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aHacettepe University, Department of Mathematics, TR-06800, Ankara, Turkey
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Abstract. In this study, we construct max-product and max-min kind pseudo-linear discrete operators.
First, we obtain some approximation results for bounded and uniformly continuous functions. Then, the
rate of convergence for these approximations using a suitable Lipschitz class of continuous functions is also
discussed. Some applications for verifying our results are also given. Furthermore, we approximate fuzzy
numbers using our operators. Finally, we apply our approximation in image processing.

1. Introduction

Discrete operators have been examined in different ways and have significant applications (see [5–
7, 9, 21–26, 47]). On the other hand, it is known that nonlinear approximations have widely been studied
in approximation theory since they may give better results compared to their linear counterparts (see, for
instance [4, 8, 10–14]). To this end, Bede et al. (see [19]) defined new operators with weakening the condition
of linearity. These operators are so-called max-product and max-min operators and provide the pseudo-
linearity feature. In the literature, there are many studies on max-product operators (see [1–3, 15–18, 28–
35, 37, 39, 42–45, 49]). However, there are only a few investigations on max-min operators [19, 38, 40, 41].
We should remark that max-product and max-min operators have quite beneficial applications on fuzzy
logic (see, for instance, [27, 46, 50, 51]). In addition, pseudo-linear operators could perform satisfactory
results in image processing [20].

In this paper, our first motivation is to construct pseudo-linear discrete operators via max-product and
max-min operations. Then, we investigate the approximation properties of these operators for bounded and
uniformly continuous functions with the help of N-dimensional max-product and max-min kind discrete
operators. To the best of our knowledge, this is the first study of max-product and max-min kind operators
using discrete kernels. Moreover, we obtain the rate of convergence for these approximations by using
proper Lipschitz classes. Then, we give some applications that tackle the approximation to functions of one
and two variables using different kernels. We also support our results with some graphical representations
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and some approximations to fuzzy continuous numbers, which can be represented by quasi-concave
functions. At the end, we use our new operators for digital image processing.

Some notations and definitions are given below.

• In this study, N− dimensional maximum (supremum) operation
∨
. . .

∨
(k1,...,kN)∈ZN is indicated by

“
∨

k∈ZN ”.

• By ∥·∥ , we mean the usual supremum norm on RN.

• BUC+
(
RN

)
:= { f : RN

→ [0,∞) | f is bounded and uniformly continuous on RN
}.

• UC[0,1](RN) := { f : RN
→ [0, 1] | f is uniformly continuous on RN

}.

• N− dimensional vector (u1, . . . ,uN) is denoted by “u” and euclidean norm of u will be shown by “|u|”.

Discrete operators, which we consider in this paper are introduced in [5] such that

Tw( f ; x) =
∑
k∈Z

f
(
x − k

w

)
lk,w

where the discrete kernel lk,w satisfies the approximate identities, i.e.,

• sup
w∈N

∑
k∈Z
|lk,w| = A < ∞.

• ∀w ∈N,
∑

k∈Z
lk,w = 1

• There exists a number r > 0 such that lim
w→∞

∑
|k|≥r
|lk,w| = 0.

2. Approximation By Max-Product Kind Discrete Operators

We define N− dimensional max-product kind discrete operators as follows:

T(M)
w

(
f ; x

)
=

∨
k∈ZN

f
(
x − k

w

)
lk,w∨

i∈ZN
li,w

(
x∈RN, w ∈N

)
(1)

where f : RN
→ [0,∞) is bounded and lk,w := l(k1,...,kN),w is a family of N− dimensional discrete kernels for

all w ∈ N, where
∨

i∈ZN
li,w , 0 for sufficiently large w ∈ N. For simplicity, throughout the paper, we use the

notation Lk,w :=
lk,w∨

i∈ZN
li,w

. In order to obtain more general results, instead of
∨

k∈ZN
Lk,w = 1 for all w ∈ N, now

we assume more general condition (l2) given below.
In this section, our aim is to prove the following convergence result

lim
w→∞

∥∥∥T(M)
w

(
f
)
− f

∥∥∥ = 0

for all f ∈ BUC+
(
RN

)
. For this reason, we need the following modified conditions on the kernel of the

operator (1).

(l1)
∨

k∈ZN

∣∣∣Lk,w

∣∣∣ = Aw ≤ A < ∞,

(l2) lim
w→∞

∨
k∈ZN

Lk,w = 1,
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(l3) There exists a number r0 > 0 such that lim
w→∞

∨
|k|≥r0

∣∣∣Lk,w

∣∣∣ = 0.

Lemma 2.1. If (l2) holds, then there exists a k′ ∈ ZN such that Lk′ ,w > 0 for sufficiently large w ∈N.

