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Abstract. In this article, we examine Bertrand curves inE3 andE3
1 by using the Caputo fractional derivative

which we call α-Bertrand Curves. First, we consider α-Bertrand curves inE3 and we give a characterization
of them. Then, we study α-Bertrand curves in E3

1 and we prove the necessary and sufficient condition for
a α-Bertrand curves in E3

1 by considering time like, space like and null curves. We also give the related
examples by using Python.

1. Introduction

Bertrand curves, named after the French mathematician Joseph Bertrand, are a fascinating class of curves
that possess a remarkable property in Euclidean geometry. Bertrand curves have been extensively studied in
differential geometry and have found applications in various fields, such as celestial mechanics and optics.
Their attractive properties continue to captivate mathematicians and scientists, making them a compelling
subject of investigation and interest. Many authors have studied Bertrand curves in the three-dimensional
Euclidean space E3 and the three-dimensional Lorent-Minkowski space E3

1 such as [3, 10, 11, 22].
On the other hand, the fractional calculus is a generalization of calculus dealing with differentiation of

non-integer order. It was first introduced by mathematicians [16, 21] in the late 17th century and early 18th
century. Although it is not a new topic, the theory of fractional calculus has growing attention in recent
years. Since it is an extention of the integer (real or complex) order classical integrals and derivatives,
it serves as an effective and powerful tool to solve differential and integral equations. It has motivated
the mathematicians, physicians and engineers; several different type of fractional derivatives (Riemann-
Liouville, Caputo, Erd´elyi-Kober, Hadamard, Riesz, etc.). These have been introduced [5, 13, 20] and
various kinds of real-world problems have been modeled using fractional derivatives in fields such as
fluid mechanics, viscoelastic systems, signal and image processing, and stochastic systems, and so on
[4, 24]. Furthermore, the fractional vector calculus, deformation tensors, fractional geometry of manifolds
[12, 14] and fractional differential geometry of curves [2, 6–9, 15, 23] were also studied. Each definition
of fractional derivative has distinct properties and is suitable for various applications. For example, the
derivative of a constant is not zero for some kind of fractional derivatives except Caputo and conformable
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fractional derivatives. But in [1], the author claimed that the conformable derivative is not an operator of
fractional order. For this reason, many mathematicians used the Caputo fractional derivative when they
are examining the differential geometry of objects. For example, in [23] fractional differential geometry of
curves (curvature of curve and Frenet-Serret formulas) was examined and a tangent vector of plane curve
is defined by the Caputo fractional derivative. In [2] and [23], the authors introduced the use of the Caputo
fractional derivative in the study of differential geometry of curves. In [19], the author examined differential
geometry of curves in Lorentzian plane by using Caputo fractional derivative.

In this work, Bertrand curves inE3 andE3
1 are examined by using the Caputo fractional derivative. In or-

der to investigate their differential geometric structures mathematical formulations, numerical simulations
and illustrative examples are given.

2. Preliminaries

This section contains definition and properties of Caputo fractional derivative and Frenet frame with
Euclidean and Minkowski metrics with respect to Caputo fractional derivative.

2.1. Caputo Fractional Derivative
The most well-known fractional derivatives are Riemann-Liouville and Caputo fractional derivatives.

The reason of fractional derivative definition is not unique because each type of fractional derivative has
some advantages and disadvantages compared to others. For instance, in Riemann-Liouville fractional
derivative the derivative of a constant is not zero which contradicts with ordinary derivative. Even
though Caputo fractional derivative seems like easy to deal with, it has disadvantages too. The most
significant disadvantage of Caputo fractional derivative is the chain rule. The Caputo fractional derivative
of composition of two functions gives very complicated expression, it involves infinite series which creates
an obstacle when defining differential geometric objects. In order to solve this difficulty, in [23] Yajima used
a simplification. In this work, the same argument of Yajima will be used.

Definition 2.1 (Riemann-Liouville fractional integral). [23] Let f be an integrable function on nonnegative
real numbers and α P p0, 1s. The Riemann-Liouville fractional integral of f of order α is denoted by Iα0� and defined
as

�
Iα0� f

� ptq � 1
Γpαq

» t

0

f pτq
pt � τq1�α dτ (1)

where Γpαq � ³8
0 tα�1e�tdt is the gamma function.

Definition 2.2 (Riemann-Liouville fractional derivative). [23] Let f be an integrable function on nonnegative
real numbers and α P p0, 1s. The Riemann-Liouville fractional derivative of f of order α is denoted by Dα0� and
defined as

�
Dα0� f

� ptq � d
dt

��
I1�α

0� f
	
ptq
	
� 1
Γp1 � αq

d
dt

» t

0

f pτq
pt � τqα dτ. (2)

Definition 2.3 (Caputo fractional derivative). [23] Let f be an integrable function on nonnegative real numbers
and α P p0, 1s. The Caputo fractional derivative of f of order α is denoted by CDα0� and defined as

�CDα0� f
� ptq � �

I1�α
0�

d f
dt



ptq � 1

Γp1 � αq
» t

0

1
pt � τqα

d f pτq
dτ

dτ. (3)

Corollary 2.4. [23] The Caputo fractional derivative and Riemann Liouville fractional derivative of a function f of
order α P p0, 1s has the following relationship.

�CDα0� f
� ptq � �

Dα0� f
� ptq � t�α

Γp1 � αq f p0q. (4)
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From the definitions above, it is trivial that Caputo fractional derivative has adequate to define differential
geometric objects such as curves, since the Caputo fractional derivative of a constant function is zero.

