The existence of best proximity points for cyclic quasi- φ-contractions in metric spaces

Akram Safari-Hafshejani ${ }^{\text {a }}$
${ }^{a}$ Department of Pure Mathematics, Payame Noor University (PNU), P. O. Box: 19395-3697, Tehran, Iran

Abstract

In this paper, we introduce the notion of cyclic quasi- φ-contraction. We prove the existence and uniqueness of best proximity points for this class of mappings on a metric space endowed with ultrametric and UC properties. Also, iterative algorithms are furnished to determine such best proximity points. As a result, we establish a fixed point result and a common fixed point theorem. Our results, while generalizing a few existing results in the literature, unify and integrate them.

1. Introduction

Let A and B be nonempty subsets of the metric space (X, d). The self mapping $T: A \cup B \rightarrow A \cup B$ is said to be cyclic provided that $T(A) \subseteq B$ and $T(B) \subseteq A$. A point $x^{*} \in A \cup B$ is called a best proximity point for T if $d\left(x^{*}, T x^{*}\right)=d(A, B)$ where $d(A, B)=\inf \{d(a, b): a \in A, b \in B\}$. If $d(A, B)=0, x^{*}$ is called a fixed point of T. In 2006, the cyclic contraction mappings on uniformly convex Banach spaces were introduced and studied by Anthony Eldred and Veeremani [4]. In 2009, cyclic φ-contraction mappings on uniformly convex Banach spaces as a generalization of cyclic-contractions, was introduced and studied by Al-Thagafi and Shahzad [3]. Since then, the problems of the existence of best proximity points and fixed points of cyclic mappings, have been extensively studied by many authors; see for instance [1, 2, 5, 6, 8-11, 13-15] and references therein.

In order to extend the obtained best proximity results in uniformly convex Banach spaces to metric spaces, the UC property were introduced by Suzuki et al. [15]. They also proved the existence of the best proximity points for cyclic contraction type mappings in metric spaces. In 2022, Safari [12] introduced the geometric concept of the ultrametric property and obtained more general result than Suzuki et al [15].

In this paper, we introduce the notion of cyclic quasi- φ-contraction. We prove the existence and uniqueness of best proximity points for this class of mappings on a metric space endowed with ultrametric and UC properties. Also, iterative algorithms are furnished to determine such best proximity points. As a result, we establish a fixed point result and a common fixed point theorem. The presented results extend and improve some recent results in $[3,4,12,15]$ and some other articles.

[^0]
2. Preliminaries

Here, we recall some definitions and facts will be used in the next section.
Definition 2.1. [3] Let A and B be nonempty subsets of the metric space (X, d). The cyclic map $T: A \cup B \rightarrow A \cup B$ is said to be cyclic φ-contraction if $\varphi:[0,+\infty) \rightarrow[0,+\infty)$ is a strictly increasing map and

$$
d(T x, T y) \leq d(x, y)-\varphi(d(x, y))+\varphi(d(A, B))
$$

for all $x \in A$ and $y \in B$.
Theorem 2.2. [3, Theorem 8] Let A and B be nonempty convex subsets of a uniformly convex Banach space X such that A is closed. Let $T: A \cup B \rightarrow A \cup B$ be a cyclic φ-contraction map. For $x_{0} \in A$, define $x_{n+1}:=T x_{n}$ for each $n \geq 0$. Then there exists a unique $x \in A$ such that $x_{2 n} \rightarrow x, T^{2} x=x$ and $d(x, T x)=d(A, B)$.

Definition 2.3. [12, 15] Let A and B be nonempty subsets of the metric space (X, d). Then (A, B) is said to satisfies
(i) the property UC, if $\left\{x_{n}\right\}$ and $\left\{x_{n}^{\prime}\right\}$ are sequences in A and $\left\{y_{n}\right\}$ is a sequence in B such that $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=$ $\lim _{n \rightarrow \infty} d\left(x_{n}^{\prime}, y_{n}\right)=d(A, B)$, then $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n}^{\prime}\right)=0$;
(ii) ultrametric property if either $d(A, B)=0$ or there exists $\epsilon_{(A, B)}>0$ such that for every $0<\epsilon \leq \epsilon_{(A, B)}, x, x^{\prime} \in A$ and $y \in B$

$$
\max \left\{d(x, y), d\left(x^{\prime}, y\right)\right\} \leq \epsilon+d(A, B) \Rightarrow d\left(x, x^{\prime}\right) \leq \epsilon+d(A, B) .
$$

Suzuki et al. [15] proved that if A and B are nonempty subsets of a uniformly convex Banach space X such that A is convex, then (A, B) has the property UC. In 2019, Safari et al. [12] proved that if A and B are nonempty subsets of the metric space (X, d) such that (A, B) has the UC property, then (A, B) has the ultrametric property.

Lemma 2.4. [15] Let A and B be nonempty subsets of the metric space (X, d). Assume that (A, B) has the UC property. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences in A and B respectively, such that either of the following holds

$$
\lim _{m \rightarrow \infty} \sup _{n \geq m} d\left(x_{m}, y_{n}\right)=d(A, B) \text { or } \lim _{n \rightarrow \infty} \sup _{m \geq n} d\left(x_{m}, y_{n}\right)=d(A, B) \text {. }
$$

Then $\left\{x_{n}\right\}$ is Cauchy.

