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Abstract. The main objective of this paper is to introduce and investigate new number families derived
from finite sums running over divisors and totatives and containing higher powers of binomial coefficients.
Especially, by making decomposition on the generating functions for a kind of combinatorial number fam-
ilies recently introduced by Simsek [29], we also construct generating functions for the newly introduced
number families. For symbolic computation of the newly introduced number families and their generating
functions, we also give computational implementations in the Wolfram language. By these implementa-
tions, some tables of both these number families and their generating functions have been presented for
some arbitrarily chosen special cases. Additionally, we provide some applications regarding the Thacker’s
(totient) function. In particular, by making summation on all totatives of a positive integer, we investigate
some special finite sums containing both the Thacker’s (totient) function and higher powers of binomial
coefficients. By this investigation, some of the problems regarding these finite sums have been partially
answered accompanied by some remarks. Furthermore, we propose an open problem regarding a potential
relation between one of these number families and a formula involving the Möbius function. Finally, the
paper have been concluded by providing an overview on the results of this paper and their potential usage
areas, and by making suggestions regarding future studies able to be made.

1. Introduction and Preliminaries

The families of combinatorial numbers and polynomials are both important tools frequently used in
almost all areas of mathematics, physics, computational sciences, cryptology and engineering. Therefore,
it is very important to be able to classify numbers and polynomials for determining in which areas they
can be used. There are many studies in the literature that serve this purpose. Especially, in recent years,
Simsek [26–31] has carried out very important studies for the classification of combinatorial numbers and he
indexed these numbers according to the order of their description. The starting point for the classification,
conducted by Simsek, was the introduction of the combinatorial numbers y1(m,n;λ) by the following
formula:

y1(m,n;λ) =
1
n!

n∑
j=0

(
n
j

)
jmλ j,
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and the generating functions for these numbers were constructed by Simsek [28] as follows:(
λet + 1

)n

n!
=

∞∑
m=0

y1(m,n;λ)
tm

m!
, (1)

(see, for details, [28]; and also [26, 29]).
In [28], which is considered to be the beginning of the aforementioned classification, Simsek also

proposed an open problem associated with the recurrence relation of a number family that is very closely
related to the numbers y1(m,n;λ). Lately Xu [39] and Goubi [11] succeeded in answering the aforementioned
problem. What matters for the literature is that the numbers y1(m,n;λ) were called as Simsek numbers by
Goubi in his papers [11] and [12].

Just after defining the numbers y1(m,n;λ), Simsek [26–31] also introduced other combinatorial numbers
with different indices according to the order in which they were defined. Therefore, in this study the
numbers y1(m,n;λ) will be referred as combinatorial Simsek numbers of the first kind because of its index.

Among the other studies conducted by Simsek [26–31] for the classification of the combinatorial
numbers, the focus of the present study is [29] in which Simsek introduced the combinatorial numbers
y6(m,n;λ, r) as follows, for λ ∈ R (or C), n, r ∈N = {1, 2, . . . } and m ∈N ∪ {0}:

Fy6 (t,n;λ, r) :=
1
n! rFr−1

[
−n,−n, ...,−n

1, 1, ..., 1 ; (−1)r λet
]

(2)

=

∞∑
m=0

y6(m,n;λ, r)
tm

m!
, (3)

in which rFr−1 denotes the generalized hypergeometric function defined by

pFq

[
α1, ..., αp
β1, ..., βq

; z
]
=

∞∑
m=0


p∏

j=1

(
α j

)
m

q∏
j=1

(
β j

)
m


zm

m!
,

where (α)m denotes the Pochhammer symbol defined by (α)m = α (α + 1) . . . (α +m − 1) with (α)0 = 1, such
that the above series converges for all z if p < q + 1, and for |z| < 1 if p = q + 1. For this series one can
assumed that all parameters have real or complex values, except for the β j, j = 1, 2, ..., q none of which is
equal to zero or to a negative integer (See, for details, [29, 35]).

By using hypergeometric series techniques in (2), the function Fy6 (t,n;λ, r) can also be written as follows:

Fy6 (t,n;λ, r) =
1
n!

n∑
j=0

(
n
j

)r

λ jet j, (4)

(cf. [29, p. 1329])
Conspicuously, the combination of (3) and (4) implies that the numbers y6(m,n;λ, r) can be expressed

explicitly by the following finite sum:

y6(m,n;λ, r) =
1
n!

n∑
j=0

(
n
j

)r

jmλ j, (5)

where λ ∈ R (or C), n, r ∈N = {1, 2, . . . } and m ∈N ∪ {0} (cf. [29, p. 1347]).
Note that the numbers y6(m,n;λ, r) will be referred as combinatorial Simsek numbers of the sixth kind in

this study because of its index.
The most obvious relationship between the first kind and sixth kind combinatorial Simsek numbers is

as follows:

y6(m,n;λ, 1) = y1(m,n;λ) (6)
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(cf. [28, 29]).

It should also be noted here that the combinatorial Simsek numbers y6(m,n;λ, r) of the sixth kind are
also reduced to the sums Mm,r (n) and S(r)

n,m, when λ = 1:

y6(m,n; 1, r) =
Mm,r (n)

n!
=

S(r)
n,m

n!
, (7)

where Mm,r (n) denotes the Moment sums (cf. [23, Eq. (5.3.1), p. 167]) and S(r)
n,m denotes a generalization of

the Franel sums (cf. [5, Eq. (4), p. 79]) defined by

Mm,r (n) = S(r)
n,m =

n∑
j=0

(
n
j

)r

jm (8)

(cf. [29]; and see also [5, 8–10], [23, Eq. (5.1.1), p. 159], [33, p. 67]).

