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Abstract. In this paper, we introduce the notion of cyclic quasi-φ-contraction. We prove the existence and
uniqueness of best proximity points for this class of mappings on a metric space endowed with ultrametric
and UC properties. Also, iterative algorithms are furnished to determine such best proximity points. As a
result, we establish a fixed point result and a common fixed point theorem. Our results, while generalizing
a few existing results in the literature, unify and integrate them.

1. Introduction

Let A and B be nonempty subsets of the metric space (X, d). The self mapping T : A ∪ B→ A ∪ B is said
to be cyclic provided that T(A) ⊆ B and T(B) ⊆ A. A point x∗ ∈ A ∪ B is called a best proximity point for T
if d(x∗,Tx∗) = d(A,B) where d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}. If d(A,B) = 0, x∗ is called a fixed point of T.
In 2006, the cyclic contraction mappings on uniformly convex Banach spaces were introduced and studied
by Anthony Eldred and Veeremani [4]. In 2009, cyclic φ-contraction mappings on uniformly convex Banach
spaces as a generalization of cyclic-contractions, was introduced and studied by Al-Thagafi and Shahzad
[3]. Since then, the problems of the existence of best proximity points and fixed points of cyclic mappings,
have been extensively studied by many authors; see for instance [1, 2, 5, 6, 8–11, 13–15] and references
therein.

In order to extend the obtained best proximity results in uniformly convex Banach spaces to metric
spaces, the UC property were introduced by Suzuki et al. [15]. They also proved the existence of the best
proximity points for cyclic contraction type mappings in metric spaces. In 2022, Safari [12] introduced the
geometric concept of the ultrametric property and obtained more general result than Suzuki et al [15].

In this paper, we introduce the notion of cyclic quasi-φ-contraction. We prove the existence and
uniqueness of best proximity points for this class of mappings on a metric space endowed with ultrametric
and UC properties. Also, iterative algorithms are furnished to determine such best proximity points. As a
result, we establish a fixed point result and a common fixed point theorem. The presented results extend
and improve some recent results in [3, 4, 12, 15] and some other articles.
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2. Preliminaries

Here, we recall some definitions and facts will be used in the next section.

Definition 2.1. [3] Let A and B be nonempty subsets of the metric space (X, d). The cyclic map T : A ∪ B→ A ∪ B
is said to be cyclic φ-contraction if φ : [0,+∞)→ [0,+∞) is a strictly increasing map and

d(Tx,Ty) ≤ d(x, y) − φ(d(x, y)) + φ(d(A,B)),

for all x ∈ A and y ∈ B.

Theorem 2.2. [3, Theorem 8] Let A and B be nonempty convex subsets of a uniformly convex Banach space X such
that A is closed. Let T : A∪B→ A∪B be a cyclic φ-contraction map. For x0 ∈ A, define xn+1 := Txn for each n ≥ 0.
Then there exists a unique x ∈ A such that x2n → x, T2x = x and d(x,Tx) = d(A,B).

Definition 2.3. [12, 15] Let A and B be nonempty subsets of the metric space (X, d). Then (A,B) is said to satisfies

(i) the property UC, if {xn} and {x′n} are sequences in A and {yn} is a sequence in B such that limn→∞ d(xn, yn) =
limn→∞ d(x′n, yn) = d(A,B), then limn→∞ d(xn, x′n) = 0;

(ii) ultrametric property if either d(A,B) = 0 or there exists ϵ(A,B) > 0 such that for every 0 < ϵ ≤ ϵ(A,B), x, x′ ∈ A
and y ∈ B

max{d(x, y), d(x′, y)} ≤ ϵ + d(A,B)⇒ d(x, x′) ≤ ϵ + d(A,B).

Suzuki et al. [15] proved that if A and B are nonempty subsets of a uniformly convex Banach space X
such that A is convex, then (A,B) has the property UC. In 2019, Safari et al. [12] proved that if A and B
are nonempty subsets of the metric space (X, d) such that (A,B) has the UC property, then (A,B) has the
ultrametric property.

Lemma 2.4. [15] Let A and B be nonempty subsets of the metric space (X, d). Assume that (A,B) has the UC
property. Let {xn} and {yn} are sequences in A and B respectively, such that either of the following holds

lim
m→∞

sup
n≥m

d(xm, yn) = d(A,B) or lim
n→∞

sup
m≥n

d(xm, yn) = d(A,B).

