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Some remarks for subclasses of bi-univalent functions defined by
Ruscheweyh derivative operator
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Abstract. This paper presents two subclasses of analytic and bi-univalent functions associated with the
Ruscheweyh derivative operator to investigate the bounds for |a2| and |a3|, where a2 and a3 are the initial
Tayler-Maclaurin coefficients. The current results would generalize and improve some corresponding
recent works. Additionally, in certain cases, our estimates correct some of the existing coefficient bounds.

1. Introduction

LetA represent the class of functions f of the form

f (z) = z +
∞∑

n=2

anzn, (1)

which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1},

together with a normalization given by

f (0) = f ′(0) − 1 = 0.

The Hadamard product (or convolution) f (z) ∗ l(z) of f (z) and l(z) is defined by

( f ∗ l)(z) = z +
∞∑

n=2

anbnzn = (l ∗ f )(z) (z ∈ U),

where the function l(z) = z +
∑
∞

n=2 bnzn is also analytic inU.
For a function f ∈ A defined by (1), the Ruscheweyh derivative operator Rℓ : A → A (see [17]) is

defined as follows:

R
ℓ f (z) =

z
(
zℓ−1 f (z)

)(ℓ)

ℓ!
=

z
(1 − z)ℓ+1

∗ f (z) = z +
∞∑

n=2

Γ(ℓ + n)
Γ(n)Γ(ℓ + 1)

anzn,

(ℓ ∈N0 = {0, 1, 2, . . .} =N ∪ {0}, z ∈ U) .
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A function f is said to be univalent inU if it is one-to-one (injective) inU. We denote by S the subclass
ofA consisting of functions that are univalent inU. One of the most important examples of a function in
S is the Koebe function

k(z) =
z

(1 − z)2 =

∞∑
n=1

nzn (z ∈ U).

This function maps the unit disc U conformally onto the complex plane except for a slit along the
negative real axis from −∞ to −1/4, and plays an extremal role in many problems in the theory of univalent
functions.

The class S∗(γ) of starlike functions of order γ (0 ≤ γ < 1) in U and the classK (γ) of convex functions of
order γ (0 ≤ γ < 1) in U are two of the most important and well-investigated subclasses of the analytic and
univalent function class S.

According to the Koebe 1/4-Theorem (see [8]) the image of the open unit disk U under any univalent
function contains a disk of radius 4 . As a consequence, every function f ∈ S has an inverse f−1 such that

f−1( f (z)) = z (z ∈ U)

and

f
(

f−1(w)
)
= w

(
|w| < r0( f ), r0( f ) ≥

1
4

)
.

The inverse function 1 = f−1 has the form

1(w) = f−1(w) = w − a2w2 +
(
2a2

2 − a3

)
w3
−

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · . (2)

If f and f−1 both are univalent in U, then f ∈ A is said to be bi-univalent function. The family of all
bi-univalent functions inU given by (1) is denoted by Σ.

Lewin [11] constructed a study on the class Σ of bi-univalent functions and discovered that |a2| < 1.51
for the functions belonging to the class Σ. Later, Brannan and Clunie [4] proposed the conjecture that |a2| ≤√

2. Subsequently, Netanyahu [15] demonstrated that max |a2| =
4
3 for f ∈ Σ. To explore various interesting

examples of functions in the class Σ, refer to the pioneering work on this subject by Srivastava et al. [19],
which actually revitalized the study of analytic and bi-univalent functions in recent years.

Based on the findings of Srivastava et al. [19], we would like to mention the following examples of
functions in the class Σ :

z
1 − z

=

∞∑
n=1

zn, − log(1 − z) =
∞∑

n=1

zn

n
and

1
2

log
(1 + z

1 − z

)
=

∞∑
n=0

(−1)n−1 z2n+1

2n + 1
.