Theorem 2.5. [23] Let f and t be two functions on appropriate intervals. Then, the Caputo fractional derivative of
f � t is given by

�CDα0�p f � tq� psq � p f ptpsqq � f ptp0qq
Γp1 � αq s1�α �

8̧

k�1

�
α
k



sk�α

Γpk � α� 1q
dk f ptpsqq

dsk
. (5)

Remark 2.6. For simplicity, we use the notation
dα f
dsα

instead of the notation
�

CDα0� f
	
ptq for Caputo fractional

derivative.

Since the expression for the chain rule is problematic in the Caputo fractional derivative, we use the Yajima’s
simplification [23]. We extract the first term of the series in the (5) and we refer the equation

dα f
dsα

� αs1�α

Γp2 � αq
d f
dt

dt
ds

(6)

as the chain rule expression for the two functions in the Caputo fractional derivative throughout this paper.

Definition 2.7 (Caputo fractional derivative of a vector valued function). Let F : RÑ E3 be a vector valued
function defined as

Fptq � p f1ptq, f2ptq, f3ptqq

where fi, i � 1, 2, 3 are scalar functions. Then the Caputo fractional derivative of F of order α is given by

dαF
dtα

�
�

dα f1
dtα
,

dα f2
dtα
,

dα f3
dtα



.

Furthermore, if Caputo fractional derivative of F of order α exists, then F is called α-differentiable.

2.2. Curves in E3 With Respect To Caputo Fractional Derivative

In this section, we give the definitions and properties of curves in Euclidean 3-space with respect to
Caputo fractional derivative which are given in [23].

Definition 2.8. (α-arc length of a curve) [23] Suppose that the curve γ : I � R Ñ E3 is parametrized by its arc
length s̃. Let α P p0, 1s, then the α-arc length s of γ is defined as

s �
�

α2

Γp2 � αq s̃

 1
α

. (7)

From the above definition, we can say that if γ is a curve parametrized by its α-arc length s and if s̃ is the
arc length parameter of γ then,

dαγ
dsα

� αs1�α

Γp2 � αq
d fγ
ds

ds
ds̃
. (8)

Remark 2.9. [2] If a curve γ parametrized by α-arc length s, then by using (7),(8) we obtain�����dαγ
dsα

����� � 1. (9)
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Since the Frenet frame of a curve γ is independent from the choice of parametrization of [2] , we can say
that

span

#
dαγ
dsα
,

�
dαγ
dsα


1
,

�
dαγ
dsα


2+
� span

#
dγ
ds
,

�
dγ
ds


1
,

�
dγ
ds


2+
@α P p0, 1s , (10)

where 1 represents the derivative with respect to s. Therefore, the α-tangent vector of a curve γ is defined

as Tα �
dαγ
dsα

. From (9), we have
�

dαγ
dsα


1
K dαγ

dsα
. Therefore the α-unit normal of a curve γ is defined as

Nα �
T1α
}T1α}

. (11)

The function κα � }T1α} is called the α-curvature of γ, and the vector Bα � Tα ^Nα is called the α-binormal
of γ. Moreover, the function τα � xN1

α,Bαy is called the α-torsion of γ.

Theorem 2.10. [2] Let γ : I Ñ E3 be a curve parametrized by its α-arc length s. Let Tα, Nα, Bα, κα, τα be its
α-tangent, α-normal, α-binormal, α-curvature and α-torsion of γ, respectively. Then, we have the following system
of ordinary differential equations�

�T1α
N1
α

B1α

�
� �

�
� 0 κα 0
�κα 0 τα

0 �τα 0

�
�
�
�Tα

Nα
Bα

�
� . (12)

Remark 2.11. [2] If we take α � 1, then we obtain the Frenet frame with respect to ordinary derivative in Euclidean
3�space. In this case, we denote κ1 and τ1 as κ and τ, respectively.

Theorem 2.12. [2] Let γ : I Ñ E3 be a curve parametrized by an arbitrary parameter t. Let κα and τα be its
α-curvature and α-torsion respectively. Define

ϕptq �
�
Γp2 � αq
α


 1
α

�
α

» t

0

�����dγ
du

�����du

�1� 1
α

, (13)

then we have καptq � ϕptqκptq and ταptq � ϕptqτptq.
Corollary 2.13. [2] Let γ : I Ñ E3 be a curve and let κα and τα be the nonzero α-curvature and nonzero α-torsion
of γ , respectively. Then we have

κ
κα

� τ
τα
, @α P p0, 1s. (14)

Corollary 2.14. Let γ : I Ñ E3 be a curve with α-curvature κα and α-torsion τα. Then γ is a straight line if κα � 0,
a plane curve if τα � 0 and a generalized helix if

κα
τα

� const.

Theorem 2.15 (The Fundamental Theorem of Space Curves). [2] Let κα ¡ 0 and τα be real-valued smooth
functions on an open interval I which does not contain zero. Then, there exists a unit speed curve γ : I Ñ E3

parametrized by its α-arc length such that κα ¡ 0 and τα are its α-curvature and α-torsion, respectively. Further if
βÑ E3 is another curve admitting the same κα and τα, then βpsq � Mpαpsqq, for a Euclidean motion M of E3.

