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Characterizations of SEP elements in a ring with involution
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Abstract. In this paper, we mainly give characterizations of SEP elements in terms of equations. In addition,
some conditions involving powers of group and Moore-Penrose inverse are proposed to characterize SEP
elements. Finally, we construct univariate equations, use the consistency of the equations and the solutions
to the equations to characterize SEP elements.

1. Introduction

Let R be an associative ring with unit 1. An involution a 7→ a∗ in a ring R is an anti-isomorphism of
degree 2, that is,

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗ for a, b ∈ R.

R is called a ∗-ring if R is a ring with involution ∗. In what follows, R is a ∗-ring.
In 1958, Drazin proposed the Drazin inverse [2], that is, when a ∈ R, there exists x ∈ R such that the

following three equations hold:

xax = x, ax = xa, ak = ak+1x for some k ⩾ 1.

The element x above is unique if exists and is denoted by aD. The least such k is called the index of a, and
denoted by ind(a). In particular, when ind(a)=1, the Drazin inverse aD is called the group inverse of a [1]
and it is denoted by a#. The set of all group invertible elements of R is denoted by R#.

An element a ∈ R is Moore-Penrose invertible if there exists x ∈ R such that the following four equations
hold:

a = axa, x = xax, (ax)∗ = ax, (xa)∗ = xa.

Such an x is uniquely determined Moore-Penrose inverse (or MP-inverse) of a [9], denoted by x = a+. The
set of all Moore-Penrese invertible elements of R will be denoted by R+.

Let a, x ∈ R. If
axa = a; xR = aR; Rx = Ra∗,

then x is called a core inverse of a and if such an element x exists, then it is unique and denoted by a #O. The
set of all core invertible elements in R will be denoted by R #O [12]. Xu, Chen and Zhang [13] characterized
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core invertible elements in ∗-rings by there equations. Let a, x ∈ R, then a ∈ R #O and a #O = x if and only if
a = xa2, ax2 = x and (ax)∗ = ax. In particular, if a ∈ R#

∩ R+, then a ∈ R #O and a #O = a#aa+.
An element a ∈ R is said to be EP if and only if a ∈ R#

∩ R+ and a# = a+. Many authors have published
papers on EP elements, see [3, 4, 6, 8, 10, 11] for example. In particular, Wang, Mosić and Gao [8] said that
a ∈ R is an EP element if and only if there exists x ∈ R such that

a = axa , (ax)∗ = ax = xa.

We use the notation REP to denote the set of all EP elements in R.
An element a ∈ R satisfying aa∗a = a is called a partial isometry. Some properties and equivalent

characterizations of partial isometry elements are given in [15, 17]. The set of all partial isometry elements
of R is denoted by RPI. We have that a ∈ R is a partial isometry if and only if a ∈ R+ and a∗ = a+ [10].

If a ∈ R#
∩ R+, and a# = a+ = a∗, then a is called a strongly EP (for short SEP) element [14, 15]. We use

the notation RSEP to denote all the SEP elements in R. Moreover, a ∈ R is a SEP element if and only if a is
a partial isometry and EP. Mosić and Djordjević characterized SEP elements in ∗-rings by some equivalent
conditions, see [5, 7]. Recently, Zhao, Wang and Wei [15], Zhao and Wei [16] by using solutions of certain
equations, some characterizations of SEP elements in a ring with involution are discussed.

Motivated by these results, this paper is intended to provide further equivalent conditions for an element
to be SEP.

2. Using equations to characterize SEP elements

In this section, we give new characterizations of SEP elements in terms of equations. We begin with
some auxiliary theorems.

Theorem 2.1. [8, Theorem 2.9] Let R be a ∗−ring and a ∈ R. Then a ∈ REP if and only if there exists x ∈ R such that

a = axa; (ax)∗ = ax = xa.

Theorem 2.2. [7, Theorem 1.5.3] Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if aa# = aa∗ (or a#a = a∗a).

Theorem 2.3. [4] Let R be a ring. Then a ∈ R# if and only if a ∈ a2R ∩ Ra2.

Next, we will provide new characterizations of SEP elements.

