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Abstract. We exhibit a single interval map (called a universal map) that admits all those orbit patterns
which are available in the first Sharkovsky class. An interval map is said to be in the first Sharkovsky class
if every periodic point of it is a fixed point. This provides a way to find universal maps in the class of
contractions on intervals. We also characterize all such universal maps in the first Sharkovsky class.

1. Introduction and Preliminaries

The function sin 1
x (topologist’s sine curve) and its sisters x sin 1

x and x2 sin 1
x are encountered frequently

in Real Analysis to provide counterexamples such as:

• a discontinuous function with a connected graph,

• a connected planar set that is not path-connected,

• a discontinuity of the second kind,

• a continuous function that is not of bounded variation,

• a non-rectifiable curve,

• a differentiable function that is not continuously differentiable,

• a continuous function that is not uniformly continuous,

and so on.

In this paper, we study the function x sin 1
x from the view of topological dynamics. While doing so,

we find one glaring contrast. In Real Analysis, it had a negative role of being peculiar. But in Topological
Dynamics, it plays a positive role in “synthesizing”, i.e., putting all things together.
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If F is a class of dynamical systems, an element f ∈ F is said to be universal for F if f admits all orbit
patterns that are available for maps in F . Some families F admit universal elements, and others do not.
For instance, if F is the class of t-simple systems on R, there is no universal element in it (see [6]). As a
note, in topological dynamics, a similar idea of universality with respect to ω-limit sets appeared earlier.
For details, see [4], [8].

Two real sequences (an)∞n=0 and (bn)∞n=0 are said to be of the same order pattern if am < an ⇐⇒ bm < bn
holds for all m,n ∈ N0. We denote the order pattern of a sequence (an) by P(an). The order pattern of a
sequence ( f n(x))∞n=0 in a real dynamical system (R, f ) or (I, f ) is called an orbit pattern. Here I is a closed
interval in the real line, and any continuous map from I to I is called an interval map. We say that an
interval map f admits an order pattern P(an) if ∃ x ∈ I such that ( f n(x))∞n=0 and (an)∞n=0 are having the same
order pattern.

We denote by F1 (known as maps of first Sharkovsky type) the set of all interval maps that do not
admit a 2-cycle. Similarly, Fn is the set of all interval maps that do not admit a 2n-cycle. We say that an
orbit pattern P(xn) does not force a 2-cycle if there exists an interval map f admitting an order pattern P(xn)
such that it does not admit a 2-cycle (in other words, f ∈ F1). The next proposition gives an equivalent
description (without proof) for maps in F1.

Proposition 1.1. The following are equivalent for an interval map f :
1. f does not admit a 2-cycle.
2. f is an anti-symmetric relation.
3. Every periodic point of f is a fixed point of f .
4. If x is between y and f (y), then y is not between x and f (x), unless they are equal.

An element x is called a wall in its trajectory if all its future terms are on the same side of it. In a sequence
(an), we note that every term is a wall, if for all n ∈N,

i) an+1 > an implies am > an for all m > n,
ii) an+1 < an implies am < an for all m > n,
iii) an = an+1 implies an = am for all m > n.
The following result throws more light on the kind of sequences that we are studying in this paper.

Proposition 1.2. The following are equivalent for a (convergent) sequence (an) in I, with distinct terms
1. Every term is a wall; that is, all future terms lie on one side of it.
2. It is the union of an increasing sequence followed in its right by a decreasing sequence, where one of these two

subsequences may be finite.
3. Its terms go nearer and nearer to its limit p, when they are on the same side of p; i.e., |am − p| < |an − p| for all

those m > n such that am and an are on the same side of p.
4. It (as an orbit pattern) does not force a 2-cycle.

The equivalence of (1) and (4) has been proved in [3], [9]. Other implications among the above can be
proved, but we omit the proof. We also mention (without proof) a well-known result, which we are going
to use in successive sections.

Theorem 1.3. ([3]) If I and J are closed intervals such that f (I) contains J, then there is a closed subinterval K of I
such that f (K) = J.

In section 2, we list all such orbit patterns which are available inF1 maps. It is a formidable task because
there are uncountably many of them. Still, we succeed by choosing a suitable index set (see Theorem 2.2).

In section 3, we take one particular example, namely the function rx sin 1
x on [−1, 1] for some 0 < r < 1.

We prove that this example provides a universal function in the first Sharkovsky class. Moreover, Theorem
3.1 provides us a universal function in the class of contraction maps on interval also.

