, while unstable limit cycle appears around it, as shown on Figure 8-(b).

Figure 8: SubcriticalHopf bifurcation in the case of weakAllee effect: Phase portraits of the system (9) for
fixed values of parameters a = 14, b = c = 0.08. The system exhibits subcritical Hopf-bifurcations at mh = −0.086351.
(a) Fixed value m = −0.11 < mh. Equilibrium point is unstable focus and there is no limit cycles. (b) Fixed value
m = −0.07 > mh. Unstable limit cycle around stable interior equilibrium point.

• Fix parameter values a = 5, b = c = 0.1. Threshold value is mh = −0.173048 at which system (9)
has an equilibrium point Eh(0.261946, 0.261946) with eigenvalues λ1,2 = ±0.22836i. First Lyapunov
coefficient at equilibrium point Eh for these parameter values is equal to ℓ1 = −1.08075 < 0. Therefore,
supercritical Hopf bifurcation occurs around Eh. For fixed value m = −0.25 < mh, system (9) has
one interior equilibrium point E3(0.288044, 0.288044). Eigenvalues corresponding to the equilibrium
point E3 are λ1,2 = −0.010279 ± 0.25618i, meaning E3 is locally asymptotically stable focus, depicted
on Figure 9-(a). As m increases above it’s threshold value mh, m = −0.15 > mh, E3(0.253132, 0.253132)
becomes unstable focus, while stable limit cycle appears around it, as shown on Figure 9-(b).

Figure 9: Supercritical Hopf bifurcation in the case of weak Allee effect: Phase portraits of the system
(9) for fixed values of parameters a = 5, b = c = 0.1. The system exhibits supercritical Hopf-bifurcations at
mh = −0.173048. (a) Fixed value m = −0.25 < mh. Equilibrium point is locally asymptotically stable focus and there
is no limit cycles. (b) Fixed value m = −0.15 > mh. Stable limit cycle around unstable interior equilibrium point.

3.3. Generalized Hopf bifurcation
The fact that system (9) undergoes both supercritical and subcritical Hopf bifurcation indicates existence

of generalized Hopf bifurcation at the interior equilibrium point Eh. The system exhibits a Bautin or
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generalised Hopf bifurcation at the interior equilibrium point Eh when the first Lyapunov number at the
Hopf bifurcating threshold mh is zero. Two limit cycles are generated from such a bifurcation by perturbing
the parameters m and a in the neighborhood of the parameters critical values m1h and a1h. Although
analytically, conditions for this bifurcation are difficult to produce for the observed system, due to its
complicated nature, numerically by fixing the parameters b and c, it can be verified that the system exhibits
generalized Hopf bifurcation around equilibrium Eh for bifurcation parameter values (a,m) near (a1h,m1h).
Direction of the generalized Hopf bifurcation, that is the stability of the two limit cycles is determined by
the sign of the second Lyapunov coefficient ℓ2. If ℓ2 > 0, system undergoes subcritical generalized Hopf
bifurcation, meaning that equilibrium Eh is an unstable weak focus of multiplicity two and two limit cycles
can coexist around it, inner one being stable, outer one unstable. If ℓ2 < 0, system undergoes supercritical
generalized Hopf bifurcation, meaning that equilibrium Eh is locally asymptotically stable weak focus of
multiplicity two and two limit cycles can coexist around it, inner limit cycle will be unstable, while outer
one is stable.

• Fix the values b = c = 0.15. Critical bifurcation values are a1h = 0.707731 and m1h = 0.224074. For these
values, system (9) has two interior equilibrium points, saddle E4(0.322451, 0.322451) and a weak focus
E5(0.48295, 0.48295). Numerical calculations show that for the equilibrium point E5, the first Lyapunov
coefficient is ℓ1 = 0, while the value of the second Lyapunov coefficient is ℓ2 = 8.20144 > 0. For values
of parameters a = 0.7222 > a1h and m = 0.2199 < m1h, equilibrium point E3(0.480079, 0.480079) is
unstable focus. Two limit cycles exist around E5, inner one being stable, while outer one is unstable.
Bifurcation diagram of the system is shown on Figure 10.

• Fix the values b = c = 0.102. Critical bifurcation values are a1h = 7.582835 and m1h = −0.0491589. For
these values, system (9) has only one interior equilibrium point, weak focus E3(0.151578, 0.151578).
Numerical calculations show that, for equilibrium point E3, the first Lyapunov coefficient is ℓ1 = 0. The
value of the second Lyapunov coefficient is ℓ2 = −1096.76 < 0. For values of parameters a = 6.97 < a1h
and m = −0.0197 > m1h, equilibrium point E3(0.142804, 0.142804) is locally asymptotically stable focus.
Two limit cycles exist around E3, inner one being unstable while outer one is stable.

It is important to mention that system may not exhibit the generalized Hopf bifurcation under certain
conditions. For example, for fixed values of parameters b = c = 0.182, first Lyapunov coefficient is always
positive, meaning that only subcritical Hopf bifurcation can occur.

Figure 10: Bifurcation diagram of generalized Hopf bifurcation for fixed values of parameters b = c = 0.15. Curve of
Hopf bifurcation is colored green, while the curve of saddle-node bifurcation of limit cycles is colored blue.
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3.4. Bogdanov-Takens bifurcation
Existence of both saddle-node bifurcation and Hopf bifurcation suggests that system (9) might undergo

Bogdanov-Takens bifurcation, introduced by Bogdanov [6, 7] and Takens [26]. In fact, if two interior
equilibrium appears through the saddle–node bifurcation and one of them changes stability via Hopf
bifurcation, Bogdanov-Takens bifurcation of codimension 2 might occur at an interior equilibrium point
denoted by Ebt(xbt, ybt), where ybt = bxbt/c. Choosing a and m as bifurcation parameters, BT bifurcation
threshold values are abt,mbt, that is det(JBT)

∣∣∣
(a,m)=(abt,mbt)

= 0, tr(JBT)
∣∣∣
(a,m)=(abt,mbt)

= 0, JBT = J(xbt, ybt), so that the
Jacobian matrix at Ebt has a zero eigenvalue with multiplicity two. For (a,m) = (abt,mbt) both saddle-node
and Hopf bifurcation collide with each other and the instantaneous equilibrium point becomes a cusp of
co-dimension two.

Due to the complexity of the expressions it is difficult to find explicit parametric conditions for abt and
mbt, but numerically it can be verified that the system exhibits Bogdanov–Takens (BT) bifurcation. Next
theorem gives conditions under which a unique interior equilibrium Ebt is a cusp of codimension two (for
the proof see Appendix A.1).