Then {xn} is Cauchy.

Theorem 2.5. [12, Theorems 3.5 and 3.6] Let A and B be nonempty subsets of the metric space (X, d) such that A is
complete, (A,B) has the UC property and (B,A) has the ultrametric property. Let T : A∪B→ A∪B be a generalized
cyclic quasi-contraction, i. e., for which there exists c ∈ [0, 1) such that

d(Tx,Ty) ≤c max
{
d(x, y), d(x,Tx), d(y,Ty),

d(x,Ty) + d(Tx, y)
2

}
+ (1 − c)d(A,B), (1)

for all x ∈ A and y ∈ B. Then for every x0 ∈ A the sequence {T2nx0} converges to some best proximity point x∗ ∈ A.
Also, every best proximity point of T in A is a fixed point of T2. Furthermore, if it is assumed that (A0,B0) has the
Pythagorean property and (B,A) has the UC property, then T has a unique best proximity point x∗ in A.
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3. Main results

Let (X, d) be a metric space for every (x, y) ∈ X × X define d∗(x, y) := d(x, y) − d(A,B). It is immediately
that

d∗(x, y) ≤ d(x, z) + d∗(z, y)

and

d∗(x, y) − d(A,B) ≤ d∗(x, z) + d∗(z, y),

for all x, y, z ∈ X.

Definition 3.1. Let A and B be nonempty subsets of the metric space (X, d). The cyclic map T : A ∪ B → A ∪ B is
said to be a cyclic quasi-φ-contraction if there exists a strictly increasing map φ : [0,+∞)→ [0,+∞) such that I −φ
is a strictly increasing map and

d∗(Tx,Ty) ≤(I − φ)
(
max

{
d∗(x, y), d∗(x,Tx), d∗(y,Ty),

d∗(x,Ty) + d∗(Tx, y)
2

})
, (2)

for all x ∈ A and y ∈ B.

Remark 3.2. Note that with the conditions of the previous definition, if we have

d(Tx,Ty) ≤max
{
d(x, y), d(x,Tx), d(y,Ty),

d(x,Ty) + d(Tx, y)
2

}
− φ

(
max

{
d(x, y), d(x,Tx), d(y,Ty),

d(x,Ty) + d(Tx, y)
2

})
+ φ(d(A,B)),

since φ is is strictly increasing, it follows that

d(Tx,Ty) ≤max
{
d∗(x, y), d∗(x,Tx), d∗(y,Ty),

d∗(x,Ty) + d∗(Tx, y)
2

}
+ d(A,B)

−max
{
φ(d∗(x, y) + d(A,B)) − φ(d(A,B))

, φ(d∗(x,Tx) + d(A,B)) − φ(d(A,B))
, φ(d∗(y,Ty) + d(A,B)) − φ(d(A,B))

, φ(
d∗(x,Ty) + d∗(Tx, y)

2
+ d(A,B)) − φ(d(A,B))

}
. (3)

Define φ∗ : [0,+∞) → [0,+∞) by φ∗(t) = φ(t + d(A,B)) − φ(d(A,B)) for all t ≥ 0. Since φ is a strictly increasing
map, then φ∗ is a strictly increasing map. Also (I − φ∗)(t) = (I − φ)(t + d(A,B)) − (I − φ)(d(A,B)), so as I − φ is a
strictly increasing map, I − φ∗ is a strictly increasing map, too. Therefore, from (3), we get

d(Tx,Ty) =max
{
d∗(x, y), d∗(x,Tx), d∗(y,Ty),

d∗(x,Ty) + d∗(Tx, y)
2

}
+ d(A,B)

−max
{
φ∗(d∗(x, y)), φ∗(d∗(x,Tx)), φ∗(d∗(y,Ty)), φ∗(

d∗(x,Ty) + d∗(Tx, y)
2

)
}

=max
{
d∗(x, y), d∗(x,Tx), d∗(y,Ty),

d∗(x,Ty) + d∗(Tx, y)
2

}
+ d(A,B)