Proof. From (l2), for all ε > 0, there exists a w0 ∈ N such that

∣∣∣∣∣∣ ∨
k∈ZN

Lk,w − 1

∣∣∣∣∣∣ < ε for all w ≥ w0. So, we can

also find a number w̄0 for ε = 1
2 such that

∣∣∣∣∣∣ ∨
k∈ZN

Lk,w − 1

∣∣∣∣∣∣ < 1
2 , which implies that

1
2
<

∨
k∈ZN

Lk,w <
3
2

(2)

for all w ≥ w̄0. Then it is not hard to see that there exist k′ = (k′1, k
′

2, . . . , k
′

N) ∈ ZN satisfying that 1
2 < Lk′ ,w <

3
2

for sufficiently large w ∈N.

Lemma 2.2. (See [17]) If for any ak, bk ∈ R (k ∈N) satisfies
∨

k∈N
ak < ∞ or

∨
k∈N

bk < ∞, then we get∣∣∣∣∣∣∣∨k∈N ak −
∨
k∈N

bk

∣∣∣∣∣∣∣ ≤∨
k∈N

|ak − bk| (3)

Here, we should state that the above lemma is also valid for all k ∈ Z.

Lemma 2.3. If (l2) holds, then our operator T(M)
w provides the property of pseudo-linearity for sufficiently large w ∈N

in the sense that

T(M)
w (α f

∨
β1; x) = αT(M)

w ( f ; x)
∨

βT(M)
w (1; x)

for any α, β ≥ 0 and for all f , 1 ∈ BUC+
(
RN

)
.

Proof. By the previous lemma, it is clear.

The following lemma shows that T(M)
w ( f ; x) is well-defined for all w ∈N.

Lemma 2.4. If f is bounded and (l1) holds, then
∥∥∥T(M)

w
(

f
)∥∥∥ < ∞ for all w ∈N, that is, our operator is well-defined.

Proof. Since f is bounded, then there exists a positive number M such that
∣∣∣ f (x)

∣∣∣ ≤ M for all x ∈ RN. Then
from Lemma 2.2, there holds∣∣∣T(M)

w
(

f ; x
)∣∣∣ = ∣∣∣∣∣∣∣ ∨k∈ZN

f
(
x − k

w

)
Lk,w

∣∣∣∣∣∣∣
≤

∨
k∈ZN

∣∣∣∣ f (
x − k

w

)∣∣∣∣ ∣∣∣Lk,w

∣∣∣ .
Considering (l1) in the previous inequality, we obtain that∣∣∣T(M)

w
(

f ; x
)∣∣∣ ≤ ∨

k∈ZN

∣∣∣∣ f (
x − k

w

)∣∣∣∣ ∣∣∣Lk,w

∣∣∣ ≤MA

for all w ∈N. Finally taking supremum over x∈RN, we conclude

∥∥∥T(M)
w

(
f
)∥∥∥ ≤MA < ∞.
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Lemma 2.5. Assume that (l1) holds. If f ∈ BUC+
(
RN

)
, then T(M)

w
(

f
)
∈ BUC+

(
RN

)
for every w ∈N.

Proof. By the previous lemma, it is clear that if f is bounded, then T(M)
w

(
f
)

is also bounded. Now, let ε > 0
be given and let

∣∣∣x − y
∣∣∣ < δ where δ corresponds to uniform continuity of given f . Then, using Lemma 2.2

we observe∣∣∣T(M)
w

(
f ; x

)
− T(M)

w
(

f ; y
)∣∣∣ ≤ ∨

k∈ZN

∣∣∣Lk,w

∣∣∣ ∣∣∣∣ f (
x − k

w

)
− f

(
y − k

w

)∣∣∣∣ .
Since

∣∣∣∣(x − k
w

)
−

(
y − k

w

)∣∣∣∣ = |x − y| < δ, we finally have from (l1) that∣∣∣T(M)
w

(
f ; x

)
− T(M)

w
(

f ; y
)∣∣∣ < Aε

for all w ∈N .

Our main approximation theorem is given below.

Theorem 2.6. Assume that (l1) − (l3) hold. Then, for all f ∈ BUC+
(
RN

)
we have

lim
w→∞

∥∥∥T(M)
w

(
f
)
− f

∥∥∥ = 0.

Proof. From Lemma 2.2 and Lemma 2.3, we may write that

∣∣∣T(M)
w

(
f ; x

)
− f (x)

∣∣∣ ≤ ∣∣∣∣∣∣∣ ∨k∈ZN

Lk,w f
(
x − k

w

)
−

∨
k∈ZN

Lk,w f (x)

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣ ∨k∈ZN

Lk,w f (x) − f (x)

∣∣∣∣∣∣∣
≤

∨
k∈ZN

∣∣∣Lk,w

∣∣∣ ∣∣∣∣ f (
x − k

w

)
− f (x)

∣∣∣∣
+M

∣∣∣∣∣∣∣ ∨k∈ZN

Lk,w − 1

∣∣∣∣∣∣∣
for sufficiently large w ∈N. Now taking supremum over x ∈ RN, we obtain∥∥∥T(M)

w
(

f
)
− f

∥∥∥ ≤∨
k∈ZN

|Lk,w|

∥∥∥∥ f
(
· −

k
w

)
− f (·)

∥∥∥∥
+M

∣∣∣∣∣∣∣ ∨k∈ZN

Lk,w − 1

∣∣∣∣∣∣∣
=:C1 +MC2.