Table 1-Table 3 provide some values of the numbers y6(m,n;λ, r) for some arbitrarily chosen special
cases.

n=1 n=2 n=3 n=4

y6 (0, n; λ, 0 1 + λ 1

2
1 + λ + λ2 1

6
1 + λ + λ2 + λ3 1

24
1 + λ + λ2 + λ3 + λ4

y6 (0, n; λ, 1 1 + λ 1

2
1 + 2 λ + λ2 1

6
1 + 3 λ + 3 λ2 + λ3 1

24
1 + 4 λ + 6 λ2 + 4 λ3 + λ4

y6 (0, n; λ, 2 1 + λ 1

2
1 + 4 λ + λ2 1

6
1 + 9 λ + 9 λ2 + λ3 1

24
1 + 16 λ + 36 λ2 + 16 λ3 + λ4

y6 (0, n; λ, 3 1 + λ 1

2
1 + 8 λ + λ2 1

6
1 + 27 λ + 27 λ2 + λ3 1

24
1 + 64 λ + 216 λ2 + 64 λ3 + λ4

y6 (0, n; λ, 4 1 + λ 1

2
1 + 16 λ + λ2 1

6
1 + 81 λ + 81 λ2 + λ3 1

24
1 + 256 λ + 1296 λ2 + 256 λ3 + λ4

y6 (0, n; λ, 5 1 + λ 1

2
1 + 32 λ + λ2 1

6
1 + 243 λ + 243 λ2 + λ3 1

24
1 + 1024 λ + 7776 λ2 + 1024 λ3 + λ4

Table 1: Some values of the numbers y6(m,n;λ, r) in their special cases when m = 0, n ∈ {1, 2, 3, 4} and
r ∈ {0, 1, 2, 3, 4, 5}.

n=1 n=2 n=3 n=4

y6 (1, n; λ, 0 λ 1

2
λ + 2 λ2 1

6
λ + 2 λ2 + 3 λ3 1

24
λ + 2 λ2 + 3 λ3 + 4 λ4

y6 (1, n; λ, 1 λ 1

2
2 λ + 2 λ2 1

6
3 λ + 6 λ2 + 3 λ3 1

24
4 λ + 12 λ2 + 12 λ3 + 4 λ4

y6 (1, n; λ, 2 λ 1

2
4 λ + 2 λ2 1

6
9 λ + 18 λ2 + 3 λ3 1

24
16 λ + 72 λ2 + 48 λ3 + 4 λ4

y6 (1, n; λ, 3 λ 1

2
8 λ + 2 λ2 1

6
27 λ + 54 λ2 + 3 λ3 1

24
64 λ + 432 λ2 + 192 λ3 + 4 λ4

y6 (1, n; λ, 4 λ 1

2
16 λ + 2 λ2 1

6
81 λ + 162 λ2 + 3 λ3 1

24
256 λ + 2592 λ2 + 768 λ3 + 4 λ4

y6 (1, n; λ, 5 λ 1

2
32 λ + 2 λ2 1

6
243 λ + 486 λ2 + 3 λ3 1

24
1024 λ + 15552λ2 + 3072 λ3 + 4 λ4

Table 2: Some values of the numbers y6(m,n;λ, r) in their special cases when m = 1, n ∈ {1, 2, 3, 4} and
r ∈ {0, 1, 2, 3, 4, 5}.
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n=1 n=2 n=3 n=4

y6 (2, n; λ, 0 λ 1

2
λ + 4 λ2 1

6
λ + 4 λ2 + 9 λ3 1

24
λ + 4 λ2 + 9 λ3 + 16 λ4

y6 (2, n; λ, 1 λ 1

2
2 λ + 4 λ2 1

6
3 λ + 12 λ2 + 9 λ3 1

24
4 λ + 24 λ2 + 36 λ3 + 16 λ4

y6 (2, n; λ, 2 λ 1

2
4 λ + 4 λ2 1

6
9 λ + 36 λ2 + 9 λ3 1

24
16 λ + 144 λ2 + 144 λ3 + 16 λ4

y6 (2, n; λ, 3 λ 1

2
8 λ + 4 λ2 1

6
27 λ + 108 λ2 + 9 λ3 1

24
64 λ + 864 λ2 + 576 λ3 + 16 λ4

y6 (2, n; λ, 4 λ 1

2
16 λ + 4 λ2 1

6
81 λ + 324 λ2 + 9 λ3 1

24
256 λ + 5184 λ2 + 2304 λ3 + 16 λ4

y6 (2, n; λ, 5 λ 1

2
32 λ + 4 λ2 1

6
243 λ + 972 λ2 + 9 λ3 1

24
1024 λ + 31104λ2 + 9216 λ3 + 16 λ4

Table 3: Some values of the numbers y6(m,n;λ, r) in their special cases when m = 2, n ∈ {1, 2, 3, 4} and
r ∈ {0, 1, 2, 3, 4, 5}.

For other identities satisfied by the numbers y6(m,n;λ, r) and their special values, the reader may refer
to the paper of Simsek [29]. Also, to see the other relationships of the numbers y1(m,n;λ) and y6(m,n;λ, r)
with other special numbers and polynomials, the reader may also refer to [11, 12, 14, 17, 19–21, 26, 28, 32, 39].

As for the present paper, its main motivation is to construct generating functions for new number
families by decomposition of the function n!Fy6 (t,n;λ, r) into finite sums running over divisors and totatives.
Moreover, we aim to investigate some properties of these new number families by the techniques of
generating functions and some concepts from the analytic number theory.