2.3. Curves in E3
1 With Respect To Caputo Fractional Derivative

Minkowski 3�space is one of the most commonly used non Euclidean spaces. It has numerous ap-
plications, especially in relativity. In this section we give definitions given by Lopez [18]. Furthermore,
we generalize the concepts defined by [18],[11],[22] to the Caputo fractional derivative. First, we give the
definition of Minkowski 3�space, then give definition of curves in Minkowski 3-space. We consider the
curves into two parts, one is non-null curves and the other is null curves.
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2.3.1. Basic Notations and Definitions in E3
1

Definition 2.16. [18] The bilinear form x , y : R3 �R3 Ñ R is defined as

xu,vy � u1v1 � u2v2 � u3v3 (15)

where u � pu1,u2,u3q and v � pv1, v2, v3q. Then, the bilinear form x , y is called Minkowski inner product.

Throughout this paper, we mention x , y in order to state Minkowski inner product. Likewise, we denote
Euclidean inner product by x , y�. One of the well known orthonormal frames forR3 equipped by Euclidean
inner product is te1 � r1 0 0s, e2 � r0 1 0s, e3 � r0 0 1su. This basis is also orthonormal basis for Minkowski
3�space.

Definition 2.17. [18] Minkowski norm } } : R3 �R3 Ñ R is defined as }u} �
a
|xu,uy|. As every norm defines a

metric, one can define Minkowski metric as d : R3 �R3 Ñ R such that dpu,vq � }u � v}.

Definition 2.18. [18] Minkowski 3�space(Lorentz-Minkowski space) is a metric space defined as E3
1 � �

R3, d
�
,

where d is Minkowski metric generated by Minkowski inner product. Therefore Minkowski 3�space is commonly
denoted by E3

1 �
�
R3, x , y�.

Definition 2.19. [18] Let u � pu1,u2,u3q and v � pv1, v2, v3q be two vectors in E3
1. The wedge product of them is

denoted by u ^ v and defined as

u ^ v �
∣∣∣∣∣∣∣∣
e1 e2 �e3
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣∣∣ (16)

where ei, i � 1, 2, 3, are standard basis vectors in E3
1.

Definition 2.20. [18] Let u be a vector in E3
1. Then u is called,

• spacelike if xu,uy ¡ 0 or u � 0.

• timelike if xu,uy   0.

• lightlike or null if xu,uy � 0 with u � 0.

Definition 2.21. [18] A smooth curve(or shortly, curve) is a differentiable map α : I � RÑ E3
1, where I is an open

interval.

Definition 2.22. A curve α : I � RÑ E3
1 is said to be regular if α1ptq � 0, @t P I.

Definition 2.23. [18] A curve γptq in E3
1 is said to be spacelike (respectively timelike, null) if γ1ptq is a space-

like(respectively timelike, null) vector.

Theorem 2.24. Let α : I � R Ñ E3
1 be a spacelike or timelike curve. Given t0 P I, Dδ, ϵ ¡ 0 and a diffeomorphism

ϕ : p�ϵ, ϵq Ñ pt0 � δ, t0 � δq such that the curve β : p�ϵ, ϵq Ñ E3
1 defined as β � α � ϕ which satisfies }β1psq} �

1, @s P p�ϵ, ϵq. Then α is parametrized by its arc length [18].

Theorem 2.25. Let α : I � R Ñ E3
1 be a null curve whose trace is not a straight line (α2 is not null). Then there

exists a new parametrization βpsq � αpϕpsqq such that }β2psq} � 1, @s. We say α pseudo-parametrized by its arc
length [18].



M. Tasdemir et al. / Filomat 38:5 (2024), 1681–1702 1686

2.3.2. Non-Null Curves in E3
1 With Respect To Caputo Fractional Derivative

In this section, we give the definition and properties of non-null curves in Minkowski 3�space with
respect to Caputo fractional derivative. Note that each definition based on similar arguments, only the
metric is different from the Euclidean case.

Definition 2.26. (α-arc length of a curve) Suppose that the non-null curve γ : I � R Ñ E3
1 is parametrized by its

arc length s̃. Let α P p0, 1s, then the α-arc length s of γ is defined as

s �
�

α2

Γp2 � αq s̃

 1
α

. (17)

From the above definition, we can say that if γ is a curve parametrized by its α-arc length s and if s̃ is
the arc length parameter of γ then,

dαγ
dsα

� αs1�α

Γp2 � αq
dγ
ds

ds
ds̃
. (18)

Remark 2.27. [2] If a non-null curve γ parametrized by α-arc length s, then by using (17),(18) we obtain�����dαγ
dsα

����� � 1. (19)

Since the Frenet frame of a non-null curve γ is independent of the choice of parametrization [2], we can
write the following expression

span

#
dαγ
dsα
,

�
dαγ
dsα


1
,

�
dαγ
dsα


2+
� span

#
dγ
ds
,

�
dγ
ds


1
,

�
dγ
ds


2+
@α P p0, 1s . (20)

Therefore, the α-tangent vector of a non-null curve γ is defined as Tα �
dαγ
dsα

. From (19), we have
�

dαγ
dsα


1
K

dαγ
dsα

. Therefore the α-unit normal of a curve γ is defined as

Nα �
T1α
}T1α}

. (21)

The function κα � ϵ2}T1α} is called the α-curvature of γ, and the vector Bα � Tα^Nα is called the α-binormal
of γwhere, ϵ2 � xNα,Nαy. Moreover, the function τα � �ϵ2xN1

α,Bαy is called the α-torsion of γ.