In section 4, we improve this result by characterizing the universal maps in F1. Actually, there are
uncountably many conjugacy types, but these maps together have a neat description (see Theorem 4.1).
The function x sin 1

x is one among them. Moreover, section 4 concludes with some more equivalent ways of
this description.
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We summarize the main theorems (Theorem 2.2, Theorem 3.1, and Theorem 4.1) proved here in the
following equivalent ways:

Theorem 1. The set P of all orbit patterns available in F1 can be naturally indexed by the set J = {L,R}N ∪ {L,R}∗.

This is reminiscent of the theory of continued fractions, where every real number has a tag fromNN∪N∗.

Theorem 2. The function f (x) = rx sin 1
x for some 0 < r < 1 is an F1-map on I = [−1, 1] with the following

universal property: If 1 is any F1-map on [−1, 1], for all p ∈ I, ∃q ∈ I such that (1n(p))∞n=0 and ( f n(q))∞n=0 are of the
same order pattern.

Theorem 3. The following are equivalent for f ∈ F1:
a) f is universal in F1, i.e., all orbit patterns that are available for any 1 in F1 are available for this f .
b) f admits a fixed point p for which arbitrarily near p, on both sides of p, the values taken by f swing both above

p and below p.

2. Enlisting orbit patterns in F1

Let (xn) be such that xn = f (xn−1) where n ≥ 2, for some f ∈ F1. Then xn → p for some p and f (p) = p. It
is important to note that if some xk = p, then xi = p for i ≥ k.

Label every term of (xn) whenever xn , p with L or R according as it moves to its left or right. When k is
the least natural number such that xk = p, then label up to k − 1-th term of (xn) with L or R according as it
moves to its left or right. Moreover, it is important to note the following result.

Proposition 2.1. Let (xn) be an orbit of an F1-map such that xn → p, then
xi is labeled as L if and only if xi > p and
xi is labeled as R if and only if xi < p.

Proof. This follows from Proposition 1.2. Indeed, if xi is labeled as L then xi+1 < xi and hence xn < xi for all
n > i. Therefore p ≤ xi. But xi , p. Therefore xi > p.

Conversely, if possible, xi > p and xi is labeled as R. Then by our preceding argument, we get xn > xi
and p ≥ xi, which is a contradiction.

Similarly, for the second also.

We choose the index set J as the union of {L,R}N and {L,R}∗. Here {L,R}N denotes the set of all sequences
over {L,R} and {L,R}∗ denotes the set of all words over {L,R}. Let P denote the set of all orbit patterns
available in F1.

In general, the sequence over {L,R} need not determine the orbit pattern. In other words, two different
patterns may have the same L-R-sequence. Here is an example, ((−1)n 1

n ) and ((−1)nn) are having the same
L-R-sequence (namely RL) but with different orbit patterns. This can be better understood as follows: The
L-R-sequence contains only a part of the information that an order pattern provides. The order pattern
provides the information: For each pair (m,n) of positive integers, which is smaller between the two
numbers xm and xn? The L-R-sequence provides a part of this information, namely when n = m + 1.

We do not expect this partial information to determine the full information. But it happens when we
confine our discussion to the orbit patterns available in F1. To the question: given m < n, is f m(x) < f n(x) or
not?, the answer gets determined as follows: if the (m+1)-th term in the L-R-sequence is R then f m(x) < f n(x);
if it is L, then f n(x) < f m(x). The next theorem shows that J is a natural index set for P. Moreover, J can be
called the set of orbit pattern tags for F1.

Theorem 2.2. There exists a natural bijection ϕ : P→ J.
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Proof. Let us define ϕ : P → J by taking ϕ(P(xn)) as that element of J whose i-th term is the labeled of xi as
defined earlier, for all i. The function ϕ is well-defined. Indeed if (an) and (bn) are representatives of two
orbits that have the same order pattern, then ϕ takes them to the same sequence or word over {L,R}. This
is because the n-th term of ϕ(P(an)) is L iff an > an+1. This happens iff bn > bn+1. This happens if and only if
the n-th term of ϕ(P(bn)) is also L. It is important to note that the empty word corresponds to the constant
orbit, i.e., the orbit of a fixed point.

Let w = w1w2w3... ∈ J. Take

x1 =


1 if w1 = L
−1 if w1 = R
0 if w1 does not exist.