It is evident that the class Σ is not empty. However, the Koebe function does not belong to the class Σ.
Brannan and Taha [5] introduced specific subclasses within the bi-univalent class Σ, analogous to the

well-known subclasses S∗(γ) andK (γ) of starlike and convex functions of order γ (0 ≤ γ < 1), respectively.
Thus, for 0 ≤ γ < 1, a function f ∈ Σ falls into the class S∗Σ(γ) of bi-starlike functions of order γ if both f
and f−1 are starlike functions of order γ, or into the class KΣ(γ) of bi-convex functions of order γ if both f
and f−1 are convex functions of order γ. Moreover, A function f ∈ A is classified as a strongly bi-starlike
functions of order γ (0 < γ ≤ 1), denoted byS∗Σ[γ] (see [5, 30]), if it satisfies each of the following conditions:∣∣∣∣∣∣arg

(
z f ′(z)

f (z)

)∣∣∣∣∣∣ < γπ2 and

∣∣∣∣∣∣arg
(

w1′(w)
1(w)

)∣∣∣∣∣∣ < γπ2 ,
where, 1 is the univalent extension of f−1 toU.
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There have been numerous recent works dedicated to studying the class Σ of bi-univalent functions and
obtaining non-sharp bounds on the Taylor-Maclaurin coefficients |a2| and |a3|. Notably, the pioneering work
by Srivastava et al. [19] has significantly advanced the study of various subclasses within the bi-univalent
function class Σ and discovered bounds on |a2| and |a3|. Remarkably, a substantial number of subsequent
works have been published in the literature, building upon the groundbreaking research by Srivastava et al.
[19] and focusing on coefficient problems for different subclasses of the analytic and bi-univalent function
class Σ (see, for example, [1, 3, 7, 13, 18, 20–23, 27–29, 33]). However, the general coefficient estimate
bounds on |an| (n ∈ {4, 5, 6, . . .}) for a function f ∈ Σ defined by (1) remain an unsolved problem. In fact, for
coefficients greater than three, there is no natural method to obtain an upper bound. A few articles have
utilized Faber polynomial techniques to derive upper bounds for higherorder coefficients (see, for example
[6, 24–26]).

The determination of estimates for the Tayler-Maclaurin coefficients an is an important concern problem
in geometric function theory as it provides information about the geometric properties of these functions.
For instance, the bounds for the second and third coefficients a2 and a3 of functions f ∈ Σ yield growth and
distortion bounds, as well as covering theorems. Motivated by the aforementioned works and making use of
Ruscheweyh derivative operator, we investigate two subclasses of analytic and bi-univalent functions using
the techniques employed by Srivastava et al. [19] and Frasin and Aouf [9]. The obtained results improve
and generalize some recent works and rectify remarkable mistakes in existing coefficient estimates.

To derive the results, we need to the following lemma in proving the theorems of sections 2 and 3.

Lemma 1.1. [8] If h ∈ P, then |hk| ≤ 2 for each k ∈N, where P is the subclass of functions h(z) of the form

h(z) = 1 + h1z + h2z2 + h3z3 + · · · (3)

which is analytic inU and the real part,ℜ(h(z)), is positive.

2. Bounds for the Coefficient Functions in the Class TΣ(η, ω, ℓ;α)

Let h ∈ P be given by (3) and K (z) be any complex-valued function such that K (z) = [h(z)]α, 0 < α ≤ 1.
Then

| arg(K (z))| = α| arg(h(z))| <
απ
2
.

Therefore, if | arg(K (z))| < απ2 , then it can be said that there exists h ∈ P such that K (z) can be written in
terms of h and α as follows

K (z) = [h(z)]α.