Theorem 3.3. For the value of parameters (a,m) = (abt,mbt), system (9) has interior equilibrium Ebt(xbt, ybt) which
is a cusp point of codimension 2 (a Bogdanov–Takens singularity) if and only if s1s2 , 0, where s1 and s2 are given by

s1 =
c
(
b3x5

bt − 2c2xbt(1 − 3xbt + 3x2
bt) − 3bck1 − b2x2

btk2

)
xbt(2xbt − 1)(c + bx2

bt)(2c + bx2
bt)

, s2 =
2c

(
b3x5

bt − 2c2xbt(1 − 3xbt + 3x2
bt) + bck3 − b2x2

btk2

)
bxbt(2xbt − 1)(c + bx2

bt)(2c + bx2
bt)

,

k1 = c(xbt − 1) + x3
bt + 3x4

bt(xbt − 1), k2 = c(1 − 6xbt) + x3
bt + 3x4

bt(xbt − 1), k3 = c(1 + xbt) − 3x3
bt(1 − 3xbt + 3x2

bt).
(26)

Also, in Appendix A.2 the nondegeneracy condition of the Bogdanov-Takens (BT) bifurcation is proved,
using procedure described by Kuznetsov [14]. By employing a series of change of coordinates in a small
neighborhood of the origin, the system (27) is reduced to the normal form of a Bogdanov-Takens bifurcation
(see (33)), in which the sign of S determines if the BT bifurcation is supercritical or subcritical.

4. Numerical simulations

To show the locations of bifurcation curves SN, H and HL, and sub-regions in the parametric plane they
separate, we utilize numerical simulation. We fix the parameters b and c while we vary parameters a and m
to generate bifurcation curves. Bifurcation diagram is shown on Figure 11. Saddle-node bifurcation curve
SN is represented with blue curve, Hopf bifurcation curve H is represented with green curve and homoclinic
bifrucation curve HL is represented with red curve. We find that curves H and SN intersect each other at
two points. Namely, this means that there are two points in parameter space at which Bogdanov-Takens
bifurcation occurs. Bifurcation curve HL emerges from one BT point and intersects SN curve in other BT
point. On H curve, there exists a generalized Hopf bifurcation point, which is denoted with GH. There
is one more bifurcation curve originating at the point GH, denoted as curve T, at which a saddle-node
bifurcation of limit cycles take place.
These bifurcation curves dissect the parameter space into six regions, labeled from I to VI. The dynamics of
the system (9), as well as number of interior equilibria and limit cycles, change as parameters a and m move
through different regions. In region I, system (9) has no interior equilibrium points, as shown on Figure
12-(a). From region I, parameters can enter either to region II or to region VI.

(i) Moving from region I to region VI, through the saddle-node bifurcation, two interior equilibria appear,
E4 which is saddle and E5 which is locally asymptotically stable focus, as shown on Figure 12-(f).

(ii) Moving from region I to region II, through the saddle-node bifurcation, two interior equilibria appear,
E4 which is saddle and E5 which is an unstable focus. Phase portrait is shown on Figure 12-(b). From
region II, parameters can enter three different regions: either to the region IV, through part of the H
curve, between left BT point and GH point, or to the region III through curve T, or to the region V
through HL curve.
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(ii-1) From region II to region IV through subcritical Hopf bifurcation, unstable focus E5 becomes
locally asymptotically stable focus surrounded by an unstable limit cycle, as shown on Figure
12-(d). These limit cycle expand as the parameters approach the homoclinic bifurcation curve,
at which the system has a homoclinic orbit at the saddle point E4. When the parameters enter
region VI limit cycle no longer exists, while two interior equilibria exists, a saddle point E4 and
a locally asymptotically stable focus E5.

(ii-2) As parameters pass from region II to region III, stability of two interior equilibrium points does
not change, however through saddle-node bifurcation of limit cycles two limit cycles appear
around unstable focus E5, inner limit cycle is stable and outer is unstable, as shown on Figure
12-(c). From region III, parameters can enter either to region IV or to region V.

(ii-2-a) If parameter values move from region III to region IV, the stability of E5 is changed through
supercritical Hopf bifurcation and it becomes locally asymptotically stable focus surrounded
by an unstable limit cycle, while inner stable limit cycle disappears.

(ii-2-b) If parameter values move from region III to region V, outer unstable limit cycle disappears
through homoclinic bifurcation, while the stability of the unstable inner equilibria E5 and
inner stable limit cycle do not change. Transition from V to VI results in appearance
of supercritical Hopf bifurcation around E5, which changes its stability and limit cycle
disappears.

(ii-3) In the region V system has two interior equilibria, saddle point and unstable focus surrounded
by stable limit cycle, which expand as the parameter approach the homoclinic bifurcation curve
HL, between regions V and II. At HL curve the system has a homoclinic orbit at the saddle point
E4, so that in the region II limit cycle disappears, while the two equilibrium points remain and
do not change the stability.

Figure 11: Bifurcation diagram of the system (9) in am−plane for fixed values of parameters b = c = 0.15. Saddle-
node bifurcation curve SN (blue), Hopf bifurcation curve H (green), homoclinic bifurcation curve HL (red). Two
Bogdanov-Takens points labeled with BT are located at the intersection of the curves curves H and SN, one generalized
Hopf bifurcation point GH. Magenta curve that originating at the point GH represents bifurcation curve T. This
curve is significant only until its intersection with HL red curve. These curves divide the parametric space into six
different regions, labeled by roman numerals I to VI.
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(a) Region (I) (b) Region (II)

(c) Region (III) (d) Region (IV)

(e) Region (V) (f) Region (VI)