Suppose x1, ..., xk have been defined. To define xk+1:

xk+1 =


1

k+1 if wk+1 = L
−

1
k+1 if wk+1 = R

0 if wk+1 is not there.

The set {xk : k ∈ N} constructed above is a discrete set. If 0 ∈ {xk : k ∈ N}, it is finite. If 0 < {xk : k ∈ N}
then {xk : k ∈ N} ⊂ {± 1

n : n ∈ N}. For every element (except at most two at the boundary), there is a
next element and a previous element. For every pair of adjacent elements say xm and xn we join the point
(xn, xn+1) and (xm, xm+1) by a line segment in the plane. When this is done for all such pairs and (0, 0) is also
taken, the graph of a function is ready; let the function be called f .

By the construction of the map f , it is clear that f is continuous. Observe that | f (x)| < |x| on
[inf {xk}, sup {xk}] except 0, where f (0) = 0. If p , 0, then | f 2(p)| < |p| i.e., p can not be a periodic
point of period 2. Hence f ∈ F1 where ϕ(P(xn)) = w. Hence ϕ is a surjection.

Let α ∈ J. Then ϕ(P(xn)) = α where (xn) is a representative of an orbit in F1. For m < n in N, we can
decide if xm < xn or xm = xn or xm > xn using the wall condition. Let αm be the m-th term of α. If αm is L,
then xm > xn. If αm is R, then xm < xn. If αm is empty, then xm = xn. Thus the orbit pattern of (xn) is decided
by α. This proves: ϕ is an injection.

Remark 2.3. Enlisting all orbit patterns available for F1-maps serves two other purposes (apart from the fact that it
is natural on its own):

1. It paves the way for the proof of the later theorems of this paper.
2. It can be used to choose one representative from each orbit pattern, from the set {± 1

n : n ∈ N} ∪ {0} as we have
done in the proof of Theorem 2.2.

3. Motivating example of a universal function

The dynamics of a system is said to be completely understood if we can describe all its orbit patterns.
An excellent monograph about combinatorial orbit patterns for one dimensional maps is [1]. In elementary
textbooks like [5], examples have been provided where such a complete understanding is possible. In all
those examples, only finitely many, or at most countably many order patterns are available. It will indeed
be nice if the same is achieved for a more complicated example. This is what we do in this section. We are
able to describe all the order patterns available for the interval map rx sin 1

x on [−1, 1] for 0 < r ≤ 1.

Theorem 3.1. Let 0 < r < 1. Then the function f (x) := rx sin 1
x on [−1, 1] is universal. In other words, for any

α ∈ J, ∃xα ∈ [−1, 1] whose orbit pattern tag is ϕ(α).
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Proof. It is easy to see that f (x) = rx sin 1
x for 0 < r < 1 is a first Sharkovsky type map. Note that 0 is the only

fixed point. We will prove this theorem in three steps.
Step-I: Let δ > 0. Then there exist four closed intervals L1, L2, L3, L4 such that:

L1 and L2 are inside the open interval (0, δ),
L3 and L4 are inside the open interval (−δ, 0),
f (L1) and f (L3) are of the form [0, η],
f (L2) and f (L4) are of the form [−η, 0] for some η > 0. Indeed for a given δ > 0 choose a ∈ (0, δ) such that

f (a) = 0 and f is increasing at a. Choose b ∈ (a, δ) such that f is increasing on (a, b). Take L1 = [a, b]. Then
f (L1) = [0, f (b)] as we want. Similarly, L2, L3, and L4 are chosen with corresponding modifications. Observe
that L1, L2, L3 and L4 do not contain 0.
Step-II: Let s = (sn) be in {L,R}N. Define

I1 =

[ 1
π − δ1, 1

π + δ1] if s1 = L
[− 1
π − δ1,− 1

π + δ1] if s1 = R

for a small enough δ1 > 0 such that f is monotone on I1. Observe that f (I1) is an interval containing 0 as an
interior point.

By Step-I, we choose a closed interval J1 ⊂ f (I1) not containing 0 such that f (J1) is equal either [0, δ2] or
[−δ2, 0] for some δ2 > 0. In fact, if s2 = L, we choose J1 ⊂ (0, δ1)∩ f (I1), if s2 = R, we choose J1 ⊂ (−δ1, 0)∩ f (I1).
By Theorem 1.3, ∃I2 ⊂ I1 such that f (I2) = J1.