Definition 2.1. A function f ∈ Σ given by (1) is called in the class

TΣ(η, ω, ℓ;α)
(
z,w ∈ U, η ≥ 0, ω ∈ C\{0}, ℓ ∈N0, 0 < α ≤ 1

)
if it meets the following requirements∣∣∣∣∣∣∣∣arg

1 +
1
ω

(1 − η)z
(
R
ℓ f (z)

)′
Rℓ f (z)

+ η

(
R
ℓ f (z)

)′
+ z

(
R
ℓ f (z)

)′′(
Rℓ f (z)

)′ − 1



∣∣∣∣∣∣∣∣ < απ2 (4)

and ∣∣∣∣∣∣∣∣arg

1 +
1
ω

(1 − η)w
(
R
ℓ1(w)

)′
Rℓ1(w)

+ η

(
R
ℓ1(w)

)′
+ w

(
R
ℓ1(w)

)′′(
Rℓ1(w)

)′ − 1



∣∣∣∣∣∣∣∣ < απ2 , (5)

where the function 1 = f−1 is defined by (2).
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Remark 2.2. It is evident that by specializing η, ω and ℓ in the class TΣ(η, ω, ℓ;α), several known subclasses can be
obtained, as recently investigated by various authors. We provide some examples:

1. For ω = 1, the class TΣ(η, ω, ℓ;α) reduces to the class FΣ(α, η) which was studied by Juma and Aziz [10].
2. For ℓ = 0, the class TΣ(η, ω, ℓ;α) reduces to the classMΣ1 (α, η, ω) which was examined by Motamednezhad et

al. [14].
3. For ℓ = 0 and ω = 1, the class TΣ(η, ω, ℓ;α) reduces to the class MΣ(α, η) which was investigated by Liu and

Wang [12].
4. For ℓ = η = 0 and ω = 1, the class TΣ(η, ω, ℓ;α) reduces to the class S∗Σ(α) which was considered by Brannan

and Taha [5].

Theorem 2.3. Let f ∈ TΣ(η, ω, ℓ;α) be given by (1). Then

|a2| ≤
2α|ω|√∣∣∣2αω [

(1 + 2η)(ℓ + 2) − (1 + 3η)(ℓ + 1)2] − (α − 1)(1 + η)2(ℓ + 1)2
∣∣∣ (6)

and

|a3| ≤
4α2
|ω|2

(1 + η)2(ℓ + 1)2 +
2α|ω|

(1 + 2η)(ℓ + 2)
. (7)

Proof. It follows from (4) and (5) that

1 +
1
ω

(1 − η)z
(
R
ℓ f (z)

)′
Rℓ f (z)

+ η

(
R
ℓ f (z)

)′
+ z

(
R
ℓ f (z)

)′′(
Rℓ f (z)

)′ − 1

 = [p(z)]α (8)

and

1 +
1
ω

(1 − η)w
(
R
ℓ1(w)

)′
Rℓ1(w)

+ η

(
R
ℓ1(w)

)′
+ w

(
R
ℓ1(w)

)′′(
Rℓ1(w)

)′ − 1

 = [q(w)]α, (9)

where p, q ∈ P have the following representations

p(z) = 1 + p1z + p2z2 + p3z3 + · · · (10)

and

q(w) = 1 + q1w + q2w2 + q3w3 + · · · . (11)

Clearly, we have

[p(z)]α = 1+αp1z +
(1

2
α(α − 1)p2

1 + αp2

)
z2

+
(1

6
α(α − 1)(α − 2)p3

1 + α(1 − α)p1p2 + αp3

)
z3 + · · ·

(12)

and

[q(w)]α = 1+αq1w +
(1

2
α(α − 1)q2

1 + αq2

)
w2

+
(1

6
α(α − 1)(α − 2)q3

1 + α(1 − α)q1q2 + αq3

)
w3 + · · · .

