Filomat 38:5 (2024), 1703–1710 https://doi.org/10.2298/FIL2405703G

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Characterizations of SEP elements in a ring with involution

Mengge Guan^a, Xinran Wang^a, Junchao Wei^a

^a School of Mathematical Sciences, Yangzhou University, Yangzhou, Jiangsu 225002, P.R.China

Abstract. In this paper, we mainly give characterizations of SEP elements in terms of equations. In addition, some conditions involving powers of group and Moore-Penrose inverse are proposed to characterize SEP elements. Finally, we construct univariate equations, use the consistency of the equations and the solutions to the equations to characterize SEP elements.

1. Introduction

Let *R* be an associative ring with unit 1. An involution $a \mapsto a^*$ in a ring *R* is an anti-isomorphism of degree 2, that is,

$$(a^*)^* = a, (a + b)^* = a^* + b^*, (ab)^* = b^*a^* \text{ for } a, b \in \mathbb{R}.$$

R is called a *-ring if *R* is a ring with involution *. In what follows, *R* is a *-ring.

In 1958, Drazin proposed the Drazin inverse [2], that is, when $a \in R$, there exists $x \in R$ such that the following three equations hold:

$$xax = x$$
, $ax = xa$, $a^k = a^{k+1}x$ for some $k \ge 1$.

The element *x* above is unique if exists and is denoted by a^D . The least such *k* is called the index of *a*, and denoted by ind(*a*). In particular, when ind(*a*)=1, the Drazin inverse a^D is called the group inverse of *a* [1] and it is denoted by $a^{\#}$. The set of all group invertible elements of *R* is denoted by $R^{\#}$.

An element $a \in R$ is Moore-Penrose invertible if there exists $x \in R$ such that the following four equations hold:

$$a = axa, x = xax, (ax)^* = ax, (xa)^* = xa.$$

Such an *x* is uniquely determined Moore-Penrose inverse (or MP-inverse) of *a* [9], denoted by $x = a^+$. The set of all Moore-Penrese invertible elements of *R* will be denoted by R^+ .

Let $a, x \in R$. If

$$axa = a; xR = aR; Rx = Ra^*,$$

then *x* is called a core inverse of *a* and if such an element *x* exists, then it is unique and denoted by $a^{\text{(f)}}$. The set of all core invertible elements in *R* will be denoted by $R^{\text{(f)}}$ [12]. Xu, Chen and Zhang [13] characterized

²⁰²⁰ Mathematics Subject Classification. 16U99, 16W10, 15A09.

Keywords. Moore-Penrose inverse; Group inverse; EP element; Core inverse; SEP element.

Received: 17 February 2023; Accepted: 29 August 2023

Communicated by Dijana Mosić

Email addresses: 2530374647@qq.com (Mengge Guan), 1092078512@qq.com (Xinran Wang), jcweiyz@126.com (Junchao Wei)

core invertible elements in *-rings by there equations. Let $a, x \in R$, then $a \in R^{\text{(#)}}$ and $a^{\text{(#)}} = x$ if and only if $a = xa^2, ax^2 = x$ and $(ax)^* = ax$. In particular, if $a \in R^{\text{(#)}} \cap R^+$, then $a \in R^{\text{(#)}}$ and $a^{\text{(#)}} = a^{\text{#}}aa^+$.

An element $a \in R$ is said to be EP if and only if $a \in R^{\#} \cap R^{+}$ and $a^{\#} = a^{+}$. Many authors have published papers on EP elements, see [3, 4, 6, 8, 10, 11] for example. In particular, Wang, Mosić and Gao [8] said that $a \in R$ is an EP element if and only if there exists $x \in R$ such that

$$a = axa$$
, $(ax)^* = ax = xa$.

We use the notation R^{EP} to denote the set of all EP elements in R.

