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Abstract. This paper introduces the concept of deferred statistical A-convergence, which combines the de-
ferred density of subsets of natural numbers with an infinite regular matrix A= (amk). We explore the funda-
mental properties of deferred statistical A-convergent sequences and investigate the relationships between
deferred statistical A-convergence, strongly deferred statistical A-convergence, and deferred statistical con-
vergence. Additionally, we present a Korovkin-type approximation theorem utilizing deferred statistical
A-convergence and provide a counter-example to demonstrate its limitations. The findings contribute to
the understanding of statistical convergence, deferred statistical convergence, matrix transformations, and
the development of Korovkin-type theorems.

1. Introduction

The theory of statistical convergence, which is an active area of research and a generalization of ordinary
convergence for both real and complex sequences, was independently introduced by Fast [15] and Steinhaus
[38] in the same year. The idea can be traced back to Zygmund’s studies [39]. Since then, numerous
researchers have studied this concept, especially in the last twenty years. The basis of statistical convergence
lies in the asymptotic density of subsets of natural numbers, which gives rise to different versions of
convergence. Examples of these include logarithmic density and uniform density defined by any regular
matrix.

Let’s consider a subset K ofN. The natural density of K, denoted by δ(K), is defined as the limit:

lim
n→∞

1
n
|{k≤n:k∈K}|

where | · | represents the cardinality of the given set. For a sequence x= (xn), if the limit exists:

lim
n→∞

1
n
|{k≤n: |xk−l|>ε}| =0,
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for any arbitrary ε > 0, then (xn) statistically converges to l.
The exploration of statistical convergence, as opposed to the generalization of classical convergence,

has yielded interesting results in various branches of mathematics. Notable studies in this direction
include: approximation theory [2, 3, 5, 8, 20, 32]; probability theory, metric spaces, and topological spaces
[6, 7, 10, 14, 18, 25, 26]; strong summability and matrix transformations [4, 16, 22, 35]; summability theory
[1, 9, 12, 13, 17, 19, 21, 23, 24, 30, 34, 36]; statistical convergence in abstract spaces [27]; generalization of
(λ,A)-statistical convergence [28]; statistical C1 convergence [29].

In this paper, we use the symbolsN and R to represent natural and real numbers, respectively. The set
c0 denotes the collection of null real sequences, c represents the set of convergent real sequences, and ℓ∞
represents the set of bounded real sequences.

Let A= (amk) be an infinite matrix and x= (xk) be real valued sequence. The A-transformation of the
sequence x= (xk) is defined as

(Ax)m=

 ∞∑
k=1

amkxk


when

∑
∞

k=1 amkxk is convergent for all m∈N.An infinite matrix A= (amk) is called regular if limm→∞ (Ax)m= limk→∞ xk
for all x∈c. We will consider an infinite regular matrix, and the following well-known theorem holds (see,
for example, [8]).

Theorem 1.1. (Silverman-Toeplitz Theorem) A matrix A= (amk) is regular if and only if

(1) limm→∞ amk=0, for all k∈N,

(2) supm
∑
∞

k=1 |amk|<∞,

(3) limm→∞
∑
∞

k=1 amk=1.

Consider sequences of non-negative integers denoted as p:=
(
pn
)

and q:=
(
qn
)

such that pn<qn for all n∈N,
and qn approaches infinity as n approaches infinity. Unless explicitly stated otherwise, whenever we refer
to sequences

(
pn
)

and (qn), they will always satisfy the aforementioned properties. These properties are
commonly referred to as the deferred property. For a real-valued sequence denoted as x:= (xk), the sequence(
Dp,qx

)
n

is referred to as the deferred Cesáro mean and is defined as follows:

(
Dp,qx

)
n
:=

1
qn−pn

qn∑
k=pn+1

xk,

for each n∈N. If the deferred Cesàro mean
(
Dp,qx

)
n

converges to a limit l, we denote this by xk→l
(
Dp,q

)
. The

matrix representation of the deferred Cesàro mean, D(p,q), is denoted as Dp,q=(dnk)n,k≥1, where the entries are
defined as follows:

dnk:=
{ 1

qn−pn
, if pn<k≤qn

0, if k≤pn and k>qn

for all n, k∈N. It is important to note that the entries of the deferred Cesàro matrix depend on the specific
values of

(
pn
)

and
(
qn
)

satisfying the deferred property. The deferred Cesàro matrix, as given in above,
satisfies the Silverman-Toeplitz Theorem.

Example 1.2. Consider the sequence x= (xk) defined as xk = 0 if k is odd, and xk = 1 if k is even, for each value of k.
It is evident that xk converges to 1/2 within the subset D2n−1,4n−1. However, when considering the concept of usual
convergence, the sequence x= (xn) does not converge to 1/2.
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We introduce the notion of strong D(p,q)-convergence for a sequence (xk) with respect to the limit l. This
occurs when the following limit exists

lim
n→∞

1
qn−pn

qn∑
k=pn+1

|xk−l|=0,

We denote this condition as xk→l
(
SDp,q

)
, and the collection of sequences that exhibit strong D(p,q)-convergence

is denoted as SDp,q. Furthermore, we define the sets of sequences as follows:

SD0
p,q:={x= (xk) :D

[
p, q
]
|x| ∈c0}

and

SD∞p,q={x= (xk) :D
[
p, q
]
|x| ∈ℓ∞}.

In the special case where qn=n and pn=0 for all values of n, the resulting sequence spaces are known as
SD0

0,n which corresponds to the sequence space w0,, and SD∞0,n, which corresponds to the sequence space
w∞. Additionally, we define a semi-norm ∥·∥D(p,q)

on the set SD0
p,q, denoted by

∥x∥p,q:=∥Dp,q |x| ∥∞= sup
n

(
1

qn−pn

qn∑
k=pn+1

|xk|).

2. MAIN PROPERTIES OF THE SET Dp,qS (A)

Recall that a sequence x:= (xk) is said to be deferred statistically convergent to l∈R, denoted as xk→l
(
Dp,qS

)
),

if for every ε> 0, the following limit exists

lim
n→∞

1
qn−pn

|{pn<k≤qn: |xk−l| ≥ε}| = 0.