(13)
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We also find that

1 +
1
ω

(1 − η)z
(
R
ℓ f (z)

)′
Rℓ f (z)

+ η

(
R
ℓ f (z)

)′
+ z

(
R
ℓ f (z)

)′′(
Rℓ f (z)

)′ − 1


= 1 +

(1 + η)(ℓ + 1)
ω

a2z +
(

(1 + 2η)(ℓ + 2)
ω

a3 −
(1 + 3η)(ℓ + 1)2

ω
a2

2

)
z2 + · · ·

(14)

and

1 +
1
ω

(1 − η)w
(
R
ℓ1(w)

)′
Rℓ1(w)

+ η

(
R
ℓ1(w)

)′
+ w

(
R
ℓ1(w)

)′′(
Rℓ1(w)

)′ − 1


= 1 −

(1 + η)(ℓ + 1)
ω

a2w +
(

2(1 + 2η)(ℓ + 2) − (1 + 3η)(ℓ + 1)2

ω
a2

2 −
(1 + 2η)(ℓ + 2)

ω
a3

)
w2 + · · · .

(15)

Now, by using (12), (13), (14) and (15), together with comparing the coefficients of (8) and (9), we get

(1 + η)(ℓ + 1)
ω

a2 = αp1, (16)

(1 + 2η)(ℓ + 2)
ω

a3 −
(1 + 3η)(ℓ + 1)2

ω
a2

2 =
1
2
α(α − 1)p2

1 + αp2, (17)

−
(1 + η)(ℓ + 1)

ω
a2 = αq1, (18)

and

2(1 + 2η)(ℓ + 2) − (1 + 3η)(ℓ + 1)2

ω
a2

2 −
(1 + 2η)(ℓ + 2)

ω
a3 =

1
2
α(α − 1)q2

1 + αq2. (19)

In view of (16) and (18), we conclude that

p1 = −q1 (20)

and

2(1 + η)2(ℓ + 1)2

ω2 a2
2 = α

2
(
p2

1 + q
2
1

)
. (21)

Adding (17) to (19), we obtain

2(1 + 2η)(ℓ + 2) − 2(1 + 3η)(ℓ + 1)2

ω
a2

2 =
1
2
α(α − 1)

(
p2

1 + q
2
1

)
+ α (p2 + q2) . (22)

Substituting the value of p2
1 + q

2
1 form (21) into (22) and further computations imply that

a2
2 =

α2ω2 (p2 + q2)
2αω

[
(1 + 2η)(ℓ + 2) − (1 + 3η)(ℓ + 1)2] − (α − 1)(1 + η)2(ℓ + 1)2 . (23)

Applying Lemma 1.1 for the coefficients p2 and q2 on (23) imply that

|a2| ≤
2α|ω|√∣∣∣2αω [

(1 + 2η)(ℓ + 2) − (1 + 3η)(ℓ + 1)2] − (α − 1)(1 + η)2(ℓ + 1)2
∣∣∣ .
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Next, in order to derive the bound on |a3|, by subtracting (19) from (17), we obtain

2(1 + 2η)(ℓ + 2)
ω

(
a3 − a2

2

)
=

1
2
α(α − 1)

(
p2

1 − q
2
1

)
+ α (p2 − q2) . (24)

Now, substituting the value of a2
2 from (21) into (24) and using (20), we conclude that

a3 =
α2ω2

(
p2

1 + q
2
1

)
2(1 + η)2(ℓ + 1)2 +

αω (p2 − q2)
2(1 + 2η)(ℓ + 2)

. (25)

Finally, applying Lemma 1.1 once again for the coefficients p1, p2, q1 and q2 on (25), we deduce that

|a3| ≤
4α2
|ω|2

(1 + η)2(ℓ + 1)2 +
2α|ω|

(1 + 2η)(ℓ + 2)
.

This completes the proof.

Remark 2.4. By specializing the parameters in Theorem 2.3, it is observed that, several estimate bounds for known
subclasses of Σ can be obtained as special cases. For example, if we set

1. ω = 1, then we have correctness of the estimates given by Juma and Aziz [10, Theorem 2.2].
2. ℓ = 0 and ω = 1, then we obtain the results derived by Liu and Wang [12, Theorem 2.2]; the estimates derived

by Ramadhan and Al-Ziadi [16, Corollary 4.2] in the class ARΣ(δ, 0;α); the results given by Wanas and
Páll-Szabó [31, Corollary 2.4] in the class ASΣ(v, 1;α); and the estimates obtained by Wanas and Raadhi [32,
Corollary 2.1] in the class ηΣ(0, η;α).