Theorem 2.5. [12, Theorems 3.5 and 3.6] Let A and B be nonempty subsets of the metric space (X, d) such that A is complete, (A, B) has the UC property and (B, A) has the ultrametric property. Let $T: A \cup B \rightarrow A \cup B$ be a generalized cyclic quasi-contraction, i. e., for which there exists $c \in[0,1)$ such that

$$
\begin{equation*}
d(T x, T y) \leq c \max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(T x, y)}{2}\right\}+(1-c) d(A, B) \tag{1}
\end{equation*}
$$

for all $x \in A$ and $y \in B$. Then for every $x_{0} \in A$ the sequence $\left\{T^{2 n} x_{0}\right\}$ converges to some best proximity point $x^{*} \in A$. Also, every best proximity point of T in A is a fixed point of T^{2}. Furthermore, if it is assumed that $\left(A_{0}, B_{0}\right)$ has the Pythagorean property and (B, A) has the UC property, then T has a unique best proximity point x^{*} in A.

3. Main results

Let (X, d) be a metric space for every $(x, y) \in X \times X$ define $d^{*}(x, y):=d(x, y)-d(A, B)$. It is immediately that

$$
d^{*}(x, y) \leq d(x, z)+d^{*}(z, y)
$$

and

$$
d^{*}(x, y)-d(A, B) \leq d^{*}(x, z)+d^{*}(z, y)
$$

for all $x, y, z \in X$.
Definition 3.1. Let A and B be nonempty subsets of the metric space (X, d). The cyclic map $T: A \cup B \rightarrow A \cup B$ is said to be a cyclic quasi- φ-contraction if there exists a strictly increasing map $\varphi:[0,+\infty) \rightarrow[0,+\infty)$ such that $I-\varphi$ is a strictly increasing map and

$$
\begin{equation*}
d^{*}(T x, T y) \leq(I-\varphi)\left(\max \left\{d^{*}(x, y), d^{*}(x, T x), d^{*}(y, T y), \frac{d^{*}(x, T y)+d^{*}(T x, y)}{2}\right\}\right) \tag{2}
\end{equation*}
$$

for all $x \in A$ and $y \in B$.
Remark 3.2. Note that with the conditions of the previous definition, if we have

$$
\begin{aligned}
d(T x, T y) \leq & \max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(T x, y)}{2}\right\} \\
& -\varphi\left(\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(T x, y)}{2}\right\}\right)+\varphi(d(A, B))
\end{aligned}
$$

since φ is is strictly increasing, it follows that

$$
\begin{gather*}
d(T x, T y) \leq \max \left\{d^{*}(x, y), d^{*}(x, T x), d^{*}(y, T y), \frac{d^{*}(x, T y)+d^{*}(T x, y)}{2}\right\}+d(A, B) \\
-\max \left\{\varphi\left(d^{*}(x, y)+d(A, B)\right)-\varphi(d(A, B))\right. \\
, \varphi\left(d^{*}(x, T x)+d(A, B)\right)-\varphi(d(A, B)) \\
, \varphi\left(d^{*}(y, T y)+d(A, B)\right)-\varphi(d(A, B)) \\
\left., \varphi\left(\frac{d^{*}(x, T y)+d^{*}(T x, y)}{2}+d(A, B)\right)-\varphi(d(A, B))\right\} \tag{3}
\end{gather*}
$$

Define $\varphi^{*}:[0,+\infty) \rightarrow[0,+\infty)$ by $\varphi^{*}(t)=\varphi(t+d(A, B))-\varphi(d(A, B))$ for all $t \geq 0$. Since φ is a strictly increasing map, then φ^{*} is a strictly increasing map. Also $\left(I-\varphi^{*}\right)(t)=(I-\varphi)(t+d(A, B))-(I-\varphi)(d(A, B))$, so as $I-\varphi$ is a strictly increasing map, $I-\varphi^{*}$ is a strictly increasing map, too. Therefore, from (3), we get

$$
\begin{aligned}
d(T x, T y)= & \max \left\{d^{*}(x, y), d^{*}(x, T x), d^{*}(y, T y), \frac{d^{*}(x, T y)+d^{*}(T x, y)}{2}\right\}+d(A, B) \\
& -\max \left\{\varphi^{*}\left(d^{*}(x, y)\right), \varphi^{*}\left(d^{*}(x, T x)\right), \varphi^{*}\left(d^{*}(y, T y)\right), \varphi^{*}\left(\frac{d^{*}(x, T y)+d^{*}(T x, y)}{2}\right)\right\} \\
= & \max \left\{d^{*}(x, y), d^{*}(x, T x), d^{*}(y, T y), \frac{d^{*}(x, T y)+d^{*}(T x, y)}{2}\right\}+d(A, B) \\
& -\varphi^{*}\left(\max \left\{d^{*}(x, y), d^{*}(x, T x), d^{*}(y, T y), \frac{d^{*}(x, T y)+d^{*}(T x, y)}{2}\right\}\right)
\end{aligned}
$$

hence

$$
d^{*}(T x, T y) \leq\left(I-\varphi^{*}\right)\left(\max \left\{d^{*}(x, y), d^{*}(x, T x), d^{*}(y, T y), \frac{d^{*}(x, T y)+d^{*}(T x, y)}{2}\right\}\right)
$$

Example 3.3. Let $T: A \cup B \rightarrow A \cup B$ be a cyclic φ-contraction that is

$$
d(T x, T y) \leq d(x, y)-\varphi(d(x, y))+\varphi(d(A, B))
$$

for all $x \in A$ and $y \in B$, then

$$
d^{*}(T x, T y) \leq\left(I-\varphi^{*}\right)\left(d^{*}(x, y)\right)
$$

for all $x \in A$ and $y \in B$. Therefore as $I-\varphi$ is a strictly increasing map, a cyclic φ-contraction map is cyclic quasi- φ-contraction map.

Example 3.4. A cyclic contraction map in the sense of Suzuki et al. [15], is a cyclic quasi- φ-contraction with $\varphi(t)=(1-c) t$ for $t \geq 0$ and $c \in[0,1)$.

Example 3.5. A generalized cyclic quasi-contraction in Theorem 2.5 , is cyclic quasi- φ-contraction with $\varphi(t)=(1-c) t$ for $t \geq 0$ and $c \in[0,1)$.