An element $a \in R$ satisfying $aa^*a = a$ is called a partial isometry. Some properties and equivalent characterizations of partial isometry elements are given in [15, 17]. The set of all partial isometry elements of *R* is denoted by R^{Pl} . We have that $a \in R$ is a partial isometry if and only if $a \in R^+$ and $a^* = a^+$ [10].

If $a \in R^{\#} \cap R^{+}$, and $a^{\#} = a^{*} = a^{*}$, then *a* is called a strongly EP (for short SEP) element [14, 15]. We use the notation R^{SEP} to denote all the SEP elements in *R*. Moreover, $a \in R$ is a SEP element if and only if *a* is a partial isometry and EP. Mosić and Djordjević characterized SEP elements in *-rings by some equivalent conditions, see [5, 7]. Recently, Zhao, Wang and Wei [15], Zhao and Wei [16] by using solutions of certain equations, some characterizations of SEP elements in a ring with involution are discussed.

Motivated by these results, this paper is intended to provide further equivalent conditions for an element to be SEP.

2. Using equations to characterize SEP elements

In this section, we give new characterizations of SEP elements in terms of equations. We begin with some auxiliary theorems.

Theorem 2.1. [8, Theorem 2.9] Let R be a *-ring and $a \in R$. Then $a \in R^{EP}$ if and only if there exists $x \in R$ such that

$$a = axa; (ax)^* = ax = xa.$$

Theorem 2.2. [7, Theorem 1.5.3] Let $a \in R^{\#} \cap R^+$. Then $a \in R^{SEP}$ if and only if $aa^{\#} = aa^*$ (or $a^{\#}a = a^*a$).

Theorem 2.3. [4] Let R be a ring. Then $a \in R^{\#}$ if and only if $a \in a^2R \cap Ra^2$.

Next, we will provide new characterizations of SEP elements.

Theorem 2.4. Let $a \in R$. Then $a \in R^{SEP}$ if and only if there exists $x \in R$ such that

$$a = axa; (ax)^* = xa = a^*a.$$

Proof. " \Rightarrow " Since $a \in R^{SEP}$, $a^{\#} = a^{+} = a^{*}$. Choose $x = a^{\#} = a^{+} = a^{*}$. Then we are done. " \Leftarrow " From the assumption, we have $ax = (a^{*}a)^{*} = a^{*}a = (ax)^{*} = xa$. Hence, by Theorem 2.1, we have $a \in R^{EP}$ and $a = axa = aa^{*}a$, it follows that $a \in R^{PI}$. Hence $a \in R^{SEP}$.

We find that this theorem can be simplified to the following corollary.

Corollary 2.5. Let $a \in R$. Then $a \in R^{SEP}$ if and only if there exists $x \in R$ such that

$$a = axa; ax = xa = a^*a.$$

In Corollary 2.5, the condition ax = xa implies that $a = axa = xa^2 = a^2x$. From Theorem 2.3, it follows that the condition $a \in R$ can be replaced by $a \in R^{\#}$. Therefore we get the following theorem.

Theorem 2.6. Let $a \in R^{\#}$. Then $a \in R^{SEP}$ if and only if there exists $x \in R$ such that

$$a = axa; ax = a^*a$$

Proof. " \Rightarrow " It is clear. Indeed, we only have to choose $x = a^{\#}$. " \Leftarrow " From the assumption, we have $a = axa = a^*aa$. Since $a \in R^{\#}$, $a^{\#}a = aa^{\#} = a^*a^2a^{\#} = a^*a$. Hence $a \in R^{SEP}$.

Consider the following question, there exists $x \in R$ such that a = axa and $xa = a^*a \stackrel{?}{\Longrightarrow} a \in R^{SEP}$.

Example 2.7. Let $R = M_3(Z_2)$, and set the involution of R as the transpose of matrices. Take $a = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Then

 $a^{\#} = a \text{ and } a^{+} = a^{*} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$. Choose $x = a^{+} = a^{*}$. Then a = axa and $xa = a^{*}a$. But we can check that $a^{*} \neq a^{\#}$, which implies that a is not SEP.