Theorem 2.4. Let a ∈ R. Then a ∈ RSEP if and only if there exists x ∈ R such that

a = axa; (ax)∗ = xa = a∗a.

Proof. “⇒ ” Since a ∈ RSEP, a# = a+ = a∗. Choose x = a# = a+ = a∗. Then we are done.
“ ⇐ ” From the assumption, we have ax = (a∗a)∗ = a∗a = (ax)∗ = xa. Hence, by Theorem 2.1, we have

a ∈ REP and a = axa = aa∗a, it follows that a ∈ RPI. Hence a ∈ RSEP.

We find that this theorem can be simplified to the following corollary.

Corollary 2.5. Let a ∈ R. Then a ∈ RSEP if and only if there exists x ∈ R such that

a = axa; ax = xa = a∗a.

In Corollary 2.5, the condition ax = xa implies that a = axa = xa2 = a2x. From Theorem 2.3, it follows
that the condition a ∈ R can be replaced by a ∈ R#. Therefore we get the following theorem.

Theorem 2.6. Let a ∈ R#. Then a ∈ RSEP if and only if there exists x ∈ R such that

a = axa; ax = a∗a.
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Proof. “⇒ ” It is clear. Indeed, we only have to choose x = a#.
“ ⇐ ” From the assumption, we have a = axa = a∗aa. Since a ∈ R#, a#a = aa# = a∗a2a# = a∗a. Hence

a ∈ RSEP.

Consider the following question, there exists x ∈ R such that a = axa and xa = a∗a ?
=⇒ a ∈ RSEP.

Example 2.7. Let R = M3(Z2), and set the involution of R as the transpose of matrices. Take a =

1 1 1
0 0 0
0 0 0

. Then

a# = a and a+ = a∗ =

1 0 0
1 0 0
1 0 0

. Choose x = a+ = a∗. Then a = axa and xa = a∗a. But we can check that a∗ , a#,

which implies that a is not SEP.

Similarly, we can obtain the following results.

Corollary 2.8. Let a ∈ R#. Then a ∈ RSEP if and only if there exists x ∈ R such that

a = axa; xa = aa∗.

Theorem 2.9. Let a ∈ R. Then a ∈ RSEP if and only if there exists x ∈ R such that

a = axa; ax = a∗a; xa = aa∗.

Proof. “⇒ ” It is obvious by Corollary 2.5.
“⇐ ”

a = axa = (a∗a)a = a∗a2;

a = axa = a(aa∗) = a2a∗.

Then a ∈ R#. Thus a ∈ RSEP by Theorem 2.6.

Theorem 2.10. Let a ∈ R. Then a ∈ RSEP if and only if there exists x ∈ R such that

a = a2x = axa; ax = a∗a.

Proof. “⇒ ” It is evident.
“⇐ ” Since a = axa = (a∗a)a = a∗a2 and a = a2x. Then a ∈ R#. Thus a ∈ RSEP by Theorem 2.6.

Corollary 2.11. Let a ∈ R. Then a ∈ RSEP if and only if there exists x ∈ R such that

a = xa2 = axa; xa = aa∗.

3. Using equivalent conditions to characterize SEP elements

In this section, SEP elements are characterized by conditions involving powers of their group and
Moore-Penrose inverse. We use Z+ to denote the set of positive integers.

Lemma 3.1. [7, Theorem 1.2.2] Let a ∈ R#
∩ R+ and n ∈ Z+. Then a ∈ REP if and only if (a∗)naa# = (a∗)n.

Theorem 3.2. Let a ∈ R#
∩ R+ and 2 ≤ n ∈ Z+. Then a ∈ RSEP if and only if (a∗)n+kaa# = (a+)n+k, k = 0, 1.
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Proof. “⇒ ” It is an immediate result of Lemma 3.1.
“⇐ ” From the assumption, we obtain

(a∗)naa# = (a+)n = (a+)naa+ = (a∗)naa#aa+ = (a∗)naa+ = (a∗)n.

Then a ∈ REP by Lemma 3.1. Now

(a+)n+k = (a∗)n+kaa# = (a∗)n+kaa+ = (a∗)n+k, k = 0, 1.