Theorem 2.28. Let γ : I Ñ E3
1 be a non-null curve parametrized by its α-arc length s. Let Tα, Nα, Bα, κα, τα be its

α-tangent, α-normal, α-binormal, α-curvature and α-torsion of γ, respectively. Then, we have the following system
of ordinary differential equations

�
�T1α

N1
α

B1α

�
� �

�
� 0 ϵ2κα 0
�ϵ1κα 0 ϵ3τα

0 �ϵ2τα 0

�
�
�
�Tα

Nα
Bα

�
� (22)

where ϵ1 � xTα,Tαy, ϵ2 � xNα,Nαy, ϵ3 � xBα,Bαy.

Remark 2.29. If we take α � 1, then we obtain the Frenet frame in [11]. In this case, we denote κ1 and τ1 as κ and
τ respectively.
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2.3.3. Null Curves in E3
1 With Respect To Caputo Fractional Derivative

In this section, we give the definition and properties of null curves in Minkowski 3�space with respect
to Caputo fractional derivative.

Definition 2.30. (Pseudo α-arc length of a curve) Suppose that the null curve γ : I � R Ñ E3
1 is parametrized by

its pseudo arc length s̃. Let α P p0, 1s, then the pseudo α-arc length s of γ is defined as

s �
�

α2

Γp2 � αq s̃

 1
α

. (23)

From the above definition, we can say that if γ is a null curve parametrized by its pseudo α-arc length s and
if s̃ is the pseudo arc length parameter of γ then,

dαγ
dsα

� αs1�α

Γp2 � αq
d fγ
ds

ds
ds̃
. (24)

Definition 2.31. Let γ : I Ñ E3
1 be a null curve parametrized by its pseudo α-arc length s. Then the α-tangent

vector Tα is defined as

Tα �
dαγ
dsα
. (25)

Theorem 2.32. Let γ : I Ñ E3
1 be a null curve parametrized by its pseudo α-arc length s. Then, we have the following

system of ordinary differential equations

�
�T1α

N1
α

B1α

�
� �

�
� 0 κα 0
κα 0 �τα
0 �τα 0

�
�
�
�Tα

Nα
Bα

�
� , (26)

where ϵ1 � xTα,Tαy, ϵ2 � xNα,Nαy, ϵ3 � xBα,Bαy defines the Frenet frame of γ. The vectors Tα, Nα, Bα, are
called the α-tangent, α-normal, α-binormal of γ, respectively and the functions κα, τα are called the α-curvature and
α-torsion of γ, respectively.

Remark 2.33. If we take α � 1 then we obtain the Frenet frame in [11]. In this case, we denote κ1 and τ1 as κ and τ
respectively.

The Frenet frame of a null curve γ is independent from the choice of parametrization, hence we can write
the following expression

span

#
dαγ
dsα
,

�
dαγ
dsα


1
,

�
dαγ
dsα


2+
� span

#
dγ
ds
,

�
dγ
ds


1
,

�
dγ
ds


2+
@α P p0, 1s . (27)

Hence, we can state the following theorem.

Theorem 2.34. (Fundamental Theorem of Curves in E3
1) Let κα ¡ 0 and τα be smooth functions on real numbers

defined on an open interval I which does not contain zero. Then, there is a curve γ : I Ñ E3 where κα ¡ 0 and τα are
its α-curvature and α-torsion respectively. If there is another curve like this, then it is a translation or rotation of γ.

Remark 2.35. The fundamental theorem of curves in E3
1 is valid for both null and non-null curves.
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3. Fractional Bertrand Curves in E3

In this section, the definition of Bertrand curves inE3 is given with respect to Caputo fractional derivative
and some important classifications are obtained by using the definitions and theorems in [10] whether a
curve is Bertrand or not .

Definition 3.1. A regular α-differentiable curve γ is said to be non degenerate if CDαt γ^ pCDαt q2γ � 0.

Definition 3.2. Let γ : I Ñ E3 be α-differentiable curve with κα � 0. Then γ is called a fractional Bertrand curve
or α-Bertrand curve if there exists γ̄ : I Ñ E3 such that

γ̄ � γ� λNα (28)

and N̄α � Nα, where N̄α is the principal normal of γ̄ and λ is a smooth function. γ and γ̄ are called fractional Bertrand
mates of order α or α-Bertrand mates.

Theorem 3.3. If γ and γ̄ are α-Bertrand mates in E3, i.e. γ̄ � γ� λNα, then λ is a constant function.

Proof. As γ̄ and γ are α-Bertrand mates, we have γ̄ � γ � λNα and taking derivative with respect to α-arc
length s of γ, we get

dγ̄
ds

� dγ̄
ds̄

ds̄
ds

� dγ
ds

� dλ
ds

Nα � λdNα
ds

(29)

by using the fact that
dγ
ds

� Γp2 � αq
αs1�α

dαγ
dsα

and we obtain

ds̄
ds
Γp2 � αq
αs̄1�α T̄α �

�
Γp2 � αq
αs1�α � λκα



Tα � dλ

ds
Nα � λταBα. (30)

Since, N̄α � Nα, we can take Euclidean inner product of both sides of (30) by Nα and obtain
dλ
ds

� 0, which
means λ is a constant.