3. ℓ = η = 0 and ω = 1, then we retrieve the results derived by Brannan and Taha [5, Theorem 2.1], as well as the
estimates obtained by Altinkaya and Yalçin [2, Theorem 3] in the class SΣ1 (α).

3. Bounds for the Coefficient Functions in the Class T ⋆
Σ

(η, ω, ℓ; λ)

If h ∈ P be given by (3) and L(z) be any complex-valued function such that L(z) = λ + (1 − λ)h(z),
0 ≤ λ < 1, then

ℜ{L(z)} = λ + (1 − λ)ℜ{h(z)} > λ.

Therefore, ifℜ{L(z)} > λ, it can be said that there exists h ∈ P such that L(z) can be written in terms of
h and λ as follows

L(z) = λ + (1 − λ)h(z).

Definition 3.1. A function f ∈
∑

given by (1) is called in the class

T
⋆
Σ (η, ω, ℓ;λ)

(
z,w ∈ U, η ≥ 0, ω ∈ C\{0}, ℓ ∈N0, 0 ≤ λ < 1

)
if it meets the following requirements

ℜ

1 +
1
ω

(1 − η)z
(
R
ℓ f (z)

)′
Rℓ f (z)

+ η

(
R
ℓ f (z)

)′
+ z

(
R
ℓ f (z)

)′′(
Rℓ f (z)

)′ − 1


 > λ (26)

and

ℜ

1 +
1
ω

(1 − η)w
(
R
ℓ1(w)

)′
Rℓ1(w)

+ η

(
R
ℓ1(w)

)′
+ w

(
R
ℓ1(w)

)′′(
Rℓ1(w)

)′ − 1


 > λ, (27)

where the function 1 = f−1 is defined by (2).
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Remark 3.2. It can be seen that, by specializing η, ω and ℓ in the classT ⋆
Σ

(η, ω, ℓ;λ), we get several known subclasses
of Σ recently investigated by such authors. Let us present some examples:

1. For ω = 1, the class T ⋆
Σ

(η, ω, ℓ;λ) reduces to the class FΣ(λ, η) which was examined by Juma and Aziz [10].
2. For ℓ = 0, the classT ⋆

Σ
(η, ω, ℓ;λ) reduces to the classMΣ1 (λ, η, ω) which was investigated by Motamednezhad

et al. [14].
3. For ℓ = 0 and ω = 1, the class T ⋆

Σ
(η, ω, ℓ;λ) reduces to the class MΣ(λ, η) which was studied by Liu and Wang

[12].
4. For ℓ = η = 0 and ω = 1, the class T ⋆

Σ
(η, ω, ℓ;λ) reduces to the class S∗Σ(λ) which was considered by Brannan

and Taha [5].

Theorem 3.3. Let f ∈ T ⋆
Σ

(η, ω, ℓ;λ) be given by (1). Then

|a2| ≤



(
2|ω|(1−λ)

|(1+2η)(ℓ+2)−(1+3η)(ℓ+1)2|

)1/2

, 0 ≤ λ ≤ 1 − (1+η)2(ℓ+1)2

2|ω||(1+2η)(ℓ+2)−(1+3η)(ℓ+1)2|

2|ω|(1−λ)
(1+η)(ℓ+1) , 1 − (1+η)2(ℓ+1)2

2|ω||(1+2η)(ℓ+2)−(1+3η)(ℓ+1)2|
≤ λ < 1

and

|a3| ≤


2|ω|(1−λ)

|(1+2η)(ℓ+2)−(1+3η)(ℓ+1)2|
+ 2|ω|(1−λ)