Figure 12: Figure illustrates phase portraits of the system (9) for different regions of Figure 11, for fixed parameters
b = c = 0.15 and varied parameters a and m.
a) (a,m) = (1, 0.25) ∈ I : there aren’t any interior equilibria, and origin is global attractor.
b) (a,m) = (0.75, 0.22) ∈ II : two interior equilibria exist, saddle point E4 and unstable focus E5. No limit cycle
surrounds equilibrium point E5.
c) (a,m) = (0.786, 0.203) ∈ III : two interior equilibria exist, saddle point E4 and unstable focus E5 surrounded by
two limit cycles, inner one being stable and outer one unstable.
d) (a,m) = (0.697, 0.2265) ∈ IV : two interior equilibria exist, saddle point E4 and locally asymptotically stable focus
E5 surrounded by an unstable limit cycle.
e) (a,m) = (0.797, 0.2) ∈ V : two interior equilibria exist, saddle point E4 and unstable focus E5 surrounded by a
stable limit cycle.
f) (a,m) = (0.7, 0.2) ∈ VI : two equilibrium points exist, saddle point E4 and locally asymptotically stable focus E5.
No limit cycle surrounds equilibrium point E5.
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Numerical simulations show another interesting dynamics. For certain values of parameters b and c,
it is possible for three generalized Hopf bifurcation points to exist. Figure 13 show bifurcation diagram of
system (9) for fixed parameter values b = c = 0.102. The additional two bifurcation points GH lie on the
Hopf bifurcation curve H and are connected with bifurcation curve T, represented with magenta colored
curve. Now, before entering region V from region VI, parameters must pass through region VII, bounded
with bifurcation curves between two GH points that corresponds to the saddle-node bifurcation of limit
cycles and Hopf bifurcation curve. In this region, equilibrium point E5 is locally asymptotically stable
focus, while two limit cycles surround it, inner limit cycle being unstable and outer being stable. Through
subcritical Hopf bifurcation, which occurs as parameters pass into region V, E5 becomes unstable focus, the
inner unstable limit cycle disappears, while the stable outer limit cycle remains surrounding E5.

Figure 13: Bifurcation diagram of the system (9) for fixed values of parameters b = c = 0.102. Saddle-node
bifurcation curve SN (blue), Hopf bifurcation curve H (green), homoclinic bifurcation curve HL (red), bifurcation
curves T (magenta).

As it was mentioned earlier when we discussed existence of generalized Hopf bifurcation, under certain
conditions only subcritical Hopf bifurcation can exists. Bifurcation diagram of system (9) for parameter
values b = c = 0.182 is shown on Figure 14. In this case, bifurcation curves dissect parameter space into
four regions, labeled I to IV. In region I, system (9) has no interior equilibria. From region I, parameters
can enter either to region II or to region IV.

(i) Moving from region I to region IV, through the saddle-node bifurcation, two interior equilibria
appear, E4 which is saddle and E5 which is locally asymptotically stable focus.

(ii) Moving from region I to region II, two interior equilibria appear, E4 which is saddle and E5 which is
unstable focus. As parameters pass from region II into region III, subcritical Hopf bifurcation gives
rise to unstable limit cycle while E5 becomes locally asymptotically stable focus. Through homoclinic
bifurcation, which occurs as parameters pass from region III into region IV, limit cycle collides with
saddle E4 and disappears, while the stability of interior equilibria doesn’t change.
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Figure 14: Bifurcation diagram of the system (9) for parameter values b = c = 0.182. Saddle-node bifurcation curve
SN is represented with blue curve. Hopf bifurcation curve H is represented with green curve. Homoclinic bifurcation
curve HL is represented with red curve.

5. Basins of attraction

Previously we concluded that, in the case of strong Allee effect, the system (9) can have more than one
attractor. One of them is always the origin and the basin of attraction of the origin has been discussed
in Section 1.2.3. The system (9) may have two more attractors, either a stable limit cycles or locally
asymptotically stable equilibria. The basin of attractionB(γ) of the stable limit cycle γ is the set of all points
in phase space that converge to this limit cycle in forward time. In this section we discuss the basins of
attraction of all possible attractors, as we will determine the existence of separatrices in the phase plane
separating basins of attraction related to periodic co-existence and extinction of both predator and prey
population.

We proved that equilibrium point E4 is always a saddle point. The stable manifold of saddle point
E4, Ws(E4), often acts as separatrix curve between basins of attraction of two attractors. Let Ws

↙
(E4) be

the branch of the stable manifold of saddle point E4 that approaches E4 from top right, while Ws
↗

(E4) is
the branch that approaches E4 from bottom left. Similarly, Wu

↗
(E4) denotes the branch of the unstable

manifold of saddle point E4 that escapes E4 towards top right, while Wu
↙

(E4) is the branch that escapes
toward bottom left. We also observe the behaviour of the branch of the unstable manifold of the saddle
point E2 that belongs to the open firts quadrant, denoted with Wu(E2). Moreover, we can deduce that there
are always two heteroclinic connections: H14 between E1 and E4, which is a subset of Wu(E1)∩Ws

↗
(E4), and

H12 between E1 and E2, which is a subset of Wu(E1) ∩Ws(E2). Also, there is an orbitH40 which is a subset
of Wu

↙
(E4) and approaches the origin. These orbits are marked with green line in all images bellow.

Depending on the value of parameters, when the bifurcation diagram is shown in Figure 11, there are
four possible cases that can occur, in which system (9) has two attractors - either the origin and the stable
interior equilibrium or the origin and the stable limit cycle. Basins of attraction are shown on Figures 15,
16, 17 and 18. However, in the case the system has three GH points, that is for the bifurcation diagram
shown in Figure 13, system (9) may have three attractors : the origin, the stable interior equilibrium and
the stable limit cycle and possible basins of attraction are shown on Figure 19. In each of this figures basin
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of attraction B(0) is colored in yellow, basin of attraction of the stable interior equilibrium is colored in
blue and basin of attraction of the stable limit cycle is colored in green. Therefore, solutions with initial
values in yellow colored area will be driven to the extinction of both species, solutions with initial values in
blue colored area will tend to the locally asymptotically stable focus, corresponding to the stable periodic
coexistence, while solutions with initial values in green colored area will tend to the stable limit cycle, that
is the prey and predator will oscillate periodically.

1. Let the equilibrium point E5 be a locally asymptotically stable focus with an unstable limit cycle
around it (parameters (a,m) ∈ IV at Figure 11). In this case an unstable limit cycle γ serves as
separatrix curve between basins of attraction B(0) (yellow) and B(E5) (blue), shown on Figure 15.
Notice that the unstable manifold Wu(E2) tends to the origin as t→ +∞ (black line at Figure 15), while
the stable manifold Ws

↙
(E4) tends to the unstable limit cycle γ as t→ −∞ (red line at Figure 15).

Figure 15: Basins of attraction B(0) (yellow) and B(E5) (blue), when E5 is locally asymptotically stable focus
surrounded by an unstable limit cycle γ (blue). Green lines are a heteroclinic connectionH14 between E1 and E4, the
orbitH40 which is a subset of Wu

↙
(E4) and approaches the origin. Red line is the stable manifold Ws

↙
(E4) tending to

the unstable limit cycle γ as t→ −∞.