Similarly, we can obtain the following results.

Corollary 2.8. Let $a \in R^{\#}$. Then $a \in R^{SEP}$ if and only if there exists $x \in R$ such that

$$a = axa; xa = aa^*$$

Theorem 2.9. Let $a \in R$. Then $a \in R^{SEP}$ if and only if there exists $x \in R$ such that

$$a = axa; ax = a^*a; xa = aa^*.$$

Proof. " \Rightarrow " It is obvious by Corollary 2.5. " \Leftarrow "

$$a = axa = (a^*a)a = a^*a^2;$$

$$a = axa = a(aa^*) = a^2a^*.$$

Then $a \in R^{\#}$. Thus $a \in R^{SEP}$ by Theorem 2.6. \Box

Theorem 2.10. Let $a \in \mathbb{R}$. Then $a \in \mathbb{R}^{SEP}$ if and only if there exists $x \in \mathbb{R}$ such that

$$a = a^2 x = axa; ax = a^*a$$

Proof. " \Rightarrow " It is evident.

" \Leftarrow " Since $a = axa = (a^*a)a = a^*a^2$ and $a = a^2x$. Then $a \in R^{\#}$. Thus $a \in R^{SEP}$ by Theorem 2.6.

Corollary 2.11. Let $a \in R$. Then $a \in R^{SEP}$ if and only if there exists $x \in R$ such that

$$a = xa^2 = axa; xa = aa^*.$$

3. Using equivalent conditions to characterize SEP elements

In this section, SEP elements are characterized by conditions involving powers of their group and Moore-Penrose inverse. We use Z^+ to denote the set of positive integers.

Lemma 3.1. [7, Theorem 1.2.2] Let $a \in \mathbb{R}^{\#} \cap \mathbb{R}^{+}$ and $n \in \mathbb{Z}^{+}$. Then $a \in \mathbb{R}^{EP}$ if and only if $(a^{*})^{n}aa^{\#} = (a^{*})^{n}$.

Theorem 3.2. Let $a \in R^{\#} \cap R^{+}$ and $2 \le n \in Z^{+}$. Then $a \in R^{SEP}$ if and only if $(a^{*})^{n+k}aa^{\#} = (a^{+})^{n+k}$, k = 0, 1.

Proof. " \Rightarrow " It is an immediate result of Lemma 3.1.

" \leftarrow " From the assumption, we obtain

$$(a^*)^n aa^\# = (a^+)^n = (a^+)^n aa^+ = (a^*)^n aa^\# aa^+ = (a^*)^n aa^+ = (a^*)^n$$

Then $a \in R^{EP}$ by Lemma 3.1. Now

$$(a^{+})^{n+k} = (a^{*})^{n+k}aa^{\#} = (a^{*})^{n+k}aa^{+} = (a^{*})^{n+k}, \ k = 0, 1.$$
$$(a^{\#})^{n} = (a^{+})^{n} = (a^{*})^{n} = (a^{*})^{n+1}(a^{\#})^{*} = (a^{+})^{n+1}(a^{\#})^{*} = (a^{\#})^{n+1}(a^{\#})^{*}.$$
$$a = a^{n+1}(a^{\#})^{n} = a^{n+1}(a^{\#})^{n+1}(a^{\#})^{*} = aa^{\#}(a^{\#})^{*} = aa^{\#}(a^{+})^{*} = (a^{+})^{*} = (a^{\#})^{*}.$$

Hence $a \in R^{SEP}$ by [7, Theorem 1.5.3]. \Box

From Lemma 3.1 and Theorem 3.2, we can obtain the following result.

Theorem 3.3. Let $a \in R^{\#} \cap R^{+}$ and $2 \le n \in Z^{+}$. Then $a \in R^{SEP}$ if and only if $a^{*}(a^{\#})^{n-1}a^{+} = a^{\#}(a^{+})^{n}$.