The most important assumption to be referred throughout this study is as follows:

0n =

{
1, n = 0
0, n ∈N (9)

whose implementation in Wolfram language (cf. [38]) is given by Implementation 1.

Implementation 1: The following code snippet is written in Wolfram language so that 0n can be defined
as in the equation (9). See, for details, the documentations supplied by [38].

1 Unprotect[Power];
2 Power[0,0]=1;
3 Protect[Power];

As for the organization and content of the present paper, the next sections are summarized as follows:
In Section 2, by considering a decomposition of the function n!Fy6 (t,n;λ, r) into two sums separately

over all divisors and non-divisors of n, we define a family of numbers, denoted by K (n,m;λ, r), by their
generating functions. We also investigate the numbers K (n,m;λ, r) and their generating functions, and
we evaluate their several values for some special cases when n is a prime number and prime power. In
addition, we provide computational implementations in Wolfram language for symbolic computation of
the numbers K (n,m;λ, r) and their generating functions. With these implementations, we also present
tables of both the numbers K (n,m;λ, r) and their generating functions, for some arbitrarily chosen special
cases.

In Section 3, we provide some applications of the numbers K (n,m;λ, r) and y6(m,n;λ, r) regarding the
Thacker’s (totient) function. Especially, by summing these numbers over all totatives of n, we investigate
some special finite sums that contains both the Thacker’s (totient) function and higher powers of binomial
coefficients. Moreover, some of the problems, regarding these finite sums, have been partially answered.

In Section 4, as a result of the decomposition of the function n!Fy6 (t,n;λ, r) into two sums separately
over all totatives and cototatives of n, we define another family of numbers, denoted byW (n,m;λ, r), by
their generating functions. We also investigate the numbersW (n,m;λ, r) and their generating functions,
and we evaluate their several values for some special cases when n is a prime number and prime power.
Besides, we provide computational implementations in Wolfram language for symbolic computation of
the numbers W (n,m;λ, r) and their generating functions. With these implementations, we also present
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tables of both the numbersW (n,m;λ, r) and their generating functions, for some arbitrarily chosen special
cases. At the end of the Section 4, we propose an open problem regarding a potential relation between the
numbersW (n,m;λ, r) and a formula involving the Möbius function.

In Section 5, we conclude the paper by providing an overview of the results of this article, their potential
usage areas, and comments for potential future studies.

2. Decomposition into finite sums over divisors and non-divisors

In this section, we decompose the function n!Fy6 (t,n;λ, r) into two sums separately over all divisors and
non-divisors of n, as in the following form:

n!Fy6 (t,n;λ, r) =
∑
d|n

(
n
d

)r

λdedt +
∑
d∤n

(
n
d

)r

λdedt. (10)

By setting

FK (t,n;λ, r) := n!Fy6 (t,n;λ, r) −
∑
d∤n

(
n
d

)r

λdedt, (11)

we introduce the numbersK (n,m;λ, r) by the following definition:

Definition 2.1. The numbersK (n,m;λ, r) are defined by means of the following generating functions:

FK (t,n;λ, r) =
∞∑

m=0

K (n,m;λ, r)
tm

m!
(12)

where n ∈N, m, r ∈N ∪ {0} and λ, t ∈ R (or C).

For the purpose of investigating some properties of the numbers K (n,m;λ, r) and their generating
functions, we first combine (12) with the Taylor expansion of the function edt. Thus, we get

∞∑
m=0

K (n,m;λ, r)
tm

m!
=

∑
d|n

(
n
d

)r

λd

 ∞∑
m=0

dm tm

m!


which, by comparing the coefficients of tm

m! on its both sides, yields a formula for the numbers K (n,m;λ, r)
as in the following theorem:

Theorem 2.2. Let n ∈N, m, r ∈N ∪ {0}, λ ∈ R (or C). Then we have

K (n,m;λ, r) =
∑
d|n

(
n
d

)r

λddm. (13)

By (13), some special cases of the numbersK (n,m;λ, r) are listed as follows:

Case of n being a prime number: Let p be a prime number. Since the divisors of p are given by {1, p}, setting
n = p in (13) yields

K
(
p,m;λ, r

)
=

∑
d|p

(
p
d

)r

λddm

= prλ + λppm.
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Case of n being a prime power: Let p be a prime number and k be a positive integer. Since the divisors of
pk are {1, p, p2, . . . , pk

}, setting n = pk in (13) yields

K

(
pk,m;λ, r

)
=

∑
d|pk

(
pk

d

)r

λddm

=

k∑
j=0

(
pk

p j

)r

λp j
p jm.

For example, if we set k = 2 in the above equation, then we have

K

(
p2,m;λ, r

)
= p2rλ +

(
p2

p

)
λppm + λp2

p2m.

Next, for the purpose of calculating the values of the numbersK (n,m;λ, r), we implement the formula,
given by (13), in the Wolfram language (see: Implementation 2).

Implementation 2: The following code, written in Wolfram language by the aid of the formula (13), includes
the procedure KNum which returns symbolically the values of the numbersK (n,m;λ, r).