Theorem 3.4. Let γ : I Ñ E3 be a α-differentiable non-degenerate curve with τα � 0 (torsion of γ w.r.t α-Frenet
frame) and let A be a non-zero constant. Then, γ and γ̄ are Bertrand mates with γ̄ � γ � ANα if and only if there

exists a constant B such that Aκα � Bτα �
Γp2 � αq
αs1�α and Bκα � Aτα � 0.

Proof. From the previous theorem, we have

ds̄
ds
Γp2 � αq
αs̄1�α T̄α �

�
Γp2 � αq
αs1�α � Aκα



Tα � AταBα.

Then, due to the fact that Nα � N̄α, there exists a smooth angle function θ such that�
B̄α
T̄α

�
�
�

cosθ � sinθ
sinθ cosθ

� �
Bα
Tα

�
. (31)

Hence, we obtain

αs̄1�α

Γp2 � αq
�
Γp2 � αq
αs1�α � Aκα



ds
ds̄

� cosθ

and

αs̄1�α

Γp2 � αqAτα
ds
ds̄

� sinθ.
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Thus,

�Aτα cosθ�
�
Γp2 � αq
αs1�α � Aκα



sinθ � 0. (32)

Taking the derivative of T̄α � cosθTα � sinθBα with respect to s gives us

ds̄
ds
κ̄αN̄α � �θ1 sinθTα � pκα cosθ� τα sinθqNα � θ1 cosθBα.

Since Nα � N̄α, we have θ1 � 0 and therefore θ is a constant angle. From (31) we have sinθ � 0.
Hence, (32) implies

Aτα cotθ� Aκα �
Γp2 � αq
αs1�α .

If we choose B � A cotθ, we get

Aκα � Bτα �
Γp2 � αq
αs1�α .

Moreover,

ds̄
ds
κ̄α � pκα cosθ� τα sinθq � sinθ

A
p�Aτα � Bκαq � 0.

Now, conversely assume that the conditions Aκα � Bτα �
Γp2 � αq
αs1�α and Aτα � Bκα � 0 hold and define

γ̄ � γ� ANα. Then we have

ds̄
ds
Γp2 � αq
αs̄1�α T̄α �

�
Γp2 � αq
αs1�α � Aκα



Tα � AταBα � ταpBTα � ABαq (33)

and taking derivative of (33) with respect to s gives us Nα � N̄α.

4. Fractional Bertrand Curves in E3
1

In this section, we generalize Bertrand curves with respect to Caputo fractional derivative to the
Minkowski 3-space by taking into account the definitions and classifications of [3, 11, 22].

4.1. Spacelike Fractional Bertrand Curves in E3
1

Spacelike curves can be categorized by type of their principal normals. In this section, we consider
Caputo fractional spacelike curves having principal normals either spacelike or timelike. We give one
definition for spacelike Bertrand curve but we give different categorizations for each case.

Definition 4.1. A spacelike α-differentiable non-degenerate curve γ : I Ñ E3
1 with κα � 0 is called a fractional

Bertrand curve or α-Bertrand curve if there exists γ̄ : I Ñ E3
1 such that γ̄ � γ � λNα and Nα � N̄α where λ is a

smooth function on I. γ and γ̄ are called fractional Bertrand mates of order α or α-Bertrand mates.

Theorem 4.2. If spacelike curves γ and γ̄ are α-Bertrand mates inE3
1 i.e. γ̄ � γ�λNα, then λ is a constant function.

Proof. As γ̄ and γ are α-Bertrand mates, we have γ̄ � γ � λNα and taking derivative with respect to α-arc
length s of γ, we get

dγ̄
ds

� dγ̄
ds̄

ds̄
ds

� dγ
ds

� dλ
ds

Nα � λdNα
ds
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by using the fact that
dγ
ds

� Γp2 � αq
αs1�α

dαγ
dsα

and we obtain

ds̄
ds
Γp2 � αq
αs̄1�α T̄α �

�
Γp2 � αq
αs1�α � λκα



Tα � dλ

ds
Nα � ϵ3λταBα. (34)

Since N̄α � Nα, we can take Lorentzian inner product of both sides of (34) by Nα and we get
dλ
ds

� 0 which
means λ is a constant.

Theorem 4.3. Let γ : I Ñ E3
1 be a Caputo fractional non-degenerate spacelike curve parametrized by its α-arc length

s with spacelike normal, nonzero curvature κα and torsion τα. Then γ is an α-Bertrand curve with α-Bertrand mate
γ̄ if and only if one of the following statements holds:

(i) There exist constants λ, h satisfying

Γp2 � αq
αs1�α � Aκα � �hλτα, h2   1, τα � hκα � 0, hτα � κα � 0

and in this case Bertrand mate γ̄ is a timelike curve.

(ii) There exist constants λ, h satisfying

Γp2 � αq
αs1�α � Aκα � �hλτα, h2 ¡ 1, τα � hκα � 0, hτα � κα � 0

and in this case Bertrand mate γ̄ is a spacelike curve with spacelike normal.

Proof. Let γ be a α-differentiable spacelike curve with spacelike normal and parametrized by its α-arc length
s with non zero κ, τ.

(i) We prove the four conditions with three steps. Let γ̄ be timelike and defined as

γ̄ � γ� λNα. (35)

Taking derivative of (35) with respect to s gives

ds̄
ds
Γp2 � αq
αs̄1�α T̄α �

�
Γp2 � αq
αs1�α � λκα



Tα � AταBα. (36)

Step I.

