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Numerical solutions of nonlinear quadratic integral equations of
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method
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Abstract. A numerical method for solving nonlinear quadratic integral equations of Urysohn type on
the half-line is presented. This approach reduces the given equation to a systematic procedure by using a
rational Legendre-collocation approximation (RLC). The rate of convergence, error analysis and stability
of the RLC method are investigated. Moreover, several numerical examples are carried out to verify the
accuracy and reliability of the proposed method.

1. Introduction

The class of nonlinear integral equations known as quadratic integral equations holds great importance
due to their numerous significant applications in engineering and sciences. These equations naturally arise
in various fields such as radiative transfer theory, kinetic theory of gases, the theory of neutron transport,
and traffic theory. (see, e.g., [1–8] and reference therein). Although numerous studies have conducted in
recent years to examine the existence and uniqueness of solutions for different types of these equations,
limited attention has been given to those defined on unbounded intervals. For instance, Banaś and al. [9]
studied the solvability of nonlinear quadratic integral equation of Hammerstein type on an unbounded
interval in some Banach space, consisting of all real functions defined, bounded and continuous on R+.
The authors in [10–16], investigated the existence of solutions for the Urysohn integral equation on an
unbounded interval. In a related context, Karaoui et al. [17] examined the existence of solutions to
nonlinear quadratic integral equations in the Banach space Lp(R+). Furthermore, in the second part of their
work, they provided a numerical method for solving nonlinear quadratic Volterra integral equations, but
over a bounded interval only.

Note that analytically solving nonlinear integral equations on unbounded intervals is not a trivial
task in general, thus numerical methods are required. Therefore, some efficient numerical algorithms
have been developed by a few authors to solve such problems. For example, the Nyström method for
convolution and non-convolution kernels was explored in [18], the finite-section approximation method
was presented in [19], projection and multi-projection methods were discussed in [20, 21], Galerkin and
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multi-Galerkin methods based on Laguerre polynomials were investigated in [22], the Sinc-Nyström method
based on single and double exponential transformations was proposed in [23], modified Legendre rational
and exponential collocation methods were proposed in [24], and superconvergence results for non-linear
Hammerstein integral equations on unbounded domain was discused in [25]. However, to the best of our
knowledge, no numerical methods have yet been applied to quadratic integral equations on unbounded
intervals.

In the present work we propose an efficient numerical method for the solution of nonlinear quadratic
integral equations of Urysohn type, defined on the half-line, namely

u(x) = a(x) + f (x,u(x))
∫
∞

0
k(x, t,u(t))dt, x ∈ [0,∞), (1)

where k(x, t, .), a(x) and f (x,u(x)) are given continuous functions and u(x) is the unknown function.
We first derive the so-called rational Legendre functions that can be obtained by combining the classical

Legendre polynomials with an appropriate mapping [24, 26], and then we apply the rational Legendre
collocation method to solve the given equation.

In the next section we present certain properties of rational Legendre functions and in section 3 we discuss
the existence of a unique solution to Eq. (1) in the weighted L2 space, assuming some natural conditions.
In section 4, the Legendre collocation method is presented for the solution of the Urysohn equation (1) in
which the integral part is replaced by their operational matrix representations with collocation points. In
addition, we discuss the convergence of the approximate solution to the exact solution and address the
stability of the proposed method. In order to show the efficiency and demonstrate the accuracy and stability
of the proposed method, some numerical examples are presented in section 5.

2. Orthogonal rational Legendre functions for the semi-infinite interval

In this section, we introduce rational Legendre functions and recall some basic properties. Even more,
we present function approximations in some weighted L2-space.

The well-known Legendre polynomials are orthogonal in the interval I = [−1, 1] with respect to the
uniform weight function. They can be determined with the help of the following recurrence formula [27]:

(n + 1)Pn+1(y) = (2n + 1)yPn(y) − nPn−1(y) n ≥ 1. (2)

Besides

P0(y) = 1, P1(y) = y, Pn(1) = 1, Pn(−1) = (−1)n. (3)

The set of Legendre polynomials forms an orthogonal system, namely,∫ 1

−1
Pn(y)Pm(y)dy =

2
2n + 1

δn,m, (4)

where δn,m,is the Kronecker delta function. Furthermore, for any function U ∈ L2(I), we write

U(y) =
∞∑
j=0

c jP j(y) with c j =
2 j + 1

2

∫ 1

−1
U(y)P j(y)dy. (5)

For a given positive integer N, let PN denote the space of all algebraic polynomials of degree not exceeding
N. we denote the collocation points by {σN

i }
N
i=0 which is the set of (N + 1) Legendre-Gauss points, and by

{ωN
i }

N
i=0 the corresponding weights. The associated Gauss-Legendre quadrature formula is defined by :∫ 1

−1
ϕ(y)dy =

N∑
i=0

ϕ(σN
i )ωN

i , ∀ϕ ∈ P2N+1. (6)
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Let us consider the following one to one invertible mapping between x ∈ R+ = [0,∞) and y ∈ I, with s > 0
of the form:

y = ηs(x) =
x − s
x + s

, x = φs(y) =
s(1 + y)

1 − y
. (7)

It is clear that

dy
dx
=

2s
(x + s)2 ,

dx
dy
=

2s
(1 − y)2 , (8)

where s is a positive scaling factor. The rational Legendre functions can be defined by

Rs,n(x) := Pn
(
ηs(x)

)
, n = 0, 1, 2, . . . , . (9)

They are orthogonal on the interval R+ with respect to the weight function

ρs(x) =
dy
dx
=

2s
(x + s)2 , (10)

equivalently∫
∞

0
Rs,n(x)Rs,m(x)ρs(x)dx =

2
2n + 1

δn,m. (11)