(a#)n = (a+)n = (a∗)n = (a∗)n+1(a#)∗ = (a+)n+1(a#)∗ = (a#)n+1(a#)∗.

a = an+1(a#)n = an+1(a#)n+1(a#)∗ = aa#(a#)∗ = aa#(a+)∗ = (a+)∗ = (a#)∗.

Hence a ∈ RSEP by [7, Theorem 1.5.3].

From Lemma 3.1 and Theorem 3.2, we can obtain the following result.

Theorem 3.3. Let a ∈ R#
∩ R+ and 2 ≤ n ∈ Z+. Then a ∈ RSEP if and only if a∗(a#)n−1a+ = a#(a+)n.

Proof. “⇒ ” Since a ∈ RSEP, a∗ = a# = a+, this gives a∗(a#)n−1a+ = a#(a+)n−1a+ = a#(a+)n.
“⇐ ” From the assumption, one gets

a∗(a#)n−1a+ = a#(a+)n = aa+a#(a+)n = aa+a∗(a#)n−1a+.

Multiplying the equality on the right by an+1a+, one yields

a∗ = aa+a∗.

Hence a ∈ REP by [7, Theorem 1.2.1], it follows that

a∗ = a∗a#a = a∗(a#)nan = a∗(a#)n−1a+an = a#(a+)nan = (a#)n+1an = a#.

Thus a ∈ RSEP.

Let m,n, d ∈ Z+, we denote the maximum common divisor of m and n as (m,n) = d. Especially when
d = 1, we say that m and n are coprime.

Theorem 3.4. Let a ∈ R#
∩R+ and m,n ∈ Z+, such that (m,n) = 1. Then a ∈ RSEP if and only if (a∗)kaa# = (a+)k, k =

m,n.

Proof. “⇒ ” It is clear.
“⇐ ” Since (m,n) = 1, there exist s, t ∈ Z, such that sm + tn = 1.We can assume s > 0 and t < 0. Noting

that
(a∗)maa# = (a+)m = (a+)maa+ = (a∗)maa#aa+ = (a∗)m.

Then a ∈ REP by [7, Theorem 1.2.2]. This induces

(a∗)k = (a∗)kaa+ = (a∗)kaa# = (a+)k = (a#)k, k = m,n.

Now we have
(a#)ms−1 = (a#)−nt = (a#)n|t| = (a∗)n|t| = (a∗)−nt = (a∗)ms−1.

(a#)ms = (a∗)ms = (a∗)ms−1a∗ = (a#)ms−1a∗.

a#a = a#ams+1(a#)ms = a#ams+1(a#)ms−1a∗ = a#a2a∗ = aa∗.

Hence a ∈ RSEP by [7, Theorem 1.5.3].

Theorem 3.5. Let a ∈ R#
∩ R+, 2 ≤ n ∈ Z+, (a∗)n+k = (a#)n+k−1a∗, k = 0, 1. Then a ∈ RSEP.
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Proof. “⇒ ” It is clear.
“⇐ ” Using the equality (a∗)n+k = (a#)n+k−1a∗, we obtain

(a∗)n+1 = (a#)na∗ = aa+(a#)na∗ = aa+(a∗)n+1,

a∗ = (a∗)n+1((a#)∗)n = aa+(a∗)n+1((a#)∗)n = aa+a∗.

Hence a ∈ REP by [7, Theorem 1.2.1].

(a∗)n = (a∗)naa+ = (a∗)na+a = (a∗)n+1(a+)∗ = (a#)na∗(a+)∗ = (a#)na+a = (a#)n,

(a∗)n−1 = (a∗)n−1a+a = (a∗)n(a+)∗ = (a#)n−1a∗(a+)∗ = (a#)n−1,

a# = an−1(a#)n = an−1(a∗)n = an−1(a∗)n−1a∗ = an−1(a#)n−1a∗ = aa#a∗ = a∗.

Thus a ∈ RSEP.

4. Using the solution of univariate equations to characterize SEP elements

In this section, we construct the equation a∗xa = a+ and consider the consistence of the equation. Firstly,
we start with a lemma.

Lemma 4.1. [7, Theorem 1.5.6] Suppose that a ∈ R#
∩R+, b ∈ R and a = aba. Then a ∈ REP if and only if a+ = a+ba.