(a) (b) (c)

Figure 16: Basins of attraction B(0) (yellow) and B(γ) (green), when E5 is an unstable focus surrounded by a stable
limit cycle γ (blue). (a) Green lines depict heteroclinic connections H14 and Ĥ14, which separate the two basins of
attraction. (b) Green lines depict heteroclinic connectionsH14 andH24 , which separate the two basins of attraction.
(c) Green lines depict heteroclinic connectionsH14 and the stable manifold Ws

↙
(E4), which separate the two basins of

attraction.

2. Let the equilibrium point E5 be an unstable focus with a stable limit cycle γ around it (parameters
(a,m) ∈ V at Figure 11). To determine basins of attraction B(0) (yellow) and B(γ) (green), shown on
Figure 16 we distinguish three subcases, depending on the behavior of the branch Wu(E2) :
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(2-a) It may happen that the unstable manifold Wu(E2) tends to the origin as t→ +∞. In that case, there
is one more heteroclinic connection Ĥ14 between E1 and E4, which is a subset of Wu(E1)∩Ws

↙
(E4). This

heteroclinic orbit together with the heteroclinic connectionH14 separate the two basins of attraction,
as shown on Figure 16-(a).

(2-b) It may happen that there is one more heteroclinic connection H24 between E2 and E4, which is
a subset of Wu(E2) ∩Ws

↙
(E4). This heteroclinic orbit together with the heteroclinic connection H14

separates the two basins of attraction, as shown on Figure 16-(b).

(2-c) It may happen that the unstable manifold Wu(E2) tends to the stable limit cycle γ as t→ +∞. In
the case the stable manifold Ws

↙
(E4) together with the heteroclinic connectionH14 serve as separatrix

curves between two basins of attraction, as shown on Figure 16-(c).

3. Equilibrium point E5 is unstable focus with two limit cycles around it, inner one γ1 being stable and
outer one γ2 being unstable (parameters (a,m) ∈ III at Figure 11). In this case the outer unstable
limit cycle γ2 serves as the separatrix curve between two basins of attraction B(0) (yellow) and B(γ1)
(green), shown on Figure 17.

Figure 17: Basins of attraction B(0) (yellow) and B(γ1) (green), when E5 is unstable focus surrounded by two limit
cycles, inner one γ1 being stable and outer one γ2 being unstable. Limit cycles are colored with blue color.

4. Equilibrium point E5 is locally asymptotically stable focus with no limit cycles around it (parameters
(a,m) ∈ VI at Figure 11). We have two basins of attraction B(0) (yellow) and B(E5) (blue), shown
on Figure 18. Similarly as in the case 2., to determine the separtices between B(0) and B(E5), we
distinguish three subcases, depending on the behavior of the branch Wu(E2) :

(4-a) It may happen that the unstable manifold Wu(E2) tends to the origin as t → +∞. In that case,
heteroclinic connection Ĥ14 between E1 and E4 together with the heteroclinic connectionH14 separate
the two basins of attraction, as shown on Figure 18-(a).

(4-b) It may happen that there is one more heteroclinic connection H24 between E2 and E4, which
together with the heteroclinic connection H14 separates the two basins of attraction, as shown on
Figure 18-(b).

(4-c) It may happen that the unstable manifold Wu(E2) tends to the stable equilibrium E5 as t→ +∞,
in which case the stable manifold Ws

↙
(E4) together with the heteroclinic connection H14 serve as

separatrix curves between two basins of attraction, as shown on Figure 18-(c).
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(a) (b) (c)

Figure 18: B(0) (yellow) and B(E5) (blue), when E5 is a locally asymptotically stable focus with no limit cycles
around it. (a) Green lines depict heteroclinic connections H14 and Ĥ14, which separate the two basins of attraction
B(0) and B(E5). (b) Green lines depict heteroclinic connections H14 and H24, which separate the two basins of
attraction B(0) and B(E5). (c) Green lines depict heteroclinic connections H14 and the stable manifold Ws

↙
(E4),

which separate the two basins of attraction B(0) and B(E5).

5. Equilibrium point E5 is locally asymptotically stable focus with two limit cycles around it, inner one
γ1 being unstable and outer one γ2 is a stable (parameters (a,m) ∈ VII at Figure 13). We have now
three basins of attraction B(0) (yellow), B(γ2) (green) and B(E5) (blue), shown on Figure 19. In this
case the inner unstable limit cycle γ1 serves as the separatrix curve between two basins of attraction
B(γ2) and B(E5). To determine the separtices between B(0) and B(γ2), we distinguish three subcases,
depending on the behavior of the branch Wu(E2) :
(5-a) It may happen that the unstable manifold Wu(E2) tends to the origin as t→ +∞. In that case, there
is one more heteroclinic connection Ĥ14 between E1 and E4, which is a subset of Wu(E1)∩Ws

↙
(E4). This

heteroclinic orbit together with the heteroclinic connection H14 separate the two basins of attraction
B(0) and B(γ2), as shown on Figure 19-(a).
(5-b) It may happen that there is one more heteroclinic connection H24 between E2 and E4, which is
a subset of Wu(E2) ∩Ws

↙
(E4). This heteroclinic orbit together with the heteroclinic connection H14

separates the two basins of attraction B(0) and B(γ2), as shown on Figure 19-(b).
(5-c) It may happen that the unstable manifold Wu(E2) tends to the stable limit cycle γ2 as t→ +∞. In
this case the stable manifold Ws

↙
(E4) together with the heteroclinic connectionH14 serve as separatrix

curves between two basins of attraction B(0) and B(γ2), as shown on Figure 19-(c).

(a) (b) (c)

Figure 19: B(0) (yellow), B(γ2) (green) and B(E5) (blue), when E5 is a stable focus surrounded by two limit cycles,
inner one γ1 being unstable and outer one γ2 is stable. The inner unstable limit cycle γ1 serves as the separatrix
curve between two basins of attractionB(γ2) andB(E5). (a) Green lines depict heteroclinic connectionsH14 and Ĥ14,
which separate the two basins of attraction B(0) and B(γ2). (b) Green lines depict heteroclinic connectionsH14 and
H24, which separate the two basins of attraction B(0) and B(γ2). (c) Green lines depict heteroclinic connectionsH14
and the stable manifold Ws

↙
(E4), which separate the two basins of attraction B(0) and B(γ2).
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6. Conclusion

In this paper, we studied the dynamics and bifurcations of the Leslie-Gower predator-prey system with
increasing functional response proposed in [8] and Allee effect on prey. This system was first reduced
to a system with only four parameters using proper parameter scaling. The proposed model is shown
biologically well-posed in the sense that any positive solution starts in the first quadrant remains non-
negative and ends up in the invariant region Φ.
We compare the dynamic of the model with the weak Allee effect (WAE) and with a strong Allee effect
(SAE) relative to the existence and stability of equilibrium points, bifurcation and multiple attractors.