Proof. " \Rightarrow " Since $a \in R^{SEP}$, $a^* = a^\# = a^+$, this gives $a^*(a^\#)^{n-1}a^+ = a^\#(a^+)^{n-1}a^+ = a^\#(a^+)^n$. " \Leftarrow " From the assumption, one gets

$$a^*(a^{\#})^{n-1}a^+ = a^{\#}(a^+)^n = aa^+a^{\#}(a^+)^n = aa^+a^*(a^{\#})^{n-1}a^+.$$

Multiplying the equality on the right by $a^{n+1}a^+$, one yields

$$a^* = aa^+a^*.$$

Hence $a \in R^{EP}$ by [7, Theorem 1.2.1], it follows that

$$a^* = a^* a^{\#} a = a^* (a^{\#})^n a^n = a^* (a^{\#})^{n-1} a^+ a^n = a^{\#} (a^+)^n a^n = (a^{\#})^{n+1} a^n = a^{\#}.$$

Thus $a \in R^{SEP}$. \square

Let $m, n, d \in Z^+$, we denote the maximum common divisor of m and n as (m, n) = d. Especially when d = 1, we say that m and n are coprime.

Theorem 3.4. Let $a \in R^{\#} \cap R^{+}$ and $m, n \in Z^{+}$, such that (m, n) = 1. Then $a \in R^{SEP}$ if and only if $(a^{*})^{k}aa^{\#} = (a^{+})^{k}$, k = m, n.

Proof. " \Rightarrow " It is clear.

" \leftarrow " Since (m, n) = 1, there exist $s, t \in Z$, such that sm + tn = 1. We can assume s > 0 and t < 0. Noting that

$$(a^*)^m aa^\# = (a^+)^m = (a^+)^m aa^+ = (a^*)^m aa^\# aa^+ = (a^*)^m$$

Then $a \in R^{EP}$ by [7, Theorem 1.2.2]. This induces

$$(a^*)^k = (a^*)^k a a^+ = (a^*)^k a a^\# = (a^+)^k = (a^\#)^k, \ k = m, n.$$

Now we have

$$(a^{\#})^{ms-1} = (a^{\#})^{-nt} = (a^{\#})^{n|t|} = (a^{*})^{n|t|} = (a^{*})^{-nt} = (a^{*})^{ms-1}.$$

$$(a^{\#})^{ms} = (a^{*})^{ms} = (a^{*})^{ms-1}a^{*} = (a^{\#})^{ms-1}a^{*}.$$

$$a^{\#}a = a^{\#}a^{ms+1}(a^{\#})^{ms} = a^{\#}a^{ms+1}(a^{\#})^{ms-1}a^{*} = a^{\#}a^{2}a^{*} = aa^{*}.$$

Hence $a \in R^{SEP}$ by [7, Theorem 1.5.3]. \Box

Theorem 3.5. Let $a \in R^{\#} \cap R^+$, $2 \le n \in Z^+$, $(a^*)^{n+k} = (a^{\#})^{n+k-1}a^*$, k = 0, 1. Then $a \in R^{SEP}$.

1706

Proof. " \Rightarrow " It is clear.

 $\ddot{u} \leftarrow u$ Using the equality $(a^*)^{n+k} = (a^{\#})^{n+k-1}a^*$, we obtain

$$(a^*)^{n+1} = (a^{\#})^n a^* = aa^+ (a^{\#})^n a^* = aa^+ (a^*)^{n+1},$$

$$a^* = (a^*)^{n+1} ((a^{\#})^*)^n = aa^+ (a^*)^{n+1} ((a^{\#})^*)^n = aa^+ a^*$$

Hence $a \in R^{EP}$ by [7, Theorem 1.2.1].