If we define ω � ds̄
ds
Γp2 � αq
αs̄1�α and ρ � ds̄

ds
, taking Minkowski inner product of equation (36) by itself

gives

�ω2 �
�
Γp2 � αq
αs1�α � λκα


2

� pλταq2 .

Let δ �
Γp2�αq
αs1�α � λκα
ω

and µ � �λτα
ω

. Clearly it can be seen that δ2 � µ2 � �1, so we have

T̄α � δTα � µBα. (37)

Taking the derivative of equation (37) with respect to s yields

ρκ̄αN̄α � δ1Tα � pδκα � µταqNα � µ1Bα. (38)
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Since Nα � N̄α, we conclude that δ1 � µ1 � 0 which implies δ and µ are constants.

Furthermore, we know that µ � 0 by assumptions, hence we can define a constant h � δ
µ

, which

implies
Γp2 � αq
αs1�α � λκα � �hλτα.

Step II.

On the other hand, we know ωκ̄αN̄α � pδκα � µταqNα and if we take Minkowski inner product of
equation (38) by itself, we obtain

ρ2κ̄2
α �

phκα � ταq2

1 � h2 ,

hence we can say that phκα � ταq � 0 and h2   1.

Step III.

If we define ν � δκα � µτα
ρκ̄α

, then we can say

N̄α � νNα. (39)

Differentiation of (39) yields

ρτ̄αB̄α � PTα � QBα (40)

where P � λταpτα � hκαq
ωρκ̄αp1 � h2q phτα � καq and Q � hP, which proves hτα � κα � 0.

For the proof of the sufficiency part, let us define a curve γ̄ as γ̄ � γ� λNα and m1 � s1npλταq, m2 �
s1nphκα � ταq, m3 � s1npκα � hταq. Then if we use the properties, we obtain

T̄α � � m1?
1 � h2

phTα � Bαq , N̄α � �m1m2Nα, B̄α � m1m2m3

p
?

1 � h2q
pTα � hBαq .

From these equations, we conclude that γ̄ is timelike.

(ii) Same argument can be applied to spacelike curves.

Theorem 4.4. Letγ beα-differentiable spacelike curve with spacelike normal which is parametrized by itsα-arc length
with non-zero curvature κα and torsion τα. Assume that γ̄ is α�differentiable null curve with α�curvature κ̄α � 1.

Thenγ and γ̄ are Bertrand curves if and only if there exists constantsλ and h � �1 satisfying
Γp2 � αq
αs1�α �λκα � hλτα

and hκα � τα � 0.

Proof. An argument similar to proof of the Theorem 4.3 can be applied by using the definition of null curve.
The reason of lack of the one condition comes from nullity.

Theorem 4.5. Let γ be α�differentiable spacelike curve whose normal is timelike with nonzero κα and torsion τα.
Then, γ is a Bertrand curve if and only if there exist constants λ and h where h2   1 satisfying

Γp2 � αq
αs1�α � λκα � hλτα (41)

and τα � hκα � 0, hτα � κα � 0.
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Proof. It is easy to see this result by applying the method of the proof of Theorem 4.3. The differences of the
less than/greater than sign and minus sign come from spacelike/timelike differences.

Example 4.6. Consider the spacelike curve with spacelike normal γ : I Ñ E3
1 defined by

γpsq �
�?

2s, coshpsq, sinhpsq
	
.

By choosing h � �1?
2

and λ � 1
2 the curve γ̄ can be obtained as:

γ̄ � γ� λNα.

It can be easily verified that γ̄ is a timelike. We want to sketch this curve for different values of α. To see variation
along α properly, we choose the values for α as 0.1 and 0.9.

For α � 0.9, we have

γ̄ �
� ?

2
�
s1.8 � 0.0447480047275141

�
s0.8 ,

0.0447480047275141 � sinh psq
s0.8 � 0.447480047275141 � s0.2 cosh psq � cosh psq,

0.0447480047275141 � cosh psq
s0.8 � 0.447480047275141 � s0.2 sinh psq � sinh psq

�
.

Figure 1: γ and its Bertrand mate γ̄ for α � 0.9

For α � 0.1, we have γ̄ as

γ̄ �
�?

2 � �0.00486489896951851 � s0.8 � s
�
,

s0.8 � p0.00540544329946501 � s cosh psq � 0.00486489896951851 sinh psqq � cosh psq,

s0.8 � p0.00540544329946501 � s sinh psq � 0.00486489896951851 cosh psqq � sinh psq
�
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Figure 2: γ and its Bertrand mate γ̄ for α � 0.1

Example 4.7. Consider the spacelike curve with spacelike normal γ : I Ñ E3
1 defined as

γpsq �
�?

2s, coshpsq, sinhpsq
	
.

By choosing α � 1
2 , h � �

?
2 and λ � 1

3 the following curve can be obtained:

γ̄ � γ� λNα.

It can be easily verified that γ̄ is spacelike curve with spacelike normal. We want to sketch this curve for different
values of α. To see variation along α properly, we choose the values for α as 0.1 and 0.9.
For α � 0.9, we have

γ̄ �
� ?

2
�
s1.98 � 0.00330439284533693

�
s0.98 ,

0.00330439284533693 � sinh psq
s0.98 � 0.330439284533692 � s0.02 cosh psq � cosh psq,

0.00330439284533693 � cosh psq
s0.98 � 0.330439284533692 � s0.02 sinh psq � sinh psq

�
.
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Figure 3: γ and its Bertrand mate γ̄ for α � 0.9

For α � 0.1, we have γ̄ as

γ̄ �
�?