Existence and stability of equilibria: First, all possible equilibria and their local stability are explored.
Using the blow-up method (described in [11]) to desingularize the origin, the dynamics of the system near
origin is determined.

(a) In the case of WAE, it was shown: (a) system always has a unique axial equlibrium E2(1, 0) which is a
hyperbolic saddle; (b) for some values of parameters system has the unique interior equilibrium E3 whose
local stability changes depending on the parameters; (c) the origin is a local repeller, so populations will
always persist.

(b) In the case of SAE, it was shown: (a) system always has two axial equilibriums E1(m, 0) which is
an unstable hyperbolic node and E2(1, 0) which is a hyperbolic saddle; (b) for some values of parameters
system has at most two interior equilibriums E4 and E5, one of them being always a saddle point, while
local stability of the other one changes depending on the parameters; (c) the origin is a local attractor, so
the extinction of both species is possible.

Bifurcation: Next, bifurcations of the system were studied. Since we wanted to see how the Allee
effect in prey and the increasing functional response affect the system dynamics, we have constructed a
two parametric bifurcation diagram taking m and a as the two bifurcation parameters. It was shown that
regardless of the strength of the Allee effect, both subcritical and supercritical Hopf bifurcation occur, by
choosing m as the bifurcation parameter, producing either an unstable limit cycle or a stable limit cycle.
Also, by choosing a and m as the bifurcation parameters, generalized Hopf bifurcation occurs, producing
two limit cycles. On the other hand, BT bifurcation of codimension 2 can occur only when prey population
is under the influence of strong Allee effect. Existence of multiple codimension two bifurcation points
implies the existence of codimension 3 bifurcation points, however their existence wasn’t studied.

More precisely:
(a) In the case of WAE system can only have unique equilibrium point E3 at the interior of the first

quadrant. The unique interior equilibrium point E3 is either locally asymptotically stable or changes its
stability through both subcritical and supercritical Hopf bifurcation. Moreover, it was shown through
numerical simulation that in a small neighborhood of the unique interior equilibrium point E3, system
undergoes supercritical generalized Hopf bifurcation and E3 is either a locally asymptotic stable or unstable
and surrounded by a stable limit cycle or locally asymptotic stable surrounded by an unstable limit cycle
which is surrounded by a stable limit cycle and two limit cycles disappear through saddle-node bifurcation
of limit cycles. Generalized Hopf bifurcation demonstrates that there is a parametric region in which the
predator and prey coexist in the form of a stable interior equilibrium for any initial value. Also, there exists
another region in which multiple stable coexistence occur : the predator and prey either coexist in the form
of a stable interior equilibrium for all initial values lying inside the unstable limit cycle or the predator and
prey coexist in the form of a stable periodic orbit for all initial values lying outside the unstable limit cycle.
Therefore, for any value of parameters, there exists an attractor in the first quadrant, so that depending on
values of parameters, populations will persist with either stable periodic or oscillatory periodic behavior.

(b) In the case of SAE dynamics od the model is more complicated. We observed two important
differences in the dynamic of the model with SAE and with WAE. First, unlike WAE case, SAE produces
BT bifurcation of codimension 2 at the interior equilibrium E5 which is a cusp of codimension 2. In fact,
there are two BT points, implying that system undergoes either a reppeling or an attacting BT bifurcation of
codimension 2. Second, unlike WAE case which produces only supercritical generalized Hopf bifurcation,
in the case of SAE the system undergoes subcritical generalized Hopf bifurcation for certain parameters
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values at the interior equilibrium E5 which is a weak focus, while for some parameters values the system
undergoes both subcritical and supercritical generalized Hopf bifurcation.

Thefore, SAE gives a rise to a very rich dynamics of the model. First we give a concluding remarks
with a biological implication for a bifurcation diagram on Figure 11. We have demonstrated that there
exists a great possibility of the both populations going to extinction, when parameters belong to the region
I in which there is no interior equilibria, so that the origin is a global attractor. It is clear that if the Allee
effect is significantly high there is no coexistence of the population. The model has produced saddle–node
bifurcations curve which confirm the appearance or disappearance of coexistence fixed points and form
parametric region where unique stable coexistence fixed point appear. The significant change in the
behavior of the model due to saddle–node bifurcations is evident by the transmission from region II to
region I and from region VI to region I. However, existence of two BT points produce two qualitatively
different saddle–node bifurcations : first from region VI to region I when the stable periodic coexistence is
destroyed and all solution trajectories settle to total extinction, and the second from region II to region I,
when two unstable coexistence equilibrium points are destroyed, so that such saddle-node bifurcation does
not affect the existence of the internal attractor. In the first case, it is observed that at the high intensity of a,
smaller values of m are necessary to destroy the appearance of the stable coexistence equilibrium point. The
model has also produced Hopf bifurcation H curve at which there is one GH point. Denote left and right BT
point with BT1 and BT2. On H curve, Hopf bifurcation is subcritical between BT1 point and GH point, and
supercritical between GH point and BT2 point. From a ecological point of view, Hopf bifurcation indicates
the oscillatory coexistence of the species. The appearance of a stable limit cycle through supercritical
Hopf-bifurcation gives the oscillatory coexistence of the species. On the other hand, the unstable limit
cycle arising through subcritical Hopf-bifurcation is the boundary of the basin of attraction of the stable
equilibrium point. Through this bifurcation, transition from IV to II results that system loses the internal
attractor. It is observed that in the small parametric region III the model exhibits two limit cycles, one of
which is stable and around unstable interior equilibrium, and another is an unstable limit cycle surrounding
the stable limit cycle. Therefore, in this parametric region the predator and prey coexist in the form of a
stable periodic orbit for all initial values lying inside the unstable limit cycle. Finally, the emergence of
homoclinic loop has been shown through numerical simulation when the limit cycle collides with a saddle
point.

The model produces three qualitatively different homoclinic curves regarding the stability of a separatrix
cycle, depending on the type of BT bifurcation:

(i) on HL curve between regions II and V homoclinic loop Γ at a saddle E4 surround an unstable
equilibrium, creating the stable separatrix cycle Γ+ = Γ ∪ {E4}. In this case, model exhibits bi-stability
between the origin and a separatrix cycle Γ+ and solutions with initial values inside the separatrix
cycle Γ+ converge towards this cycle, while solutions with initial values outside the separatrix cycle
Γ+ converge towards the origin;

(ii) on HL curve between regions IV and VI homoclinic loop Γ at a saddle E4 surround a stable equlibrium
E5, creating an unstable separatrix cycle Γ− = Γ∪{E4}which is the boundary of two basins of attraction
B(0) and B(E5);

(iii) on HL curve between regions III and V homoclinic loop Γ at a saddle E4 surround a stable limit cycle
γ1, creating an unstable separatrix cycle Γ− = Γ∪{E4}which is the boundary of two basins of attraction
B(0) and B(γ1).