Example 3.6. Let $X:=\mathbb{R}$ with the usual metric. For $A=B=[0,1]$, define $T: A \cup B \rightarrow A \cup B$ by $T x:=\frac{x}{1+x}$ and $\varphi(t)=\frac{t^{2}}{1+t}$ for $t \geq 0$. Note that $I-\varphi$ is a strictly increasing map, then from Example 2 of [3] T is a cyclic φ-contraction map, so from Example 3.3 it is a cyclic quasi- φ-contraction map. Suppose that for all $x \in A$ and $y \in B$ and some $c \in[0,1), T$ obey in relation (1). Then we have

$$
\begin{aligned}
|T x-T 0| & =\frac{x}{1+x} \\
& \leq c \max \left\{|x-0|,\left|x-\frac{x}{1+x}\right|,|0-T 0|, \frac{|x-T 0|+\left|\frac{x}{1+x}-0\right|}{2}\right\}+(1-c) d(A, B) \\
& =c \max \left\{x, \frac{x^{2}}{1+x}, 0, \frac{2 x+x^{2}}{2(1+x)}\right\}=c x
\end{aligned}
$$

for all $x \in A$. So $\frac{1}{1+x} \leq c$ for all $x \in(0,1)$. Then $c \geq 1$ is a contradiction. Hence T is not a generalized cyclic quasi-contraction map.
Lemma 3.7. Let A and B be nonempty subsets of the metric space (X, d) and let $T: A \cup B \rightarrow A \cup B$ be a cyclic quasi- φ-contraction. For $x_{0} \in A \cup B$ define $x_{n+1}:=$ Tx x_{n} for each $n \geq 0$. Then $d^{*}\left(x_{n}, x_{n+1}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Proof. From (2), for every $n \in \mathbb{N}$ we have

$$
\begin{align*}
d^{*}\left(x_{n}, x_{n+1}\right) & =d^{*}\left(T x_{n-1}, T x_{n}\right) \\
& \leq(I-\varphi)\left(\max \left\{d^{*}\left(x_{n-1}, x_{n}\right), d^{*}\left(x_{n}, x_{n+1}\right), \frac{d^{*}\left(x_{n-1}, x_{n+1}\right)+d^{*}\left(x_{n}, x_{n}\right)}{2}\right\}\right) \\
& =(I-\varphi)\left(\max \left\{d^{*}\left(x_{n-1}, x_{n}\right), d^{*}\left(x_{n}, x_{n+1}\right), \frac{d^{*}\left(x_{n-1}, x_{n+1}\right)-d(A, B)}{2}\right\}\right) \\
& \leq(I-\varphi)\left(\max \left\{d^{*}\left(x_{n-1}, x_{n}\right), d^{*}\left(x_{n}, x_{n+1}\right), \frac{d^{*}\left(x_{n-1}, x_{n}\right)+d^{*}\left(x_{n}, x_{n+1}\right)}{2}\right\}\right) \\
& =(I-\varphi)\left(\max \left\{d^{*}\left(x_{n-1}, x_{n}\right), d^{*}\left(x_{n}, x_{n+1}\right)\right\}\right) . \tag{4}
\end{align*}
$$

Assume that for some $n_{0} \in \mathbb{N}$,

$$
\max \left\{d^{*}\left(x_{n_{0}-1}, x_{n_{0}}\right), d^{*}\left(x_{n_{0}}, x_{n_{0}+1}\right)\right\}=d^{*}\left(x_{n_{0}}, x_{n_{0}+1}\right),
$$

so by (4) we get $\varphi\left(d^{*}\left(x_{n_{0}}, x_{n_{0}+1}\right)\right)=0$. As φ is strictly increasing, we have $d^{*}\left(x_{n_{0}}, x_{n_{0}+1}\right)=0$ and so

$$
d^{*}\left(x_{n_{0}-1}, x_{n_{0}}\right)=d^{*}\left(x_{n_{0}}, x_{n_{0}+1}\right)=0
$$

hence

$$
\max \left\{d^{*}\left(x_{n_{0}-1}, x_{n_{0}}\right), d^{*}\left(x_{n_{0}}, x_{n_{0}+1}\right)\right\}=d^{*}\left(x_{n_{0}-1}, x_{n_{0}}\right) .
$$

Thus, we may assume that for each $n \in \mathbb{N}$,

$$
\max \left\{d^{*}\left(x_{n-1}, x_{n}\right), d^{*}\left(x_{n}, x_{n+1}\right)\right\}=d^{*}\left(x_{n-1}, x_{n}\right) .
$$

Hence, from (4) for every $n \in \mathbb{N}$, we obtain

$$
\begin{equation*}
d^{*}\left(x_{n}, x_{n+1}\right) \leq(I-\varphi)\left(d^{*}\left(x_{n-1}, x_{n}\right)\right) . \tag{5}
\end{equation*}
$$

Let $d_{n}^{*}:=d^{*}\left(x_{n-1}, x_{n}\right)$ for every $n \in \mathbb{N}$. From (5) for every $n \in \mathbb{N}$, we obtain $d_{n+1}^{*} \leq d_{n}^{*}$. So $\left\{d_{n}^{*}\right\}$ is decreasing. Also, $\left\{d_{n}^{*}\right\}$ is bounded below by 0 , thus $\lim _{n \rightarrow \infty} d_{n}^{*}=t_{0}$ for some $t_{0} \geq 0$. If $d_{n_{0}}^{*+1}=0$ for some $n_{0} \geq 1$, there is nothing to prove. So assume that $d_{n}^{*}>0$ for each $n \in \mathbb{N}$. Since (5), we have