2
�
0.00324326597967901s0.8 � s

�
,

s0.8 p0.00360362886631001 � s cosh psq � 0.00324326597967901 � sinh psqq � cosh psq,

s0.8 p0.00360362886631001 � s sinh psq � 0.00324326597967901 � cosh psqq � sinh psq
�

Figure 4: γ and its Bertrand mate γ̄ for α � 0.1

Example 4.8. Consider the spacelike curve with spacelike normal γ : I Ñ E3
1 defined as

γpsq �
�?

2s, coshpsq, sinhpsq
	
.

By choosing λ � �1 �
?

2, the following curve can be obtained:

γ̄ � γ� λNα.



M. Tasdemir et al. / Filomat 38:5 (2024), 1681–1702 1695

We want to sketch this curve for different values of α. To see variation along α properly, we choose the values for α as
0.1 and 0.9.

For α � 0.9, we have

γ̄ �
� ?

2
�
s1.8 � 0.03707046089

s0.8 ,

s0.8 cosh psq � 2.28390229446 � p0.9460233055006 � s cosh psq � 0.09460233055006 � sinh psqq
s0.8 ,

s0.8 sinh psq � 2.28390229446 � p0.9460233055006 � s sinh psq � 0.09460233055006 � cosh psqq
s0.8

�
.

Figure 5: γ and its Bertrand mate γ̄ for α � 0.9

For α � 0.1, we have

γ̄ �
�?

2
�
�0.00972979793903703 � s0.8 �

�
1 �

?
2
	
� s

	
,

� 0.103975413434764 � s0.8 �
�

1 �
?

2
	�

0.103975413434764 � s cosh psq

� 0.0935778720912873 � sinh psq
�
� cosh psq,

� 0.103975413434764 � s0.8 �
�

1 �
?

2
	�

0.103975413434764 � s sinh psq

� 0.0935778720912873 � cosh psq
�
� sinh psq

�
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Figure 6: γ and its Bertrand mate γ̄ for α � 0.1

Example 4.9. Consider the spacelike curve with timelike normal γ : I Ñ E3
1 defined as

γpsq �
�

s?
2
,

sinhpsq?
2
,

coshpsq?
2



.

By choosing h � 1 �
?

2, λ � 1, the following curve can be obtained:

γ̄ � γ� λNα.

It can be easily verified that γ̄ is spacelike curve with timelike normal. We want to sketch this curve for different values
of α. To see variation along α properly, we choose the values for α as 0.1 and 0.9.

For α � 0.9, we have

γ̄ �
� ?

2
�
s1.8 � 0.0894960094550281

�
2s0.8 ,

?
2
�
s0.8 sinh psq � 0.894960094550282 � s sinh psq � 0.0894960094550281 � cosh psq�

2s0.8 ,
?

2
�
s0.8 cosh psq � 0.894960094550282 � s cosh psq � 0.0894960094550281 � sinh psq�

2s0.8

�
.
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Figure 7: γ and its Bertrand mate γ̄ for α � 0.9

For α � 0.1 we have

γ̄ �
� ?

2 � �0.00972979793903703 � s0.8 � s
�

2
,

?
2
�
s1.8 � p0.01081088659893 � sinh psq � 0.00972979793903703 � cosh psqq � sinh psq�

2
,

?
2
�
s1.8 � p0.01081088659893 � cosh psq � 0.00972979793903703 sinh psqq � cosh psq�

2

�
.

Figure 8: γ and its Bertrand mate γ̄ for α � 0.1

4.2. Timelike Fractional Bertrand Curves in E3
1

Unlike spacelike curves, timelike curves does not have sub-categories. In this part, we defineα�Bertrand
curves for timelike curves and give classifications about Bertrand mates where one of them is timelike.

Definition 4.10. An α�differentiable timelike non-degenerate curve γ : I Ñ E3
1 with κα � 0 is called fractional

Bertrand curve or α�Bertrand curve if there exists γ̄ : I Ñ E3
1 such that γ̄ � γ � λNα and Nα � N̄α where λ is a

smooth function on I.
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Theorem 4.11. If a timelike curve γ and γ̄ are α-differentiable Bertrand curves in E3
1 with γ̄ � γ� λNα, then λ is

a constant function.

Proof. As γ̄ and γ are Bertrand mates, we can write

γ̄ � γ� λNα.

Derivative with respect to α�arc length s of γ is

Γp2 � αq
αs̄1�α T̄α � pΓp2 � αq

αs1�α � λκαqTα � λ1Nα � λταBα.

Taking Minkowski inner product of both side by N̄α gives the result.

Theorem 4.12. Let γ : I Ñ E3
1 be an α�differentiable non-degenerate timelike curve parametrized by its α�arc

length s with spacelike normal, non-zero curvature κα and torsion τα. Then γ is Bertrand curve with Bertrand mate
γ̄ if and only if one of the following statements holds.

1. There exist constants λ, h satisfying

h2   1,
Γp2 � αq
αs1�α � λκα � hλτα, τα � hκα � 0, hτα � κα � 0,

and in this case Bertrand mate γ̄ is a spacelike curve with spacelike normal.

2. There exist constants λ, h satisfying

h2 ¡ 1,
Γp2 � αq
αs1�α � λκα � hλτα, τα � hκα � 0, hτα � κα � 0,

and in this case Bertrand mate γ̄ is a timelike curve.