$$(a^*)^n = (a^*)^n aa^+ = (a^*)^n a^+ a = (a^*)^{n+1} (a^+)^* = (a^{\#})^n a^* (a^+)^* = (a^{\#})^n a^+ a = (a^{\#})^n,$$

$$(a^*)^{n-1} = (a^*)^{n-1} a^+ a = (a^*)^n (a^+)^* = (a^{\#})^{n-1} a^* (a^+)^* = (a^{\#})^{n-1},$$

$$a^{\#} = a^{n-1} (a^{\#})^n = a^{n-1} (a^*)^n = a^{n-1} (a^*)^{n-1} a^* = a^{n-1} (a^{\#})^{n-1} a^* = aa^{\#} a^* = a^*.$$

Thus $a \in R^{SEP}$. \Box

4. Using the solution of univariate equations to characterize SEP elements

In this section, we construct the equation $a^*xa = a^+$ and consider the consistence of the equation. Firstly, we start with a lemma.

Lemma 4.1. [7, Theorem 1.5.6] Suppose that $a \in \mathbb{R}^{\#} \cap \mathbb{R}^{+}$, $b \in \mathbb{R}$ and a = aba. Then $a \in \mathbb{R}^{EP}$ if and only if $a^{+} = a^{+}ba$. **Theorem 4.2.** Let $a \in R^{\#} \cap R^+$, $b \in R$ and a = aba. Then $a \in R^{SEP}$ if and only if $a^+ = a^*ba$.

Proof. " \Rightarrow " It is an immediate result of Lemma 4.1. " \Leftarrow " Since $a^+ = a^*ba$, $a = aa^+a = aa^*ba^2$, one yields

 $aa^{\#} = aa^{*}ba^{2}a^{\#} = aa^{*}ba = aa^{+}.$

Then $a \in R^{EP}$. This gives

$$a^{\#} = a^{+} = a^{*}ba = (a^{*}a^{+}a)ba = a^{*}a^{+}a = a^{*}.$$

Thus $a \in R^{SEP}$. \Box

Corollary 4.3. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{SEP}$ if and only if the following equations has at least one solution.

$$\begin{cases} axa = a; \\ a^*xa = a^+. \end{cases}$$
(1)

Naturally, we investigate the following equation

$$a^*xa = a^+ \tag{2}$$

Lemma 4.4. Let $a \in R^{\#} \cap R^+$. Then $a \in R^{EP}$ if and only if Eq.(4.2) is consistent.

Proof. " \Rightarrow " Assume that $a \in \mathbb{R}^{EP}$. Then $a^+ = a^\# = a^\# a^+ a = a^+ a^+ a$. Hence $x = (a^+)^* a^+ a^+$ is a solution to Eq.(4.2). " \Leftarrow " From the assumption, one gets $a^*x_0a = a^+$ for some $x_0 \in R$. This gives

$$a^{+}a^{+}a = (a^{*}x_{0}a)a^{+}a = a^{*}x_{0}a = a^{+}$$

Then $a \in R^{EP}$. \Box

Remark 4.5. If Eq.(4.2) is consistent, then the general solution is given by

$$x = (a^{+})^{*}a^{+}a^{+} + u - aa^{+}uaa^{+}, \text{ where } u \in \mathbb{R}.$$
(3)

Proof. First, by Lemma 4.4, $a \in R^{EP}$, this induces the formula (4.3) is the solution to Eq.(4.2). Now let $x = x_0$ be any solution to Eq.(4.2). Then

$$a^*x_0a=a^+.$$

Choose $u = x_0$. Then $aa^+uaa^+ = (a^+)^*(a^*x_0a)a^+ = (a^+)^*a^+a^+$, one yields

$$x_0 = (a^+)^* a^+ a^+ + x_0 - aa^+ uaa^+ = (a^+)^* a^+ a^+ + u - aa^+ uaa^+.$$

Thus the general solution to Eq.(4.2) is given by (4.3). \Box

Theorem 4.6. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{SEP}$ if and only if Eq.(4.2) is consistent and the general solution is given by

 $x = aa^{+}a^{+} + u - aa^{+}uaa^{+}, u \in R.$

Proof. " \Rightarrow " Since $a \in \mathbb{R}^{SEP}$, $a \in \mathbb{R}^{EP}$ and $(a^+)^* = a$. By Remark 4.5, we are done.