Directly from (l2), for a given ε > 0, we can find a number w′

such that for all w ≥ w′

, C2 < ε. Now, we
concentrate on the continuity of f . Since f is uniformly continuous, for every ε > 0 we can find a δ > 0 such
that ∣∣∣ f (x) − f

(
y
)∣∣∣ < ε (4)

whenever
∣∣∣x−y

∣∣∣ < δ. Then, for a fixed r0 given in (l3), it is easy to find a number w1 ∈N such that∣∣∣ r0
w

∣∣∣ < δ
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for all w ≥ w1.
Now, if we divide C1 as follows

C1 ≤

∨
|k|<r0

∣∣∣Lk,w

∣∣∣ ∥∥∥∥ f
(
· −

k
w

)
− f (·)

∥∥∥∥
+

∨
|k|≥r0

∣∣∣Lk,w

∣∣∣ ∥∥∥∥ f
(
· −

k
w

)
− f (·)

∥∥∥∥
=: C1

1 + C2
1

from (4) and (l1)

C1
1 ≤ Aε

holds, since
∣∣∣x − k

w − x
∣∣∣ = ∣∣∣ k

w

∣∣∣ < r0
w < δ.

In C2
1, from (l3) we easily see that

C2
1 < 2

∥∥∥ f
∥∥∥ ε

for sufficiently large w ∈N. Hence we complete the proof.

3. Rate of Convergence for Max-Product Operators

In this section, we investigate the rate of approximation, and therefore we need the following Lipschitz
class.

For any given α > 0, define LipN (α) as follows:

LipN (α) =
{

f ∈ BUC+
(
RN

)
:
∥∥∥ f (· − t) − f (·)

∥∥∥ = O (|t|α) as t→ 0
}

where f (t) = O
(
1 (t)

)
as t→ 0 means that, there exist δ,N > 0 such that

∣∣∣ f (t)
∣∣∣ ≤ N

∣∣∣1 (t)
∣∣∣ for |t| < δ.

We also require the following assumptions for a given α > 0:

∣∣∣∣∣∣∣ ∨k∈ZN

Lk,w − 1

∣∣∣∣∣∣∣ = O (1/wα) as w→∞, (5)

There exists a constant r1 > 0 such that

∨
|k|≥r1

∣∣∣Lk,w

∣∣∣ = O (1/wα) as w→∞. (6)

We obtain the following estimation.

Theorem 3.1. Let α > 0 and (l1), (5) and (6) hold. Then, for all f ∈ LipN (α)∥∥∥T(M)
w

(
f
)
− f

∥∥∥ = O (1/wα) as w→∞.

Proof. From the proof of Theorem 2.6, we observe that

∥∥∥T(M)
w

(
f
)
− f

∥∥∥ ≤ ∨
k∈ZN

|Lk,w|

∥∥∥∥ f
(
· −

k
w

)
− f (·)

∥∥∥∥ +M

∣∣∣∣∣∣∣ ∨k∈ZN

Lk,w − 1

∣∣∣∣∣∣∣
=: D1 +D2
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holds. In D, for a fixed r1 > 0, we can find a number w2 such that for all w ≥ w2,
∣∣∣x − k

w − x
∣∣∣ = ∣∣∣ k

w

∣∣∣ < r1
w < δ.

Since f ∈ LipN (α), then there exists a constant K > 0 such that∥∥∥∥ f
(
· −

k
w

)
− f (·)

∥∥∥∥ ≤ K
∣∣∣ k

w

∣∣∣α
for sufficiently large w ∈N. Then, we get

D1 ≤

∨
|k|<r1

∣∣∣Lk,w

∣∣∣ ∥∥∥∥ f
(
· −

k
w

)
− f (·)

∥∥∥∥
+

∨
|k|≥r1

∣∣∣Lk,w

∣∣∣ ∥∥∥∥ f
(
· −

k
w

)
− f (·)

∥∥∥∥
≤K(r1)α

∨
|k|<r1

∣∣∣Lk,w

∣∣∣
wα

+ 2∥ f ∥
∨
|k|≥r1

∣∣∣Lk,w

∣∣∣
≤K(r1)α 1

wα A

+ 2∥ f ∥
∨
|k|≥r1

∣∣∣Lk,w

∣∣∣
=:D1

1 +D2
1

It is clear that

D1
1 = O (1/wα) as w→∞.