Suppose we have constructed I1 ⊃ I2 ⊃ ... ⊃ Ik such that f j(I j) is equal to [0, δ j] or [−δ j, 0] for some δ j > 0
where 2 ≤ j ≤ k. To construct Ik+1, first, we take a closed interval Jk ⊂ f k(Ik) not containing 0 such that f (Jk)
is equal to either [0, δk+1] or [−δk+1, 0] for some δk+1 > 0. In fact, if sk+1 = L, we choose Jk ⊂ (0, δk) ∩ f k(Ik), if
sk+1 = R, we choose Jk ⊂ (−δk, 0) ∩ f k(Ik). By Theorem 1.3, ∃Ik+1 ⊂ Ik such that f k(Ik+1) = Jk.

Thus we have recursively constructed a nest of intervals I1 ⊃ I2 ⊃ ... ⊃ In ⊃ .... Using NIT (Nested
Interval Theorem), find an element x common to all these In’s. Observe that for all x ∈ I1, the orbit pattern
tag of x starts with s1. For all points x ∈ I2, the orbit pattern tag of x starts with s1s2. More generally for all
n ∈N, ∀x ∈ In, the orbit pattern tag starts with s1s2...sn. Here the orbit pattern tag of x means ϕ(α) where α
is the orbit pattern of ( f n(x)). Therefore the orbit pattern tag of x is nothing but the given sequence s = (sn).
Step-III: Let w be a word of length n over {L,R}. We will show that there exists an element x1 in [−1, 1] such
that ϕ(P(xn)) = w where xn = f (xn−1) for n ≥ 2. If w is a word of length 1, then choose x1 =

1
π for w = L or

x1 = −
1
π for w = R. Assume n ≥ 2. Construct J1, J2,..., Jn−1 as in the previous. Note that f (J1) ⊃ J2, f (J2) ⊃ J3

..., f (Jn−2) ⊃ Jn−1. As f (Jm) always contain 0 for every m, choose yn ∈ Jn−1 such that f (yn) = 0. Choose
f (y j−1) = y j and y j ∈ J j−1 for 2 ≤ j ≤ n. Again since J1 ⊂ f (I1), then ∃y1 ∈ I1 such that f (y1) = y2. This y1 has
its orbit pattern represented by the given word w.

Remark 3.2. One can prove that x sin 1
x is also universal in F1 by a careful choice of δ′ns and J′ns such that no Jn

contains a fixed point. Moreover, xsin 1
x and rx sin 1

x have the same collection of orbit patterns. One can use Theorem
4.1 to prove this (see Remark 4.2).

Let us denote by C the set of all contraction maps on I. We next prove an interesting fact that C and F1
admit the same collection of orbit patterns. Moreover, we have the following consequence.

Corollary 3.3. There exists a universal function in the class C.

Proof. In this proof, without loss of generality, we assume the domain I = [−1, 1]. Let f ∈ C. If possible, let f
admit a 2-cycle {p, q} so that f (p) = q, f (q) = p. Then | f (p)− f (q)| = |p− q|, which contradicts the fact that f is
contraction. Hence f ∈ F1. Hence {All orbit patterns available in C} ⊂ {All orbit patterns available for F1}.
Take f (x) = x3

5 sin 1
x on [−1, 1]. Since | f ′(x)| ≤ 4

5 , f is contraction. A similar approach to Theorem 3.1 can be
used to prove that it contains all the orbit patterns available in F1 on I. Therefore x3

5 sin 1
x is universal for

C.
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Remark 3.4. For any 0 < r < 1, rx sin 1
x is not a contraction, so we are directly unable to use it to prove Corollary

3.3.

Remark 3.5. Our motivating example in this section serves two other purposes:
1. In some sense rx sin 1

x for some 0 < r < 1 is the simplest example in F1 that is universal for F1.
2. The proof there gives a glimpse of the more complicated proof of the next section.

4. Characterization of Universal functions

Why should we give two proofs, one for the particular case of rx sin 1
x for some 0 < r < 1 and again for

the general case? Can we not omit the proof in Section 3? We have included both because: The first proof
gives the basic idea in the simplest case. It is easier. It needs refinement in the general proof. There are two
main difficulties in the general proof (that were not encountered in the earlier proof). First, the set of points
that go to the fixed point can have several limit points; that is, infinite fluctuations can happen at several
points. Second, the graph of the function may cross the diagonal often, spoiling our easier method. This
necessitates more care on the choice of Jn’s. The endpoint of Jn, which is in the pre-image of the fixed point,
is chosen carefully so that it is isolated from the required side. (In the notation of the proof, there is no point
strictly between bn and an that goes to p.) Next, for all points in Jn, the motion under f is unilateral. This
is guaranteed by keeping Jn inside S (defined in the proof). These requirements are optional in the more
straightforward case; thus, the particular proof also deserves to be grasped separately.