1 KNum[n ,m ,\[Lambda] ,r ]:=Sum[((Binomial[n,d])ˆr)*(\[Lambda]ˆd)*(dˆm), {d, Divisors[n]}]

By the Implementation 2, we compute some values of the numbers K (n,m;λ, r) in their special cases
when n ∈ {1, 2, 3, 4, 5} and r ∈ {0, 1, 2, 3, 4, 5}, and we present these values in Table 4.

n=1 n=2 n=3 n=4 n=5

 (n, m; λ, 0 λ λ + 2m λ2 λ + 3m λ3 λ + 2m λ2 + 4m λ4 λ + 5m λ5

 (n, m; λ, 1 λ 2 λ + 2m λ2 3 λ + 3m λ3 4 λ + 3 × 21+m λ2 + 4m λ4 5 λ + 5m λ5

 (n, m; λ, 2 λ 4 λ + 2m λ2 9 λ + 3m λ3 16 λ + 9 × 22+m λ2 + 4m λ4 25 λ + 5m λ5

 (n, m; λ, 3 λ 8 λ + 2m λ2 27 λ + 3m λ3 64 λ + 27 × 23+m λ2 + 4m λ4 125 λ + 5m λ5

 (n, m; λ, 4 λ 16 λ + 2m λ2 81 λ + 3m λ3 256 λ + 81 × 24+m λ2 + 4m λ4 625 λ + 5m λ5

 (n, m; λ, 5 λ 32 λ + 2m λ2 243 λ + 3m λ3 1024 λ + 243 × 25+m λ2 + 4m λ4 3125 λ + 5m λ5

Table 4: Some values of the numbers K (n,m;λ, r) in their special cases when n ∈ {1, 2, 3, 4, 5} and r ∈
{0, 1, 2, 3, 4, 5}.

Next, by (11) we also give some special cases of the functions FK (t,n;λ, r) as follows:

Case of n being a prime number: Let p be a prime number. Since the divisors of p are given by {1, p}, setting
n = p in (11) yields

FK
(
t, p;λ, r

)
=

∑
d|p

(
p
d

)r

λdedt

= prλet +
(
λet

)p
.

Case of n being a prime power: Let p be a prime number and k be a positive integer. Since the divisors of
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pk are {1, p, p2, . . . , pk
}, setting n = pk in (11) yields

FK
(
t, pk;λ, r

)
=

∑
d|pk

(
pk

d

)r

λdedt

=

k∑
j=0

(
pk

p j

)r

λp j
ep jt.

For example; if we set k = 2 in the above equation, then we have

FK
(
t, p2;λ, r

)
= p2rλet +

(
p2

p

) (
λet

)p
pm +

(
λet

)p2

p2m.

For the purpose of calculating the values of the functions FK (t,n;λ, r), we implement the formula, given
by (11), in the Wolfram language (see: Implementation 3).

Implementation 3: The following code, written in Wolfram language by the aid of the formula (11), includes
the procedure GenFuncKNum which returns symbolically the values of the funtions FK (t,n;λ, r).

1 GenFuncKNum[t ,n ,\[Lambda] ,r ]:=Sum[((Binomial[n,d])ˆr)*(\[Lambda]ˆd)*Exp[d*t], {d,Divisors[n]}]

By the Implementation 3, we compute some values the funtions FK (t,n;λ, r) in their special cases when
n ∈ {1, 2, 3, 4, 5} and r ∈ {0, 1, 2, 3, 4, 5}, and we present these values in Table 5.

n=1 n=2 n=3 n=4 n=5

F (t, n; λ, 0 ⅇt λ ⅇt λ + ⅇ2 t λ2 ⅇt λ + ⅇ3 t λ3 ⅇt λ + ⅇ2 t λ2 + ⅇ4 t λ4 ⅇt λ + ⅇ5 t λ5

F (t, n; λ, 1 ⅇt λ 2 ⅇt λ + ⅇ2 t λ2 3 ⅇt λ + ⅇ3 t λ3 4 ⅇt λ + 6 ⅇ2 t λ2 + ⅇ4 t λ4 5 ⅇt λ + ⅇ5 t λ5

F (t, n; λ, 2 ⅇt λ 4 ⅇt λ + ⅇ2 t λ2 9 ⅇt λ + ⅇ3 t λ3 16 ⅇt λ + 36 ⅇ2 t λ2 + ⅇ4 t λ4 25 ⅇt λ + ⅇ5 t λ5

F (t, n; λ, 3 ⅇt λ 8 ⅇt λ + ⅇ2 t λ2 27 ⅇt λ + ⅇ3 t λ3 64 ⅇt λ + 216 ⅇ2 t λ2 + ⅇ4 t λ4 125 ⅇt λ + ⅇ5 t λ5

F (t, n; λ, 4 ⅇt λ 16 ⅇt λ + ⅇ2 t λ2 81 ⅇt λ + ⅇ3 t λ3 256 ⅇt λ + 1296 ⅇ2 t λ2 + ⅇ4 t λ4 625 ⅇt λ + ⅇ5 t λ5

F (t, n; λ, 5 ⅇt λ 32 ⅇt λ + ⅇ2 t λ2 243 ⅇt λ + ⅇ3 t λ3 1024 ⅇt λ + 7776 ⅇ2 t λ2 + ⅇ4 t λ4 3125 ⅇt λ + ⅇ5 t λ5

Table 5: Some values of the functions FK (t,n;λ, r) in their special cases when n ∈ {1, 2, 3, 4, 5} and r ∈
{0, 1, 2, 3, 4, 5}.

Differentiating the equation (11) m times with respect to t, and combining the final equation with (13)
yields the following corollary:

Corollary 2.3. Let m ∈N. Then we have

K (n,m;λ, r) =
∂m

∂tm {FK (t,n;λ, r)}
∣∣∣
t=0
. (14)

3. Some applications of the numbers K (n,m; λ, r) and y6(m, n; λ, r) regarding the Thacker’s (totient)
function

Towards the end of the 19th century, J. J. Sylvester [36] introduced the totatives (or totitives) of a positive
integer n to be the positive integers that are less than n and relatively prime (coprime) to n. From then on to
the present, the totatives of a given positive integer and finite sums constructed accordingly have been used
as auxiliary tools in a wide variety of fields such as mathematics, mathematical physics, computational
sciences, cryptology and engineering (see, for details, [2, 6, 13, 25]).