$$
d_{n+1}^{*} \leq d_{n}^{*}-\varphi\left(d_{n}^{*}\right)
$$

and hence

$$
\begin{equation*}
0 \leq \varphi\left(d_{n}^{*}\right) \leq d_{n}^{*}-d_{n+1}^{*}, \tag{6}
\end{equation*}
$$

for each $n \geq 1$. Since φ is strictly increasing and $d_{n}^{*} \geq t_{0} \geq 0$ for each $n \geq 1$, it follows from (6) that

$$
\begin{equation*}
0=\lim _{n \rightarrow \infty} \varphi\left(d_{n}^{*}\right) \geq \varphi\left(t_{0}\right) \geq \varphi(0) \geq 0, \tag{7}
\end{equation*}
$$

so $\varphi\left(t_{0}\right)=\varphi(0)$. As φ is strictly increasing, we get $t_{0}=0$.
Lemma 3.8. Let A and B be nonempty subsets of the metric space (X, d) such that (A, B) has the UC property. Let $T: A \cup B \rightarrow A \cup B$ be a cyclic quasi- φ-contraction map. For $x_{0} \in A$, define $x_{n+1}:=T x_{n}$ for each $n \geq 0$. Then $d\left(x_{2 n}, x_{2 n+2}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Proof. From Lemma 3.7, we get

$$
d\left(x_{2 n}, x_{2 n+1}\right) \rightarrow d(A, B) \quad \text { and } \quad d\left(x_{2 n+2}, x_{2 n+1}\right) \rightarrow d(A, B),
$$

as $n \rightarrow \infty$. Because (A, B) has the UC property, we get $d\left(x_{2 n}, x_{2 n+2}\right) \rightarrow 0$ as $n \rightarrow \infty$.
Lemma 3.9. Let A and B be nonempty subsets of a metric space (X, d) and let $T: A \cup B \rightarrow A \cup B$ be a cyclic quasi- φ-contraction map. Then
(a) $\varphi(0)=0$;
(b) $(I-\varphi)(t) \geq 0$ for all $t \geq 0$;
(c) for every $t>0$ we have $\varphi(t)>0$;
(d) for every $t>0$ we have $(I-\varphi)(t)<t$;
(e) φ and I - φ are continuous.

Proof. (a) follows from (7). (b) Since $I-\varphi$ is strictly increasing we get $(I-\varphi)(t) \geq(I-\varphi)(0)=0$. (c) If $t>0$ and $\varphi(t)=0$ then $0 \leq \varphi\left(\frac{t}{2}\right)<\varphi(t)=0$ leads to a contradiction. (d) It follows directly from (c). (e) Let $t_{1}<t_{2}$. Since $I-\varphi$ is strictly increasing, we get $t_{1}-\varphi\left(t_{1}\right)<t_{2}-\varphi\left(t_{2}\right)$ so $\varphi\left(t_{2}\right)-\varphi\left(t_{1}\right)<t_{2}-t_{1}$. Hence φ and $I-\varphi$ are continuous.

Lemma 3.10. Let A and B be nonempty subsets of the metric space (X, d) such that $d(A, B)=0$. Let $T: A \cup B \rightarrow A \cup B$ be a cyclic quasi- φ-contraction map. For $x_{0} \in A$ define $x_{n+1}:=T x_{n}$ for each $n \geq 0$. Then for each $\epsilon>0$ there exists a positive integer N_{0} such that for all $m>n \geq N_{0}$

$$
d\left(x_{2 m}, x_{2 n+1}\right)<\epsilon
$$

Proof. Suppose the cotrary, then there exists $\epsilon_{0}>0$ such that for each $k \geq 1$, there is $m_{k}>n_{k} \geq k$ satisfying

$$
\begin{equation*}
d\left(x_{2 m_{k}}, x_{2 n_{k}+1}\right) \geq \epsilon_{0} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
d\left(x_{2\left(m_{k}-1\right)}, x_{2 n_{k}+1}\right)<\epsilon_{0} \tag{9}
\end{equation*}
$$

It follows from (8), the triangle inequality and (9) that

$$
\begin{aligned}
\epsilon_{0} & \leq d\left(x_{2 m_{k}}, x_{2 n_{k}+1}\right) \\
& \leq d\left(x_{2 m_{k}}, x_{2 m_{k}-2}\right)+d\left(x_{2\left(m_{k}-1\right)}, x_{2 n_{k}+1}\right) \\
& \leq d\left(x_{2 m_{k}}, x_{2 m_{k}-2}\right)+\epsilon_{0},
\end{aligned}
$$

letting $k \rightarrow \infty$, Lemma 3.8 implies

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{2 m_{k}}, x_{2 n_{k}+1}\right)=\epsilon_{0} . \tag{10}
\end{equation*}
$$

Applying the triangle inequality, we obtain

$$
\begin{aligned}
d\left(x_{2 m_{k}}, x_{2 n_{k}+1}\right) & \leq d\left(x_{2 m_{k}}, x_{2 m_{k}+1}\right)+d\left(x_{2 m_{k}+1}, x_{2 n_{k}+2}\right)+d\left(x_{2 n_{k}+2}, x_{2 n_{k}+1}\right) \\
& \leq 2 d\left(x_{2 m_{k}}, x_{2 m_{k}+1}\right)+d\left(x_{2 m_{k}}, x_{2 n_{k}+1}\right)+2 d\left(x_{2 n_{k}+2}, x_{2 n_{k}+1}\right)
\end{aligned}
$$

so from Lemma 3.7

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{2 m_{k}}, x_{2 n_{k}+1}\right)=\lim _{k \rightarrow \infty} d\left(x_{2 m_{k}+1}, x_{2 n_{k}+2}\right) . \tag{11}
\end{equation*}
$$