From (6), there holds

D2
1 = O (1/wα) as w→∞.

Also from (5),

D2 = O (1/wα) as w→∞.

Hence, the proof is completed.

4. Approximation by Max-Min Kind Discrete Operators

In this part, we give an approximation theorem for max-min kind discrete operators.

• We will use the same conditions on Lk,w that are (l1) , (l2) , (l3) with one exception, that is Lk,w ∈ [0, 1]
for all k ∈ ZN and w ∈N. So that (l1) holds for A = 1.

Now, we can define our operator as follows:

T(m)
w

(
f ; x

)
=

∨
k∈ZN

Lk,w ∧ f
(
x − k

w

) (
x∈RN, w ∈N

)
(7)

where f : RN
→ [0, 1].

One can easily see that our operator is well-defined.
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Lemma 4.1. (See [19]) If for any x, y, z ∈ [0, 1], then

|x ∧ y − x ∧ z| ≤ x ∧ |y − z|

holds.

Lemma 4.2. If (l2) holds, then our operator T(m)
w is pseudo-linear for all w ∈N in the sense that

T(m)
w ((α ∧ f ) ∨ (β ∧ 1); x) = (α ∧ T(m)

w ( f ; x)) ∨ (β ∧ T(m)
w (1; x))

for every f , 1 ∈ UC[0,1](RN) and for all α, β ∈ [0, 1].

Proof. It is clear.

Lemma 4.3. Assume that (l1) holds. If f ∈ UC[0,1]

(
RN

)
, then T(m)

w
(

f
)
∈ UC[0,1]

(
RN

)
for all w ∈N.

Proof. It is clear that T(m)
w

(
f
)

is bounded by 1 for all w ∈N.Now, let ε > 0 be given and let
∣∣∣x − y

∣∣∣ < δwhere
δ corresponds to uniform continuity of given f . Then, using Lemma 2.2 and Lemma 4.1 we get∣∣∣T(m)

w
(

f ; x
)
− T(m)

w
(

f ; y
)∣∣∣ ≤ ∨

k∈ZN

Lk,w ∧

∣∣∣∣ f (
x − k

w

)
− f

(
y − k

w

)∣∣∣∣
and since

∣∣∣∣(x − k
w

)
−

(
y − k

w

)∣∣∣∣ = |x − y| < δ, we finally have∣∣∣T(m)
w

(
f ; x

)
− T(m)

w
(

f ; y
)∣∣∣ < ε

for all w ∈N .

Now, we get the following approximation theorem.

Theorem 4.4. Assume that (l1) − (l3) hold. Then, for all f ∈ UC[0,1]

(
RN

)
we have

lim
w→∞

∥∥∥T(m)
w

(
f
)
− f

∥∥∥ = 0.

Proof. From Lemma 2.2, Lemma 4.1 and Lemma 4.2, we may get

∣∣∣T(m)
w

(
f ; x

)
− f (x)

∣∣∣ ≤ ∣∣∣∣∣∣∣ ∨k∈ZN

Lk,w ∧ f
(
x − k

w

)
−

∨
k∈ZN

Lk,w ∧ f (x)

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣ ∨k∈ZN

Lk,w ∧ f (x) − f (x)

∣∣∣∣∣∣∣
≤

∨
k∈ZN

∣∣∣∣Lk,w ∧ f
(
x − k

w

)
− Lk,w ∧ f (x)

∣∣∣∣
+ f (x) ∧

∣∣∣∣∣∣∣ ∨k∈ZN

Lk,w − 1

∣∣∣∣∣∣∣
≤

∨
k∈ZN

Lk,w ∧

∣∣∣∣ f (
x − k

w

)
− f (x)

∣∣∣∣
+ f (x) ∧

∣∣∣∣∣∣∣ ∨k∈ZN

Lk,w − 1

∣∣∣∣∣∣∣ .
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Now taking supremum over x ∈ RN, there holds

∥T(m)
w ( f ) − f ∥ ≤

∨
k∈ZN

Lk,w ∧

∥∥∥∥ f
(
· −

k
w

)
− f (·)

∥∥∥∥ +
∣∣∣∣∣∣∣ ∨k∈ZN

Lk,w − 1

∣∣∣∣∣∣∣
=:E1 + E2

for all w ∈ N. Here, using that f is uniformly continuous, for every ε > 0 we can find a δ > 0 such that
| f (x) − f (y)| < ε whenever |x − y| < δ. Then for a fixed r0 in (l3), it is easy to find that a number w3 ∈N such
that ∣∣∣ r0

w

∣∣∣ < δ
for all w ≥ w3.