− φ∗
(
max

{
d∗(x, y), d∗(x,Tx), d∗(y,Ty),

d∗(x,Ty) + d∗(Tx, y)
2

})
,

hence

d∗(Tx,Ty) ≤(I − φ∗)
(
max

{
d∗(x, y), d∗(x,Tx), d∗(y,Ty),

d∗(x,Ty) + d∗(Tx, y)
2

})
.
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Example 3.3. Let T : A ∪ B→ A ∪ B be a cyclic φ-contraction that is

d(Tx,Ty) ≤ d(x, y) − φ(d(x, y)) + φ(d(A,B)),

for all x ∈ A and y ∈ B, then

d∗(Tx,Ty) ≤(I − φ∗)(d∗(x, y)),

for all x ∈ A and y ∈ B. Therefore as I − φ is a strictly increasing map, a cyclic φ-contraction map is cyclic
quasi-φ-contraction map.

Example 3.4. A cyclic contraction map in the sense of Suzuki et al. [15], is a cyclic quasi-φ-contraction with
φ(t) = (1 − c)t for t ≥ 0 and c ∈ [0, 1).

Example 3.5. A generalized cyclic quasi-contraction in Theorem 2.5, is cyclic quasi-φ-contraction withφ(t) = (1−c)t
for t ≥ 0 and c ∈ [0, 1).

Example 3.6. Let X := R with the usual metric. For A = B = [0, 1], define T : A ∪ B → A ∪ B by Tx := x
1+x and

φ(t) = t2

1+t for t ≥ 0. Note that I−φ is a strictly increasing map, then from Example 2 of [3] T is a cyclicφ-contraction
map, so from Example 3.3 it is a cyclic quasi-φ-contraction map. Suppose that for all x ∈ A and y ∈ B and some
c ∈ [0, 1), T obey in relation (1). Then we have

|Tx − T0| =
x

1 + x

≤ c max
{
|x − 0|, |x −

x
1 + x

|, |0 − T0|,
|x − T0| + | x

1+x − 0|
2

}
+ (1 − c)d(A,B)

= c max
{
x,

x2

1 + x
, 0,

2x + x2

2(1 + x)

}
= cx,

for all x ∈ A. So 1
1+x ≤ c for all x ∈ (0, 1). Then c ≥ 1 is a contradiction. Hence T is not a generalized cyclic

quasi-contraction map.

Lemma 3.7. Let A and B be nonempty subsets of the metric space (X, d) and let T : A ∪ B → A ∪ B be a cyclic
quasi-φ-contraction. For x0 ∈ A ∪ B define xn+1 := Txn for each n ≥ 0. Then d∗(xn, xn+1)→ 0 as n→∞.

Proof. From (2), for every n ∈Nwe have

d∗(xn, xn+1) =d∗(Txn−1,Txn)

≤(I − φ)
(
max

{
d∗(xn−1, xn), d∗(xn, xn+1),

d∗(xn−1, xn+1) + d∗(xn, xn)
2

})
=(I − φ)

(
max

{
d∗(xn−1, xn), d∗(xn, xn+1),

d∗(xn−1, xn+1) − d(A,B)
2

})
≤(I − φ)

(
max

{
d∗(xn−1, xn), d∗(xn, xn+1),

d∗(xn−1, xn) + d∗(xn, xn+1)
2

})
=(I − φ)

(
max

{
d∗(xn−1, xn), d∗(xn, xn+1)

})
. (4)

Assume that for some n0 ∈N,

max{d∗(xn0−1, xn0 ), d∗(xn0 , xn0+1)} = d∗(xn0 , xn0+1),

so by (4) we get φ(d∗(xn0 , xn0+1)) = 0. As φ is strictly increasing, we have d∗(xn0 , xn0+1) = 0 and so

d∗(xn0−1, xn0 ) = d∗(xn0 , xn0+1) = 0,
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hence

max{d∗(xn0−1, xn0 ), d∗(xn0 , xn0+1)} = d∗(xn0−1, xn0 ).

Thus, we may assume that for each n ∈N,

max{d∗(xn−1, xn), d∗(xn, xn+1)} = d∗(xn−1, xn).