Let us define

L2
ρs

(R+) =
{
u : R+ → R | u is measurable and ∥u∥ρs < ∞

}
,

where

∥u∥ρs =

∫
∞

0
|u(x)|2ρs(x)dx,

is the norm induced by the inner product of the space L2
ρs

(R+),

⟨u, v⟩ρs =

∫
∞

0
u(x)v(x)ρs(x)dx. (12)

It is not hard to show that {Rs, j}
∞

j=0 forms a complete basis in L2
ρs

(R+). For any function u ∈ L2
ρs

(R+), the
following expansion holds

u(x) =
∞∑
j=0

ûs, jRs, j(x) with ûs, j =
2 j + 1

2

∫
∞

0
u(x)Rs, j(x)ρs(x)dx. (13)

In the sequel, k(x, t,u(t)) in Eq. (1) will be assumed, so that ks : R+ ×R+ ×R→ R defined by

ks(x, t,u(t)) =
k(x, t,u(t))
ρs(t)

,

is a bounded function. This allows us to rearrange Eq. (1) into the following form:

u(x) = a(x) + f (x,u(x))
∫
∞

0
ks(x, t,u(t))ρs(t)dt, x ∈ [0,∞). (14)
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2.1. Rational Lagrange interpolation
First, we defineXs

N the finite dimensional approximation subspace spanned for a given positive integer
N by the set of rational Legendre functions as

Xs
N := {v | v(x) = ϕ(ηs(x)),∀ϕ ∈ PN}. (15)

The set of rational Legendre-Gauss {ζs
N,i}

N
i=0, which is defined as

ζs
N,i = φs(σN

i ), 0 ⩽ i ⩽ N. (16)

Applying a mapping (7) to the quadrature formula (6) leads to the rational Legendre-Gauss quadrature:∫
∞

0
v(x)ρs(x)dx =

N∑
i=0

v(ζs
N,i)ω

N
i , ∀v ∈ Xs

2N+1. (17)

The rational Lagrange basis functions are defined by the following formula:

LN
i,s(x) =

N∏
j=0, j,i

ηs(x) − ηs(ζs
N, j)

ηs(ζs
N,i) − ηs(ζs

N, j)
, 0 ≤ i ≤ N, (18)

then it is clear that the functions LN
i,s(x) satisfy

LN
i,s(ζ

s
N, j) = δi, j. (19)

For any u ∈ C(R+), we can define the Lagrange interpolating polynomial Is
Nu ∈ Xs

N, satisfying:

I
s
Nu ∈ Xs

N such that Is
Nu(ζs

N, j) = u(ζs
N, j), 0 ⩽ j ⩽ N, (20)

which can be expanded as

I
s
Nu(x) =

N∑
i=0

u(ζs
N,i)L

N
i,s(x). (21)

The following estimate quoted from lemma 5.5 of [28].

Lemma 2.1. Let {LN
i,s(x)}Ni=1 be the N−th rational Lagrange interpolation functions associated with the rational

Legendre collocation points. Then

∥I
s
N∥∞ := sup

x∈R+

N∑
i=0

|LN
i,s(x)| = O(N1/2). (22)

In order to describe the approximation errors, we introduce new differential operators as follows:

Dxu = 1s(x)
du
dx
, 1s(x) :=

dx
dy
, (23)

and an induction argument leads to

Dm
x u = 1s(x)

d
dx

(
1s(x)

d
dx

(
· · ·

(
1s(x)

du
dx

)
· · ·

))
= ∂m

y Us, m = 0, 1, . . . , (24)

where

u(x) = u(φs(y)) := Us(y). (25)
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To prove error estimates for the above scheme, we begin by defining the following weighted Hilbert space
with some useful lemmas about rational Lagrange interpolation based on the rational Legendre-Gauss
points. For a nonnegative integer m, define

Hm
ρs

(R+) = {u | Dr
xu ∈ L2

ρs
(R+) 0 ≤ r ≤ m},

related to the following semi-norm and the norm:

|u|sm = ∥D
m
x u∥L2

ρs (R+), ∥u∥
s
m =

 m∑
r=0

∥Dr
xu∥2L2

ρs (R+)


1/2

.

Also, it is convenient to introduce the semi-norms

|u|m;N
ρs

:= |u|Hm;N
ρs (R+) =

 m∑
r=min(m,N+1)

∥Dr
xu∥2L2

ρs (R+)


1/2

.

In the following, we prove the below lemma, which estimates the error between the approximate and exact
solutions.

Lemma 2.2. Assume that u ∈ Hm
ρs

(R+) we have

∥u − Is
Nu∥L2

ρs (R+) ≤ cN−m
|u|m;N
ρs
, (26)

∥u − Is
Nu∥∞ ≤ cN1/2−m

|u|m;N
ρs
, (27)

where c is a positive constant independent of N and u.

Proof. Let IN be the Lagrange interpolation operator associated with the Legendre collocation points, we
have for the weighted L2

−norm

∥u − Is
Nu∥2L2

ρs (R+) =

∫
∞

0
|u(x) − Is

Nu(x)|2ρs(x)dx =
∫ 1

−1
|Us(y) − INUs(y)|2dy = ∥Us − INUs∥

2
L2(I). (28)

Next for the infinity norm, we consider

∥u − Is
Nu∥∞ = sup

x∈R+
|u(x) − Is

Nu(x)| = sup
y∈I
|Us(y) − INUs(y)| = ∥Us − INUs∥∞. (29)

According to Lemma 1 of [29], it is mentioned that for any Us ∈ Hm(I) and m ≥ 0,

∥Us − INUs∥L2(I) ⩽ cN−m
|Us|

m;N, (30)

∥Us − INUs∥∞ ⩽ cN1/2−m
|Us|

m;N. (31)

From (23), (24) and (25), we have

∥∂m
y Us∥

2
L2(I) =

∫ 1

−1
|∂m

y Us(y)|2dy =
∫
∞

0
|Dm

x u(x)|2ρs(x)dx = ∥Dm
x u∥2L2

ρs (R+). (32)

This implies |Us|
m;N = |u|m;N

ρs
. Hence, we obtain the desired estimate, i.e.,

∥u − Is
Nu∥L2

ρs (R+) ≤ cN−m
|u|m;N
ρs
, (33)

∥u − Is
Nu∥∞ ≤ cN1/2−m

|u|m;N
ρs
. (34)

This completes the proof.
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3. Existence and uniqueness

In order to consider the Eq. (1) in the weighted space L2
ρs

(R+), we will adopt the following assumptions:

C1. There exist a continuous and bounded function 1 : R+ ×R+ → R+ such that

|k(x, t, y) − k(x, t, z)| ≤ 1(x, t)|y − z|, for all x, t ∈ R+.