On the other hand from Lemma 3.8 and triangle inequality, we have

$$
\begin{align*}
& \lim _{k \rightarrow \infty} \frac{d\left(x_{2 m_{k}}, x_{2 n_{k}+2}\right)+d\left(x_{2 m_{k}+1}, x_{2 n_{k}+1}\right)}{2} \\
& \leq \lim _{k \rightarrow \infty} \frac{2 d\left(x_{2 m_{k}}, x_{2 n_{k}+1}\right)+d\left(x_{2 n_{k}+1}, x_{2 n_{k}+2}\right)+d\left(x_{2 m_{k}+1}, x_{2 m_{k}}\right)}{2} \\
& =\lim _{k \rightarrow \infty} d\left(x_{2 m_{k}}, x_{2 n_{k}+1}\right) . \tag{12}
\end{align*}
$$

Now, by using (2), we get

$$
\begin{gather*}
d\left(x_{2 m_{k}+1}, x_{2 n_{k}+2}\right) \leq \max \left\{d\left(x_{2 m_{k}}, x_{2 n_{k}+1}\right)-\varphi\left(d\left(x_{2 m_{k}}, x_{2 n_{k}+1}\right)\right), d\left(x_{2 m_{k}}, x_{2 m_{k}+1}\right)\right. \\
, d\left(x_{2 n_{k}+1}, x_{2 n_{k}+2}\right), \frac{d\left(x_{2 m_{k}}, x_{2 n_{k}+2}\right)+d\left(x_{2 m_{k}+1}, x_{2 n_{k}+1}\right)}{2} \\
\left.-\varphi\left(\frac{d\left(x_{2 m_{k}}, x_{2 n_{k}+2}\right)+d\left(x_{2 m_{k}+1}, x_{2 n_{k}+1}\right)}{2}\right)\right\} \\
\leq \max \left\{d\left(x_{2 m_{k}}, x_{2 n_{k}+1}\right), d\left(x_{2 m_{k}}, x_{2 m_{k}+1}\right), d\left(x_{2 n_{k}+1}, x_{2 n_{k}+2}\right)\right. \\
\left., \frac{d\left(x_{2 m_{k}}, x_{2 n_{k}+2}\right)+d\left(x_{2 m_{k}+1}, x_{2 n_{k}+1}\right)}{2}\right\} . \tag{13}
\end{gather*}
$$

Letting $k \rightarrow \infty$ in (13) and using (10), (11) and (12), since φ is continuous, we get

$$
\epsilon_{0} \leq \epsilon_{0}-\lim _{k \rightarrow \infty} \varphi\left(d\left(x_{2 m_{k}}, x_{2 n_{k}+1}\right)\right) \leq \epsilon_{0}
$$

and hence

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \varphi\left(d\left(x_{2 m_{k}}, x_{2 n_{k}+1}\right)\right)=0 \tag{14}
\end{equation*}
$$

Since φ is strictly increasing, it follows from (8) and (14) that

$$
\varphi\left(\epsilon_{0}\right) \leq \lim _{k \rightarrow \infty} \varphi\left(d\left(x_{2 m_{k}}, x_{2 n_{k}+1}\right)\right)=0<\varphi\left(\epsilon_{0}\right)
$$

a contradiction.
Theorem 3.11. Let A and B be nonempty subsets of the metric space (X, d) such that A is complete, (A, B) has the UC property and (B, A) has the ultrametric property. Let $T: A \cup B \rightarrow A \cup B$ be a cyclic quasi- φ-contraction. Then for every $x_{0} \in A$ the sequence $\left\{T^{2 n} x_{0}\right\}$ converges to some best proximity point $x^{*} \in A$. Furthermore, every best proximity point of T in A is a fixed point of T^{2}.

Proof. Take $x_{0} \in A$ and consider the sequence $\left\{x_{n}\right\}$ given by $x_{n+1}:=T x_{n}$ for $n \geq 0$. First, we show that $\left\{x_{2 n}\right\}$ is a Cauchy sequence. When $d(A, B)=0$ the claim follows from Lemma 3.10. To prove the claim, it is enough to assume that $d(A, B)>0$. From Lemma 3.7 and 3.8 we have

$$
\lim _{n \rightarrow \infty} d^{*}\left(x_{n}, x_{n+1}\right)=0 \quad \text { and } \quad \lim _{n \rightarrow \infty} d\left(x_{2 n}, x_{2 n+2}\right)=0
$$

Fix $\epsilon>0$ such that $\epsilon<\min \left\{\epsilon_{(A, B)}, \epsilon_{(B, A)}\right\} .(I-\varphi)$ is strictly increasing and continuous, therefore there exists its inverse $(I-\varphi)^{-1}$, which is strictly increasing and since $(I-\varphi)(\epsilon)<\epsilon$

$$
\epsilon=(I-\varphi)^{-1}((I-\varphi)(\epsilon))<(I-\varphi)^{-1}(\epsilon)
$$

so $\epsilon^{\prime}:=(I-\varphi)^{-1}(\epsilon)-\epsilon>0$. We choose $L \in \mathbb{N}$ satisfying

$$
\begin{equation*}
d^{*}\left(x_{n}, x_{n+1}\right)<\epsilon \quad \text { and } \quad d\left(x_{2 n}, x_{2 n+2}\right)<\epsilon^{\prime} \tag{15}
\end{equation*}
$$

for all $n \geq L$. Fix $n \in \mathbb{N}$ with $n \geq L$. We shall show that

$$
\begin{equation*}
d^{*}\left(x_{2 n+1}, x_{2 p}\right)<\epsilon \tag{16}
\end{equation*}
$$

for all $p \geq n$. We assume that

$$
\begin{equation*}
d^{*}\left(x_{2 n+1}, x_{2 m}\right)<\epsilon \tag{17}
\end{equation*}
$$

holds for some $m \geq n$. Then since $d^{*}\left(x_{2 m+1}, x_{2 m}\right)<\epsilon$ and (B, A) has the ultrametric property, we obtain

$$
\begin{equation*}
d^{*}\left(x_{2 n+1}, x_{2 m+1}\right)<\epsilon \tag{18}
\end{equation*}
$$

and since $d^{*}\left(x_{2 n+1}, x_{2 n+2}\right)<\epsilon$ and (A, B) has the ultrmetric property we get

$$
\begin{equation*}
d^{*}\left(x_{2 n+2}, x_{2 m}\right)<\epsilon \tag{19}
\end{equation*}
$$