Hence, from (4) for every n ∈N, we obtain

d∗(xn, xn+1) ≤(I − φ)(d∗(xn−1, xn)). (5)

Let d∗n := d∗(xn−1, xn) for every n ∈ N. From (5) for every n ∈ N, we obtain d∗n+1 ≤ d∗n. So {d∗n} is decreasing.
Also, {d∗n} is bounded below by 0, thus limn→∞ d∗n = t0 for some t0 ≥ 0. If d∗n0

= 0 for some n0 ≥ 1, there is
nothing to prove. So assume that d∗n > 0 for each n ∈N. Since (5), we have

d∗n+1 ≤ d∗n − φ(d∗n)

and hence

0 ≤ φ(d∗n) ≤ d∗n − d∗n+1, (6)

for each n ≥ 1. Since φ is strictly increasing and d∗n ≥ t0 ≥ 0 for each n ≥ 1, it follows from (6) that

0 = lim
n→∞

φ(d∗n) ≥ φ(t0) ≥ φ(0) ≥ 0, (7)

so φ(t0) = φ(0). As φ is strictly increasing, we get t0 = 0.

Lemma 3.8. Let A and B be nonempty subsets of the metric space (X, d) such that (A,B) has the UC property. Let
T : A ∪ B → A ∪ B be a cyclic quasi-φ-contraction map. For x0 ∈ A, define xn+1 := Txn for each n ≥ 0. Then
d(x2n, x2n+2)→ 0 as n→∞.

Proof. From Lemma 3.7, we get

d(x2n, x2n+1)→ d(A,B) and d(x2n+2, x2n+1)→ d(A,B),

as n→∞. Because (A,B) has the UC property, we get d(x2n, x2n+2)→ 0 as n→∞.

Lemma 3.9. Let A and B be nonempty subsets of a metric space (X, d) and let T : A ∪ B → A ∪ B be a cyclic
quasi-φ-contraction map. Then

(a) φ(0) = 0;

(b) (I − φ)(t) ≥ 0 for all t ≥ 0;

(c) for every t > 0 we have φ(t) > 0;

(d) for every t > 0 we have (I − φ)(t) < t;

(e) φ and I − φ are continuous.

Proof. (a) follows from (7). (b) Since I − φ is strictly increasing we get (I − φ)(t) ≥ (I − φ)(0) = 0. (c) If t > 0
and φ(t) = 0 then 0 ≤ φ( t

2 ) < φ(t) = 0 leads to a contradiction. (d) It follows directly from (c). (e) Let t1 < t2.
Since I −φ is strictly increasing, we get t1 −φ(t1) < t2 −φ(t2) so φ(t2)−φ(t1) < t2 − t1. Hence φ and I −φ are
continuous.
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Lemma 3.10. Let A and B be nonempty subsets of the metric space (X, d) such that d(A,B) = 0. Let T : A∪B→ A∪B
be a cyclic quasi-φ-contraction map. For x0 ∈ A define xn+1 := Txn for each n ≥ 0. Then for each ϵ > 0 there exists a
positive integer N0 such that for all m > n ≥ N0

d(x2m, x2n+1) < ϵ.

Proof. Suppose the cotrary, then there exists ϵ0 > 0 such that for each k ≥ 1, there is mk > nk ≥ k satisfying

d(x2mk , x2nk+1) ≥ ϵ0 (8)

and

d(x2(mk−1), x2nk+1) < ϵ0. (9)

It follows from (8), the triangle inequality and (9) that

ϵ0 ≤ d(x2mk , x2nk+1)
≤ d(x2mk , x2mk−2) + d(x2(mk−1), x2nk+1)
≤ d(x2mk , x2mk−2) + ϵ0,

letting k→∞, Lemma 3.8 implies

lim
k→∞

d(x2mk , x2nk+1) = ϵ0. (10)

Applying the triangle inequality, we obtain

d(x2mk , x2nk+1) ≤ d(x2mk , x2mk+1) + d(x2mk+1, x2nk+2) + d(x2nk+2, x2nk+1)
≤ 2d(x2mk , x2mk+1) + d(x2mk , x2nk+1) + 2d(x2nk+2, x2nk+1),

so from Lemma 3.7

lim
k→∞

d(x2mk , x2nk+1) = lim
k→∞

d(x2mk+1, x2nk+2). (11)