Now, dividing E1 into two parts,

E1 ≤

∨
|k|<r0

(
Lk,w ∧

∥∥∥∥ f
(
· −

k
w

)
− f (·)

∥∥∥∥)
+

∨
|k|≥r0

(
Lk,w ∧

∥∥∥∥ f
(
· −

k
w

)
− f (·)

∥∥∥∥)
=:E1

1 + E2
1

we may easily see that

E1
1 <

∨
|k|<r0

(
Lk,w ∧ ε

)
for all w ≥ w3. Then by the pseudo-linearity, we have

E1
1 < ε ∧

∨
|k|<r0

Lk,w ≤ ε.

In E2
1, from (l3)

E2
1 ≤

∨
|k|≥r0

(
Lk,w ∧ 1

)
≤

∨
|k|≥r0

Lk,w < ε

for all w ∈N. Finally from (l2), E2 → 0 as w→∞, which completes the proof.

5. Rate of Convergence for Max-min Operators

In this section we investigate the rate of approximation, and for this aim, we define the following
Lipschitz class.

For any given α > 0, define ˜LipN (α) as follows:

˜LipN (α) =
{

f ∈ UC[0,1]

(
RN

)
:
∥∥∥ f (· − t) − f (·)

∥∥∥ = O (|t|α) as t→ 0
}
.

Theorem 5.1. Let α > 0 and (l1), (5) and (6) hold. Then, for all f ∈ ˜LipN (α)∥∥∥T(m)
w

(
f
)
− f

∥∥∥ = O (1/wα) as w→∞.
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Proof. By the proof of Theorem 4.4, we have

∥T(m)
w ( f ) − f ∥ ≤

∨
|k|<r1

(
Lk,w ∧

∥∥∥∥ f
(
· −

k
w

)
− f (·)

∥∥∥∥)
+

∨
|k|≥r1

(
Lk,w ∧

∥∥∥∥ f
(
· −

k
w

)
− f (·)

∥∥∥∥)

+

∣∣∣∣∣∣∣ ∨k∈ZN

Lk,w − 1

∣∣∣∣∣∣∣
=:F1 + F2 + F3.

In F1, for a fixed r1 > 0, we can find a number w3 such that for all w ≥ w3,
∣∣∣x − k

w − x
∣∣∣ = ∣∣∣ k

w

∣∣∣ < r1
w < δ. Since

f ∈ ˜LipN (α) , then there exists a constant K′ > 0 such that∥∥∥∥ f
(
· −

k
w

)
− f (·)

∥∥∥∥ ≤ K′
∣∣∣ k

w

∣∣∣α
for all w ∈N. By the pseudo-linearity, (5) and (6), we get

F1 ≤

∨
|k|<r1

(
Lk,w ∧ K′

(r1)α

wα

)
≤ K′

(r1)α

wα
= O (1/wα) as w→∞,

F2 ≤

∨
|k|≥r1

(
Lk,w ∧ 1

)
≤

∨
|k|≥r1

Lk,w = O (1/wα) as w→∞

and

F3 =

∣∣∣∣∣∣∣ ∨k∈ZN

Lk,w − 1

∣∣∣∣∣∣∣ = O (1/wα) as w→∞.

6. Applications

In the present section, we give some applications of the operators of types (1) and (7).

6.1. Univariate Max-Product Kind Discrete Operators
In this part, the discrete kernel is given by

Lk,w =


sin((k − 3)w)

(k − 3)w
; if k , 3

1; if k = 3.

Using this kernel, operator (1) becomes the following

T(M)
w ( f ; x) =

∨
k∈Z

Lk,w f (x − k
w ).

• We can easily write that∨
k∈Z

|Lk,w| =
∨
k∈Z

Lk,w = 1 (8)

which implies (l1) and (l2).
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Figure 1: Approximation to f (x) = 2 cos2 x by means of the operators T(M)
w ( f ) for w = 18, 34, 51.

• And also, for α = 1 it can easily be seen that∣∣∣∣∣∣∣∨k∈Z Lk,w − 1

∣∣∣∣∣∣∣ = 0 = O (1/w) as w→∞ (9)

holds. Then, condition (5) is done.

• Assume that r0 = r1 = 4 and α = 1. Then, we get

∨
|k|≥4

|Lk,w| ≤
1
w
= O (1/w) as w→∞ (10)

which gives (l3) and (6).

Therefore, Lk,w fullfils the conditions (l1) − (l3) and (5), (6). Then for every f ∈ BUC+(R), we get

lim
w→∞

∥∥∥T(M)
w

(
f
)
− f

∥∥∥ = 0.

This uniform approximation is displayed in Figure 1, for f (x) = 2 cos2 x.
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By the following expression, we see that f ∈ Lip1(1),

| f (x − t) − f (x)| ≤ 2|| cos2(x − t)| − | cos2 x||
≤ 4| cos(x − t) − cos x|
= 4| sin(π2 − x + t) − sin(π2 − x)|
≤ 4|π2 − x + t − (π2 − x)|
= 4|t|.