C2. For every x ≥ 0,∫
∞

0
|1(x, t)|2(t + s)2dt ≤M1 < ∞ for all s > 0.

C3. For every x ≥ 0,∫
∞

0
|k(x, t,u(t))|dt ≤M2 < ∞.

From now onwards, we make the following assumptions on the nonlinear function f (.,u(.)):

C4. f (x, z) is continuous on R+ ×R and bounded:

sup
x∈R+
| f (x,u(x))| ≤M3.

C5. The functions f (x,u(x)) is Lipschitz continuous in u i.e., for any u, v ∈ L2
ρs

(R+), there exist constants L
such that

| f (x,u(x)) − f (x, v(x))| ≤ L|u(x) − v(x)|.

Next, we define the operator T on L2
ρs

(R+) by

T (u) := F(u)K (u) + a, whereK (u)(x) =
∫
∞

0
k(x, t,u(t))dt and F(u)(x) = f (x,u(x)),

so that Eq. (1) can be written as

T (u) = u. (35)

Theorem 3.1. AssumeK : L2
ρs

(R+)→ L2
ρs

(R+) is bounded, if the following condition holds:LM2 +M3

√
M1

s

 < 1. (36)

Then Eq. (1) has a unique solution in L2
ρs

(R+) for all a ∈ L2
ρs

(R+) .

Proof. For all u, v ∈ L2
ρs

(R+), we have

|T (u)(x) − T (v)(x)| = |F(u)(x)K (u)(x) − F(v)(x)K (v)(x)|
= |F(u)(x)K (u)(x) − F(v)(x)K (u)(x) + F(v)(x)K (u)(x) − F(v)(x)K (v)(x)|
≤ |F(u)(x) − F(v)(x)||K (u)(x)| + |F(v)(x)||K (u)(x) −K (v)(x)|. (37)
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From Lipschitz continuity of f and the assumptions C1, C3 and C4, we get

|T (u)(x) − T (v)(x)| ≤ L|u(x) − v(x)||K (u)(x)| +M3|K (u)(x) −K (v)(x)|

≤ LM2|u(x) − v(x)| +M3

∫
∞

0
|1(x, t)||u(t) − v(t)|dt. (38)

By applying Cauchy-Schwarz inequality and using assumption C2, we obtain∫
∞

0
|1(x, t)||u(t)− v(t)|dt ≤

(∫
∞

0
|1(x, t)|2

1
ρs(t)

dt
)1/2 (∫

∞

0
|u(t) − v(t)|2ρs(t)dt

)1/2

≤

√
M1

2s
∥u− v∥L2

ρs (R+). (39)

This implies

|T (u)(x) − T (v)(x)| ≤ LM2|u(x) − v(x)| +M3

√
M1

2s
∥u − v∥L2

ρs (R+).

Hence

∥T (u) − T (v)∥L2
ρs (R+) ≤

LM2 +M3

√
M1

s

 ∥u − v∥L2
ρs (R+). (40)

It follows that for
(
LM2 +M3

√
M1
s

)
< 1, T is a contraction operator, so that it has a unique fixed point and

that fixed point is the solution of of Eq. (1).

4. Rational Legendre collocation method

An approximate solution of Eq. (1) may be obtained by simply collocating, that is forcing Eq. (14) to be
exact at the rational Legendre-Gauss points {ζs

N, j}
N
j=0, namely

u(ζs
N, j) = a(ζs

N, j) + f (ζs
N, j,u(ζs

N, j))
∫
∞

0
ks(ζs

N, j, t,u(t))ρs(t)dt, j = 0 · · ·N. (41)

By applying the rational Legendre-Gauss quadrature formula (17) to the above equation, we obtain

u(ζs
N, j) = a(ζs

N, j) + f (ζs
N, j,u(ζs

N, j))
N∑

i=0

ks(ζs
N, j, ζ

s
N,i,u(ζs

N,i))ω
N
i , j = 0 · · ·N, (42)

Using uN
s, j, 0 ≤ j ≤ N, to approximate the function value u(ζs

N, j), and use

uN
s (x) =

N∑
j=0

uN
s, jL

N
j,s(x), (43)

to approximate the function u(x), namely

u(ζs
N, j) ∼ uN

s, j, u(x) ∼ uN
s (x). (44)

Then, the discrete spectral Legendre-collocation method for solving Eq. (1) leads to the following fully
discrete problem

uN
s, j = a(ζs

N, j) + f (ζs
N, j,u

N
s, j)

N∑
i=0

ks(ζs
N, j, ζ

s
N,i,u

N
s,i)ω

N
i , j = 0 · · ·N, (45)
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which is a nonlinear system of the form

u = H(u), H(u) = A + F(u)M(u)W, (46)

where M,W,A and F are given by:

M(u) = (ks(ζs
N, j, ζ

s
N,i,u

N
s, j))0≤i, j≤N, W = diag((ωN

i )0≤i≤N), A = (a(ζs
N, j))0≤ j≤N, F(u) = diag(( f (ζs

N, j,u
N
s, j))0≤ j≤N),

and the unknown is the vector u ≡ [uN
s,0,u

N
s,1, . . . ,u

N
s,N]T.

