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Abstract. In this paper we give sufficient conditions on m−subharmonic functions fk and m−positive
currents Rk of bidegree (p, p) to ensure the convergence of fk.Rk∧γm−p in the sense of currents. As application
of this result, we treat the special case Rk = (ddc fk)p and we show that one of the condition of the main result
is necessary in this case.

1. Introduction

In complex analysis and especially in pluripotential theory, the concept of convergence of plurisubhar-
monic (psh. for short) functions and positive currents represents a fundamental to treat several problems
on the Monge-Ampère and the Hessian operator. One of these problems is the product between a psh
function and a positive current. It is well-known that such a product cannot be well defined in general
without loss of the basic properties for currents ( See [8]). For a given domain Ω of Cn and m ∈ N ∩ [1,n],
Blocki [2] , introduced and studied the set SHm(Ω) of m−subharmonic functions on Ω. Later on Dhouib
and Elkhadhra [6] has defined the notion of m−positive currents. So it is natural to extend the problem for
the product of m−positive current with an m−subharmonic function.
In this paper, we consider f an m−subharmonic function, R an m−positive current defined on Ω and γ the
standard Kähler form of Cn. We first give sufficient and necessary conditions so that the product f .R∧ γn−p

is well defined. Then we will study the problem of the convergence for the product of an m−subharmonic
function with an m−positive current. In other words ”if fk is a sequence of functions that belong to SHm(Ω)
and Rk a sequence of m−positive currents, with bidegrees less than m, that converge respectively towards a
function f and a current R respectively then do we have the convergence of the product fk.Rk ∧ (ddc

|z|2)n−m

to f .R∧ (ddc
|z|2)n−m in the sense of currents? ”. We give sufficient conditions that answer the given question.

In other words we prove the following theorem.

Theorem :
Let R and Rk be m−positive currents defined on Ω with bidegree equal to (p, p) where (p ≤ m ≤ n). Take f
and fk m−subharmonic functions satisfying fk ∈ L1

loc(Rk ∧ γn−p) and f ∈ L1
loc(R ∧ γ

n−p). Assume that there is
1 ≤ r ≤ m such that
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1. fk converges to f in Capr on every A ⋐ Ω,
2. Rk ∧ γn−m

→ R ∧ γn−m as currents in Ω,
3. (R + Rk) ∧ γn−p

≪ Capr on every A ⋐ Ω and the convergence is uniform for all k,
4. | f |R ∧ γn−p

≪ Capr on every A ⋐ Ω and | fk|Rk ∧ γn−p
≪ Capr on every A ⋐ Ω uniformly in k,

then fkRk ∧ γn−m
→ f R ∧ γn−m and hence ddc fk ∧ Rk ∧ γn−m

→ ddc f ∧ R ∧ γn−m as currents in Ω.
The previous theorem generalizes the well-known result of Xing [11] established in the case m = n. The

second part of this paper will be devoted to give an application of the main result where we will focus on
the particular case Rk = (ddc fk)p. In this case we prove that condition (1) in the main theorem is necessary
in some particular cases.

2. Preliminaries

Throughout this paper we will use the following notations:
d := ∂+ ∂, dc := i(∂− ∂) and γ := ddc

|z|2 the Kähler form defined on Cn. We denote byΩ a bounded domain
of Cn. In the following definitions, we recall the definition for m−positive forms given by Blocki in [2] and
Dhouib and Elkhadhra in [6].

Definition 2.1. Let ξ be a (1, 1)−form inΩ and m ∈N∩ [1,n]. We say that ξ is m−positive if for all j ∈ {1, · · · ,m}
one has

ξ j
∧ γn− j

≥ 0

for every point of Ω.

Definition 2.2. [6]
Let ξ be a real (p, p) − f orm on Ω and m ∈N ∩ [p,n].

1. The form ξ is said to be m−positive if for every point of Ω and for every (1, 1) m−positive forms φ1, · · · , φm−p
one has

ξ ∧ βn−m
∧ φ1 ∧ · · · ∧ φm−p ≥ 0.

2. The form ξ is called m−strongly positive if there exist m−positive forms φk
1, · · · , φ

k
p and ck are constants such

that ck ≥ 0 such that

ξ =
N∑

k=1

ckφ
k
1 ∧ · · · ∧ φ

k
p

The set of all m−strongly positive test forms of bidegree (p, p) on Ω will be denoted by Dp(Ω). As in the
limit case m = n, the notion of m−positive current will be defined by duality as follows:

Definition 2.3. Let R be a current with bidegree equal to (p, p) onΩ and m ∈N∩ [p,n]. We say that R is m−positive
if ⟨R, γn−m

∧ ξ⟩ ≥ 0 for every ξ ∈ Dm−p(Ω).

The set of m−positive currents with bidegree equal to (p, p) will be denoted byD
′

p(Ω).

Remark 2.4. 1. The previous notions generalize the well-known classical positivity for forms and currents which
was given by Lelong [9].

2. If R ∈ D′

p(Ω), then the current R ∧ γn−m is positive.

In [2], the author defined the following notion of m−subharmonic functions and developed a pluripo-
tential theory to study several problems related to the complex Hessian operator.