We introduce the concept of deferred statistical A-convergence as an extension of deferred statistical
convergence. This concept plays a pivotal role in the context of this paper.

Definition 2.1. Consider an infinite matrix A:=(amk)m,k≥1 with indices m and k. Let p and q be sequences that satisfy
the deferred property. Then, a sequence x:= (xk) is said to be deferred statistically A-convergent to l if, for every ε >
0, the limit

lim
n→∞

1
qn−pn

|{pn<m≤qn:
∣∣∣(Ax)m−l

∣∣∣≥ε}| =0 (∗)

exists. We denote this condition as xn→l
(
Dp,qS (A)

)
.

The set of all deferred statistically A-convergent sequences is denoted by D(p,q)S (A). If we consider the se-
quences qn=n and pn=n−λn+1, where λ:= (λn) is a sequence satisfying λ1=1, λn+1≤λn+1 and In= [n−λn+1,n]
for all n∈N, then Definition 1 corresponds to the concept of (λ,A)-statistical convergence, which was intro-
duced and studied by Malafosse and Rakocevic [28]. Additionally, it was that (λ,A)-statistical convergence
generalizes the notion of statistical convergence. However, it is important to note that this generalization
does not hold in all cases, as the following examples will illustrate.

Example 2.2. Let us consider the Cesàro matrix C1 and the sequences
(
pn
)
=
(
2n2
)

and
(
qn
)
=
(
4n2
)

for all n∈N. We
define the sequence x= (xn) as follows:

xn=

{
n, n=k2,
0, n,k2,
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for all n∈N. It is evident that the sequence x= (xn) is statistically convergent to 0. By applying Theorem 2.2.1 [8],
we conclude that x= (xn) is also deferred statistically convergent to 0 with respect to the sequences

(
pn
)
=
(
2n2
)

and(
qn
)
=
(
4n2
)
. However, we aim to investigate whether x is deferred C1-statistically convergent to 0. Upon observing

that [C1x]n=
1
n
∑n

m=1 xk. We take ε=1/10. Notably, the set {n: |[C1x]n−0| ≥1/10} corresponds to the entire set of
natural numbers N, which possesses a deferred density of 1. Consequently, we deduce that x= (xn) is not deferred
statistically C1-convergent to 0.

Example 2.3. Let p and q be sequences satisfying the deferred property. Consider the Cesàro matrix C1, and let (xn)
be the sequence defined as (xn) :=

(
(−1)n). It is evident that the following limit exists

lim
n→∞

1
qn−pn

∣∣∣∣{pn<k≤qn:
∣∣∣(−1)n

−0
∣∣∣≥ε}∣∣∣∣,0.

Furthermore, since

C1(−1)n=

{
0, n=2k,
−

1
n , n=2k+1, ,

we can observe

lim
n→∞

1
qn−pn

|{pn<k≤qn:
∣∣∣C1(−1)n

−0
∣∣∣≥ε}| =0.

The examples presented above demonstrate that deferred statistical C1-convergence and deferred sta-
tistical convergence do not necessarily imply each other. In general, we have c⊂Dp,qS⊊Dp,qS (C1) and
c⊂Dp,qS (C1)⊊Dp,qS. These results hold for any sequences

(
pn
)

and
(
qn
)

that satisfy the deferred property.
Therefore, it is mathematically significant to examine the fundamental properties of deferred statistical A-
convergence for general

(
pn
)

and
(
qn
)

sequences, or their special cases, which satisfy the deferred property.
Notably, some results have been obtained for certain infinite matrices such as Cesàro, (H, 1), and

(
N, p
)
,

where pn=0 and qn=0 [5, 24, 28, 29]. In the following, we present the main findings.

Theorem 2.4. Let p and q be sequences satisfying the deferred property, and A= (amk) be a regular matrix. Then, the
deferred statistical A-limit of a sequence is uniquely determined.

Proof. Suppose that xk→l1
(
Dp,qS (A)

)
and xk→l2

(
Dp,qS (A)

)
, where l1,l2. For any ε>0, we have:

1
qn−pn

|{pn<m≤qn:
∣∣∣(Ax)m−l1

∣∣∣≥ε}|→0

and

1
qn−pn

|{pn<m≤qn:
∣∣∣(Ax)m−l2

∣∣∣≥ε}|→0.

By applying the triangle inequality:

|l1−l2| ≤
∣∣∣(Ax)m−l1

∣∣∣+ ∣∣∣(Ax)m−l2
∣∣∣ ,

we can conclude that the desired result is obtained. Thus, the limit is uniquely determined.

Theorem 2.5. Let p and q be sequences satisfying the deferred property, A= (ank) be a regular matrix, xn→l1
(
Dp,qS (A)

)
,

yn→l2
(
Dp,qS (A)

)
, and β∈R. Then, the following statements hold:

1. xn+yn→l1+l2
(
Dp,qS (A)

)
;
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2. βxn→βl1
(
Dp,qS (A)

)
.

Proof. From the assumption and the linearity property of the regular matrix A= (ank), for any ε > 0, we have:{
p (n)+1≤m≤q (n) :

∣∣∣(A (x+y
))

m− (l1+l2)
∣∣∣≥ε}

=
{
p (n)+1≤m≤q (n) :

∣∣∣(Ax)m−l1
∣∣∣≥ε

2

}
∪

{
p (n)+1≤m≤q (n) :

∣∣∣(Ay
)

m−l2
∣∣∣≥ε

2

}
and for any β,0

{
p (n)+1≤m≤q (n) :

∣∣∣(A (βx))m−βl1∣∣∣≥ε} =
p (n)+1≤m≤q (n) :

∣∣∣(Ax)m−l1
∣∣∣≥ ε∣∣∣β∣∣∣

 .
Hence, we can easily prove (i) and (ii) by following suitable steps.