For a bifurcation diagram on Figure 13, in addition to all the above conclusions, the system shows another
specific dynamic. On H curve two more GH points appears. Moving anticlockwise at H curve from BT1
to BT2 we have three GH points, denoted one after the other by GH1,GH2 and GH3. Therefore, on H
curve, Hopf bifurcation is subcritical between BT1 point and GH1 point, supercritical between GH1 and GH2
points, again subcritical between GH2 and GH3 points, and finally again supercritical between GH3 point
and BT2 point. So, multiple changes of the number and the stability of limit cycles is observed. One more
small parametric region VII is produced in which the model exhibits two limit cycles, but in this case one
limit cycle is unstable surrounding stable interior equilibrium, while another is a stable one surrounding
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the unstable limit cycle. This results in a multiple coexistence of predator and prey, with either a stable
oscillations of both populations or with a stable periodic coexistence, for all initial values lying inside the
unstable limit cycle.
Considering the obtained bifurcation diagrams (See Figures 11,13 and 14), we can see that, as value of
parameter a decreases, range of parameter m for which coexistence is possible expands. More specifically,
the only regions where populations will always go extinct are regions I and II. To ensure populations have a
chance at surviving, we must control the values of parameters a and m, which can be done in several ways.
By increasing the intrinsic growth rate of prey r or its carrying capacity K, values of parameters a and m will
decrease. Coexistence can be guaranteed also by increasing the effectiveness of predator’s hunts, namely
by increasing the attack rate e and the amount of prey killed with each encounter C. With these changes,
only the value of parameter a gets decreased. While it may seem paradoxical, it is important to note that for
SAE, growth rate of prey population is largest precisely for population densities that are slightly larger than
the threshold. This way, even with larger predator population and with regular hunts, prey population can
compensate for the suffered losses made by predator hunting and both population will persist.

Multiple attractors:
(a) Bifurcation analysis shows that our ecological model (9) in the case of SAE generates multiple

attractors in a small parametric region. One of them is always the origin, so that model may exhibits bi-
stability either between the origin and a stable interior equilibrium points or between the origin and a stable
limit cycle. Thus, for the same set of parameter values, both populations can coexist oscillating around
specific population sizes or both species will be extinct. Also, stable periodic coexistence or extinction of
both species is possible for the same set of parameter values. Moreover, our model may even exhibits
tri-stability in the case that stable interior equilibrium is surrounded by two limit cycles wherby the stable
limit cycle encloses an unstable limit cycle. Therefore, strong Allee effect causes the models to be sensitive to
initial conditions. All coexistence scenarios were considered and basins of attraction of multiple attractors
are determined by the relative positions of stable and unstable manifolds of saddle points E2,E4 and unstable
node E2, which may change under perturbation.

Considering the obtained basins (see Figures 16,18,19), we can deduce that, in the case of SAE, popu-
lations will coexist only when predator population is not too numbered. This only confirms the statement
Cosner made in [8] which states that when the number of predators is too high, the forage line is too long
for efficient hunting. This will lead to the reduced predator population, but not before prey population
becomes too low to allow coexistence. In certain cases, quantity of prey population also limits coexistence.
If prey population is too numbered, coexistence will be impossible to achieve due to overexploitation by
prey population. It is also clear that parameters tied to predator population and its characteristics also
affect the behaviour of the system. However, exact reason can not be inferred.

(b) In the case of WAE, total extinction of the population is never possible since the origin is a local
repeller. Model may only exhibits multiple stable coexistence, so that for the same values of parameters
populations will coexist either with a stable periodic or with a oscillatory periodic behavior, depending
on the initial value. Through generalized Hopf bifurcation unstable limit cycle create the boundary of the
basin of attraction of the stable equilibrium point and a stable limit cycle.

Comparing the model (9) with predator-prey model (4) without Allee effects considered in [22], it is
observed that a strong Allee effect significantly modifies the original system dynamics. The system (4)
has a predator-free equilibrium which is a saddle point and a unique interior equilibrium that can be
globally stable for certain parameter values. Also, system (4) undergoes supercritical Hopf bifurcation and
supercritical generalized Hopf bifurcation at non-hyperbolic interior equilibrium. Therefore, weak Allee
effect does not change significantly dynamic behavior of the model (4), since there is a wide range of initial
values that allow the two populations to coexist and both model demonstrates the existence of a bi-stability
phenomenon. However, the strong Allee effect drive the model (9) to the possibility of total extinction.
Thus, although bi-stability is observed in both models, implying that models are highly sensitive to the
initial conditions, in the model without Allee effect bi-stability is reflected in different forms of coexistence
of predator and prey, while in the model with a strong Allee effect bi-stability effect is critical and different
initial conditions lead to the extinction of both species or to coexistence. Moreover, we have shown that the
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bifurcation structure is richer than when the strong Allee effect is absent.
In order to conclude how the increasing functional response (3) changes the dynamics of the Leslie–Gower

mathematical model with the Holling type II and IV function responses, we compare the system (9) with
systems (6) and (7). Systems (9) and (6) with strong Allee effect exhibit qualitatively similar dynamics.
Both systems always have two unstable axial equilibria, the number of interior equilibria vary from zero
to two and in the case of the existence of two interior equilibria one is always a saddle, while the other
can be an attract or a repeller. Both systems can undergo Bogdanov-Takens bifurcation of codimension
2 and has a limit cycle or homoclinic loop. Also, the origin is an local attractor and both populations
may coexist at some stable interior equilibria. The dynamics of both models demonstrate the existence of
bi-stability phenomenon. Since the origin is always an attractor, we have that different conditions lead to
the extinction of both species or to coexistence of predator and prey populations at some stable interior
equilibria. However, fundamental difference is reflected in stability and number of limit cycles, leading to
stable oscillatory coexistence of predator and prey as well as to multiple stable coexistence. In fact, unlike
system (6) where the limit cycle cannot be an attractor, in system (9) we observe not only the existence of a
stable limit cycle, but also the existence of both supercritical and subcritical generalized Hopf bifurcation,
through which the interior equilibrium point can be surrounded by two limit cycles, one of which is always
an attractor. Thus, system (9) as opposed system (6) can have at most three attractors in the first quadrant.
Therefore, the increasing functional response presented in this manuscript changes the dynamics of the
systems with the Holling type II function response, since the limit cycles have different stability, implying
different coexistence behavior.