To achieve a highly accurate numerical solution of (46), we would need to apply the following iterative
process

u(k) = H(u(k−1)), (47)

with the initial value u(0) = A.

4.1. Error analysis

In this section we provided error analysis for the proposed method to indicate its exponential rate of
convergence, provided that a and f are bounded sufficiently smooth functions. In order to do that, the
above assumptions are taken into account.

Theorem 4.1. Let u be the exact solution to Eq. (1) and uN
s be the approximate solution obtained by using the

spectral-collocation scheme (45). For m ≥ 1, assume that Dr
tks(x, t, Is

Nu(t)) ∈ L2
ρs

(R+) for min(m,N + 1) ≤ r ≤ m, If
u ∈ Hm

ρs
(R+), then

∥u − uN
s ∥L2

ρs (R+) = O(N−m), ∥u − uN
s ∥∞ = O(N

1
2−m). (48)

Proof. Let the quadratic Urysohn integral equation

u(x) = a(x) + f (x,u(x))
∫
∞

0
ks(x, t,u(t))ρs(t)dt, (49)

while using the approximate solution, we have

uN
s (x) = Is

Na(x) + Is
N f (x,Is

Nu(x))
∫
∞

0
I

s
N,Nks(x, t,Is

Nu(t))ρs(t)dt. (50)

Subtracting (50) from (49), we get the error equation

u(x) − uN
s (x) = a(x) − Is

Na(x) + f (x,u(x))
∫
∞

0
(ks(x, t,u(t)) − ks(x, t,Is

Nu(t)))ρs(t)dt

+ ( f (x,u(x)) − f (x,Is
Nu(x)))

∫
∞

0
ks(x, t,Is

Nu(t))ρs(t)dt

+ f (x,Is
Nu(x))

∫
∞

0
(ks(x, t,Is

Nu(t)) − Is
N,Nks(x, t,Is

Nu(t)))ρs(t)dt

+ ( f (x,Is
Nu(x)) − Is

N f (x,Is
Nu(x)))

∫
∞

0
I

s
N,Nks(x, t,Is

Nu(t))ρs(t)dt

= J0(x) + J1(x) + J2(x) + J3(x) + J4(x), (51)
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where

J0(x) = a(x) − Is
Na(x), (52)

J1(x) = f (x,u(x))
∫
∞

0
(ks(x, t,u(t)) − ks(x, t,Is

Nu(t)))ρs(t)dt, (53)

J2(x) = ( f (x,u(x)) − f (x,Is
Nu(x)))

∫
∞

0
ks(x, t,Is

Nu(t))ρs(t)dt, (54)

J3(x) = f (x,Is
Nu(x))

∫
∞

0
(ks(x, t,Is

Nu(t)) − Is
N,Nks(x, t,Is

Nu(t)))ρs(t)dt, (55)

J4(x) = ( f (x,Is
Nu(x)) − Is

N f (x,Is
Nu(x)))

∫
∞

0
I

s
N,Nks(x, t,Is

Nu(t))ρs(t)dt. (56)

By the triangle inequality, we have

∥u − uN
s ∥L2

ρs (R+) ≤

4∑
k=0

∥Jk∥L2
ρs (R+), ∥u − uN

s ∥∞ ≤

4∑
k=0

∥Jk∥∞. (57)

It follows immediately from Lemma 2.2 that

∥J0∥L2
ρs (R+) ≤ cN−m

|a|m;N
ρs
, ∥J0∥∞ ≤ cN1/2−m

|a|m;N
ρs
. (58)

On the other hand, by assumptions C1 and C4, we have

|J1(x)| =
∣∣∣∣∣ f (x,u(x))

∫
∞

0
(ks(x, t,u(t)) − ks(x, t,Is

Nu(t)))ρs(t)dt
∣∣∣∣∣

≤M3

∫
∞

0
|1(x, t)||u(t) − Is

Nu(t)|dt.

Using Cauchy Schwarz inequality as in (39), we get

∥J1∥L2
ρs (R+) ≤M3

√
M1

2s
∥u − Is

Nu∥L2
ρs (R+)

(∫
∞

0
ρs(x)dx

)1/2

=M3

√
M1

s
∥u − Is

Nu∥L2
ρs (R+). (59)

Next for the infinity norm, by using assumption C2 we obtain

|J1(x)| ≤M3∥u − Is
Nu∥∞

∫
∞

0
|1(x, t)|dt

≤M3∥u − Is
Nu∥∞

(∫
∞

0
|1(x, t)|2

1
ρs(t)

dt
)1/2 (∫

∞

0
ρs(t)dt

)1/2

≤M3

√
M1

s
∥u − Is

Nu∥∞. (60)

Then, according to Lemma 2.2, it follows that:

∥J1∥L2
ρs (R+) ≤ C1N−m

|u|m;N
ρs
, ∥J1∥∞ ≤ C1N1/2−m

|u|m;N
ρs
. (61)

Using assumptions C1, C3 and invoking (39), we can write∫
∞

0
|k(x, t,Is

Nu(t))|dt ≤
∫
∞

0
|k(x, t,Is

Nu(t)) − k(x, t,u(t)|dt +
∫
∞

0
|k(x, t,u(t)|dt

≤

∫
∞

0
|1(x, t)||u(t) − Is

Nu(t)|dt +M2 ≤

√
M1

2s
∥u − Is

Nu∥L2
ρs (R+) +M2,
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so that from C5, we get

|J2(x)| ≤ | f (x,u(x) − f (x,Is
Nu(x))|

∫
∞

0
|ks(x, t,Is

Nu(t))|ρs(t)dt

≤ L|u(x) − Is
Nu(x)|

∫
∞

0
|k(x, t,Is

Nu(t))|dt

≤ L

M2 +

√
M1

2s
∥u − Is

Nu∥L2
ρs (R+)

 |u(x) − Is
Nu(x)|.