Theorem 4.1. A function f ∈ F1 is universal if and only if ∃ a sequence (an) in I converging to a fixed point p of f
such that

an > p if n is even,
an < p if n is odd,
f (an) > p if n or n − 1 is a multiple of four and
f (an) < p if n − 2 or n − 3 is a multiple of four.

Proof. First, we will prove the reverse implication, i.e., the conditions stated in the theorem are sufficient
for a function to be universal. This part of the proof has two parts, namely the preparatory part and the
recursive definition part.

In the preparatory part, first, we define bn and study some essential properties of bn (as Fact-I and
Fact-II), which are helpful in our proof.

Let us define bn by

bn :=

sup {x : f (x) = p and x < an} where an > p
inf {x : f (x) = p and x > an} where an < p

Fact-I: No other points between bn and an go to p. Here f (bn) = p but no bn is equal to p. And both an → p,
bn → p. Therefore there is an interval with bn as an endpoint whose image is an interval with p as an
endpoint. Moreover for any δ > 0, ∃ n ∈N and 0 < ϵ < δ such that

b4n ∈ [p, p + δ] and f (Ln
0) ⊃ [p, p + η] where Ln

0 = [b4n, b4n + ϵ];
b4n+1 ∈ [p − δ, p] and f (Ln

1) ⊃ [p, p + η] where Ln
1 = [b4n+1 − ϵ, b4n+1];

b4n+2 ∈ [p, p + δ] and f (Ln
2) ⊃ [p − η, p] where Ln

2 = [b4n+2, b4n+2 + ϵ];
b4n+3 ∈ [p − δ, p] and f (Ln

3) ⊃ [p − η, p] where Ln
3 = [b4n+3 − ϵ, b4n+3] for some η > 0.

Fact-II: Define S := {x ∈ I : | f (x)− p| < |x− p|}. Observe that bn ∈ S, ∀n ∈N. Moreover, each bn is an interior
point of S. Therefore, for suitable η > 0, we can choose Ln

0 ,L
n
1 ,L

n
2 ,L

n
3 contained in S such that Fact-I holds.

Let s = (sn) be any sequence over {L,R}. We will show that ∃ some element x is in the domain of f such
that the orbit pattern tag of x is s.

In the recursive definition part, as a base step, first observe that a1 < p and f (a1) > p, a2 > p and f (a2) < p,
a3 < p and f (a3) < p, a4 > p and f (a4) > p.
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If s1 = L we will search for an element on the right side of p, and if s1 = R we will search for an element
on the left side of p (because of Proposition 2.1). We choose I1 such that

I1 =

[b2, b2 + δ1] or [b4, b4 + δ1] if s1 = L
[b1 − δ1, b1] or [b3 − δ1, b3] if s1 = R

for a small enough δ1 > 0 so that f (I1) is an interval with p as an endpoint and | f (x)−p| < |x−p| for all x ∈ I1.
Note that whether we will choose b2 or b4 or b1 or b3 will be decided by s2.

Choose n1 large enough such that |an − p| < δ1 for all n ≥ n1. Then choose m1 > n1 such that
m1 is a multiple of 4 if s2 = L = s3,
m1 is of the form 4k + 1 if s2 = R and s3 = L,
m1 is of the form 4k + 2 if s2 = L and s3 = R,
m1 is of the form 4k + 3 if s2 = R = s3.
By Fact-I and Fact-II, we can choose an interval J1 ⊂ f (I1) with bm1 as an endpoint such that f (J1) is equal

to [p − δ2, p] or [p, p + δ2] for some δ2 > 0 and | f (x) − p| < |x − p| for x ∈ J1. In fact, J1 ⊂ (p, p + δ1) ∩ f (I1) if
s2 = L or J1 ⊂ (p − δ1, p) ∩ f (I1) if s2 = R. By Theorem 1.3, ∃I2 ⊂ I1 such that f (I2) = J1.

Suppose we have constructed I1 ⊃ I2 ⊃ ... ⊃ Ik such that f j(I j) is equal to [p, p + δ j] or [p − δ j, p] for some
δ j > 0 where 2 ≤ j ≤ k.