Corollary 2.6. Under the assumption of Theorem 3, the set Dp,qS (A) is a real (or complex) vector space.

Theorem 2.7. Let p and q be sequences satisfying the deferred property, and A= (amk) be a regular summability
matrix. Then, deferred statistical A-convergence is a regular summability method.

Proof. Let (xk) be a sequence such that limk→∞ xk=l holds. Since the matrix A= (amk) is a regular matrix, then
the transformation sequence

(
ym
)

:=(Ax)m=

 ∞∑
k=1

amkxk


is also convergent to the same limit l. So, the regularity of deferred statistical convergence (see [8]) implies
the desired result.

For a matrix A= (amk), denote by C(A) as the set of all sequences from ω which is A-convergent to any
real numbers:

C (A) :={(xn)∈ω:∃l∈R, (Ax)m=

∞∑
k=1

amkxk→l as m→∞}.

Corollary 2.8. C (A)⊆Dp,qS (A).

Remark 2.9. The converse of Corollary 6 is not true, in general.

Example 2.10. Consider sequences
(
pn
)

and
(
qn
)

satisfying the deferred property, and let A:= (C1) be the infinite
Cesàro matrix. Define the sequence x= (xk) as follows:

xk:=


k, k=m2,
−k+1, k−1,m2,
0, else.

It is evident that

[C1x]n=

{
1, n is a square,
0, else,

does not converge in the usual sense, indicating that x does not belong to C (C1). However, we observe that for any
ε > 0, the inequality

1
qn−pn

∣∣∣{pn<m≤qn:
∣∣∣ [C1x]m |≥ε}| ≤

√
qn−
√

pn+1
qn−pn

holds. Consequently, we conclude that x= (xn) is deferred statistically C1-convergent to 0, i.e., x∈Dp,qS (C1).
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An interesting question arises from Example 4.

Question 2.11. Is a subsequence of a deferred statistically convergent sequence deferred statistically A-convergent?

Theorem 2.12. Let p and q be sequences satisfying the deferred property, and let A= (amk)be an infinite regular
matrix. If xk→l

(
Dp,qS

)
, then there exists a sequence y =

(
yk
)

with δp,q
({

k :xk,yk
})
= 0 such that yk→l

(
Dp,qS (A)

)
.

Proof. Suppose xk→l
(
Dp,qS

)
holds for any sequences p and q satisfying the deferred property. This implies

that for every ε > 0, we have

lim
n→∞

1
qn−pn

∣∣∣{pn+1≤m≤qn: |xm−l| ≥ε
}∣∣∣= 0.

By considering the index set K = {mk: k∈N}, where xmk→l as n → ∞, we construct the sequence ym as
follows:

ym=

{
xmk , m =mk

l, otherwise .

It is evident that δp,q
({

k :xm,ym
})
= 0, and ym→l as m→∞. Due to the regularity of the matrix A = (amk) and

the regularity of statistical deferred convergence, ym→l
(
Dp,qS (A)

)
holds. Hence, the proof is concluded.

Corollary 2.13. If xk→l (S), then there exists a sequence
(
yk
)

with δ0,n
({

k :xk,yk
})
= 0 such that yk→l (S (A))

holds.

Question 2.14. Can we find a regular matrix Ã that makes a deferred statistically A-convergent sequence deferred
Ã-convergent?

Theorem 2.15. Assume that p and q are sequences that satisfy the deferred property, and let A = (amk) be an infinite
regular matrix. Then xk→l

(
Dp,qS (A)

)
if and only if there exists an index set K = {mn: n∈N} with δp,q (K)= 1 such

that xk converges to l in the matrix Ã=
(
amnk
)

formed by selecting rows from A based on the set K.

Proof. To prove this result, we will utilize the idea of Cantor’s nested intervals theorem. A similar proof
can be found in the studies [17] and [21]. Here, we adapt the method defined in (*) and follow similar
steps. Let’s assume that xk→l

(
Dp,qS (A)

)
. This means that for any ε > 0, the following condition holds as n

approaches infinity:

1
qn−pn

∣∣∣∣{pn+1≤m≤qn:
∣∣∣(Ax)m−l

∣∣∣≥ε}∣∣∣∣→0.

Now, we define the set

Kj (A) :=
{

m∈N:
∣∣∣(Ax)m−l

∣∣∣<1
j

}
for any j∈N. It can be observed that the sequence

{
Kj (A)

}∞
j=1

is monotonically decreasing with respect to

set inclusion, and the above equation implies that δp,q

(
Kj (A)

)
= 1 for all j∈N. Let n1∈K1 (A). Hence, there

exists n2∈K2 (A) such that for every n≥n2, the following inequality must hold:

1
qn−pn

∣∣∣∣∣{pn+1≤m≤qn:
∣∣∣(Ax)m−l

∣∣∣<1
2

}∣∣∣∣∣≥1
2
.
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Similarly, there exists n3∈K3 (A) such that for all n≥n3, the following inequality holds:

1
qn−pn

∣∣∣∣∣{pn+1≤m≤qn:
∣∣∣(Ax)m−l

∣∣∣<1
3

}∣∣∣∣∣≥2
3
.

We can continue this process consecutively, and for each j, there exists an nj∈Kj (A) such that for all n≥nj,
we have:

1
qn−pn

∣∣∣∣∣∣
{

pn+1≤m≤qn:
∣∣∣(Ax)m−l

∣∣∣<1
j

}∣∣∣∣∣∣≥ j − 1
j

By defining the sequenceN=
⋃
∞

j=1 [nj,nj+1, we can take K:=
⋃
∞

j=1

(
[nj,nj+1)∩Kj (A)

)
. For any arbitrary n∈N,

there exists nj≤n <nj+1 and the above inequality gives us:

δp,q (K)≥
1

qn−pn

∣∣∣∣∣∣
{

pn+1≤m≤qn:
∣∣∣(Ax)m−l

∣∣∣<1
j

}∣∣∣∣∣∣≥ j − 1
j
→1

as j approaches infinity. Let’s define the set K as K = {mn: n∈N}, where mn is a monotonically increasing
sequence in N. We select the rows of matrix A based on the monotonically increasing sequence mn and
denote it as matrix Ã=

(̃
amnk
)
. It is evident from Theorem 1 that the following conditions are satisfied:

1. limn→∞ amnk= 0, for all k∈N,
2. supn

∑
∞

k=1

∣∣∣amnk

∣∣∣<∞,
3. limn→∞

∑
∞

k=1 amnk= 1.