Hence by Lemma 2.2, we have

∥J2∥L2
ρs (R+) ≤ C2N−m

|u|m;N
ρs
, ∥J2∥∞ ≤ C2N1/2−m

|u|m;N
ρs
. (62)

Also, we have

|J3(x)| ≤ | f (x,Is
Nu(x))|

∫
∞

0
|es

N,N(x, t)|ρs(t)dt.

where es
N,N(x, t) = ks(x, t,Is

Nu(t)) − Is
N,Nks(x, t,Is

Nu(t)). By using assumptions C4 and C5 we get

| f (x,Is
Nu(x))| ≤ | f (x,u(x))| + | f (x,Is

Nu(x)) − f (x,u(x))| ≤M3 + L∥u − Is
Nu∥∞.

Thus

|J3(x)| ≤ (M3 + L∥u − Is
Nu∥∞)

∫
∞

0
|es

N,N(x, t)|ρs(t)dt.

Finally, by using Cauchy-Schwarz inequality we write

|J3(x)| ≤
√

2(M3 + L∥u − Is
Nu∥∞)∥es

N,N(x, .)∥L2
ρs (R+).

Now, from (26) we have

∥es
N,N(x, .)∥L2

ρs (R+) ≤ cN−m
|ks(x, .,Is

Nu(.))|m;N
ρs
.

Hence, we get

∥J3∥L2
ρs (R+) ≤

√

2(M3 + L∥u − Is
Nu∥∞)cN−m

|ks(x, .,Is
Nu(.))|m;N

ρs

(∫
∞

0
ρs(x)dx

)1/2

≤ 2(M3 + L∥u − Is
Nu∥∞)cN−m

|ks(x, .,Is
Nu(.))|m;N

ρs
.

For the infinity norm, we use (27) to get

∥J3∥∞ ≤ (M3 + L∥u − Is
Nu∥∞)∥es

N,N(x, .)∥∞

∫
∞

0
ρs(t)dt

≤ 2(M3 + L∥u − Is
Nu∥∞)cN1/2−m

|ks(x, .,Is
Nu(.))|m;N

ρs
.

Hence

∥J3∥L2
ρs (R+) ≤ C3N−m

|ks(x, .,Is
Nu(.))|m;N

ρs
, (63)

∥J3∥∞ ≤ C3N1/2−m
|ks(x, .,Is

Nu(.))|m;N
ρs
. (64)
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To estimate J4 using Lemma 2.1, we obtain the following expression:

|J4(x)| ≤ | f (x,Is
Nu(x)) − Is

N f (x,Is
Nu(x))|

∫
∞

0
|I

s
N,Nks(x, t,Is

Nu(t))|ρs(t)dt

≤ | f (x,Is
Nu(x)) − Is

N f (x,Is
Nu(x))| sup

x,t∈R+
|I

s
N,Nks(x, t,Is

Nu(t))|
∫
∞

0
ρs(t)dt

≤ 2| f (x,Is
Nu(x)) − Is

N f (x,Is
Nu(x))|∥Is

N∥
2
∞ sup

0≤i, j≤N
|ks(ζs

N, j, ζ
s
N,i,I

s
Nu(ζs

N,i))|. (65)

Therefore, by using Lemma 2.2, we can derive the following result:

∥J4∥L2
ρs (R+) ≤ C4N−m

∥I
s
N∥

2
∞ sup

0≤i, j≤N
|ks(ζs

N, j, ζ
s
N,i,I

s
Nu(ζs

N,i))|| f |
m;N
ρs
, (66)

∥J4∥∞ ≤ C4N1/2−m
∥I

s
N∥

2
∞ sup

0≤i, j≤N
|ks(ζs

N, j, ζ
s
N,i,I

s
Nu(ζs

N,i))|| f |
m;N
ρs
. (67)

Finally, the statement of the theorem follows from the triangle inequality.

4.2. Stability of the RLC method
In this subsection, we focus on discussing the stability of the RLC method for solving integral equation

(1). To analyze the stability, we introduce a function aε(x) = a(x) + ε. This addition allows us to use the
impulse from theorem 3.1, which guarantees the existence of a solution uε. The solution uε is obtained by
satisfying the following equation:

uε(x) = aε(x) + f (x,uε(x))
∫
∞

0
k(x, t,uε(t))dt, x ∈ [0,∞). (68)

Applying the RLC method to the perturbed problem (68) we can obtain the corresponding scheme

uN
s,ε(x) = Is

Naε(x) + Is
N f (x,Is

Nuε(x))
∫
∞

0
I

s
N,Nks(x, t,Is

Nuε(t))ρs(t)dt. (69)

Definition 4.2. The numerical method is said to be stable if

∥uN
s − uN

s,ε∥ ≤ C∥a − aε∥, (70)

where uN
s,ε is the numerical solution of the perturbed problem.

In the following theorem, we focus solely on demonstrating the maximum norm stability of the RLC method
because the same argument can be applied in the L2

ρs
−norm. For notational convenience, let us denote

γs = LM2 +M3

√
M1

s
.

Theorem 4.3. Let {uN
s } and {uN

s,ε} be two sequences of numerical solutions obtained by the RLC schemes (50) and
(69), respectively. Further assume

sup
x,t∈R+

1(x, t)(t + s)2 < ∞. (71)

If γs < 1, then we have

∥uN
s − uN

s,ε∥∞ ≤ ∥I
s
N∥∞

(
1 +

τs

1 − γs
∥I

s
N∥

3
∞

)
ε, (72)

where

τs = 2L sup
0≤i, j≤N

|ks(ζs
N, j, ζ

s
N,i,I

s
Nuε(ζs

N,i))| +
1
s

sup
0≤ j≤N

| f (ζs
N, j,I

s
Nuε(ζs

N, j))| sup
x,t∈R+

1(x, t)(t + s)2.
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Proof. Note that ∥a − aε∥∞ = ε. By (50) and (69), we have

uN
s (x) − uN

s,ε(x) = Is
Na(x) − Is

Naε(x)

+ (Is
N f (x,Is

Nu(x)) − Is
N f (x,Is

Nuε(x)))
∫
∞

0
I

s
N,Nks(x, t,Is

Nuε(t))ρs(t)dt

+ Is
N f (x,Is

Nuε(x))
∫
∞

0
(Is

N,Nks(x, t,Is
Nu(t)) − Is

N,Nks(x, t,Is
Nuε(t)))ρs(t)dt..