On the other hand from Lemma 3.8 and triangle inequality, we have

lim
k→∞

d(x2mk , x2nk+2) + d(x2mk+1, x2nk+1)
2

≤ lim
k→∞

2d(x2mk , x2nk+1) + d(x2nk+1, x2nk+2) + d(x2mk+1, x2mk )
2

= lim
k→∞

d(x2mk , x2nk+1). (12)

Now, by using (2), we get

d(x2mk+1, x2nk+2) ≤ max
{
d(x2mk , x2nk+1) − φ(d(x2mk , x2nk+1)), d(x2mk , x2mk+1)

, d(x2nk+1, x2nk+2),
d(x2mk , x2nk+2) + d(x2mk+1, x2nk+1)

2

− φ

(
d(x2mk , x2nk+2) + d(x2mk+1, x2nk+1)

2

) }
≤ max

{
d(x2mk , x2nk+1), d(x2mk , x2mk+1), d(x2nk+1, x2nk+2)

,
d(x2mk , x2nk+2) + d(x2mk+1, x2nk+1)

2

}
. (13)
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Letting k→∞ in (13) and using (10), (11) and (12), since φ is continuous, we get

ϵ0 ≤ ϵ0 − lim
k→∞

φ(d(x2mk , x2nk+1)) ≤ ϵ0

and hence

lim
k→∞

φ(d(x2mk , x2nk+1)) = 0. (14)

Since φ is strictly increasing, it follows from (8) and (14) that

φ(ϵ0) ≤ lim
k→∞

φ(d(x2mk , x2nk+1)) = 0 < φ(ϵ0),

a contradiction.

Theorem 3.11. Let A and B be nonempty subsets of the metric space (X, d) such that A is complete, (A,B) has the
UC property and (B,A) has the ultrametric property. Let T : A∪B→ A∪B be a cyclic quasi-φ-contraction. Then for
every x0 ∈ A the sequence {T2nx0} converges to some best proximity point x∗ ∈ A. Furthermore, every best proximity
point of T in A is a fixed point of T2.

Proof. Take x0 ∈ A and consider the sequence {xn} given by xn+1 := Txn for n ≥ 0. First, we show that {x2n} is
a Cauchy sequence. When d(A,B) = 0 the claim follows from Lemma 3.10. To prove the claim, it is enough
to assume that d(A,B) > 0. From Lemma 3.7 and 3.8 we have

lim
n→∞

d∗(xn, xn+1) = 0 and lim
n→∞

d(x2n, x2n+2) = 0.

Fix ϵ > 0 such that ϵ < min{ϵ(A,B), ϵ(B,A)}. (I − φ) is strictly increasing and continuous, therefore there exists
its inverse (I − φ)−1, which is strictly increasing and since (I − φ)(ϵ) < ϵ

ϵ = (I − φ)−1 (
(I − φ)(ϵ)

)
< (I − φ)−1(ϵ),

so ϵ′ := (I − φ)−1(ϵ) − ϵ > 0. We choose L ∈N satisfying

d∗(xn, xn+1) < ϵ and d(x2n, x2n+2) < ϵ′ (15)

for all n ≥ L. Fix n ∈Nwith n ≥ L. We shall show that

d∗(x2n+1, x2p) < ϵ, (16)

for all p ≥ n. We assume that

d∗(x2n+1, x2m) < ϵ, (17)

holds for some m ≥ n. Then since d∗(x2m+1, x2m) < ϵ and (B,A) has the ultrametric property, we obtain

d∗(x2n+1, x2m+1) < ϵ (18)

and since d∗(x2n+1, x2n+2) < ϵ and (A,B) has the ultrmetric property we get

d∗(x2n+2, x2m) < ϵ. (19)

Also, we have

d∗(x2n+2, x2m+1) ≤(I − φ)
(

max
{
d∗(x2n+1, x2m), d∗(x2n+1, x2n+2), d∗(x2m, x2m+1)

,
d∗(x2n+1, x2m+1) + d∗(x2n+2, x2m)

2

})
.
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Now, by relations (15), (17), (18) and (19) we obtain

d∗(x2n+2, x2m+1) < (I − φ)(ϵ) < ϵ. (20)

Since d∗(x2m+2, x2m+1) < ϵ and (A,B) has the ultrmetric property we obtain

d∗(x2n+2, x2m+2) < ϵ. (21)

Hence, we have

d∗(x2n+1, x2m+2) ≤(I − φ)
(

max
{
d∗(x2n, x2m+1), d∗(x2n, x2n+1), d∗(x2m+1, x2m+2)

,
d∗(x2n, x2m+2) + d∗(x2n+1, x2m+1)

2

})
≤(I − φ)

(
max

{
d(x2n, x2n+2) + d∗(x2n+2, x2m+1), d∗(x2n, x2n+1)

, d∗(x2m+1, x2m+2)

,
d(x2n, x2n+2) + d∗(x2n+2, x2m+2) + d∗(x2n+1, x2m+1)

2

})
.