I. Kucukoglu / Filomat 38:5 (2024), 1513–1529 1520

The main aim of this section is to give some applications of the numbers K (n,m;λ, r) and y6(m,n;λ, r)
regarding the Thacker’s (totient) function denoted by φk (n) which is a generalization of the Euler’s totient
function, introduced by Thacker in 1850 as the summation of kth powers of the totatives of the positive
integer n, namely:

φk (n) =
∑
λ∈Tn

λk (15)

where k ∈N and Tn denotes the set of all totatives of the positive integer n, namely:

Tn =
{
j ∈N : 1 ≤ j < n, gcd

(
j,n

)
= 1

}
,

(cf. [1, 6, 25]).
On the other hand, we prefer to denote the set of all cototatives of the positive integer n by T̂n whose

definition is given as follows:

T̂n =
{
j ∈N : 1 ≤ j < n, gcd

(
j,n

)
> 1

}
.

Observe that in the case when k = 0, the Thacker’s (totient) function φk (n) reduces to the Euler’s totient
function φ (n), namely:

φ0 (n) = φ (n) =
n∑

j=1
gcd( j,n)=1

1, (16)

which counts of the number of all totatives of the positive integer n. See, for details, [6], [25]; and see also
[2] and [13].

The Thacker’s (totient) function φk (n) satisfies the following recurrence relation:

φk (n) =
k∑

j=0

(−1) j
(
k
j

)
nk− jφ j (n) , (17)

(cf. [6, p. 142] and the references cited therein).
It follows from (16) and (17) that

φ1 (n) =
nφ (n)

2
(18)

which denotes the sum of all totatives of the positive integer n (cf. [6, p. 142], [24], and the references cited
therein).

It should be also noted here that in the case when n = p (prime number), the Thacker’s (totient) function
φk (n) reduces to the Faulhaber formula (cf. [1]):

φk
(
p
)
= Sk

(
p
)

; if p is a prime number (19)

where

Sk (n) = 1k + 2k + · · · + (n − 1)k (20)

which denotes the sum of the kth powers of the consecutive first (n − 1) positive integers, and can be traced
back to roughly 400 years ago. Back then J. Faulhaber [7] addressed to derive computational formulas for
the sum Sk (n) of powers of consecutive integers. There are many formulas in the literature that correspond
to the sum Sk (n), but the most remarkable and well-known formulas among others are given as follows:

Sk (n + 1) =
Bk+1 (n + 1) − Bk+1

k + 1
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and

Sk (n + 1) =
1

k + 1

k∑
j=0

(−1) j
(
k + 1

j

)
nk+1− jB j

where Bk and Bk (x) stand for the kth Bernoulli numbers and polynomials, respectively (cf. [7, 15, 16, 18]).

Remark 3.1. As a generalization of the Gauss’ formula (cf. [2]):∑
d|n

φ (d) = n, (21)

Liouville [22] gave the following identity for the Thacker’s (totient) function φk (n):∑
d|n

(n
d

)r
φr (d) = Sr (n + 1) (22)

which was also handled by Bruckman and Lossers [4, p. 435] for finding the Dirichlet series of the function φk (n).
But much later, claiming to be the result of Liouville [22], some researchers such as Andjić and Meštrovic [1, p. 4],
Dickson [6, p. 142] and Sándor and Crstici [25, p. 243] mentioned the following formula with a typo (fraction
possibly mistakenly written as a binomial coefficient):∑

d|n

(
n
d

)r

φr (d) ?
= Sr (n + 1) , (23)

which actually should have been as given in the equation (22). Incidentally it should be pointed out here that the
identity in (23) is not true! Just implementing the right- and the left-hand sides of (23) in the Wolfram language (see:
Implementation 4), we perceive that the equality (23) does not hold true.

Implementation 4: The following code snippet, written in Wolfram language, includes the proce-
dure ThackerFunc corresponding to the Thacker’s (totient) function given by (15), the procedure
FaulhaberFormula corresponding to the Faulhaber formula given by (20) and the procedure TypoL corre-
sponding to the left-hand side of (23). The following code snippets indicate that the assertion of (23) does
not hold true for example when n = 4.

1 ThackerFunc[n , r ]:=Sum[If[CoprimeQ[n, j] == True, jˆ r , 0], { j , n}]
2 FaulhaberFormula[n , r ]:=Sum[jˆr, { j ,1,n−1}]
3 TypoL[n , r ]:=Sum[((Binomial[n,d])ˆr)*ThackerFunc[d, r], {d, Divisors[n]}]
4 TypoL[4, 3]=308
5 FaulhaberFormula[5, 3]=100

After detecting the typo mentioned above, the following problems come to mind in this stage:

Open Problem 1: Is there any explicit formula for the following divisor sum:∑
d|n

(
n
d

)r

φr (d) . (24)

Open Problem 2: Is there any explicit formula for the following divisor sum:∑
d|n

(
n
d

)r

dmφd (n) . (25)

Next, we are motivated to partially answer the above problems and derive some formulas for the above
type divisor sums by the aid of the numbersK (n,m;λ, r) and y6(m,n;λ, r).



I. Kucukoglu / Filomat 38:5 (2024), 1513–1529 1522

Theorem 3.2. Let n ∈N. Then we have∑
λ∈Tn

K (n,m;λ, r) =
∑
d|n

(
n
d

)r

dmφd (n) . (26)

Proof. SummingK (n,m;λ, r) over the set Tn of all totatives of the positive integer n, we get∑
λ∈Tn

K (n,m;λ, r) =
∑
λ∈Tn

∑
d|n

(
n
d

)r

λddm,

which yields∑
λ∈Tn

K (n,m;λ, r) =
∑
d|n

(
n
d

)r

dm
∑
λ∈Tn

λd,

By blending (15) with the equation just above, we arrive at the assertion of Theorem 3.2.