Let us denote

Jε0(x) = Is
Na(x) − Is

Naε(x), (73)

Jε1(x) = (Is
N f (x,Is

Nu(x)) − Is
N f (x,Is

Nuε(x)))
∫
∞

0
I

s
N,Nks(x, t,Is

Nuε(t))ρs(t)dt, (74)

Jε2(x) = Is
N f (x,Is

Nuε(x))
∫
∞

0
(Is

N,Nks(x, t,Is
Nu(t)) − Is

N,Nks(x, t,Is
Nuε(t)))ρs(t)dt. (75)

where

uN
s (x) − uN

s,ε(x) = Jε0(x) + Jε1(x) + Jε2(x).

For Jε0, it is easy to get

∥Jε0∥∞ ≤ ∥I
s
N∥∞∥a − aε∥∞ ≤ ∥Is

N∥∞ε. (76)

Before starting the estimation of Jε1 and Jε2, we need to estimate u − uε in the infinity norm, where u is the
exact solution of equation (1) and uε is the exact solution of the perturbed problem (69), under the above
assumptions as follows.

|u(x) − uε(x)| ≤ LM2|u(x) − uε(x)| +M3

∫
∞

0
|1(x, t)||u(t) − uε(t)|dt + |a(x) − aε(x)|.

By applying Cauchy-Schwarz inequality, we get

∥u − uε∥∞ ≤ γs∥u − uε∥∞ + ∥a − aε∥∞. (77)

This implies

∥u − uε∥∞ ≤
∥a − aε∥∞
(1 − γs)

≤
ε

(1 − γs)
. (78)

To estimate Jε1, we can write

|Jε1(x)| ≤ |Is
N f (x,Is

Nu(x)) − Is
N f (x,Is

Nuε(x))|
∫
∞

0
|I

s
N,Nks(x, t,Is

Nuε(t))|ρs(t)dt

≤ |I
s
N f (x,Is

Nu(x)) − Is
N f (x,Is

Nuε(x))| sup
x,t∈R+

|I
s
N,Nks(x, t,Is

Nuε(t))|
∫
∞

0
ρs(t)dt

≤ 2∥Is
N∥

2
∞ sup

0≤i, j≤N
|ks(ζs

N, j, ζ
s
N,i,I

s
Nuε(ζs

N,i))||I
s
N( f (x,Is

Nu(x)) − f (x,Is
Nuε(x)))|.

Using the assumption C5, we obtain

∥Jε1∥∞ ≤ 2L∥Is
N∥

4
∞ sup

0≤i, j≤N
|ks(ζs

N, j, ζ
s
N,i,I

s
Nuε(ζs

N,i))|∥u − uε∥∞. (79)
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Hence, by (78), we get

∥Jε1∥∞ ≤ 2L∥Is
N∥

4
∞ sup

0≤i, j≤N
|ks(ζs

N, j, ζ
s
N,i,I

s
Nuε(ζs

N,i))|
ε

(1 − γs)
. (80)

In order to estimate Jε2, we use assumption C1 and C4, which allows us to derive that

|Jε2(x)| ≤ |Is
N f (x,Is

Nuε(x))|
∫
∞

0
|I

s
N,Nks(x, t,Is

Nu(t)) − Is
N,Nks(x, t,Is

Nuε(t))|ρs(t)dt

≤ ∥I
s
N∥∞ sup

0≤ j≤N
| f (ζs

N, j,I
s
Nuε(ζs

N, j))|
∫
∞

0
|I

s
N,N(ks(x, t,Is

Nu(t)) − ks(x, t,Is
Nuε(t))|ρs(t)dt

≤ ∥I
s
N∥

3
∞ sup

0≤ j≤N
| f (ζs

N, j,I
s
Nuε(ζs

N, j))| sup
x,t∈R+

|ks(x, t,Is
Nu(t)) − ks(x, t,Is

Nuε(t))|
∫
∞

0
ρs(t)dt

≤
1
s
∥I

s
N∥

3
∞ sup

0≤ j≤N
| f (ζs

N, j,I
s
Nuε(ζs

N, j))| sup
x,t∈R+

1(x, t)(t + s)2
|I

s
N(u(t) − uε(t))|

≤
1
s
∥I

s
N∥

4
∞ sup

0≤ j≤N
| f (ζs

N, j,I
s
Nuε(ζs

N, j))| sup
x,t∈R+

1(x, t)(t + s)2
∥u − uε∥∞. (81)

Then, we have

∥Jε2∥∞ ≤
1
s
∥I

s
N∥

4
∞ sup

0≤ j≤N
| f (ζs

N, j,I
s
Nuε(ζs

N, j))| sup
x,t∈R+

1(x, t)(t + s)2
∥u − uε∥∞, (82)

Hence, using (78), we get

∥Jε2∥∞ ≤
1
s
∥I

s
N∥

4
∞ sup

0≤ j≤N
| f (ζs

N, j,I
s
Nuε(ζs

N, j))| sup
x,t∈R+

1(x, t)(t + s)2 ε
(1 − γs)

. (83)

Finally, by using the triangle inequality, we obtain the desired result.

5. Illustrative examples

In this section, we provide numerical examples to illustrate the practical application of our theoretical
results. All computations were carried out using Matlab. For the subsequent part of our analysis, we
investigate the stability of the system at specific points by considering various values of the perturbation
parameter ε. This examination allows us to assess the system’s robustness and sensitivity to perturbations.
Furthermore, we introduce the notation eN

s = u− uN
s to represent the error between the exact solution u and

the numerical solution uN
s obtained using our proposed method.