" \leftarrow " Noting that Eq.(4.2) is consistent. Then $a \in R^{EP}$. By the hypothesis, we have

 $a^*a^+a = a^*(aa^+a^+ + u - aa^+uaa^+)a = a^+.$

Since $a \in R^{EP}$, $a^*a^+a = a^*$, one has $a^* = a^+$. Thus $a \in R^{SEP}$. \Box

Finally, we construct equation as follows, which has the general solution as (4.4).

$$(aa^{\#})^*xaa^+ = a^+. (5)$$

It is clear that we have the following theorem.

Theorem 4.7. Let $a \in R^{\#} \cap R^{+}$. Then the general solution to Eq.(4.5) is given by (4.4).

Theorem 4.6 and Theorem 4.7 infer the following theorem.

Theorem 4.8. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{SEP}$ if and only if Eq.(4.2) has the same solution as Eq.(4.5).

5. Using core invertible elements to characterize SEP elements

Theorem 5.1. Let $a \in R$. Then the followings are equivalent: (1) $a \in R^{SEP}$; (2) $a \in R^{\bigoplus}$ and $a^* = a^{\bigoplus}$; (3) $a \in R^{\bigoplus}$ and $aa^* = a^{\bigoplus}a$.

Proof. Suppose that $a \in R^{\text{SEP}}$, we have $a \in R^{\text{(#)}}$ and $a^{\text{(#)}} = a^{\text{#}}aa^{+}$. Then (1) \Rightarrow (2) and (1) \Rightarrow (3) are easy to prove. (2) \Rightarrow (1) Since $a \in R^{\text{(#)}}$, we can check that $a \in R^{\text{#}}$ and $a^{\text{#}} = (a^{\text{(#)}})^{2}a$, by direct computation. Then

$$aa^{\#}a^{\textcircled{\oplus}} = a^{\textcircled{\oplus}}aa^{\textcircled{\oplus}} = a^{\textcircled{\oplus}}$$

This gives

$$a^* = a^{\textcircled{\#}} = aa^{\#}a^{\textcircled{\#}} = aa^{\#}a^*.$$

Hence $a \in R^{EP}$ and $a^{\#} = a^{\#}aa^{+} = a^{\textcircled{\oplus}} = a^{*}$. Thus $a \in R^{SEP}$.

(3)⇒(1) Since $a \in R^{\oplus}$, $a \in R^{\#}$ and $a^{\#} = (a^{\oplus})^2 a$, then $aa^{\#} = a^{\oplus}a$. Hence $aa^* = a^{\oplus}a = aa^{\#}$. Thus $a \in R^{SEP}$ by [7, Theorem 1.5.3]. □

(4)

Now we establish the following equation

$$xa^* = a^{\textcircled{\oplus}}x.$$

Theorem 5.2. Let $a \in \mathbb{R}^{\textcircled{\#}}$. Then $a \in \mathbb{R}^{SEP}$ if and only if Eq.(5.1) has at least one solution in $G_a = \{a, a^{\#}, a^*, (a^{\#})^*\}$.

Proof. " \Rightarrow " It is obvious by Theorem 5.1 (3).

" \leftarrow " (1) If x = a, then $aa^* = a^{\bigoplus}a$. By Theorem 5.1, $a \in R^{SEP}$. (2) If $x = a^{\#}$, then $a^{\#}a^* = a^{\bigoplus}a^{\#} = (a^{\bigoplus}a)a^{\#}a^{\#} = (aa^{\#})a^{\#}a^{\#} = a^{\#}a^{\#}$. One yields

 $aa^* = aaa^{\#}a^* = aaa^{\#}a^{\#} = aa^{\#}.$

Hence $a \in R^{SEP}$ [7, Theorem 1.5.3].