For simplicity, let’s denote the sequence
(
Ãx
)

n
as
(
yn
)

:=
(∑∞

k=1 amnkxk
)
.Based on the construction of set K, it

can be easily concluded that the sequence
(
yn
)

converges to l. Thus, the proof is complete.

Definition 2.16. A sequence (xk) is said to be deferred statistically A-Cauchy if there exists a natural number
m (ε)∈N such that

lim
n→∞

1
qn−pn

|{pn< m≤qn:
∣∣∣(Ax)m−(Ax)m(ε)

∣∣∣≥ε}| = 0,

holds for every ε> 0.

It can be observed that the value of m (ε) in Definition 2 is not unique. To see this, consider a natural
number m1> m (ε). Then, the following inclusion holds:

{pn< m≤qn:
∣∣∣(Ax)m−(Ax)m1

∣∣∣≥ε}⊆{pn< m≤qn:
∣∣∣(Ax)m−(Ax)m(ε)

∣∣∣≥ε
2
}∪ {pn< m≤qn:

∣∣∣(Ax)m(ε)−(Ax)m1

∣∣∣≥ε
2
}

for any ε > 0. Therefore, this inclusion implies that

δp,q({pn< m≤qn:
∣∣∣(Ax)m−(Ax)m1

∣∣∣≥ε}) = 0.

Theorem 2.17. A deferred statistically A-convergent sequence with respect to two sequences p and q satisfying the
deferred property, and a regular matrix A = (amk)is deferred statistically A-Cauchy.

Proof. Let xn→l
(
Dp,qS (A)

)
as n → ∞, and consider an arbitrary sufficiently large element n(ε) in the set{

p (n)< m≤q (n) :
∣∣∣(Ax)m−l

∣∣∣≥ε} for an arbitrary ε. For this n(ε), we have the inclusion:{
p (n)< m≤q (n) :

∣∣∣(Ax)m−(Ax)n (ε)
∣∣∣≥ε}⊆ {p (n)< m≤q (n) :

∣∣∣(Ax)m−l
∣∣∣≥ε}∪ {p (n)< m≤q (n) :

∣∣∣(Ax)n (ε)−l
∣∣∣≥ε} .

Therefore, based on the assumption of Theorem, this inclusion implies that (xn) is a deferred statistically
A-Cauchy sequence.
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For the converse of Theorem 11, we provide the following result.

Theorem 2.18. A deferred statistically A-Cauchy sequence with sequences p and q satisfying the deferred property,
and a regular matrix A = (amk)is deferred statistically A-convergent.

Proof. Suppose x is a deferred statistically A-Cauchy sequence. Then, there exists n (ε)∈N such that
δp,q (B)= 0 for every ε, where B ={n :

∣∣∣(Ax)n−(Ax)n(ε)

∣∣∣≥ε}. It can be observed that the sets:

Y ={y∈R:δp,q{n :(Ax)n< y}= 1}

and

Z ={z∈R:δp,q{n :(Ax)n> z}= 1}

are non-empty because the inclusions

Bc
⊆{n :(Ax)n(ε)−ε<(Ax)n}

and

Bc
⊆{n :(Ax)n<(Ax)n(ε)+ε}.

hold. We claim that for some y∈Y and z∈Z, z < y. Suppose z0≥y0 for some z0 and y0. Thus, we obtain the
following:

{n :(Ax)n>z0}⊆{n :(Ax)n>y0},

which implies δp,q
(
{n :(Ax)n≤y0}

)
= 0. This contradicts y0∈Y. Therefore, we conclude that z < y for all y∈Y

and z∈Z, which yields

(Ax)n(ε)−ε≤supZ≤infY≤(Ax)n(ε)+ε.

This implies that supZ = infY since ε is arbitrary. Let l = supZ and s = infY, and let µ> 0. Then,
there exist yµ∈Y and zµ∈Z such that l−µ<zµ<yµ< l+µ. This implies that δp,q

(
{n :(Ax)n< l+µ}

)
= 1 and

δp,q
(
{n :(Ax)n> l−µ}

)
= 1. Consider

{n :
∣∣∣(Ax)n−l

∣∣∣<µ}={n :(Ax)n> l−µ}∩{n :(Ax)n< l+µ}.

From this, we deduce that

δp,q

(
{n :
∣∣∣(Ax)n−l

∣∣∣≥µ})= 0.

Therefore, we have obtained the deferred statistically A-convergence of x to l as desired.

Definition 2.19. If the following limit exists

lim
n→∞

1
qn−pn

|{pn< m≤qn:
∣∣∣(Ax)m

∣∣∣≥M}| = 0

for some positive scalar M > 0, then the sequence x = (xk)is called deferred statistically A-bounded.

Theorem 2.20.

1. Every deferred statistically A-convergent sequence with a regular matrix A and arbitrary sequences p and q
satisfying the deferred property is deferred statistically A-bounded.

2. A deferred statistically A-Cauchy sequence with a regular matrix A and arbitrary sequences p and q satisfying
the deferred property is deferred statistically A-bounded.
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Proof. The proof for these statements can be easily established by utilizing the definitions of deferred statis-
tical A-convergence, deferred statistical A-Cauchiness, and deferred statistically A-boundedness. However,
for brevity, we omit the detailed proof here.

Definition 2.21. Let A = (amk) be a regular matrix and x = (xk) be a sequence. Then, x is called strongly deferred
A-convergent to l if

lim
n→∞

1
qn−pn

qn∑
m=pn+1

∣∣∣(Ax)m−l
∣∣∣= 0

holds for some p and q satisfying the deferred property sequences.