Example 5.1. Let us consider the quadratic Urysohn integral equation

u(x) =
x + 2
x + 3

e−x + u(x)
∫ +∞

0
e−t(x+1)u2(t)dt, x ∈ [0,∞). (84)

In order to confirm the effectiveness of our method, we present this example with the following known
smooth exact solution: u(x) = e−x. This choice of exact solution allows us to assess the accuracy and
reliability of our approach in solving the quadratic Urysohn integral equation. To evaluate the performance
of our approach, we conducted a series of experiments using the RLC method described above. The
obtained results are summarized in Table 1. We can observe that they are in good accordance with the
theoretical analysis provided by Theorem 4.1.



R. Abir et al. / Filomat 38:5 (2024), 1763–1781 1776

Table 1: Comparison of errors for Example 5.1.

s = 1 s = 2 s = 3
N ∥eN

s ∥L2
ρs (R+) ∥eN

s ∥∞ ∥eN
s ∥L2

ρs (R+) ∥eN
s ∥∞ ∥eN

s ∥L2
ρs (R+) ∥eN

s ∥∞

4 1.01e−02 3.35e−01 5.06e−03 6.33e−02 5.81e−03 1.54e−01
8 9.99e−04 3.95e−02 3.60e−04 1.19e−02 1.40e−04 4.05e−03
16 2.13e−05 7.90e−04 2.87e−06 8.66e−05 9.64e−07 1.40e−05
32 6.00e−08 2.24e−06 2.26e−09 7.44e−08 2.02e−10 1.13e−09
64 5.04e−12 8.56e−11 2.32e−14 7.16e−13 1.60e−14 2.13e−13

Example 5.2. [10] Let us consider the following quadratic Urysohn integral equation:

u(x) = xe−4x2
+ arctan(x + u(x))

∫ +∞

0
e−t(x+1)u2(t)dt, x ∈ [0,∞). (85)

In Table 2, we present the numerical errors obtained by computing the L2
ρs

norm and the infinity norm of
the difference between u256

s and uN
s using the RLC scheme for various s−parameter. These results indicate

that the spectral accuracy is obtained for this problem. Furthermore, Table 3 evaluates uN
s at various points

using the RLC method with s = 3/2. Additionally, we plot the numerical solution for n = 128 and s = 3/2
(refer to Figure 1).

Table 2: Comparison of errors for Example 5.2 with EN
s = u256

s − uN
s .

s = 3/2 s = 2 s = 3
N ∥EN

s ∥L2
ρs (R+) ∥EN

s ∥∞ ∥EN
s ∥L2

ρs (R+) ∥EN
s ∥∞ ∥EN

s ∥L2
ρs (R+) ∥EN

s ∥∞

4 3.80e−02 6.63e−02 4.40e−02 6.71e−02 6.18e−02 1.80e−01
8 8.84e−03 3.07e−02 8.76e−03 2.52e−02 1.57e−02 5.97e−02
16 3.28e−04 5.52e−04 3.73e−04 6.17e−04 6.51e−04 1.17e−03
32 4.10e−07 2.20e−06 5.46e−07 1.29e−06 1.13e−06 7.09e−06
64 1.72e−12 9.21e−12 8.08e−12 5.89e−12 3.18e−11 6.92e−12
128 8.11e−15 2.22e−15 6.81e−14 6.22e−15 2.71e−13 7.70e−15

Table 3: Some values of uN
s (x) at selected points for Example 5.2

x
N 0.5 5 10 15

4 0.1 0.00 0.0 0.0
8 0.1 0.00 0.00 0.00
16 0.191 0.00 0.001 0.000
32 0.19115 0.0040215 0.001356 0.00057
64 0.19115470283 0.0040215733 0.00135659880 0.000574038487
128 0.1911547028388 0.004021573357 0.0013565988032 0.00057403848735

Example 5.3. [30] Let us consider the following quadratic Urysohn integral equation:

u(x) =
x

x2 + 4
+ u(x)4

∫ +∞

0

u(t)
(1 + x + t)2(1 + u2(t))

dt, x ∈ [0,∞). (86)
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Figure 1: Numerical solution of Example 5.2 with N = 128 and s = 3/2

The numerical errors for the L2
ρs

norm and the infinity norm are presented in Table 4. The analysis of the
obtained results also demonstrates that the RLC method yields excellent results with all choices of s. To
provide additional clarity, we further examine the values of uN

s at various points using the RLC method
with s = 2 in Table 5. Moreover, Figure 2 represents the corresponding numerical solution plotted over the
interval [0, 30].

Table 4: Comparison of errors for Example 5.3 with EN
s = u128

s − uN
s .

s = 1 s = 2 s = 3
N ∥EN

s ∥L2
ρs (R+) ∥EN

s ∥∞ ∥EN
s ∥L2

ρs (R+) ∥EN
s ∥∞ ∥EN

s ∥L2
ρs (R+) ∥EN

s ∥∞

4 1.13e−02 3.02e−02 2.35e−02 7.13e−02 2.06e−02 9.21e−02
8 5.58e−04 1.55e−03 1.03e−03 1.31e−03 2.03e−03 1.10e−02
16 3.87e−06 6.29e−06 9.40e−06 1.33e−05 2.46e−05 6.53e−05
32 4.02e−10 1.75e−09 1.96e−09 1.14e−08 1.04e−08 7.67e−08
64 7.40e−16 1.44e−15 6.80e−16 1.22e−15 3.59e−15 3.80e−14

Example 5.4. [12] Let us consider the following quadratic Urysohn integral equation:

u(x) = xe−x +

√
u2(x) + 1
x + 1

∫ +∞

0
e−(x+t+1)

√
1 + |u(t)|dt, x ∈ [0,∞). (87)