Also, we have

$$
\begin{aligned}
& d^{*}\left(x_{2 n+2}, x_{2 m+1}\right) \leq(I-\varphi)\left(\operatorname { m a x } \left\{d^{*}\left(x_{2 n+1}, x_{2 m}\right), d^{*}\left(x_{2 n+1}, x_{2 n+2}\right), d^{*}\left(x_{2 m}, x_{2 m+1}\right)\right.\right. \\
&\left.\left.\frac{d^{*}\left(x_{2 n+1}, x_{2 m+1}\right)+d^{*}\left(x_{2 n+2}, x_{2 m}\right)}{2}\right\}\right)
\end{aligned}
$$

Now, by relations (15), (17), (18) and (19) we obtain

$$
\begin{equation*}
d^{*}\left(x_{2 n+2}, x_{2 m+1}\right)<(I-\varphi)(\epsilon)<\epsilon . \tag{20}
\end{equation*}
$$

Since $d^{*}\left(x_{2 m+2}, x_{2 m+1}\right)<\epsilon$ and (A, B) has the ultrmetric property we obtain

$$
\begin{equation*}
d^{*}\left(x_{2 n+2}, x_{2 m+2}\right)<\epsilon \tag{21}
\end{equation*}
$$

Hence, we have

$$
\begin{aligned}
& d^{*}\left(x_{2 n+1}, x_{2 m+2}\right) \leq \leq(I-\varphi)\left(\operatorname { m a x } \left\{d^{*}\left(x_{2 n}, x_{2 m+1}\right), d^{*}\left(x_{2 n}, x_{2 n+1}\right), d^{*}\left(x_{2 m+1}, x_{2 m+2}\right)\right.\right. \\
&\left.\left., \frac{d^{*}\left(x_{2 n}, x_{2 m+2}\right)+d^{*}\left(x_{2 n+1}, x_{2 m+1}\right)}{2}\right\}\right) \\
& \leq(I-\varphi)\left(\operatorname { m a x } \left\{d\left(x_{2 n}, x_{2 n+2}\right)+d^{*}\left(x_{2 n+2}, x_{2 m+1}\right), d^{*}\left(x_{2 n}, x_{2 n+1}\right)\right.\right. \\
&, d^{*}\left(x_{2 m+1}, x_{2 m+2}\right) \\
&\left.\left., \frac{d\left(x_{2 n}, x_{2 n+2}\right)+d^{*}\left(x_{2 n+2}, x_{2 m+2}\right)+d^{*}\left(x_{2 n+1}, x_{2 m+1}\right)}{2}\right\}\right)
\end{aligned}
$$

Now, by relations (15), (18) and (20) and (21) we obtain

$$
d^{*}\left(x_{2 n+1}, x_{2 m+2}\right) \leq(I-\varphi)\left(\max \left\{\epsilon^{\prime}+\epsilon, \epsilon, \frac{\epsilon^{\prime}+2 \epsilon}{2}\right\}\right)
$$

where $\epsilon^{\prime}=(I-\varphi)^{-1}(\epsilon)-\epsilon$, so we have

$$
d^{*}\left(x_{2 n+1}, x_{2 m+2}\right)<(I-\varphi)\left(\epsilon^{\prime}+\epsilon\right)=(I-\varphi)\left((I-\varphi)^{-1}(\epsilon)-\epsilon+\epsilon\right)=\epsilon .
$$

By induction, we obtain (16) holds for all $p \geq n$ and so we get

$$
\lim _{n \rightarrow \infty} \sup _{p \geq n} d^{*}\left(x_{2 n+1}, x_{2 p}\right)=0 \quad \text { or } \quad \lim _{n \rightarrow \infty} \sup _{p \geq n} d\left(x_{2 n+1}, x_{2 p}\right)=d(A, B),
$$

that by using the UC property of (A, B) and Lemma 2.4 imply $\left\{x_{2 n}\right\}$ is a Cauchy sequence.
Hence, in both cases $d(A, B)=0$ and $d(A, B) \neq 0$, we get the sequence $\left\{x_{2 n}\right\}$ is Cauchy and so convergent to some $x^{*} \in A$. But we have

$$
\begin{aligned}
d^{*}\left(T x^{*}, x_{2 n}\right) \leq & (I-\varphi)\left(\operatorname { m a x } \left\{d^{*}\left(x^{*}, x_{2 n-1}\right), d^{*}\left(x^{*}, T x^{*}\right), d^{*}\left(x_{2 n-1}, x_{2 n}\right)\right.\right. \\
& \left.\left., \frac{d^{*}\left(x^{*}, x_{2 n}\right)+d^{*}\left(x_{2 n-1}, T x^{*}\right)}{2}\right\}\right) \\
\leq & (I-\varphi)\left(\operatorname { m a x } \left\{d^{*}\left(x^{*}, x_{2 n-1}\right), d^{*}\left(x^{*}, T x^{*}\right), d^{*}\left(x_{2 n-1}, x_{2 n}\right)\right.\right. \\
& \left.\left., \frac{d^{*}\left(x^{*}, x_{2 n}\right)+d\left(x_{2 n-1}, x^{*}\right)+d^{*}\left(x^{*}, T x^{*}\right)}{2}\right\}\right) .
\end{aligned}
$$

Letting $n \rightarrow \infty$ and taking lim sup, because $I-\varphi$ is continuous, we obtain

$$
d^{*}\left(x^{*}, T x^{*}\right) \leq(I-\varphi)\left(d^{*}\left(x^{*}, T x^{*}\right)\right)
$$

so $\varphi\left(d^{*}\left(x^{*}, T x^{*}\right)\right)=0$ and from Lemma 3.9(c) we obtain $d^{*}\left(x^{*}, T x^{*}\right)=0$. Therefore $d\left(x^{*}, T x^{*}\right)=d(A, B)$.