In this paper, we denote SDp,q (A) as the set of all strongly deferred A-convergent sequences.

Theorem 2.22. Let p and q be sequences satisfying the deferred property, and let A = (amk) be a regular matrix. If
the sequence (Ax)m converges strongly to l, then it also converges deferred statistically to l.

Proof. Assuming the deferred property holds, we have:

lim
n→∞

1
qn−pn

qn∑
m=pn+1

∣∣∣(Ax)m−l
∣∣∣= 0

for arbitrary p and q satisfying the deferred property. For any ε > 0, we define the set B(ε) as follows:

B (ε)={p (n)+1≤m≤q (n) :
∣∣∣(Ax)m−l

∣∣∣≥ε}.
Thus, the following inequality holds:

qn∑
m=pn+1

∣∣∣(Ax)m−l
∣∣∣= (

∑
m∈B(ε)

+
∑

m<B(ε)

)
∣∣∣(Ax)m−l

∣∣∣≥ε |B (ε)| .

Dividing both sides of the inequality by qn−pnand taking the limit as n approaches infinity, we obtain the
desired result. Therefore, deferred strong A-convergence implies deferred statistical A-convergence.

In the following example, we demonstrate that Theorem 14 does not hold conversely in general.

Example 2.23. Consider the sequence x:= (xk) defined as follows:

xk=:
{

1
amk

k2,
[∣∣∣√qn

∣∣∣]≤k≤qn,n∈N,
0, otherwise,

where A = (amk)is a regular matrix defined as:

amk=:

 1
qn−[|√qn|] ,

[∣∣∣√qn

∣∣∣]≤k≤qn,n∈N,

0, otherwise,
.

It is evident that

(Ax)m=

{
k2,

[∣∣∣√qn

∣∣∣]≤k≤qn,
0, otherwise.

,

and thus, we observe that (xn) is a deferred statistically A-null sequence for any pn≤
[∣∣∣√qn

∣∣∣], but it is not strongly
deferred A-convergent [8].
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We denote the set ℓ∞ (A) :=
{
x = (xk) :(Ax)m∈ℓ∞

}
. Therefore, we establish the following theorem.

Theorem 2.24. Let p and q be sequences satisfying the deferred property, and A = (amk) be a regular matrix. If
x∈ℓ∞ (A) and x converges deferred statistically to l, then x converges to l in the strongly deferred A-summable sense,
denoted as xk→l

(
Dp,qS (A)

)
.

Proof. Assume that x is an A-bounded sequence and converges deferred statistically to l. Let M:=∥ (Ax) ∥∞+ |l|
be a finite constant satisfying the inequality∣∣∣(Ax)k−l

∣∣∣≤M

for every n∈N. For any ε > 0, we fix an Nε such that:

1
qn−pn

|{pn< k≤qn:
∣∣∣(Ax)k−l

∣∣∣≥ε
2
}| <

ε

2M

holds for every n >Nε. Let Bn:={pn< k≤qn:
∣∣∣(Ax)k−l

∣∣∣≥ ε2 } for each n. Then, for all n >Nε, we have:

1
qn−pn

qn∑
k=pn+1

∣∣∣(Ax)k−l
∣∣∣= 1

qn−pn
(

qn∑
k =pn+1

k∈Bn

∣∣∣(Ax)k−l
∣∣∣+ qn∑

k =pn+1
k∈Bc

n

∣∣∣(Ax)k−l
∣∣∣)

≤
1

qn−pn
(

qn∑
k =pn+1

k∈Bn

M+
qn∑

k =pn+1,
k∈Bc

n

ε

2
) ≤

1
qn−pn

(M |Bn|+
ε

2
(
qn−pn

)
)≤M

ε

2M
+
ε

2
=ε.

Therefore, we obtain:

lim
n→∞

1
qn−pn

qn∑
k=pn+1

∣∣∣(Ax)k−l
∣∣∣= 0.

Thus, the sequence (xk) converges strongly deferred A-summable to l.

Corollary 2.25. Let p and q be sequences satisfying the deferred property, and A = (amk)be a regular matrix. Then,
we have ℓ∞∩

(
Dp,qS (A)

)
=ℓ∞∩

(
SDp,q (A)

)
.

Definition 2.26. Two sequences x = (xn) and y =
(
yn
)

are called deferred statistically A-equivalent, denoted as
x ∼ y, if the sequence

(
xn−yn

)
converges deferred statistically to zero.

It can be demonstrated that the relation ”∼” is an equivalence relation on Dp,qS (A). Let us denote the
quotient space by Dp,qS (A) /∼, defined as:

Dp,qS (A) /∼:={[x] :x∈Dp,qS (A)},

where [x] :={y∈ω:xn−yn→0
(
Dp,qS (A)

)
}.

Theorem 2.27. Let A= (amk) be a regular matrix, and let p and q be two sequences satisfying the deferred property.
If a sequence y∈ [x] is deferred statistical A-convergent to l, then the sequence x = (xk) being deferred statistically
A-convergent to l implies the deferred statistical A-convergence of y.
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Proof. Consider a deferred statistically A-convergent sequence x = (xk) to l, and let y =
(
yk
)
∈ [x]. This

implies that for any ε > 0:

1
q (n)−p (n)

|{p (n)+1≤m≤q (n) :
∣∣∣(Ax)m−l

∣∣∣≥ε}|→0,

and

1
q (n)−p (n)

|{p (n)+1≤m≤q (n) :
∣∣∣A (xk−yk

)∣∣∣≥ε}|→0,

as n approaches infinity. Fix ε > 0. Then, we can establish the following inclusion:

{p (n)+1≤m≤q (n) :
∣∣∣(Ay
)

m−l
∣∣∣≥ε} ⊆ {p (n)+1≤m≤q (n) :

∣∣∣(Ay −Ax
)

m

∣∣∣≥ε
2

}
∪ {p (n)+1≤m≤q (n) :

∣∣∣(Ax)m−l
∣∣∣≥ε/2}.