(3) If $x = a^*$, then $a^*a^* = a^{\text{(f)}}a^* = aa^{\text{(f)}}a^* = aa^{\text{(f)}}a^* = aa^{\text{(f)}}a^*$. One gets

$$a^* = a^*a^*(a^{\#})^* = aa^{\#}a^*a^*(a^{\#})^* = aa^{\#}a^*.$$

Hence $a \in R^{EP}$ [7, Theorem 1.2.1]. This gives $a^{\textcircled{P}} = a^{\ddagger}$ and so $a^*a^* = a^{\textcircled{P}}a^* = a^{\ddagger}a^*$. Thus $a \in R^{SEP}$ [7, Theorem 1.5.3].

(4) If $x = (a^{\#})^*$, then $(a^{\#})^*a^* = a^{(\text{ff})}(a^{\#})^*$.

$$(aa^{\#})^{*} = a^{(\text{H})}(a^{\#})^{*} = aa^{\#}a^{(\text{H})}(a^{\#})^{*} = aa^{\#}(aa^{\#})^{*}$$

Hence $a \in R^{EP}$ [7, Theorem 1.1.3]. It follows that $aa^{\#} = (aa^{\#})^* = a^{\#}(a^{\#})^* = a^{\#}(a^{\#})^*$. Then

$$a = aaa^{\#} = aa^{\#}(a^{\#})^* = aa^{\#}(a^+)^* = (a^+)^*.$$

Thus $a \in R^{SEP}$. \Box

Furtherly, we construct the following equation.

$$xa^* + a^{\#} = a^{(\#)}x + a^+.$$
(7)

Theorem 5.3. Let $a \in R^{\#} \cap R^+$. Then $a \in R^{SEP}$ if and only if Eq.(5.2) has at least one solution in $H_a = \{a^{\bigoplus}, (a^{\bigoplus})^*, a^+, (a^+)^*\}$.

Proof. First $a^{\text{(ff)}} = a^{\text{#}}aa^{\text{+}}$. " \Rightarrow " If $a \in R^{SEP}$, then $x = a^{\text{+}} = a^{\text{#}} = a^{\text{*}}$ is a solution. " \Leftarrow " (1) If $x = a^{\text{(ff)}} = a^{\text{#}}aa^{\text{+}}$, then

$$a^{\#}aa^{+}a^{*} + a^{\#} = a^{\#}aa^{+}a^{\#}aa^{+} + a^{+} = a^{\#}a^{+} + a^{+}.$$

Multiplying the equality on the left by $aa^{\#}$, one has $a^{\#} = aa^{\#}a^{+}$. Hence $a \in R^{EP}$ [7, Theorem 1.2.1]. This gives $a^{\#} = a^{\#} = a^{+}$ and $a^{\#}a^{*} = a^{\#}a^{\#}$. By Theorem 5.2, $a \in R^{SEP}$.

(2) If
$$x = (a^{(1)})^* = aa^+(a^*)^*$$
, then

$$aa^{+} + a^{\#} = aa^{+}(a^{\#})^{*}a^{*} + a^{\#} = a^{\#}aa^{+}aa^{+}(a^{\#})^{*} + a^{+} = a^{\#}aa^{+}(a^{\#})^{*} + a^{+}$$

Multiplying the equality on the left by *aa*[#], one gets

$$a^+ = aa^{\#}a^+.$$

1709

Then $a \in R^{EP}$ and $a^{\#} = a^{+}$. From the assumption, we obtain

$$aa^{\#} = aa^{+} = a^{\#}aa^{+}(a^{\#})^{*} = a^{\#}(a^{\#})^{*},$$
$$a = aaa^{\#} = aa^{\#}(a^{\#})^{*} = aa^{+}(a^{+})^{*} = (a^{+})^{*}.$$

Hence $a \in R^{SEP}$.