Now, by relations (15), (18) and (20) and (21) we obtain

d∗(x2n+1, x2m+2) ≤ (I − φ)
(
max

{
ϵ′ + ϵ, ϵ,

ϵ′ + 2ϵ
2

})
,

where ϵ′ = (I − φ)−1(ϵ) − ϵ, so we have

d∗(x2n+1, x2m+2) < (I − φ)(ϵ′ + ϵ) = (I − φ)((I − φ)−1(ϵ) − ϵ + ϵ) = ϵ.

By induction, we obtain (16) holds for all p ≥ n and so we get

lim
n→∞

sup
p≥n

d∗(x2n+1, x2p) = 0 or lim
n→∞

sup
p≥n

d(x2n+1, x2p) = d(A,B),

that by using the UC property of (A,B) and Lemma 2.4 imply {x2n} is a Cauchy sequence.
Hence, in both cases d(A,B) = 0 and d(A,B) , 0, we get the sequence {x2n} is Cauchy and so convergent

to some x∗ ∈ A. But we have

d∗(Tx∗, x2n) ≤(I − φ)
(

max
{
d∗(x∗, x2n−1), d∗(x∗,Tx∗), d∗(x2n−1, x2n)

,
d∗(x∗, x2n) + d∗(x2n−1,Tx∗)

2

})
≤(I − φ)

(
max

{
d∗(x∗, x2n−1), d∗(x∗,Tx∗), d∗(x2n−1, x2n)

,
d∗(x∗, x2n) + d(x2n−1, x∗) + d∗(x∗,Tx∗)

2

})
.

Letting n→∞ and taking lim sup, because I − φ is continuous, we obtain

d∗(x∗,Tx∗) ≤ (I − φ)(d∗(x∗,Tx∗)),

so φ(d∗(x∗,Tx∗)) = 0 and from Lemma 3.9(c) we obtain d∗(x∗,Tx∗) = 0. Therefore d(x∗,Tx∗) = d(A,B).
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Furthermore, if z∗ be an arbitrary best proximity point of T in A then we have

d∗(T2z∗,Tz∗) ≤(I − φ)
(
max

{
d∗(Tz∗, z∗), d∗(Tz∗,T2z∗),

d∗(Tz∗,Tz∗) + d∗(z∗,T2z∗)
2

})
≤(I − φ)

(
max

{
d∗(Tz∗, z∗), d∗(Tz∗,T2z∗),

−d(A,B) + d∗(z∗,T2z∗)
2

})
≤(I − φ)

(
max

{
d∗(z∗,Tz∗), d∗(Tz∗,T2z∗),

d∗(z∗,Tz∗) + d∗(Tz∗,T2z∗)
2

})
=(I − φ)

(
max

{
d∗(z∗,Tz∗), d∗(Tz∗,T2z∗)

})
=(I − φ)

(
d∗(Tz∗,T2z∗)

)
.

since φ is strictly increasing, from Lemma 3.9(c) we obtain d∗(T2z∗,Tz∗) = 0 and so d(T2z∗,Tz∗) = d(A,B).
Because d(z∗,Tz∗) = d(A,B) and (A,B) has the UC property, we get T2z∗ = z∗.

Let A0 := {x ∈ A : d(x, y) = d(A,B) f or some y ∈ B} and B0 := {y ∈ B : d(x, y) = d(A,B) f or some x ∈ A}.
Exactly similar to Theorem 3.6 of [12], it can be proved that if (A0,B0) has the Pythagorean property [6] and
(B,A) has the UC property, then the best proximity point of T in A is unique, which we omit to prove it here.
The Example 3.7 of [12] shows that the Pythagorean property of the pair (A0,B0) is necessary to guarantee
the uniqueness of best proximity of T. Also, it shows that Theorem 3.11 is stronger than Theorem 2 of [15].