Furthermore, if z^{*} be an arbitrary best proximity point of T in A then we have

$$
\begin{aligned}
d^{*}\left(T^{2} z^{*}, T z^{*}\right) & \leq(I-\varphi)\left(\max \left\{d^{*}\left(T z^{*}, z^{*}\right), d^{*}\left(T z^{*}, T^{2} z^{*}\right), \frac{d^{*}\left(T z^{*}, T z^{*}\right)+d^{*}\left(z^{*}, T^{2} z^{*}\right)}{2}\right\}\right) \\
& \leq(I-\varphi)\left(\max \left\{d^{*}\left(T z^{*}, z^{*}\right), d^{*}\left(T z^{*}, T^{2} z^{*}\right), \frac{-d(A, B)+d^{*}\left(z^{*}, T^{2} z^{*}\right)}{2}\right\}\right) \\
& \leq(I-\varphi)\left(\max \left\{d^{*}\left(z^{*}, T z^{*}\right), d^{*}\left(T z^{*}, T^{2} z^{*}\right), \frac{d^{*}\left(z^{*}, T z^{*}\right)+d^{*}\left(T z^{*}, T^{2} z^{*}\right)}{2}\right\}\right) \\
& =(I-\varphi)\left(\max \left\{d^{*}\left(z^{*}, T z^{*}\right), d^{*}\left(T z^{*}, T^{2} z^{*}\right)\right\}\right) \\
& =(I-\varphi)\left(d^{*}\left(T z^{*}, T^{2} z^{*}\right)\right) .
\end{aligned}
$$

since φ is strictly increasing, from Lemma 3.9(c) we obtain $d^{*}\left(T^{2} z^{*}, T z^{*}\right)=0$ and so $d\left(T^{2} z^{*}, T z^{*}\right)=d(A, B)$. Because $d\left(z^{*}, T z^{*}\right)=d(A, B)$ and (A, B) has the UC property, we get $T^{2} z^{*}=z^{*}$.

Let $A_{0}:=\{x \in A: \quad d(x, y)=d(A, B) \quad$ for some $y \in B\}$ and $B_{0}:=\{y \in B: \quad d(x, y)=d(A, B) \quad$ for some $x \in A\}$. Exactly similar to Theorem 3.6 of [12], it can be proved that if $\left(A_{0}, B_{0}\right)$ has the Pythagorean property [6] and (B, A) has the UC property, then the best proximity point of T in A is unique, which we omit to prove it here. The Example 3.7 of [12] shows that the Pythagorean property of the pair $\left(A_{0}, B_{0}\right)$ is necessary to guarantee the uniqueness of best proximity of T. Also, it shows that Theorem 3.11 is stronger than Theorem 2 of [15].
Example 3.12. Let $X:=\mathbb{R}$ with the usual metric. For $A=[1,2]$ and $B=[-2,-1]$, define $T: A \cup B \rightarrow A \cup B$ by

$$
T(x)=\left\{\begin{array}{cl}
-2+\frac{1}{x} & \text { if } x \in A \\
2+\frac{1}{x} & \text { if } x \in B .
\end{array}\right.
$$

If $\varphi(t)=\frac{t^{2}}{2+2 t}$ for $t \geq 0$. Then for all $x \in A$ and $y \in B$, we have

$$
\begin{aligned}
d^{*}(T x, T y) & =2+\frac{1}{y}-\frac{1}{x} \\
& =\frac{-2 x y-x+y}{-x y} \\
& \leq \frac{-2 x y-x+y}{x-y-1} \\
& =\frac{(x-y-2)-2(x-1)(y+1)}{x-y-1} \\
& \leq \frac{(x-y-2)+\frac{(x-1-y-1)^{2}}{2}}{x-y-1} \\
& =\frac{2(x-y-2)+(x-y-2)^{2}}{2+2(x-y-2)} \\
& =\frac{2 d^{*}(x, y)+d^{*}(x, y)^{2}}{2+2 d^{*}(x, y)} \\
& =(I-\varphi)\left(d^{*}(x, y)\right) .
\end{aligned}
$$

Hence T is a cyclic quasi- φ-contraction map. So, all conditions of Theorem 3.11 are satisfied and $x=1$ is unique best proximity point T in A and for every $x_{0} \in A$ the sequence $T^{2 n} x_{0}$ converges to it as $n \rightarrow \infty$. Note that T is not a cyclic φ-contraction map, because

$$
d\left(T\left(\frac{3}{2}\right), T\left(\frac{-3}{2}\right)\right)=\frac{8}{3}>\frac{29}{24}=3-\frac{9}{8}+\frac{4}{6}=d\left(\frac{3}{2}, \frac{-3}{2}\right)-\varphi\left(d\left(\frac{3}{2}, \frac{-3}{2}\right)\right)+\varphi(d(A, B))
$$

Corollary 3.13. Let A and B be nonempty, closed and convex subsets of a uniformly convex Banach space X. Let T be a cyclic mapping on $A \cup B$ such that

$$
\|T x-T y\|^{*} \leq(I-\varphi)\left(\max \left\{\|x-y\|^{*},\|x-T x\|^{*},\|y-T y\|^{*}, \frac{\|x-T y\|^{*}+\|T x-y\|^{*}}{2}\right\}\right),
$$

for all $x \in A$ and $y \in B$ where $c \in[0,1)$ and $\|T x-T y\|^{*}:=\|T x-T y\|-d(A, B)$. Then T has at least a best proximity point x^{*} in A that is a fixed point of T^{2}.