Proof. For both cases, the process we used for the proof of Theorem 4.3 works.

Theorem 4.13. Let γ be an α�differentiable timelike curve parametrized by its α�arc length s with non-zero
curvature κα and torsion τα. Let γ̄ be an α�differentiable null curve with curvature κ̄α � 1. Then, γ and γ̄ are

Bertrand mates if and only if there exists constantsλ and h2 � 1 satisfying
Γp2 � αq
αs1�α �λκα � hλτα and hκα�τα � 0.

Proof. Again, using the definition of a null curve and applying the proof of the Theorem 4.3 gives us the
result. Notice that one of the conditions is missing due to the nullity.

Example 4.14. Consider the spacelike curve γ with timelike normal γ : I Ñ E3
1 which is defined by

γpsq �
�

s,
?

2 coshpsq,
?

2 sinhpsq
	
.

By choosing h �
?

2, λ � � 1
2
?

2
, the following curve can be obtained:

γ̄ � γ� λNα

It can be easily verified that γ̄ is timelike.To see variation along α properly, we choose the values for α as 0.1 and 0.9.
For α � 0.9, we have

γ̄ �
�

s1.8 � 0.022374002363757
?

2
s0.8 ,

� 0.0447480047275141 sinh psq
s0.8 � 0.447480047275141s0.2 cosh psq �

?
2 cosh psq,

� 0.0447480047275141 cosh psq
s0.8 � 0.447480047275141s0.2 sinh psq �

?
2 sinh psq

�
.
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Figure 9: γ and its Bertrand mate γ̄ for α � 0.9

for α � 0.1 we have

γ̄ �
�
� 0.00243244948475926 �

?
2 � s0.8 � s,

� 0.00486489896951851 � s0.8 sinh psq � 0.00540544329946501 � s1.8 cosh psq �
?

2 cosh psq,

� 0.00486489896951851 � s0.8 cosh psq � 0.00540544329946501 � s1.8 sinh psq �
?

2 sinh psq
�

Figure 10: γ and its Bertrand mate γ̄ for α � 0.1

Example 4.15. Consider the spacelike curve with timelike normal γ : I Ñ E3
1 which is defined by

γpsq �
�

s,
?

2 coshpsq,
?

2 sinhpsq
	
.

By choosing h � 1?
2
, λ � �

?
2

3 , the following curve can be obtained:

γ̄ � γ� λNα.
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It can be easily verified that γ̄ is spacelike. To see variation along α properly, we choose the values for α as 0.1 and 0.9.
For α � 0.9 we have

γ̄ �
�

s1.8 � 0.029832003151676 �
?

2
s0.8 ,

� 0.0596640063033521 � sinh psq
s0.8 � 0.596640063033521 � s0.2 cosh psq �

?
2 cosh psq,

� 0.0596640063033521 � cosh psq
s0.8 � 0.596640063033521 � s0.2 sinh psq �

?
2 sinh psq

�
.

Figure 11: γ and its Bertrand mate γ̄ for α � 0.9

for α � 0.1 we have

γ̄ �
�
� 0.00324326597967901

?
2s0.8 � s,

� 0.00648653195935802s0.8 sinh psq � 0.00720725773262002s1.8 cosh psq �
?

2 cosh psq,

� 0.00648653195935802s0.8 cosh psq � 0.00720725773262002s1.8 sinh psq �
?

2 sinh psq
�
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Figure 12: γ and its Bertrand mate γ̄ for α � 0.1

4.3. Null Fractional Bertrand Curves in E3
1

Although null curves are different from spacelike and timelike curves, the definition of null α�Bertrand
curves are almost same with spacelike and timelike cases, but they differ on classification. In this section,
we examine null Bertrand curves by considering the Caputo fractional derivative in [11], [22], [3] and we
obtain the same results for α � 1 .

Definition 4.16. A null non-degenerate curve γ : I Ñ E3
1 with κα � 0 is called fractional Bertrand curve or

α-Bertrand curve if there exists γ̄ : I Ñ E3
1 such that γ̄ � γ� λNα and Nα � N̄α where λ is a smooth function on I.

The curves γ and γ̄ are called fractional Bertrand mates or α�Bertrand mates.

Theorem 4.17. If null curves γ and γ̄ are α-Bertrand mates in E3
1, i.e. γ̄ � γ� λNα, then λ is a constant function.

Proof. The proof is similar to the other above cases.

Theorem 4.18. Let γ be non degenerate null curve. γ is said to be Bertrand curve if and only if κα � 0 or τα is
constant.

Proof. The argument at the proof of the Theorem 4.3 also works here.

Hence we have the following result.

Remark 4.19. Let γ be a null Bertrand curve with nonzero curvature and let γ̄ be its Bertrand mate. Then their
curvature and torsion satisfy

κακ̄α � constant ¡ 0, τα � τ̄α � constant � 0. (42)

5. Conclusion

The Caputo fractional derivatives do not have extensive usage in differential geometry. However, its
usage might still be a niche area of research because of the advantages like having more flexible approach
to complex geometrical structures and leading to more accurate representations of facts in differential
geometry. The application of Caputo fractional derivative to differential geometry of curves allows for
a smoother and more accurate representation of curves and their geometric structures. Therefore, their
practical applications require further exploration through specialized research. Since Caputo fractional
differential operator is more flexible for analysis and share a set of properties that may be expected from a
differential operator to be considered fractional, we use it to examine Bertrand curves.
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