Setting n = p (prime number) in (26), and using (18), (19) and (20) in the final equation, we arrive at the
following corollary:

Corollary 3.3. Let p be a prime number. Then we have∑
λ∈Tp

K
(
p,m;λ, r

)
=

pr+1 (
p − 1

)
2

+ pm
(
1 + 2p + · · · +

(
p − 1

)p
)
. (27)

Next, we also investigate some relations between the Thacker’s (totient) functionφk (n) and the numbers
y6 (m,n;λ, r) as follows:

Theorem 3.4. Let n ∈N. Then we have∑
λ∈Tn

y6 (m,n;λ, r) =
1
n!

n∑
j=0

(
n
j

)r

jmφ j (n) . (28)

Proof. Summing the numbers y6 (m,n;λ, r) over the set Tn of all totatives of the positive integer n, we get

∑
λ∈Tn

y6 (m,n;λ, r) =
1
n!

∑
λ∈Tn

n∑
j=0

(
n
j

)r

λ j jm,

which yields

∑
λ∈Tn

y6 (m,n;λ, r) =
1
n!

n∑
j=0

(
n
j

)r

jm
∑
λ∈Tn

λ j.

By blending (15) with the equation just above, we arrive at the desired result.

Setting n = p (prime number) in (28), and using (19) and (20) in the final equation, we arrive at the
following identity:∑

λ∈Tp

y6
(
m, p;λ, r

)
=

1
p!

p∑
j=0

(
p
j

)r

jmS j
(
p
)
. (29)

Combining (29) with (5) yields the following corollary:
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Corollary 3.5. Let p be a prime number. Then we have

∑
λ∈Tp

y6
(
m, p;λ, r

)
=

p−1∑
v=1

y6
(
m, p; v, r

)
. (30)

Theorem 3.6. Let m ∈N. Then we have∑
λ∈Tm

y6 (m,n;λ, r) =
1
n!

n∑
j=0

(
n
j

)r

jmφ j (m) . (31)

Proof. Summing the numbers y6 (m,n;λ, r) over the set Tm of all totatives of the positive integer m, we get

∑
λ∈Tm

y6 (m,n;λ, r) =
1
n!

∑
λ∈Tm

n∑
j=0

(
n
j

)r

λ j jm,

which yields

∑
λ∈Tm

y6 (m,n;λ, r) =
1
n!

n∑
j=0

(
n
j

)r

jm
∑
λ∈Tm

λ j.

By blending (15) with the equation just above, we arrive at the desired result.

Setting m = p (prime number) in (31), and using (19) and (20) in the final equation, we get∑
λ∈Tp

y6
(
p,n;λ, r

)
=

1
n!

n∑
j=0

(
n
j

)r

jpS j
(
p
)
. (32)

Combining (32) with (5) yields the following corollary:

Corollary 3.7. Let p be a prime number. Then we have

∑
λ∈Tp

y6
(
p,n;λ, r

)
=

p−1∑
v=1

y6
(
p,n; v, r

)
. (33)

4. Decomposition into finite sums over totatives and cototatives

In this section, by pursuing a method that of Simsek [33], we also decompose the function n!Fy6 (t,n;λ, r)
into two sums separately over all totatives and cototatives of n, as in the following form:

n!Fy6 (t,n;λ, r) =
n∑

j=1
gcd( j,n)=1

(
n
j

)r

λ je jt +

n∑
j=1

gcd( j,n)>1

(
n
j

)r

λ je jt (34)

where gcd denotes the usual greatest common divisor.

Remark 4.1. By considering the definition of the set Tn of all totatives and the set T̂n of all cototatives of the positive
integer n, the equation (34) can also be expressed equally as follows:

n!Fy6 (t,n;λ, r) =
∑
j∈Tn

(
n
j

)r

λ je jt +
∑
j∈T̂n

(
n
j

)r

λ je jt. (35)
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By setting

FW (t,n;λ, r) := n!Fy6 (t,n;λ, r) −
n∑

j=1
gcd( j,n)>1

(
n
j

)r

λ je jt, (36)

we introduce the numbersW (n,m;λ, r) by the following definition:

Definition 4.2. The numbersW (n,m;λ, r) are defined by means of the following generating functions:

FW (t,n;λ, r) =
∞∑

m=0

W (n,m;λ, r)
tm

m!
(37)

where n ∈N, m, r ∈N ∪ {0} and λ, t ∈ R (or C).

For the purpose of investigating some properties of the numbers W (n,m;λ, r) and their generating
functions, we first combine (37) with the Taylor expansion of the function e jt. Thus, we have

∞∑
m=0

W (n,m;λ, r)
tm

m!
=

n∑
j=1

gcd( j,n)=1

(
n
j

)r

λ j

 ∞∑
m=0

jm
tm

m!


which, by comparing the coefficients of tm

m! on its both sides, yields a formula for the numbersW (n,m;λ, r)
as in the following theorem:

Theorem 4.3. Let n ∈N, m, r ∈N ∪ {0}, λ ∈ R (or C). Then we have

W (n,m;λ, r) =
n∑

j=1
gcd( j,n)=1

(
n
j

)r

λ j jm. (38)

Remark 4.4. By considering the definition of the set Tn of all totatives of the positive integer n, the equation (38) can
also be expressed equally as follows:

W (n,m;λ, r) =
∑
j∈Tn

(
n
j

)r

λ j jm. (39)

By (38), some special cases of the numbersW (n,m;λ, r) are listed as follows:

Case of n being a prime number: Let p be a prime number. Then, setting n = p in (38) yields

W
(
p,m;λ, r

)
=

p∑
j=1

gcd( j,p)=1

(
p
j

)r

λ j jm

=

p−1∑
j=1

(
p
j

)r

λ j jm

which, by (5), implies the following corollary:

Corollary 4.5. Let p be a prime number. Then we have

W
(
p,m;λ, r

)
= p!y6

(
m, p;λ, r

)
− λppm.
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Remark 4.6. By setting

Fr (m,n;λ) = n!y6 (m,n;λ, r) , (40)

Simsek [29] also introduced the generalized rth order Franel numbers Fr (m,n;λ), which is a generalization of the
Franel sums (cf. [8, 9]) and Franel-type sums (cf. [5, 23]). Thus, the Corollary 4.5 can also be expressed, in terms of
the generalized rth order the Franel numbers, as follows:

W
(
p,m;λ, r

)
= Fr

(
m, p;λ

)
− λppm

where p is a prime number.

Case of n being a prime power: Let p be a prime number and k be a positive integer. Then, setting n = pk

in (38) yields

W

(
pk,m;λ, r

)
=

pk∑
j=1

gcd( j,pk)=1

(
pk

j

)r

λ j jm

=

pk∑
j=1

j.0 (mod p)

(
pk

j

)r

λ j jm.

For example; if we set p = 2 and k = 3 in the above equation, then we have

W (8,m;λ, r) = 8rλ + 3m (56)r λ3 + 5m (56)r λ5 + 7m8rλ7.

For the purpose of calculating the values of the numbersW (n,m;λ, r), we implement the formula, given
by (38), in the Wolfram language (see: Implementation 5).

Implementation 5: The following code, written in Wolfram language by the aid of the formula (13), includes
the procedure WNum which returns symbolically the values of the numbersW (n,m;λ, r).

1 WNum[n ,m ,\[Lambda] ,r ]:=Sum[If[CoprimeQ[j, n] == True, (Binomial[n,j]ˆr)*(\[Lambda]ˆj)*(jˆm),
0], { j ,1,n}]

By the Implementation 5, we compute some of the numbers W (n,m;λ, r) in their special cases when
n ∈ {1, 2, 3, 4, 5} and r ∈ {0, 1, 2, 3, 4, 5}, and we present these values in Table 6.

n=1 n=2 n=3 n=4 n=5

 (n, m; λ, 0 λ λ λ + 2m λ2 λ + 3m λ3 λ + 2m λ2 + 3m λ3 + 4m λ4

 (n, m; λ, 1 λ 2 λ 3 λ + 3 × 2m λ2 4 λ + 4 × 3m λ3 5 λ + 5 × 21+m λ2 + 10 × 3m λ3 + 5 × 4m λ4

 (n, m; λ, 2 λ 4 λ 9 λ + 9 × 2m λ2 16 λ + 16 × 3m λ3 25 λ + 25 × 22+m λ2 + 100 × 3m λ3 + 25 × 4m λ4

 (n, m; λ, 3 λ 8 λ 27 λ + 27 × 2m λ2 64 λ + 64 × 3m λ3 125 λ + 125 × 23+m λ2 + 1000× 3m λ3 + 125 × 4m λ4

 (n, m; λ, 4 λ 16 λ 81 λ + 81 × 2m λ2 256 λ + 256 × 3m λ3 625 λ + 625 × 24+m λ2 + 10000× 3m λ3 + 625 × 4m λ4

 (n, m; λ, 5 λ 32 λ 243 λ + 243 × 2m λ2 1024 λ + 1024× 3m λ3 3125 λ + 3125× 25+m λ2 + 100000× 3m λ3 + 3125× 4m λ4

Table 6: Some values of the numbers W (n,m;λ, r) in their special cases when n ∈ {1, 2, 3, 4, 5} and r ∈
{0, 1, 2, 3, 4, 5}.

Next, for the purpose of calculating the values of the functions FW (t,n;λ, r), we implement the formula,
given by (37), in the Wolfram language (see: Implementation 6).
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Implementation 6: The following code, written in Wolfram language by the aid of the formula (36), includes
the procedure GenFuncWNum, returns symbolically the values of the generating funtions FW (t,n;λ, r).

1 GenFuncWNum[t ,n ,\[Lambda] ,r ]:=Sum[If[CoprimeQ[j, n]==True, (Binomial[n,j]ˆr)*(\[Lambda]ˆj)*
Exp[j*t], 0], {j ,1,n}]

By the Implementation 6, we compute some of the functions FW (t,n;λ, r) in their special cases when
n ∈ {1, 2, 3, 4, 5} and r ∈ {0, 1, 2, 3, 4, 5}, and we present these values in Table 7.

n=1 n=2 n=3 n=4 n=5

F (t, n; λ, 0 ⅇt λ ⅇt λ ⅇt λ + ⅇ2 t λ2 ⅇt λ + ⅇ3 t λ3 ⅇt λ + ⅇ2 t λ2 + ⅇ3 t λ3 + ⅇ4 t λ4

F (t, n; λ, 1 ⅇt λ 2 ⅇt λ 3 ⅇt λ + 3 ⅇ2 t λ2 4 ⅇt λ + 4 ⅇ3 t λ3 5 ⅇt λ + 10 ⅇ2 t λ2 + 10 ⅇ3 t λ3 + 5 ⅇ4 t λ4