By completing the necessary steps in the proof, it follows from the above equations that the deferred density
of the right-hand side of the last inclusion is zero, which concludes the proof.

Corollary 2.28. For every ỹ=
(
yk
)
∈ [x], if x̃= (xk) is not deferred statistically A-convergent, then ỹ is also not

deferred statistically A-convergent.

Consider the regular matrices A = (amk) and B = (bmk) such that:

limsup
m→∞

∞∑
k=1

|amk−bmk|= 0(∗∗)

We observe the following theorem.

Theorem 2.29. Let p and q be sequences satisfying the deferred property, and A and B be two arbitrary regular
matrices satisfying condition (**). If x = (xk)∈ℓ∞ (A) ,then the deferred statistically A-convergence of (xk) implies the
deferred statistically B-convergence of (xk) with the same limit, and vice versa.

Proof. Let (xk)∈ℓ∞ (A) be deferred statistically A-convergent to l. The proof is straightforward when
x =(0)∞n=0. Suppose x,(0)∞n=0. We observe that for each ε > 0, the inequality:

|{pn< m≤qn:
∣∣∣(Bx)m−(Ax)m

∣∣∣≥ε
2
}| = |{pn< m≤qn: |

∞∑
k=1

bmkxk−

∞∑
m=1

amkxk|≥
ε

2
}|

=

∣∣∣∣∣∣∣
pn< m≤qn

∞∑
m=1

(bmk−amk)xm

∣∣∣∣∣∣∣ ≥ε2

∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣
pn< m≤qn:

∞∑
k=1

|bmk−amk| |xk| ≥
ε

2


∣∣∣∣∣∣∣

≤|{pn< m≤qn:
∞∑

k=1

|bmk−amk| ≥
ε

2∥x∥∞}
}|

holds. By multiplying the above inequality by 1
qn−pn

and taking the limit as n → ∞, it follows that:

lim
n→∞

1
qn−pn

|{pn< m≤qn:
∣∣∣(Bx)m−(Ax)m

∣∣∣≥ε
2
}| = 0
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because lim supm→∞
∑
∞

k=1 |bmk−amk|= 0. Moreover, the following inequality:

|{pn< m≤qn:
∣∣∣(Bx)m − ℓ

∣∣∣≥ε}| = |{pn< m≤qn: |
∞∑

k=1

bmkxk−l|≥ε}|

≤

∣∣∣∣∣∣∣
pn< m≤qn

∞∑
k=1

amkxk−l

∣∣∣∣∣∣∣ ≥ε2

∣∣∣∣∣∣∣+|{pn< m≤qn

∞∑
k=1

bmkxk−

∞∑
k=1

amkxk|≥
ε

2
}|

is also true for all ε > 0. Multiplying each side by 1
qn−pn

and taking the limit as n tends to infinity, we obtain
the desired result.

3. INCLUSION RESULTS FOR CλS (A) and DλS (A)

In this section, we explore a special case of deferred statistically A-convergence for a strictly increasing
sequenceλ= (λn) withλ0= 0. We define two types of convergence, namely CλS (A) and DλS (A) convergence,
for a sequence x = (xk) with respect to a scalar l∈R and an arbitrary ε > 0.

Definition 3.1. A sequence x = (xk) is said to be CλS (A)-convergent and DλS (A)-convergent, denoted as xk→l (CλS (A))
and xk→l (DλS (A)), respectively, if the following conditions hold for any ε > 0:

lim
n→∞

1
λn

∣∣∣∣{0≤m≤λn:
∣∣∣(Ax)m−l

∣∣∣≥ε}∣∣∣∣= 0

and

lim
n→∞

1
λn−λn−1

∣∣∣∣{λn−1≤m≤λn:
∣∣∣(Ax)m−l

∣∣∣≥ε}∣∣∣∣= 0.

Theorem 3.2. Let λ:= (λn) be a strictly increasing sequence with λ0= 0 and A = (ank) be a regular matrix. If
xk→l (DλS (A)), then it implies xk→l (CλS (A)).

Proof. Let us assume that xk→l (DλS (A)) holds. For an arbitrary ε > 0, we have:

{
λ0≤m≤λn:

∣∣∣(Ax)m−l
∣∣∣≥ε}= k=n⋃

k=1

{
λk−1≤m≤λk:

∣∣∣(Ax)m−l
∣∣∣≥ε}.

This implies that:

∣∣∣∣{λ0≤m≤λn:
∣∣∣(Ax)m−l

∣∣∣≥ε}∣∣∣∣= k=n∑
k=1

∣∣∣∣{λk−1≤m≤λk:
∣∣∣(Ax)m−l

∣∣∣≥ε}∣∣∣∣.
By multiplying the equation above by the appropriate expressions, it can be rewritten as:

1
λn

∣∣∣∣{λ0≤m≤λn:
∣∣∣(Ax)m−l

∣∣∣≥ε}∣∣∣∣= k=n∑
k=1

λk−λk−1

λn

1
λk−λk−1

∣∣∣∣{λk−1≤m≤λk:
∣∣∣(Ax)m−l

∣∣∣≥ε}∣∣∣∣ .
Hence, the last equality shows that CλS (A) convergence is a linear combination of DλS (A) convergence for
the sequence (xk). Let us consider a matrix T = (tnk) defined by:

tnk=

{
λk−λk−1
λn
, k≤n,

0, k > n
.
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Therefore, we have:

1
λn

∣∣∣∣{λ0≤m≤λn:
∣∣∣(Ax)m−l

∣∣∣≥ε}∣∣∣∣= k=n∑
k=1

tnk
1

λk−λk−1

∣∣∣∣{λk−1≤m≤λk:
∣∣∣(Ax)m−l

∣∣∣≥ε}∣∣∣∣ .
Since the matrix T = (tnk) is regular (satisfying the Silverman-Toeplitz Theorem), we conclude that (xk) is
CλS (A)convergent to l.