Comparing the model (9) with the Leslie–Gower type model (7) with Holling type IV functional response,
it is observed that both systems undergoes various kinds of bifurcations at non-hyperbolic interior equilibria,
such as saddle–node bifurcation, Hopf bifurcation, degenerate Hopf bifurcation and BT bifurcation of
codimensions 2. However, model (7) admits one GH and one BT codimensions two bifurcation points,
while model (9) generates two BT codimension two bifurcation points and for certain parameter values
it may generate three GH bifurcation points. Although the bi-stability, basins of attraction of multiple
attractors and extinction conditions were not been explicitly considered in [24], model (7) shows bi-stability
behavior, that is prey and predator will be extinct or oscillate periodically depending on the initial value.
On the other hand, in our model, multiple changes of the stability of limit cycles results not only in a
bi-stable phenomenon, but also a tri-stable phenomenon and the multiple coexistence of species is possible.
Therefore, the increasing functional response enhances and modifies the dynamics of the model with
Holling type IV functional response.

7. Appendix

7.1. Appendix A.1. Proof of Theorem 3.3
By translating equilibrium Ebt to the origin with the transformations X = x − xbt,Y = y − ybt, system (9)

can be rewritten as:

Ẋ = a10X + a01Y + a20X2 + a11XY + a02Y2 +O(|X,Y|3)

Ẏ = b10X + b01Y + b20X2 + b11XY + b02Y2 +O(|X,Y|3),

where:

a10 = b, a01 = −c, a20 = 1 +mbt − 3xbt +
abtb3x3

bt

(c + bx2
bt)

3
, a11 = −

2abtbc2xbt

(c + bx2
bt)

3
, a02 = −

ac3xbt

(c + bx2
bt)

3
,

b10 =
b2

c
, b01 = −b, b20 = −

b2

cxbt
, b11 =

2b
xbt
, b02 = −

c
xbt
.

The linear part of this system can be transformed into Jordan canonical form by using the following
transformation:

X =
c
b

x1 +
c
b2 y1, Y = x1.
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The obtained system is

ẋ1 = y1 + c20x2
1 + c11x1y1 + c02y2

1 +O(|x1, x2|
3)

ẏ1 = d20x2
1 + d11x1y1 + d02y2

1 +O(|x1, x2|
3),

where:

c20 =
b20b2

01

b2
10

−
b11b01

b10
+ b02, c11 =

b11

b10
−

2b20b01

b2
10

, d11 =
a11b2

10 − 2a20b01b10 − 2b2
01b10 + b01b10b11

b2
10

,

d20 =
a02b3

10 − a11b01b2
10 + a20b2

01b10 + b3
01b20 − b2

01b10b11 + b01b02b2
10

b2
10

, c02 =
b20

b2
11

, d02 =
a20b10 + b01b20

b2
10

.

Further, with the change of coordinates

x1 = x2 +
c11 + d02

2
x2

2, y1 = y2 − c20x2
2 + d20x2y2 − c02y2

2,

we obtain the following system:

ẋ2 = y2 +O(|x2, y2|
3)

ẏ2 = s1x2
2 + s2x2y2 +O(|x2, y2|

3),

where s1 and s2 are given with (26). By the results in [19], the origin is a cusp of codimension 2 if s1s2 , 0. It
follows that interior equilibrium Ebt(xbt, ybt) of system (9) is Bogdanov-Takens singularity under the same
assumption. This concludes the proof of the theorem.

7.2. Appendix A.2. Transversality of Bogdanov-Takens (BT) bifurcation
To show that system (9) undergoes the Bogdanov-Takens bifurcation when (a,m) varies in the neighbor-

hood of (abt,mbt), we consider the following unfolding of the system (9)

ẋ = x(1 − x)(x − (mbt + ε1)) −
(abt + ε2)xy2

1 + xy

ẏ = by − c
y2

x
.

(27)

where ε1 and ε2 are small parameters varying in the small neighborhood of the origin. Next, we reduce
the system (27) in the normal form of a Bogdanov-Takens bifurcation, by employing a series of change of
coordinates in a small neighborhood of the origin. First, translating the equilibrium Ebt(xbt, ybt) to the origin
with X = x − xbt,Y = y − ybt, the power series of the obtained system is given by:

Ẋ = 100 + 110X + 101Y + 120X2 + 111XY + 102Y2 +O(|X,Y|3)

Ẏ = h10X + h01Y + h20X2 + h11XY + h02Y2 +O(|X,Y|3).
(28)

Coefficients of the system (28) are found in Appendix A.3 and the coefficients depend smoothly on ε =
(ε1, ε2). Given that 101102 , 0 for small values of ε, system (28) can be further transformed by using the
change of variable:

x1 = X, y1 = 100 + 110X + 101Y + 120X2 + 111XY + 102Y2 +O(|X,Y|3).

We obtain

ẋ1 = y1

ẏ1 = s00 + s10x1 + s01y1 + s20x2
1 + s11x1y1 + s02y2

1 +O(|x1, y1|
3).

(29)
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where all coefficient are given in Appendix A.4. and the coefficients depend smoothly on ε. Further, we
make a time scale transformation dt = (1 − s02x1)dτ and obtain

dx1

dτ
= y1 − s02x1y1

dy1

dτ
= s00 + (s10 − s00s02)x1 + s01y1 + (s20 − s10s02)x2

1 + (s11 − s01s02)x1y1 + s02y2
1 +O(|x1, y1|

3).
(30)

Direction of time is preserved near the origin. Then, with a coordinate transformation: x2 = x1, y2 =
y1 − s02x1y1, the system (30) becomes

dx2

dτ
= y2

dy2

dτ
= r00 + r10x2 + r01y2 + r20x2

2 + r11x2y2 +O(|x2, y2|
3).

(31)

Coefficients of the system (31) are found in Appendix A.5. and the coefficients depend smoothly on ε.
Note that for ε1 = ε2 = 0, we have:r20 = cs1/b, r11 = cs2/b, where s1 and s2 are given with (26). Given that
condition s1s2 , 0 must hold for Ebt to be cusp point, we deduce that r20r11 , 0, when ε1 = ε2 = 0. To
eliminate term y2 in the system (31), we make the change of variable:

x3 = x2 +
r01

r11
, y3 = y2.