(1+2η)(ℓ+2) , 0 ≤ λ ≤ 1 − (1+η)2(ℓ+1)2

2|ω||(1+2η)(ℓ+2)−(1+3η)(ℓ+1)2|

4|ω|2(1−λ)2

(1+η)2(ℓ+1)2 +
2|ω|(1−λ)

(1+2η)(ℓ+2) , 1 − (1+η)2(ℓ+1)2

2|ω||(1+2η)(ℓ+2)−(1+3η)(ℓ+1)2|
≤ λ < 1

Proof. It follows from (26) and (27) that

1 +
1
ω

(1 − η)z
(
R
ℓ f (z)

)′
Rℓ f (z)

+ η

(
R
ℓ f (z)

)′
+ z

(
R
ℓ f (z)

)′′(
Rℓ f (z)

)′ − 1

 = λ + (1 − λ)p(z) (28)

and

1 +
1
ω

(1 − η)w
(
R
ℓ1(w)

)′
Rℓ1(w)

+ η

(
R
ℓ1(w)

)′
+ w

(
R
ℓ1(w)

)′′(
Rℓ1(w)

)′ − 1

 = λ + (1 − λ)q(w), (29)

where p, q ∈ P have the representations (10) and (11), respectively.
Clearly, we have

λ + (1 − λ)p(z) = 1 + (1 − λ)p1z + (1 − λ)p2z2 + (1 − λ)p3z3 + · · · (30)

and

λ + (1 − λ)q(w) = 1 + (1 − λ)q1w + (1 − λ)q2w2 + (1 − λ)q3w3 + · · · . (31)

Now, by using (30), (31), (14) and (15), together with comparing the coefficients of (28) and (29), yields

(1 + η)(ℓ + 1)
ω

a2 = (1 − λ)p1, (32)

(1 + 2η)(ℓ + 2)
ω

a3 −
(1 + 3η)(ℓ + 1)2

ω
a2

2 = (1 − λ)p2, (33)
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−
(1 + η)(ℓ + 1)

ω
a2 = (1 − λ)q1, (34)

and

2(1 + 2η)(ℓ + 2) − (1 + 3η)(ℓ + 1)2

ω
a2

2 −
(1 + 2η)(ℓ + 2)

ω
a3 = (1 − λ)q2. (35)

From (32) and (34), we get

p1 = −q1 (36)

and

2(1 + η)2(ℓ + 1)2

ω2 a2
2 = (1 − λ)2

(
p2

1 + q
2
1

)
. (37)

Adding (33) to (35), we obtain

2(1 + 2η)(ℓ + 2) − 2(1 + 3η)(ℓ + 1)2

ω
a2

2 = (1 − λ) (p2 + q2) . (38)

From (37) and (38), we find

a2
2 =
ω2(1 − λ)2

(
p2

1 + q
2
1

)
2(1 + η)2(ℓ + 1)2 (39)

and

a2
2 =

ω(1 − λ) (p2 + q2)
2(1 + 2η)(ℓ + 2) − 2(1 + 3η)(ℓ + 1)2 , (40)

respectively.
The equations (39) and (40) together with applying Lemma 1.1 for the coefficients p1, q1, p2 and q2, we

find that

|a2| ≤
2|ω|(1 − λ)

(1 + η)(ℓ + 1)

and

|a2| ≤

√
2|ω|(1 − λ)∣∣∣(1 + 2η)(ℓ + 2) − (1 + 3η)(ℓ + 1)2

∣∣∣ ,
respectively.