Theorem 3.3. Let λ:= (λn) be a strictly increasing sequence with λ0= 0 and A = (ank) be a regular matrix. Then,
xk→l (CλS (A)) implies that xk→l(DλS (A) if and only if liminfn→∞

λn
λn−1
> 1.

Proof. Let us assume that xk→l (CλS (A)) holds. For any ε > 0, we have:{
λn−1≤m <λn:

∣∣∣(Ax)m−l
∣∣∣≥ε}= {1≤m <λn:

∣∣∣(Ax)m−l
∣∣∣≥ε}⧹ {1≤m≤λn−1:

∣∣∣(Ax)m−l
∣∣∣≥ε} .

This implies the following equality:∣∣∣∣{λn−1≤m <λn:
∣∣∣(Ax)m−l

∣∣∣≥ε}∣∣∣∣ = ∣∣∣∣{1≤m <λn:
∣∣∣(Ax)m−l

∣∣∣≥ε}∣∣∣∣− ∣∣∣∣{1≤m≤λn−1:
∣∣∣(Ax)m−l

∣∣∣≥ε}∣∣∣∣ .
By multiplying with the appropriate coefficients, the expression above can be transformed as follows:

1
λn−λn−1

∣∣∣∣{λn−1≤m <λn:
∣∣∣(Ax)m−l

∣∣∣≥ε}∣∣∣∣= λn

λn−λn−1

1
λn

∣∣∣∣{1≤m <λn:
∣∣∣(Ax)m−l

∣∣∣≥ε}∣∣∣∣
−

1
λn−λn−1

∣∣∣∣{1≤m <λn−1:
∣∣∣(Ax)m−l

∣∣∣≥ε}∣∣∣∣ .
If we consider a matrix T:= (tnk) defined as follows: tnk=

λn
λn−λn−1

when k = n; tnk=
λn−1
λn−λn−1

when k = n − 1
and tnk= 0 otherwise, then the DλS (A) transformation of the sequence (xk) is the T = (tnk) transform of the
CλS (A) transformation of the sequence.

4. DEFERRED STATISTICAL A-TYPE KOROVKIN THEOREMS

In 1960, P. P. Korovkin introduced one of the most significant results in approximation theory, known
as Korovkin’s theorem. The theorem focuses on real-valued vector spaces defined as follows:

C [a, b] := {f : f is a real − valued continuous function on [a, b]}

and

B [a, b] := {f : f is a real − valued bounded function on [a, b]}

Let Tn: C [a, b]→B [a, b] be a positive and linear operator, which means (Tn) is linear and Tn (f)≥0 for
every f (x)≥0, where x∈ [a, b]. Korovkin’s theorem provides conditions for the approximation of Tn

(
g
)

to a
continuous function g∈C [a, b]. The original Korovkin theorem is given in the follow theorem.

Theorem 4.1. (P. P. Korovkin): Consider the sequence (Tn) of positive and linear operators Tn: C [a, b]→B [a, b].
The following conditions are equivalent:

1. For each function fi (x)=xi, where i = 0, 1, 2, etc., we have limn→∞ ∥Tn (fi)−fi∥∞= 0,
2. For each continuous function f in C[a, b], we have limn→∞ ∥Tn (f)−f∥∞= 0.



M. Küçükaslan et al. / Filomat 38:5 (2024), 1595–1611 1608

A generalization of Korovkin’s theorem was initially explored by Gadjiev-Orhan [20], introducing
the concept of asymptotic density. Since then, numerous generalizations and applications of Korovkin’s
theorem have been developed, considering different types of densities on natural numbers (see for example
[31]). For our specific case, let’s introduce some notations before discussing the conclusions. Consider the
operator T̃n: C [a, b]→B [a, b] defined as follows:

T̃n: C [a, b]→B [a, b]

where T (f, .) : C [a, b]→B [a, b] is a positive and linear operator. The operator T̃n (f, .) satisfies the following
properties:

T̃n
(
f + g, .

)
=

∞∑
k=1

an,kTk
(
f + g, .

)
=

∞∑
k=1

an,kTk (f, .)+
∞∑

k=1

an,kTk
(
g, .
)
= T̃n (f, .)+T̃n

(
g, .
)

T̃n (f, x)≥0, whenever f (x) ≥ 0 for all x ∈ [a, b]. In the above expressions, ∥·∥∞ represents the uniform norm
on C[a, b].

Korovkin’s Theorems have been extended and applied to various summability methods, including
Cesàro summation (see for example [37]), Abel summation and Borel summation (see for example [33]).
These extensions further demonstrate the versatility and importance of Korovkin’s Theorems in the context
of approximation theory and its connections to other areas of mathematical analysis (see for example [3, 11]),
including summability methods.

Theorem 4.2. (Korovkin Theorem Generalization) Let A = (ank)be a regular matrix with non-negative elements, and
let p and q be sequences of natural numbers satisfying the deferred property. The following conditions are equivalent:

1. For the functions fi (x)=xi, where i = 0, 1, 2, etc., we have
∥∥∥∥T̃n (fi)−fi

∥∥∥∥
∞

→0
(
Dp,qS (A)

)
,

2. For every f ∈ C[a, b], we have
∥∥∥∥T̃n (f)−f

∥∥∥∥
∞

→0
(
Dp,qS (A)

)
.

Proof. (i) =⇒ (ii) Since fi (x)=xi
∈C [a, b] for each i = 0, 1, 2, etc., we have limn→∞

∥∥∥∥T̃n (fi)−fi

∥∥∥∥
∞

= 0, we have

limn→∞

∥∥∥∥T̃n (f)−f
∥∥∥∥
∞

= 0 for every f ∈ C[a, b].Hence, we only need to focus on the other part of the theorem.
(ii) =⇒ (i) If a function f ∈ C[a, b] is continuous, there exists a positive scalar M > 0 such that

|f (t)−f (x)| ≤2M for all x, t ∈ [a, b]. Furthermore, by the continuity of f ∈ C[a, b], for any ε > 0, there
exists δ = δ(ε) > 0 such that | f (t) − f (x)| < ε holds for all x, t ∈ [a, b] satisfying |x − t| < δ. Consider
Φ (x) :=(x − t)2. For all x, t ∈ [a, b] satisfying |x − t| < δ, we observe the following inequality:

|f (t)−f (x)|<ε+
2M
δ2 Φ.