F (t, n; λ, 2 ⅇt λ 4 ⅇt λ 9 ⅇt λ + 9 ⅇ2 t λ2 16 ⅇt λ + 16 ⅇ3 t λ3 25 ⅇt λ + 100 ⅇ2 t λ2 + 100 ⅇ3 t λ3 + 25 ⅇ4 t λ4

F (t, n; λ, 3 ⅇt λ 8 ⅇt λ 27 ⅇt λ + 27 ⅇ2 t λ2 64 ⅇt λ + 64 ⅇ3 t λ3 125 ⅇt λ + 1000 ⅇ2 t λ2 + 1000 ⅇ3 t λ3 + 125 ⅇ4 t λ4

F (t, n; λ, 4 ⅇt λ 16 ⅇt λ 81 ⅇt λ + 81 ⅇ2 t λ2 256 ⅇt λ + 256 ⅇ3 t λ3 625 ⅇt λ + 10000ⅇ2 t λ2 + 10000ⅇ3 t λ3 + 625 ⅇ4 t λ4

F (t, n; λ, 5 ⅇt λ 32 ⅇt λ 243 ⅇt λ + 243 ⅇ2 t λ2 1024 ⅇt λ + 1024 ⅇ3 t λ3 3125 ⅇt λ + 100000ⅇ2 t λ2 + 100000ⅇ3 t λ3 + 3125 ⅇ4 t λ4

Table 7: Some values of the functions FW (t,n;λ, r) in their special cases when n ∈ {1, 2, 3, 4, 5} and r ∈
{0, 1, 2, 3, 4, 5}.

Next, by (36) we also give some special cases of the functions FW (t,n;λ, r) as follows:

Case of n being a prime number: Let p be a prime number. Then, setting n = p in (37) yields

FW
(
t, p;λ, r

)
=

p∑
j=1

gcd( j,p)=1

(
p
j

)r

λ jet j

=

p−1∑
j=1

(
p
j

)r

λ jet j

which, by (4), implies the following corollary:

Corollary 4.7. Let p be a prime number. Then we have

FW
(
t, p;λ, r

)
= p!Fy6

(
t, p;λ, r

)
− λpept.

Case of n being a prime power: Let p be a prime number and k be a positive integer. Then, setting n = pk

in (37) yields

FW
(
t, pk;λ, r

)
=

pk∑
j=1

gcd( j,pk)=1

(
pk

j

)r

λ jet j

=

pk∑
j=1

j.0 (mod p)

(
pk

j

)r

λ jet j.

For example, if we set p = 2 and k = 3 in the above equation, then we have

FW (t, 8;λ, r) = 8retλ + (56)r e3tλ3 + (56)r e5tλ5 + 8re7tλ7.

Differentiating the equation (36) m times with respect to t, and combining the final equation with (38)
yields the following corollary:
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Corollary 4.8. Let m ∈N. Then we have

W (n,m;λ, r) =
∂m

∂tm {FW (t,n;λ, r)}
∣∣∣
t=0
. (41)

Recall that the Möbius function µ (n), which is one of the most frequently used number-theoretic
(arithmetical) functions, is defined by (cf. [2]):

µ (n) =


1 if n = 1,
(−1)m if n is a square-free integer with m distinct prime factors,
0 if n has a squared prime factor.

One of the property of the Möbius function µ (n) is given by

ab∑
j=1

gcd( j,b)=1

f
(
j
)
=

∑
d|b

µ(d)

ab
d∑

j=1

f (dj) (42)

(cf. [3, p. 124, Eq. (17)]).
If we substitute

f
(
j
)
=

(
n
j

)r

λ j jm

into (42), then we have

ab∑
j=1

gcd( j,b)=1

(
n
j

)r

λ j jm =
∑
d|b

µ(d)

ab
d∑

j=1

(
n
dj

)r (
λd

) j
dm jm, (43)

by which, the following open problem comes to mind:

Open problem 3: Is there any relation between the equation (43) and the numbersW (n,m;λ, r)?

Remark 4.9. Substituting λ = 1, r = 1, m = 0 into (38) and λ = 1, r = 1, t = 0 into (36) yields the following
another case:

W (n, 0; 1, 1) = FW (0,n; 1, 1) =
n∑

j=1
gcd( j,n)=1

(
n
j

)
= 2n

∑
d|n

µ (d)
d

d∑
k=1

(−1)k cosn
(

kπ
d

)
(44)

(cf. [37, Eq. (28), p. 7]), such that the above formula corresponds to the sequence A056188 appearing in the Sloane’s
On-Line Encyclopedia of Integer Sequences (OEIS). See, for details, [34]. Due to the above observation, we can
conclude that the numbersW (n,m;λ, r) and their generating functions FW (t,n;λ, r) unify the above sequence.

5. Conclusion

In this study, by separating the function n!Fy6 (t,n;λ, r) into sums running over divisors and totatives of
the positive integer n, two new number families have been introduced with their generating functions, and
these numbers have been examined to find out some of their features. Furthermore, some applications of
the numbersK (n,m;λ, r) and y6(m,n;λ, r) regarding the Thacker’s (totient) function have been provided in
addition to some remarks with some open problems. In conclusion, we show that the decomposition of the
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generating functions, for combinatorial number families involving higher powers of binomial coefficients,
into finite sums running over divisors, non-divisors, totatives and cototatives reveals interesting number
families and number-theoretic (arithmetical) functions which have potentially find an application in a
wide variety of fields such as mathematics, mathematical physics, computational sciences, cryptology and
engineering. Especially, many more interesting results may be obtained when these number families are
further examined with the methods of analytical number theory. Therefore, the results of this paper open
up new fields of work by getting attention of the researchers interested in related fields.
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