To determine the estimates on |a3|, by subtracting (35) from (33), we obtain

2(1 + 2η)(ℓ + 2)
ω

(
a3 − a2

2

)
= (1 − λ) (p2 − q2)

or, equivalently,

a3 = a2
2 +
ω(1 − λ) (p2 − q2)
2(1 + 2η)(ℓ + 2)

. (41)

Substituting the value of a2
2 from (39) and (40) into (41), imply that

a3 =
ω2(1 − λ)2

(
p2

1 + q
2
1

)
2(1 + η)2(ℓ + 1)2 +

ω(1 − λ) (p2 − q2)
2(1 + 2η)(ℓ + 2)

(42)
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and

a3 =
ω(1 − λ) (p2 + q2)

2(1 + 2η)(ℓ + 2) − 2(1 + 3η)(ℓ + 1)2 +
ω(1 − λ) (p2 − q2)
2(1 + 2η)(ℓ + 2)

, (43)

respectively.
Finally, applying Lemma 1.1 once again for the coefficients p1, p2, q1 and q2 on equations (42) and (43)

together, we conclude that

|a3| ≤
4|ω|2(1 − λ)2

(1 + η)2(ℓ + 1)2 +
2|ω|(1 − λ)

(1 + 2η)(ℓ + 2)

and

|a3| ≤
2|ω|(1 − λ)∣∣∣(1 + 2η)(ℓ + 2) − (1 + 3η)(ℓ + 1)2

∣∣∣ + 2|ω|(1 − λ)
(1 + 2η)(ℓ + 2)′

respectively. This completes the proof.

Remark 3.4. By specializing the parameters in Theorem 3.3, it can be seen that, several bound estimates for known
subclasses of Σ can be attend as special cases. For example, if we put

1. ω = 1, then we have correctness of the estimates obtained by Juma and Aziz [10, Theorem 3.2].
2. ℓ = 0 and ω = 1, then we have improvements of the estimates derived by Liu and Wang [12, Theorem 3.2];

improvements of the results derived by Wanas and Páll-Szabó [31, Corollary 3.4] in the class AS∗Σ(v, 1;λ);
improvements of the estimates given by Wanas and Raadhi [32, Corollary 3.1] in the class η∗Σ(0, η;λ); and
improvements of the results obtained by Ramadhan and Al-Ziadi [16, Corollary 4.3] in the classARΣ(δ, 0;λ).

3. ℓ = η = 0 and ω = 1, then we have improvements of the estimates obtained by Brannan and Taha [5, Theorem
3.1], as well as the improvements of the results given by Altinkaya and Yalçin [2, Theorem 5] in the class SΣ1 (λ).

4. Conclusions

In this study, we have introduced and examined two specific subclasses of analytic bi-univalent func-
tions associated with the Ruscheweyh derivative. Our investigation focused on deriving initial coefficient
bounds for functions belonging to these subclasses. The outcomes of our research demonstrate signifi-
cant improvements, generalizations, and corrections in relation to previous studies. Moreover, we have
highlighted certain implications of these subclasses by considering specific parameter specifications.
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k-Pseudo-starlike functions, Iran. J. Sci. Technol. Trans. Sci. 45 (2021), 1799–1804.
[23] H. M. Srivastava, A. K. Wanas, R. Srivastava, Applications of the q-Srivastava-Attiya operator involving a certain family of bi-univalent

functions associated with the Horadam polynomials, Symmetry 13 (2021) Article ID 1230, 1–14.
[24] H. M. Srivastava, A. Motamednezhad, E. A. Adegani, Faber polynomial coefficient estimates for bi-univalent functions defined by using

differential subordination and a certain fractional derivative operator, Mathematics 8(2) (2020) Article ID 172, 1–12.
[25] H. M. Srivastava, A. Motamednezhad, S. Salehian, Coefficients of a comprehensive subclass of meromorphic bi-univalent functions

associated with the Faber polynomial expansion, Axioms 10(1) (2021) Article ID 27, 1–13.
[26] H. M. Srivastava, G. Murugusundaramoorthy, S. M. El-Deeb, Faber polynomial coefficient estimates of bi-close-to-convex functions

connected with the Borel distribution of the Mittag-Leffler type, J. Nonlinear Var. Anal. 5 (2021), 103–118.
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