Now, we have T̃n (f, x)−f (x)=T̃n (f (t)−f (x) , x)+f (x)
(
T̃n (1, x)−1

)
. From this equality, we obtain the follow-

ing inequality:

∥∥∥∥T̃n (f)−f
∥∥∥∥ ≤ (ε+M+

2M
δ2

) ∥∥∥∥T̃n (1)−1
∥∥∥∥+4Mb
δ2

∥∥∥∥T̃n (t)−x
∥∥∥∥+2M
δ2

∥∥∥∥T̃n

(
t2
)
−x2
∥∥∥∥≤M1

 i=2∑
i=0

∥∥∥∥T̃n

(
ti
)
−xi
∥∥∥∥

where M1:=max
{
ε+M+ 2M

δ2 ,
4Mb
δ2 ,

2M
δ2

}
. The above inequality shows that for any ε1> 0, we have:

{
k≤n :

∥∥∥∥T̃n (f)−f
∥∥∥∥≥ε1

}
⊆{k≤n :

i=2∑
i=0

∥∥∥∥T̃n

(
ti
)
−xi
∥∥∥∥≥ ε1

M1
}.



M. Küçükaslan et al. / Filomat 38:5 (2024), 1595–1611 1609

This implies that:

1
qn−pn

∣∣∣∣∣{k≤n :
∥∥∥∥T̃n (f)−f

∥∥∥∥≥ε1

}∣∣∣∣∣≤ 1
qn−pn

∣∣∣∣∣{k≤n :
∥∥∥∥T̃n (1)−1

∥∥∥∥≥ ε1

M1

}∣∣∣∣∣
+

1
qn−pn

∣∣∣∣∣{k≤n :
∥∥∥∥T̃n (t)−x

∥∥∥∥≥ ε1

M1

}∣∣∣∣∣ + 1
qn−pn

∣∣∣∣∣{k≤n :
∥∥∥∥T̃n

(
t2
)
−x2
∥∥∥∥≥ ε1

M1

}∣∣∣∣∣ .
By the assumptions of the theorem, the functions 1, x, and x2 are deferred statistically A-convergent to the
functions 1, x, and x2, respectively. This implies that the deferred density of the three clusters on the right
side of the above inequality is zero. Thus, we have established the desired proof.

Corollary 4.3. When q(n) = n and p(n) = 0, Theorem 23 coincides with Theorem 1 given by Gadjiev-Orhan and
Theorem 4 given by Alotaibi, corresponding to the unit matrix and Cesàro matrix, respectively.

We will now present a sequence of positive linear operators that satisfies the assumptions of Theorem 23
but does not satisfy both the classical and statistical cases of the Korovkin theorem. Consider the Bernstein
polynomial Bn (f, x) : C [0, 1]→B [0, 1] given by

Bn (f, x) :=
n∑

k=0

f
(k

n

) (n
k

)
xk(1 − x)n−k,

where Bn (1, x)= 1 converges to 1, Bn (t, x)= x converges to x, and Bn

(
t2, x
)
=x2+ x−x2

n converges to x2 as n
approaches infinity. Let A = (ank) be a matrix and x = (xk) be a sequence defined as follows:

ank:=


1
2 , n,m2,k =n2

−2,k =n2
−1,

1, n,m2,k =n2,
0 otherwise,

and

xk:=


1, if k is odd,
k, if k is even square,
0 if k is nonsquare and even.

Then, the transformed sequence

(Ax)n:=


1
2 , if n is nonsquare,
k, if n is even square,
0, otherwise,

is deferred statistically A-convergent to 1/2 for any pn and qn satisfying the deferred property. Now, let us
define the modified form B̃n (f, x) : C [0, 1]→B [0, 1] of the Bernstein polynomial as:

B̃n (f, x) := (1+xn) Bn (f, x) .

It is evident that B̃n (fi, x) does not converge to fi=xi, i = 0, 1, 2 in the usual case (or in the statistical case).
However, it is deferred statistically A-convergent to fi=xi, i = 0, 1, 2.

Theorem 4.4. Let p and q be a sequence of natural numbers satisfying the deferred property, and A = (ank) be a
regular matrix with non-negative elements. If

∥∥∥∥T̃n (fi)−fi

∥∥∥∥
∞

→0
(
Dp,qS (A)

)
holds for functions defined by fi (x)=xi,

i = 0, 1, 2, then there exists a set K⊂Nwith δp,q (K)= 1 such that
∥∥∥T∗n (f)−f

∥∥∥
∞
→0
(
Dp,q (A)

)
holds for all f∈C [a, b],

where T∗n is a positive and linear operator with respect to K.
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Proof. Assuming that
∥∥∥∥T̃n (fi)−fi

∥∥∥∥
∞

→0
(
Dp,qS (A)

)
holds for functions defined by fi (x)=xi, we can obtain sets

Ki, i = 0, 1, 2, such that δp,q (Ki)= 1. Let K =
⋂2

i=0 Ki such that δp,q (K)= 1. Denote the set K as K:= {mn: n∈N},
and define the corresponding matrix A∗=

(
amn,k

)
and the related operator as

T∗n (f) :=
∞∑

k=1

amn,k.Tk (f) .

In can be observed that∥∥∥T∗n (fi)−fi

∥∥∥→0
(
Dp,q (A∗)

)
holds for i = 0, 1, 2. Therefore, we have

∥∥∥T∗n (f)−f
∥∥∥≤M1

 2∑
i=0

∥∥∥T∗n (fi)−fi

∥∥∥ .
Thus, we get

∥∥∥T∗n (f)−f
∥∥∥→0

(
Dp,q (A∗)

)
. Hence, the proof is completed.
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[13] S. Ercan, On deferred Cesàro Mean in paranormed Spaces, Korean J. Math. 29, 169-177, 2021.
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