Furthermore, from (9) and (10), we observe that∥∥∥T(M)
w

(
f
)
− f

∥∥∥ = O (1/w) as w→∞.

6.2. Univariate Max-Min Kind Discrete Operators
In this application, we take the discrete kernel as the following

Lk,w =
w

(w + 2)(|k − 3| + 1)w .

Using this kernel, operator (7) turns into the following one

T(m)
w ( f ; x) =

∨
k∈Z

(
w

(w + 2)(|k − 3| + 1)w ∧ f (x − k
w )

)
.

Now , we prove that Lk,w fullfils the conditions (l1) − (l3) and (5), (6).

• We first obtain the condition (l1) from the following expressions∨
k∈Z

Lk,w =
w

w + 2
= Aw ≤ 1 (11)

and lim
w→∞

Aw = 1.

• In addition,∣∣∣∣∣∣∣∨k∈Z Lk,w − 1

∣∣∣∣∣∣∣ =
∣∣∣∣ w
w + 2

− 1
∣∣∣∣ = 2

w + 2
= O (1/w) as w→∞ (12)

which immediately gives us (l2) and (5) for α = 1.

• Assume r0 = r1 = 4. Then, for α = 1,∨
|k|≥4

Lk,w =
w

(w + 2)2w ≤
1

2w ≤
1
w
= O (1/w) as w→∞ (13)

holds. So, we get (l3) and (6).

Therefore, from Theorem 4.4 we have

lim
w→∞

∥∥∥T(m)
w

(
f
)
− f

∥∥∥ = 0

for every f ∈ UC[0,1](R). This uniform approximation is indicated in Figure 2 for the function f (x) = | sin x|.
Moreover, f ∈ ˜Lip1(1). Indeed, f satisfies the following inequality

| f (x − t) − f (x)| = || sin(x − t)| − | sin x|| ≤ | sin(x − t) − sin x| ≤ |t|.

On the other hand, for the rate of convergence, considering f ∈ ˜Lip1(1), (12) and (13), we get that

∥∥∥T(m)
w

(
f
)
− f

∥∥∥ = O (1/w) as w→∞.
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Figure 2: Approximation to f (x) = | sin x| by means of the operators T(m)
w ( f ) for w = 16, 33, 60.
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6.3. Bivariate Max-Product Type Discrete Operators

In this part, we examine the following discrete kernel defined by

L(k1,k2),w =


(w + 2

w

) sin(w
√

k2
1 + k2

2)

w
√

k2
1 + k2

2

; if (k1, k2) , (0, 0)

1; if (k1, k2) = (0, 0).

Then, our operator reduces to

T(M)
w ( f ; x, y) =

∨
(k1,k2)∈Z2

L(k1,k2),w f
(
x − k1

w , y −
k2
w

)
.

Here, following inequality indicates that condition (l1) is satisfied∨
(k1,k2)∈Z2

∣∣∣L(k1,k2),w

∣∣∣ = ∨
(k1,k2)∈Z2

L(k1,k2),w =
w + 2

w
= Aw ≤ 3. (14)

In addition, it is stated in the following expression that conditions (l2) and (5) are satisfied ∨
(k1,k2)∈Z2

L(k1,k2),w − 1

 = (w + 2
w
− 1

)
=

2
w
= O (1/w) as w→∞. (15)

And also, assume that r0 = r1 = 1 and α = 1, then (l3) and (6) are provided by the followings∨
√

k2
1+k2

2≥1

∣∣∣L(k1,k2),w

∣∣∣ ≤ w + 2
w

( 1
w

)
≤

3
w
= O (1/w) as w→∞. (16)

Now, the kernel ensures the conditions (l1) − (l3), so that following uniform approximation is obtained for
every f ∈ BUC+(R2)

lim
w→∞

∥∥∥T(M)
w

(
f
)
− f

∥∥∥ = 0.

This approximation is plotted in Figure 3 for the function f (x, y) = | sin x|.
Besides, for the function f (x, y) = | sin x|, the following inequality holds∣∣∣ f (x − t1, y − t2) − f (x, y)

∣∣∣ = || sin(x − t1)| − | sin x||

≤ |sin(x − t1) − sin x|
≤ |t1|

=
√

t2
1

≤

√
t2
1 + t2

2

= |t|,

which gives f ∈ Lip2(1). Using this together with (15) and (16), we have∥∥∥T(M)
w

(
f
)
− f

∥∥∥ = O (1/w) as w→∞.
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Figure 3: Approximation to f (x, y) = | sin x| by means of the operators T(M)
w ( f ) for w = 10, 15, 25.