To construct Ik+1: We make a succession of choices as under:
First, choose nk ∈N such that |an − p| < δk for all n ≥ nk.
Next, look at sk+1 (which may be L or R), accordingly choose mk > nk so that bmk is as wanted (After

choosing nk, we choose mk. Its parity or rather its conjugacy class modulo 4, is determined by sk+1 and sk+2.)
and choose Jk ⊂ f k(Ik) with bmk as an endpoint such that f (Jk) is equal to [p, p + δk+1] or [p − δk+1, p] for some
δk+1 > 0 where | f (x)− p| < |x− p| for all x ∈ Jk. In fact, if sk+1 = L, we choose Jk ⊂ (p, p+ δk)∩ f k(Ik), if sk+1 = R,
we choose Jk ⊂ (p − δk, p) ∩ f k(Ik).

Lastly, take Ik+1 ⊂ Ik such that f k(Ik+1) = Jk (by Theorem 1.3).
Thus we have recursively constructed a nest of intervals I1 ⊃ I2 ⊃ ... ⊃ In ⊃ .... Using NIT, we find that

∩
∞

n=1In , ∅. By analogous method (used in Theorem 3.1), the orbit pattern tag of x ∈ ∩∞n=1In is nothing but
the given sequence s = (sn).

Let w be a word of length n over {L,R}. We will show that there exists an element x1 such thatϕ(P(xn)) = w
where xn = f (xn−1) for n ≥ 2. As above, construct an interval Iw such that every element in it has its orbit
tag starting with w. Lastly since f (Iw) = Jn−1, there is x in Iw whose image in Jn goes to p. The orbit pattern
tag of this x is w.

Conversely, since f ∈ F1 is universal, there exists x in I with the orbit pattern RRLL. Let p be the limit
point of ( f n(x)). Take a4k+3 = f 4k(x), a4k+1 = f 4k+1(x), a4k = f 4k+2(x) and a4k+2 = f 4k+3(x). The sequence (an) is
the desired sequence.

Remark 4.2. To see that Theorem 3.1 is a particular case of Theorem 4.1, we take

an =



1
2nπ+ π2

if n is of the form 4k,
1

2nπ− π2
if n is of the form 4k + 2,

−
1

2nπ+ π2
if n is of the form 4k + 3,

−
1

2nπ− π2
if n is of the form 4k + 1.

Then an → 0 and an sin 1
an

is > 0 if n or n − 1 is a multiple of four and < 0 if n − 2 or n − 3 is a multiple of four. In
particular, this proves that x sin 1

x is also universal in F1.

Remark 4.3. Our characterization of universal functions serves two other purposes also.
1. It throws further light on the forcing relation on the orbit patterns. It is no longer a partial order (though it

was partial order in some other instances [2], [6]).
2. It shows that polynomial interval maps in F1 admit only countably many order patterns.
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Summary 4.4. Let f in F1 admit a fixed point p, say. There are five more equivalent conditions for f to be universal:
i) For every ϵ > 0, there is δ > 0 such that both f ([p, p + ϵ]) and f ([p − ϵ, p]) contain [p − δ, p + δ].
ii) Arbitrarily near p, on either side of p, both values > p and values < p are taken.
iii) For every r > 0, in f f ([p, p + r]) < p, sup f ([p, p + r]) > p; in f f ([p − r, p]) < p and sup f ([p − r, p]) > p.
iv) p is in the closure of these four sets, namely, f−1((p, 1]) ∩ (p, 1], f−1((p, 1]) ∩ [0, p), f−1([0, p)) ∩ [0, p),

f−1([0, p)) ∩ (p, 1].
v) p is a limit point of (each of) some four sequences (an), (bn), (cn) and (dn), where for every n, the four numbers

an, cn, f (an) and f (bn) are > p and the other four numbers bn, dn, f (cn) and f (dn) are < p.

Conclusion 4.5. Theorem 3.2 and its consequences in [10] are helpful to find the admissible orbit patterns in Fn
for each n. One may use the ‘period doubling’ method and possible suitable pasting or gluing to find a universal
function for Fn. We omit the proof since the construction is analogous but technically gigantic. Our discussion on
orbit patterns leads to one of the main fundamental questions: which orbit patterns force which others? Enlisting
those may be challenging for general orbit patterns. However, for some orbit patterns, it can be achievable (see [7]).
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