Theorem 4.2. Let a ∈ R#
∩ R+, b ∈ R and a = aba. Then a ∈ RSEP if and only if a+ = a∗ba.

Proof. “⇒ ” It is an immediate result of Lemma 4.1.
“⇐ ” Since a+ = a∗ba, a = aa+a = aa∗ba2, one yields

aa# = aa∗ba2a# = aa∗ba = aa+.

Then a ∈ REP. This gives
a# = a+ = a∗ba = (a∗a+a)ba = a∗a+a = a∗.

Thus a ∈ RSEP.

Corollary 4.3. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if the following equations has at least one solution.{

axa = a;
a∗xa = a+.

(1)

Naturally, we investigate the following equation

a∗xa = a+ (2)

Lemma 4.4. Let a ∈ R#
∩ R+. Then a ∈ REP if and only if Eq.(4.2) is consistent.

Proof. “⇒ ” Assume that a ∈ REP. Then a+ = a# = a#a+a = a+a+a.Hence x = (a+)∗a+a+ is a solution to Eq.(4.2).
“⇐ ” From the assumption, one gets a∗x0a = a+ for some x0 ∈ R. This gives

a+a+a = (a∗x0a)a+a = a∗x0a = a+.

Then a ∈ REP.

Remark 4.5. If Eq.(4.2) is consistent, then the general solution is given by

x = (a+)∗a+a+ + u − aa+uaa+, where u ∈ R. (3)
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Proof. First, by Lemma 4.4, a ∈ REP, this induces the formula (4.3) is the solution to Eq.(4.2). Now let x = x0
be any solution to Eq.(4.2). Then

a∗x0a = a+.

Choose u = x0. Then aa+uaa+ = (a+)∗(a∗x0a)a+ = (a+)∗a+a+, one yields

x0 = (a+)∗a+a+ + x0 − aa+uaa+ = (a+)∗a+a+ + u − aa+uaa+.

Thus the general solution to Eq.(4.2) is given by (4.3).

Theorem 4.6. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if Eq.(4.2) is consistent and the general solution is given

by

x = aa+a+ + u − aa+uaa+, u ∈ R. (4)

Proof. “⇒ ” Since a ∈ RSEP, a ∈ REP and (a+)∗ = a. By Remark 4.5, we are done.
“⇐ ” Noting that Eq.(4.2) is consistent. Then a ∈ REP. By the hypothesis, we have

a∗a+a = a∗(aa+a+ + u − aa+uaa+)a = a+.

Since a ∈ REP, a∗a+a = a∗, one has a∗ = a+. Thus a ∈ RSEP.

Finally, we construct equation as follows, which has the general solution as (4.4).

(aa#)∗xaa+ = a+. (5)

It is clear that we have the following theorem.

Theorem 4.7. Let a ∈ R#
∩ R+. Then the general solution to Eq.(4.5) is given by (4.4).

Theorem 4.6 and Theorem 4.7 infer the following theorem.

Theorem 4.8. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if Eq.(4.2) has the same solution as Eq.(4.5).

5. Using core invertible elements to characterize SEP elements

Theorem 5.1. Let a ∈ R. Then the followings are equivalent:
(1) a ∈ RSEP;
(2) a ∈ R #O and a∗ = a #O;
(3) a ∈ R #O and aa∗ = a #Oa.

Proof. Suppose that a ∈ RSEP,we have a ∈ R #O and a #O = a#aa+. Then (1)⇒(2) and (1)⇒(3) are easy to prove.
(2)⇒(1) Since a ∈ R #O,we can check that a ∈ R# and a# = (a #O)2a, by direct computation. Then

aa#a #O = a #Oaa #O = a #O.

This gives

a∗ = a #O = aa#a #O = aa#a∗.

Hence a ∈ REP and a# = a#aa+ = a #O = a∗. Thus a ∈ RSEP.
(3)⇒(1) Since a ∈ R #O, a ∈ R# and a# = (a #O)2a, then aa# = a #Oa. Hence aa∗ = a #Oa = aa#. Thus a ∈ RSEP by

[7, Theorem 1.5.3].
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Now we establish the following equation

xa∗ = a #Ox. (6)

Theorem 5.2. Let a ∈ R #O. Then a ∈ RSEP if and only if Eq.(5.1) has at least one solution in Ga = {a, a#, a∗, (a#)∗}.