6.4. Bivariate Max-Min Type Discrete Operators
Take the discrete kernel given by

L(k1,k2),w =
w

(w + 2)(
√

(k1 − 3)2 + (k2 − 3)2 + 1)w
.

Then, in this case, our operator is obtained as follows:

T(m)
w ( f ; x, y) =

∨
(k1,k2)∈Z2

w

(w + 2)(
√

(k1 − 3)2 + (k2 − 3)2 + 1)w
∧ f

(
x − k1

w , y −
k2
w

)
.

Now, by the following inequality the condition (l1) is satisfied,∨
(k1,k2)∈Z2

L(k1,k2),w =
w

w + 2
= Aw ≤ 1. (17)

In addition, it is shown that conditions (l2) and (5) are provided from the following expression ∨
(k1,k2)∈Z2

L(k1,k2),w − 1

 = −2
w + 2

= O (1/w) as w→∞. (18)

And also assume that r0 = r1 = 4 and α = 1, then the conditions (l3) and (6) are satisfied:∨
√

k2
1+k2

2≥4

L(k1,k2),w ≤
w

(w + 2)2w ≤
1

2w ≤
1
w
= O (1/w) as w→∞. (19)

Now, all the conditions of Theorem 4.4 are fulfilled. Therefore, we get

lim
w→∞

∥∥∥T(m)
w

(
f
)
− f

∥∥∥ = 0
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Figure 4: Approximation to f (x, y) = | sin(x + y)| by means of the operators T(m)
w ( f ) for w = 10, 21, 50.

for every f ∈ UC[0,1](R2). This approximation is illustrated in Figure 4 for f (x, y) = | sin(x + y)|.
It is easy to see that f ∈ ˜Lip2(1) from the following inequality∣∣∣ f (x − t1, y − t2) − f (x, y)

∣∣∣ = ∣∣∣| sin((x − t1) + (y − t2))| − | sin(x + y)|
∣∣∣

≤ |t1 + t2|

≤

√
t2
1 +

√
t2
2

≤ 2
√

t2
1 + t2

2

= 2|t|.

Furthermore, considering f ∈ ˜Lip2(1), (18) and (19), then conditions of Theorem 5.1 are provided and hence,
we have∥∥∥T(m)

w
(

f
)
− f

∥∥∥ = O (1/w) as w→∞.

6.5. Applications to Fuzzy Logic

A continuous fuzzy number could be characterized by a quasi-concave function [32, 48]. Using this
argument, we approximate the triangular fuzzy number with the help of our max-product and max-min
operators. For this aim, we consider the following kernel

Lk,w =
1(

|k|
100
+ 1

)w (k ∈ Z,w ∈N). (20)
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Figure 5: Approximation to 11 by means of T(M)
w (11) for w = 12, 20, 27.

This kernel satisfies all the conditions of Theorem 2.6 and Theorem 4.4. We first consider the operator (1)
and approximate to the given quasi-concave function, defined on the whole real line as follows:

11(x) =


0; if x < 1
√

x − 1; if 1 ≤ x < 2
(x − 3)4; if 2 ≤ x ≤ 3
0; if x > 3.

Since 11 is bounded and uniformly continuous, it is possible to approximate to 11 with the help of our
max-product operator. This approximation is shown in Figure 5 for the values w = 12, 20, 27.

Furthermore, in this graph we can easily see that our operator does not preserve the monotonicity for
w = 12. Indeed, 11(x) = (x − 3)4 is a decreasing function on [2, 3]. Then taking the points x1 = 2.206 and
x2 = 2.244, we orderly get 11(2.206) = 0.3974 and 11(2.244) = 0.3266. However, for the same points, we
obtain that T(M)

w (11; 2.206) = 0.6857 and T(M)
w (11; 2.244) = 0.6992, which shows that T(M)

w (11) is not decreasing
when 11 is decreasing on [2, 3].

Now, for the second approximation, we consider the max-min operator in (7) and we take into account
the following quasi-concave function, given by:

12(x) =


0; if x < 0
4x2; if 0 ≤ x < 1

2

4(x − 1)2; if 1
2 ≤ x ≤ 1

0; if x > 1.

This approximation is indicated in Figure 6 for w = 11, 20, 50.
We can also see that our operators do not maintain the monotonicity for a given function with this

figure. Here, 12(x) = 4(x − 1)2 is a decreasing function on [ 1
2 , 1]. Indeed, taking w = 11 and choosing the
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Figure 6: Approximation to 12 by means of T(m)
w (12) for w = 11, 20, 50.

points x1 = 0.550 and x2 = 0.578, we have 12(0.550) = 0.81 and 12(0.578) = 0.71 respectively. However, we
get that T(m)

w (12; 0.550) = 0.843 and T(M)
w (12; 0.578) = 0.896 which means T(m)

w (12) is not decreasing when 12 is
decreasing on [ 1

2 , 1].