Thus, we obtain the system:

dx3

dτ
= y3

dy3

dτ
= C1 + C2x3 + r20x2

3 + r11x3y3 +O(|x3, y3|
3).

(32)

Coefficients of the system (32) are found in Appendix A.6. and the coefficients depend smoothly on ε. By
introducing new time variable τ =

∣∣∣ r11
r20

∣∣∣ s, and introducing the change of variables again:

x =
r20

r2
11

x3, y = sign
( r11

r20

) r2
20

r3
11

y3,

after dropping the bars and denoting s with t, the system (32) obtains the form which is a normal form of
BT bifurcation

dx
dt
= y

dy
dt
= µ1 + µ2x + x2 + S xy +O(|x, y|3),

(33)

where

µ1 =
r4

11

r3
20

C1, µ2 =
r2

11

r2
20

C2, S = sign
r11

r20

∣∣∣
ε1=0,ε2=0

.

Observe the map (x, y, ε1, ε2) →
(

f (x, y, ε1, ε2), tr(J(x, y)), det(J(x, y))
)
, where f (x, y, ε1, ε2) = ( f1(x, y, ε1, ε2),

f2(x, y, ε1, ε2)) is a vector field of the system (28) and J(x, y) = ∂( f1, f2)
∂(x,y) . The transversality condition for

Bogdanov-Takens bifurcation is equivalent to the regularity of this map at (0, 0, 0, 0), which is satisfied if:

D
(

f , tr(J), det(J)
)

D
(
x, y, ε1, ε2

) =
b4xbt

c(c + bx2
bt)

2(2c + bx2
bt)

(
b3x5

bt(2xbt − 1) + 4c2xbt(1 − 4xbt + 7x2
bt − 4x3

bt)

+b2
(
x5

bt − 4x6
bt + 7x7

bt − 4x8
bt + cx2

bt(−2 − 3xbt + 8x2
bt)

)
−2bc

(
c(2 − 3xbt + 2x2

bt) + 2x3
bt(−1 + 4xbt − 7x2

bt + 4x3
bt)

))
, 0.
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According to the results in [14], system (33) (i.e. (28)), undergoes either repelling or attracting Bogdanov-
Takens bifurcation around Ebt as parameters (a,m) vary in the small neighborhood of (abt,mbt), depending
on S in (33), and it is concluded:

(i) If S > 0, system undergoes supercritical Bogdanov-Takens bifurcation, which includes a sequence of
bifurcations of codimension 1: saddle-node bifurcation, supercritical Hopf bifurcation and homoclinic
bifurcation

(ii) If S < 0, system undergoes subcritical. Bogdanov-Takens bifurcation, which includes a sequence of
bifurcations of codimension 1: saddle-node bifurcation, subcritical Hopf bifurcation and homoclinic
bifurcation.

Analytical expressions for µ1 and µ2 in terms of ε1 and ε2 are difficult to obtain. Therefore, local
representations of bifurcation curves are given by:

• Saddle-node bifurcation curve: SN = {(ε1, ε2) : 4µ1(ε1, ε2) − µ2
2(ε1, ε2) = 0}.

• Hopf bifurcation curve: H = {(ε1, ε2) : µ1(ε1, ε2) = 0, µ2(ε1, ε2) < 0}.

• Homoclinic bifurcation curve: HL = {(ε1, ε2) : 25µ1(ε1, ε2) + 6µ2
2(ε1, ε2) = 0, µ2(ε1, ε2) < 0}.

7.3. Appendix A.3.

Coefficients of the system (28):

100 = ε1(xbt − 1)xbt −
b2ε2x3

bt

c(c + bx2
bt)
, 101 = −

b(a + ε2)x2
bt(2c + bx2

bt)

(c + bx2
bt)

2
, 102 = −

c2(a + ε2)xbt

(c + bx2
bt)

3
,

110 = (ε1 +m)(2xbt − 1) + xbt

2 − 3xbt −
b2(a + ε2)xbt

(c + bx2
bt)

2

 , , 111 = −
2bc2(a + ε2)xbt

(c + bx2
bt)

3
,

120 = 1 + ε1 +m − 3xbt +
b3(a + ε2)x3

bt

(c + bx2
bt)

3
, h10 =

b2

c
, h01 = −b, h20 = −

b2

cxbt
, h11 =

2b
xbt
, h02 = −

c
xbt
.

7.4. Appendix A.4.

Coefficients of the system (29):

s00 = − 100h01 +
13

01h02

212
02

+
12

00(102h01 + 101h02)

12
01

,

s01 = −
100102(100101111 + 212

01h01 + 6100102h01) − 14
01(110 + h01) + 1001

3
01(111 + 2h02)

14
01

,

s10 =

2100102(12
01 + 3100102)

14
01

− 1

 110h01 +
2100110h02

101
+ 101h10 +

100(2102h10 + 101h11)
101

+
12

00(−2102111h01 − 101111h02 − 212
02h10 + 101102h11)

13
01

,
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s20 = − 120h01 + 111h10 − 110h11 + 101h20 +
3100102

(
1001

2
11h01 + 2102(12

10h01 + 100(120h01 + 111h10 + 110h11))
)

14
01

−
612

001
2
02110(4111h01 + 110h02)

15
01

+
12

10h02 + 2100120h02 − 2102110h10 − 2100102h20

101

+
−2100110111h02 + 102(12

10h01 + 2100(120h01 + 111h10 + 110h11))

12
01

−
100(−1001

2
11h02 + 2102111(2110h01 + 100h11) + 212

02(2110h10 + 100h20))

13
01

,

s11 =
1
15

01

(
612

001
2
02(−110111 + 4111h01 + 2110h02) − 14

01(110(111 + 2h02) − 2102h10)

+ 21001
2
01102(−110111 + 2111h01 + 2102h10) + 15

01(2120 + h11)

+ 3100101102(−4102110h01 + 100(a2
11 − 2102h11)) + 13

01(−2102110h01 + 100(12
11 + 2111h02 − 2102h11))

)
,

s02 =
101102(2100101111 + 1

2
01h01 + 6100102h01) + 612

001
2
02(111 − h02) + 14

01(111 + h02)

15
01

.

7.5. Appendix A.5.
Coefficients of the system (31):

r00 = s00, r10 = −2s00s02 + s10, r01 = s01, r20 = s00s2
02 − 2s02s10 + s20, r11 = −s01s02 + s11.

7.6. Appendix A.6.
Coefficients of the system (32):

C1 = r00 +
r01(−r10r11 + r01r20)

r2
11

, C2 = r10 −
2r01r20

r11
.
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