Proof. “⇒ ” It is obvious by Theorem 5.1 (3).
“⇐ ” (1) If x = a, then aa∗ = a #Oa. By Theorem 5.1, a ∈ RSEP.

(2) If x = a#, then a#a∗ = a #Oa# = (a #Oa)a#a# = (aa#)a#a# = a#a#. One yields

aa∗ = aaa#a∗ = aaa#a# = aa#.

Hence a ∈ RSEP [7, Theorem 1.5.3].
(3) If x = a∗, then a∗a∗ = a #Oa∗ = aa#a #Oa∗ = aa#a∗a∗. One gets

a∗ = a∗a∗(a#)∗ = aa#a∗a∗(a#)∗ = aa#a∗.

Hence a ∈ REP [7, Theorem 1.2.1]. This gives a #O = a# and so a∗a∗ = a #Oa∗ = a#a∗. Thus a ∈ RSEP [7, Theorem
1.5.3].

(4) If x = (a#)∗, then (a#)∗a∗ = a #O(a#)∗.

(aa#)∗ = a #O(a#)∗ = aa#a #O(a#)∗ = aa#(aa#)∗.

Hence a ∈ REP [7, Theorem 1.1.3]. It follows that aa# = (aa#)∗ = a #O(a#)∗ = a#(a#)∗. Then

a = aaa# = aa#(a#)∗ = aa#(a+)∗ = (a+)∗.

Thus a ∈ RSEP.

Furtherly, we construct the following equation.

xa∗ + a# = a #Ox + a+. (7)

Theorem 5.3. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if Eq.(5.2) has at least one solution in Ha =

{a #O, (a #O)∗, a+, (a+)∗}.

Proof. First a #O = a#aa+.
“⇒ ” If a ∈ RSEP, then x = a+ = a# = a∗ is a solution.
“⇐ ” (1) If x = a #O = a#aa+, then

a#aa+a∗ + a# = a#aa+a#aa+ + a+ = a#a+ + a+.

Multiplying the equality on the left by aa#, one has a# = aa#a+. Hence a ∈ REP [7, Theorem 1.2.1]. This gives
a #O = a# = a+ and a#a∗ = a #Oa#. By Theorem 5.2, a ∈ RSEP.

(2) If x = (a #O)∗ = aa+(a#)∗, then

aa+ + a# = aa+(a#)∗a∗ + a# = a#aa+aa+(a#)∗ + a+ = a#aa+(a#)∗ + a+.

Multiplying the equality on the left by aa#, one gets

a+ = aa#a+.
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Then a ∈ REP and a# = a+. From the assumption, we obtain

aa# = aa+ = a#aa+(a#)∗ = a#(a#)∗,

a = aaa# = aa#(a#)∗ = aa+(a+)∗ = (a+)∗.

Hence a ∈ RSEP.
(3) If x = a+, then a+a∗ + a# = a#aa+a+ + a+.Multiplying the equality on the right by aa+, one yields

a#aa+ = a#.

Then a ∈ REP [7, Theorem 1.2.1], this induces

a+a∗ = a#aa+a+ = a+a+.

By [16, Corollary 2.10], a ∈ RPI. Thus a ∈ RSEP.
(4) If x = (a+)∗, then aa+ + a# = (a+)∗a∗ + a# = a#aa+(a+)∗ + a+ = a#(a+)∗ + a+.Multiplying the equality on the

left by aa#, one has
a+ = aa#a+.

Then a ∈ REP [7, Theorem 1.2.1], one gets a+ = a#, (a+)∗ = (a#)∗. Now we have

a#a = aa+ = a#(a+)∗ = a#(a#)∗.

Hence a ∈ RSEP by (2).
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[10] D. Mosić, D. S. Djordjević, Further results on partial isometries and EP elements in rings with involution. Math. Comput.
Modelling 54(1)(2011) 460-465.
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