Note that when $d(A, B)=0$, then the pairs (A, B) and (B, A) have the UC property, and $\left(A_{0}, B_{0}\right)$ has the Pythagorean property. So as a result of Theorems 3.11 we get the following theorem that is the extention of Corollaries 2.3 and 2.10 in [7].

Theorem 3.14. Let A and B be nonempty and closed subsets of a complete metric space (X, d). Let T be a cyclic mapping on $A \cup B$ such that

$$
d(T x, T y) \leq(I-\varphi)\left(\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2}\right\}\right)
$$

for all $x \in A$ and $y \in B$. Then T has a unique fixed point x^{*} in $A \cap B$ such that the Picard iteration $\left\{x_{n}\right\}$, defined by $x_{n+1}:=T x_{n}$ for each $n \geq 0$, converges to x^{*} for any starting point $x_{0} \in A \cup B$.

Proof. It can be proved exactly like the proof of Lemma $3.7 d\left(x_{n}, x_{n+1}\right) \rightarrow 0$, since

$$
0 \leq d(A, B)=\inf \{d(a, b): a \in A, b \in B\} \leq \inf \left\{d\left(x_{n}, x_{n+1}\right): n \in \mathbb{N}\right\}=0
$$

then $d(A, B)=0$. So from Lemma 3.10, $\left\{x_{n}\right\}$ is a Cauchy sequence and thus there exists $x^{*} \in A \cup B$ such that $x_{n} \rightarrow x^{*}$. Now $\left\{x_{2 n}\right\}$ is a sequence in A and $\left\{x_{2 n+1}\right\}$ is a sequence in B and both converges to x^{*}. Since A and B are closed $x^{*} \in A \cap B$ and by the proof of Theorem $3.11 x^{*}$ is a fixed point of T. Since $d(A, B)=0$, fixed point of T in A and so in $A \cap B$ is unique.

From Theorem 3.14, we obtain the following common fixed point result which is the extention of Corollary 3.11 in [13], immediatelly.

Corollary 3.15. Let (X, d) be a complete metric space and let $T: X \rightarrow X$ and $S: X \rightarrow X$ be two mappings satisfying

$$
d(T x, S y) \leq(I-\varphi)\left(\max \left\{d(x, y), d(x, T x), d(y, S y), \frac{d(x, S y)+d(y, T x)}{2}\right\}\right)
$$

for all $x, y \in X$. Then T and S have a unique common fixed point in X.

References

[1] A. Abkar, M. Gabeleh, Results on the existence and convergence of best proximity points, Fixed Point Theory Appl. 2010 (2010), 1-10.
[2] B. Ali, M. Abbas, M. D. L. Sen, Completeness of b-metric spaces and the fixed points of generalized multivalued quasicontractions, Discrete Dyn. Nat. Soc. 2020 (2020) , 1-13.
[3] M. A. Al-Thagafi, N. Shahzad, Convergence and existence results for best proximity points, Nonlinear Anal. Theory Methods Appl. 70(10) (2009), 3665-3671.
[4] A. Anthony Eldred, P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl. 323 (2006), 1001-1006.
[5] R. Espínola, A. Fernández-León, On best proximity points in metric and Banach space, Canad. J. math. 63(3) (2011), 533-550.
[6] R. Espínola, G. Sankara Raju Kosuru, P. Veeramani, Pythagorean property and best proximity point theorems, J. Optim. Theory Appl. 164 (2015), 534-550.
[7] E. Karapinar, H. K. Nashine, Fixed point theorem for cyclic Chatterjea type contractions, J. Appl. Math. 2012 (2012).
[8] A. A. Khan, B. Ali, Completeness of b-metric spaces and best proximity points of nonself quasi-contractions, Symmetry, 13(11) (2011), 1-18.
[9] G.S.R. Kosuru, P. Veeramani, On existence of best proximity pair theorems for relatively non-expansive mappings, J. Nonlinear Convex Anal. 11 (2010), 71-77.
[10] M.A. Petric, Best proximity point theorems for weak cyclic Kannan contractions, Filomat. 25(1) (2011), 145-154.
[11] S. Radenović, A note on fixed point theory for cyclic φ-contractions, Fixed Point Theory Appl. 2015(1) (2015), 1-9.
[12] A. Safari-Hafshejani, The existence of best proximity points for generalized cyclic quasi-contractions in metric spaces with the UC and ultrametric properties, Fixed Point Theory 23(2) (2022), 507-518.
[13] A. Safari-Hafshejani, A. Amini-Harandi, M. Fakhar, Best proximity points and fixed points results for noncyclic and cyclic Fisher quasi-contractions, Numer. Funct. Anal. Optim. 40(5) (2019), 603-619.
[14] Y.M. Singh, G.A.H. Sharma, M.R. Singh, Common fixed point theorems for (ψ, φ)-weak contractive conditions in metric spaces, Hacet. J. Math. Stat. 48(5) (2019), 1398-1408.
[15] T. Suzuki, M. Kikawa, C. Vetro, The existence of best proximity points in metric spaces with the property UC, Nonlinear Anal. 71 (2009), 2918-2926.

[^0]: 2020 Mathematics Subject Classification. Primary 47H10; Secondary 54E05, 54H25.
 Keywords. Best proximity point; Cyclic quasi- φ-contractions; Ultrametric property; UC property.
 Received: 26 January 2023; Accepted: 12 August 2023
 Communicated by Calogero Vetro
 Email address: asafari@pnu.ac.ir (Akram Safari-Hafshejani)