(3) If $x = a^+$, then $a^+a^* + a^\# = a^\#aa^+a^+ + a^+$. Multiplying the equality on the right by aa^+ , one yields

$$a^{\#}aa^{+} = a^{\#}.$$

Then $a \in R^{EP}$ [7, Theorem 1.2.1], this induces

$$a^+a^* = a^\#aa^+a^+ = a^+a^+.$$

By [16, Corollary 2.10], $a \in R^{PI}$. Thus $a \in R^{SEP}$.

(4) If $x = (a^+)^*$, then $aa^+ + a^{\#} = (a^+)^*a^* + a^{\#} = a^{\#}aa^+(a^+)^* + a^+ = a^{\#}(a^+)^* + a^+$. Multiplying the equality on the left by $aa^{\#}$, one has

$$a^{+} = aa^{\#}a^{+}.$$

Then $a \in R^{EP}$ [7, Theorem 1.2.1], one gets $a^+ = a^{\#}$, $(a^+)^* = (a^{\#})^*$. Now we have

$$a^{\#}a = aa^{+} = a^{\#}(a^{+})^{*} = a^{\#}(a^{\#})^{*}.$$

Hence $a \in R^{SEP}$ by (2). \Box

Acknowledgements

The authors thank the anonymous referees for their valuable comments.

References

- [1] A. Ben-Israel, T. N. E. Greville, Generalized Inverses: Theory and Applications 2nd edn. Springer, New York, 2003.
- [2] M. P. Drazin, Pseudo-inverses in associative rings and semigroups. Amer. Math. Monthly 65(1958) 506-514.
- [3] R. E. Hartwig, Block generalized inverses. Arch. Retion. Mech. Anal. 61(1976) 197-251.
- [4] J. J. Koliha, P. Patrićio, Elements of rings with equal spectral idempotents. J. Aust. Math. Soc. 72(1)(2002) 137-152.
- [5] D. Mosić, D. S. Djordjević, Partial isometries and *EP* elements in rings with involution. Electron. J. Linear Algebra 18(2009) 761-722.
- [6] D. Mosić, D. S. Djordjević, Further results on partial isometries and EP elements in rings with involution. Math. Comput. Model 54(2011) 460-465.
- [7] D. Mosić, Generalized inverses. Faculty of Sciences and Mathematics, University of Niš, Niš, 2018.
- [8] L. Wang, D. Mosić, Y. F. Gao, New results on EP elements in rings with involution. Algebra Colloquium. 29(2022) 39-52.
- [9] D. Mosić, D. S. Djordjević, J. J. Koliha, EP elements in rings. Linear Algebra Appl. 431(2009) 527-535.
- [10] D. Mosić, D. S. Djordjević, Further results on partial isometries and EP elements in rings with involution. Math. Comput. Modelling 54(1)(2011) 460-465.
- [11] D. Mosić, D. S. Djordjević, J. J. Koliha, EP elements in rings. Linear Algebra Appl. 431(2009) 527-535.
- [12] D. S. Rakić, N. Č. Dinčić, D. S. Djordjević, Group, Moore-Penrose, core and dual core inverse in rings with involution. Linear Algebra Appl. 463(2014) 115-133.
- [13] S. Z. Xu, J. L. Chen, X. X. Zhang, New characterizations for core inverses in rings with involution. Front. Math. China 12(2017) 231-246.
- [14] Z. C. Xu, R. J. Tang, J. C. Wei, Strongly EP elements in a ring with involution. Filomat 34(6)(2020) 2101-2107.
- [15] R. J. Zhao, H. Yao, J. C. Wei, Characterizations of partial isometries and two special kinds of EP elements. Czecho. Math. J. 70(2)(2020) 539-551.
- [16] D. D. Zhao, J. C. Wei, Strongly EP elements in rings with involution. J. Algebra Appl. (2022) 2250088, 10pages.
- [17] D. D. Zhao, J. C. Wei, Some new characterizations of partial isometries in rings with involution. Intern. Eletron. J. Algebra 30(2021) 304-311.

1710