6.6. Applications to Digital Image Processing
A digital image can be considered as a discrete signal and we can represent it by a two dimensional

matrix. Now, we examine a square (n×n pixel) grayscale image, that is, M =
(
mi j

)
,where mi j is the grayscale

level of the image for i, j = 1, . . . ,n. As given in [36], we can model any digital grayscale image as a step
function (which is clearly in L1

(
R2

)
) with a compact support, i.e., I = I

(
x, y

)
such that

I
(
x, y

)
=

n∑
i=1

n∑
j=1

mi j.1i j
(
x, y

) (
x, y

)
∈ R2,

where

1i j
(
x, y

)
=

{
1; if

(
x, y

)
∈ (i − 1, i] ×

(
j − 1, j

]
for all i, j = 1, . . . ,n

0; otherwise.

On the other hand, it is well-known that compactly supported continuous functions are dense in L1, and
this enables us to approximate to the function I by T(M)

w (I) and T(m)
w (I) . Here, we should remark that, in

max-min operator, we must normalize the pixel values of the image from [0, 255] to [0, 1] using ”im2double”
code on matlab. Using these approximations, if we increase the sampling rate, we get a new image, whose
resolution is greater than the original one.

Now, we consider 128 × 128 pixel image of “cameraman”. We use the following discrete sinc kernels
L(k1,k2),w := Lk1,wLk2,w, where

Lk,w :=

 sin(kw)
kw

; if k , 0

1; if k = 0



İ. Aslan, T.Y. Gökçer Ellidokuz / Filomat 38:5 (2024), 1825–1845 1842

Figure 7: Reconstructed “cameraman” by T(M)
11 (I) and original “Lena” with 128 × 128 pixel respectively. PSNR=73.3730

Figure 8: Reconstructed “cameraman” by T(m)
11 (I) and original “Lena” with 128 × 128 pixel respectively. PSNR=41.3676

and |L(k1,k2),w| for max-product and max-min operators respectively. By using Matlab program, we get the
following figures (FIGURE 7,8,9,10).

In Figures 9,10, we evaluated PSNR (Peak signal to noise ratio) values on matlab, which is a quality
metric in image processing, defined by

PSNR = 10 log10
(2r
− 1)2

MSE

where 2r
−1 is the number of gray-scale levels of the original image and MSE (Mean Square Error) is defined

by

MSE =
1

(N1N2)2

N1−1∑
i=0

N2−1∑
j=0

(
ima1e

(
i, j

)
− L

(
i, j

))2

where ima1e
(
i, j

)
and L

(
i, j

)
is the gray-scale level of the pixel

(
i, j

)
of the original image and its approximation

for a N1 ×N2 pixel valued image.

6.7. Further Results
• If f is negative, bounded and uniformly continuous, then

lim
w→∞

∥∥∥−T(M)
w

(
− f

)
− f

∥∥∥ = 0

holds.

• If f ≥ 1 is bounded and uniformly continuous, then

lim
w→∞

∥∥∥∥(T(m)
w

(
1
f

))−1
− f

∥∥∥∥ = 0

holds.

• Considering these features, it is also possible to extend Theorem 2.6 and Theorem 4.4 for all bounded
and uniformly continuous functions, depending on their range.
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Figure 9: “cameraman”, obtained by T(M)
11 (I) with increased resolution (256×256 pixel ) and original “Lena” (256×256 pixel) respectively.

PSNR=25.2593

Figure 10: “cameraman”, obtained by T(m)
11 (I) with increased resolution (256 × 256 pixel ) and original “Lena” (256 × 256 pixel)

respectively. PSNR=25.2312



İ. Aslan, T.Y. Gökçer Ellidokuz / Filomat 38:5 (2024), 1825–1845 1844

7. Concluding Remarks

In this study, we construct max-product and max-min kind discrete operators with discrete kernels.
Then we approximate the quasi-concave functions in applications. We note that our operators with the
kernel (20) do not preserve the quasi-concavity for some w. However, for sufficiently large w, it might be
possible but this, of course, needs to be proved. For now, it is an open problem whether our operators with
discrete kernel satisfying (l1) − (l3) preserves the quasi-concavity or not.

References

[1] G. A. Anastassiou, Nonlinearity: ordinary and fractional approximations by sublinear and max-product operators.Studies in
Systems, Decision and Control, 147. Springer, Cham, 2018.

[2] G. A. Anastassiou, Conformable fractional approximations by max-product operators using convexity. Arab. J. Math. (Springer)
7 (2018), no. 3, 159–174.

[3] G. A. Anastassiou, Approximation by multivariate sublinear and max-product operators. Revista de la Real Academia de Ciencias
Exactas, Fı́sicas y Naturales. Serie A. Matemáticas, 113 (2019), no. 2, 507–540.
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