Example 3.12. Let X := R with the usual metric. For A = [1, 2] and B = [−2,−1], define T : A ∪ B→ A ∪ B by

T(x) =
{
−2 + 1

x if x ∈ A,
2 + 1

x if x ∈ B.

If φ(t) = t2

2+2t for t ≥ 0. Then for all x ∈ A and y ∈ B, we have

d∗(Tx,Ty) = 2 +
1
y
−

1
x

=
−2xy − x + y
−xy

≤
−2xy − x + y

x − y − 1

=
(x − y − 2) − 2(x − 1)(y + 1)

x − y − 1

≤
(x − y − 2) + (x−1−y−1)2

2

x − y − 1

=
2(x − y − 2) + (x − y − 2)2

2 + 2(x − y − 2)

=
2d∗(x, y) + d∗(x, y)2

2 + 2d∗(x, y)
= (I − φ)(d∗(x, y)).

Hence T is a cyclic quasi-φ-contraction map. So, all conditions of Theorem 3.11 are satisfied and x = 1 is unique best
proximity point T in A and for every x0 ∈ A the sequence T2nx0 converges to it as n→∞. Note that T is not a cyclic
φ-contraction map, because

d(T(
3
2

),T(
−3
2

)) =
8
3
>

29
24
= 3 −

9
8
+

4
6
= d(

3
2
,
−3
2

) − φ(d(
3
2
,
−3
2

)) + φ(d(A,B)).
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Corollary 3.13. Let A and B be nonempty, closed and convex subsets of a uniformly convex Banach space X. Let T
be a cyclic mapping on A ∪ B such that

∥Tx − Ty∥∗ ≤(I − φ)
(
max

{
∥x − y∥∗, ∥x − Tx∥∗, ∥y − Ty∥∗,

∥x − Ty∥∗ + ∥Tx − y∥∗

2

})
,

for all x ∈ A and y ∈ B where c ∈ [0, 1) and ∥Tx − Ty∥∗ := ∥Tx − Ty∥ − d(A,B). Then T has at least a best proximity
point x∗ in A that is a fixed point of T2.

Note that when d(A,B) = 0, then the pairs (A,B) and (B,A) have the UC property, and (A0,B0) has the
Pythagorean property. So as a result of Theorems 3.11 we get the following theorem that is the extention of
Corollaries 2.3 and 2.10 in [7].

Theorem 3.14. Let A and B be nonempty and closed subsets of a complete metric space (X, d). Let T be a cyclic
mapping on A ∪ B such that

d(Tx,Ty) ≤ (I − φ)
(
max

{
d(x, y), d(x,Tx), d(y,Ty),

d(x,Ty) + d(y,Tx)
2

})
,

for all x ∈ A and y ∈ B. Then T has a unique fixed point x∗ in A ∩ B such that the Picard iteration {xn}, defined by
xn+1 := Txn for each n ≥ 0, converges to x∗ for any starting point x0 ∈ A ∪ B.

Proof. It can be proved exactly like the proof of Lemma 3.7 d(xn, xn+1)→ 0, since

0 ≤ d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B} ≤ inf{d(xn, xn+1) : n ∈N} = 0,

then d(A,B) = 0. So from Lemma 3.10, {xn} is a Cauchy sequence and thus there exists x∗ ∈ A ∪ B such that
xn → x∗. Now {x2n} is a sequence in A and {x2n+1} is a sequence in B and both converges to x∗. Since A and B
are closed x∗ ∈ A ∩ B and by the proof of Theorem 3.11 x∗ is a fixed point of T. Since d(A,B) = 0, fixed point
of T in A and so in A ∩ B is unique.

From Theorem 3.14, we obtain the following common fixed point result which is the extention of Corollary
3.11 in [13], immediatelly.

Corollary 3.15. Let (X, d) be a complete metric space and let T : X→ X and S : X→ X be two mappings satisfying

d(Tx,Sy) ≤ (I − φ)
(
max

{
d(x, y), d(x,Tx), d(y,Sy),

d(x,Sy) + d(y,Tx)
2

})
,

for all x, y ∈ X. Then T and S have a unique common fixed point in X.
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