Table 6 presents the L2
ρs

and infinity errors, indicating the discrepancy between u128
s and uN

s obtained
using the RLC scheme with various s. The results reveal that the numerical errors for s = 3 and s = 4
exhibit remarkable rapprochement, outperforming those obtained for s = 2. Consequently, we perform an
evaluation of uN

s at specific points using the RLC method with s = 3, as outlined in Table 7. Furthermore,
we provide the absolute values of the RLC coefficients and illustrate the numerical solution in Figure 3.
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Table 5: Some values of uN
s (x) at selected points for Example 5.3

x
N 0.5 5 10 15

4 0.4 0.19 0.09 0.06
8 0.40 0.19 0.09 0.06
16 0.4043 0.1923 0.099 0.06637
32 0.40436119 0.19234757 0.099011074518 0.066371815
64 0.404361192947411 0.19234757172204 0.09901107471898 0.066371815933000

0 5 10 15 20 25 30
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x

u
6
4

2
(x

)

Figure 2: Numerical solution of Example 5.3 with N = 64 and s = 2

Table 6: Comparison of errors for Example 5.4 with EN
s = u128

s − uN
s .

s = 2 s = 3 s = 4
N ∥EN

s ∥L2
ρs (R+) ∥EN

s ∥∞ ∥EN
s ∥L2

ρs (R+) ∥EN
s ∥∞ ∥EN

s ∥L2
ρs (R+) ∥EN

s ∥∞

4 2.26e−02 3.11e−02 1.99e−02 5.62e−02 1.64e−02 5.71e−02
8 1.27e−03 3.17e−03 1.31e−03 1.97e−03 7.88e−04 3.15e−03
16 2.68e−05 6.15e−05 9.47e−06 2.00e−05 3.53e−06 7.65e−06
32 2.42e−08 7.78e−08 3.17e−09 7.16e−09 5.81e−10 2.11e−09
64 4.47e−13 1.56e−12 1.65e−14 3.14e−14 1.01e−15 3.42e−14

5.1. Stability results
In order to demonstrate the stability of the examples, we investigate the effect of perturbation ε on the

non-linear system of algebraic equations (41). We specifically focus on the input perturbation (A + ε) and
observe that the output of the system undergoes minimal changes. The stability of Example 5.2 is shown in
Table 8 for different values of ε = 10−2, 10−3, and 10−4. The same principle is applied to the third example, as
presented in Table 10. Remarkably, we observe that the approximate solutions exhibit negligible variation
across various values of perturbation ε. To provide further insight, we have included the relative errors for
Examples 2 and 3 obtained through the RLC method in Tables 9 and 11 for ε = 10−1, 10−2, 10−3, and 10−4,



R. Abir et al. / Filomat 38:5 (2024), 1763–1781 1779

Table 7: Some values of uN
s (x) at selected points for Example 5.4

x
N 0.5 5 10 15

8 0.501 0.034 0.000 0.000
16 0.5018 0.03418 0.00045 0.00000
32 0.501879827 0.034183019 0.0004558 0.00000459
64 0.5018798271510 0.034183019457366 0.00045581118021 0.000004596928060
128 0.50187982715105 0.0341830194573660 0.000455811180218 0.0000045969280602
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Figure 3: Numerical results of RLC-scheme for Example 5.4 with N = 64 and s = 3

respectively. Also we denote

Rερs
=
∥uN

s − uN
s,ε∥L2

ρs (R+)

∥uN
s ∥L2

ρs (R+)
, Rε∞ =

∥uN
s − uN

s,ε∥∞

∥uN
s ∥∞

.

Table 8: Stability results of Example 5.2 with s = 3/2

x uN
s uN

s (ε = 10−2) uN
s (ε = 10−3) uN

s (ε = 10−4)

0.5 0.1911547 0.2022581 0.1922591 0.1912651
5 0.0040216 0.0146030 0.0050771 0.0041271
10 0.0013566 0.0115974 0.0023793 0.0014588
20 0.0002872 0.0103658 0.0012944 0.0003880
40 0.0000449 0.0100682 0.0010469 0.0001451
80 0.0000061 0.0100131 0.0010066 0.0001061
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Table 9: The relative errors for Example 5.2 with s = 3/2 and N = 128.

ε 10−1 10−2 10−3 10−4

Rερs
1.19e−00 1.14e−01 1.13e−02 1.13e−03

Rε∞ 5.44e−01 5.13e−02 5.10e−03 5.10e−04

Table 10: Stability results of Example 5.3 with s = 2 and N = 64.

x uN
s uN

s (ε = 10−2) uN
s (ε = 10−3) uN

s (ε = 10−4)

10 0.0990111 0.0990013 0.0990101 0.0990110
20 0.0498753 0.0498741 0.0498752 0.0498753
30 0.0332963 0.0332960 0.0332963 0.0332963
40 0.0249844 0.0249842 0.0249844 0.0249844
50 0.0199920 0.0199919 0.0199920 0.0199920
60 0.0166620 0.0166620 0.0166620 0.0166620
70 0.0142828 0.0142828 0.0142828 0.0142828
80 0.0124980 0.0124980 0.0124980 0.0124980

Table 11: The relative errors for Example 5.3 with s = 2 and N = 64.

ε 10−1 10−2 10−3 10−4

Rερs
3.30e−01 3.24e−02 3.24e−03 3.24e−04

Rε∞ 2.29e−01 2.17e−02 2.16e−03 2.16e−04

6. Conclusion

In this study, an efficient approach based on rational Legendre functions basis is described for the
numerical solution of nonlinear quadratic Urysohn integral equations on the half-line. The error analysis
and stability of the method are theoretically investigated. Numerical examples are given to support the
theoretical findings. The results show that the rational Legendre approach is very accurate and stable.
Furthermore, it is worth noting that the proposed method can be extended to solving similar types of
equations as well.
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