Definition 2.5. The function f : Ω→ R∪ {−∞} is said to be m-subharmonic ( m−sh for short) if it is subharmonic
and

ddc f ∧ γn−m
∧ ξ1 ∧ · · · ∧ ξm−1 ≥ 0

for all m−positive forms ξ1, · · · , ξm−1. The set of m−sh functions defined onΩ will be denoted by SHm(Ω). It is easy
to check that the set SHn(Ω) is exactly the set of psh functions on Ω.
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In [2], [10] and [6], authors developed a detailed theory for the notion of m−sh functions.

Example 2.6. 1. In C3 the (1, 1)−form ξ := i(2.dz1 ∧ dz1 + 2.dz2 ∧ dz2 − dz3 ∧ dz3) is 2−positive but it is not
positive.

2. In C3 the current of integration over the {z3 = 0} is a 2−positive current.
3. The function f (z) := 2|z1|

2 + 2|z2|
2
− |z3| belongs to SH2(C3) but it is not plurisubhrmonic.

In pluripotential theory, the capacity represents an essential tool to solve several problems for the complex
operators and polar sets. For every integer r, and A ⊂ Ω the r−capacity of A denoted by Capr(E,Ω) is
defined as follows:

Definition 2.7.
Capr(E,Ω) = sup{Capr(K ),K compact subset o f E}.

where

Capr(K ) := sup{
∫
K

(ddc f )r
∧ γn−r, f ∈ SHm(Ω), 0 ≤ f ≤ 1},

for 1 ≤ r ≤ m.

The following proposition proves the quasicontinuity of every locally bounded m−subharmonic function.
Such property will be used frequently in the rest of this paper.

Proposition 2.8. Let f ∈ SHm(Ω). If f is locally bounded then for every a > 0 there is an open subset Ha with
Capr(Ha) < a and so that f ∈ C(Ω \Ha) (i.e. f is continuous on Ω \Ha ). Hence the following writing holds

f = 1 + h

where 1 ∈ C(Ω) and h ≡ 0 on Ω \Ha.

Definition 2.9. Let R ∈ D′

p(Ω) and µk a sequence of positive measures on Ω.

1. The trace measure of R ∧ γn−m on a subset E denoted by |R ∧ γn−m
|E is defined on every subset A ⊂ Ω as

|R ∧ γn−m
|E(A) =

∫
E∩A

R ∧ γn−p.

2. We say that the sequence µk is uniformly absolutely continuous with respect to Capr ( and write µk << Capr )
if ∀ε > 0,∃λ > 0 such that for all B ⊂ Ω one has

Capr(B) < λ⇒ µk(B) < ε,∀k ∈N.

3. Convergence of m−positive currents

In this section, we consider R ∈ D′

p(Ω) a closed current (i.e. dR = 0) and f ∈ SHm(Ω) a negative function.
If f is bounded then the product f .R defines an m−positive closed current on Ω. However, it was noticed
in [8] that, even in the limit case m = n, the product f .R can not be well defined without loss of the basic
properties for positive currents. We give in this section a sufficient and necessary condition to ensure the
definition of f .R ∧ γn−m for some unbounded classes of functions. For that we will establish the following
lemma:

Lemma 3.1. For every ( f ,R) ∈ SHm(Ω) ×D
′

p(Ω) and J ∈N one has∫
{−J≤ f<0}∩E

(− f )R ∧ γn−p
≤

∞∑
j=0

|R ∧ γn−m
|E( f < − j).
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Proof. Using Abel transformation ( see [12]), we get

∞∑
j=0

|R ∧ γn−m
|E( f < − j) ≥

J−1∑
j=0

|R ∧ γn−m
|E(−J ≤ f < − j)

=

J∑
j=1

j|R ∧ γn−m
|E(− j ≤ f < − j + 1)

≥

J∑
j=1

∫
{− j≤ f<− j+1}∩E

(− f )R ∧ γp

=

∫
{−J≤ f<0}∩E

(− f )R ∧ γn−p

The result follows.

If we repeat the same argument as in the proof of the above lemma we can observe that for every J ∈N one
has

J−1∑
j=1

|R ∧ γn−m
|E(−J ≤ f < − j) ≤

∫
E
(− f )R ∧ γp. (∗)

Indeed we have ∫
{−J≤ f<0}∩E

(− f )R ∧ γn−p =

J∑
j=1

∫
{− j≤ f<− j+1}∩E

(− f )R ∧ γp

≥

J∑
j=1

( j − 1)|R ∧ γn−m
|E(− j ≤ f < − j + 1)

=

J−1∑
j=0

|R ∧ γn−m
|E(−J ≤ f < − j)

−

J∑
j=1

|R ∧ γn−m
|E(− j ≤ f < − j + 1)

=

J−1∑
j=1

|R ∧ γn−m
|E(−J ≤ f < − j).

Now we will give necessary and sufficient conditions to guarantee that the product f .R ∧ γn−m is well
defined.

Theorem 3.2. If f ∈ SHm(Ω) and R ∈ D′

p(Ω) then the statement that follow are equivalent

1. For any E ⋐ Ω one has
∞∑
j=0

|R ∧ γn−m
|E( f < − j) < ∞.

2. f ∈ L1
loc(R ∧ γ

n−p).
3. There exists E0 ⋐ Ω satisfying f ∈ L1

loc(R ∧ γ
n−p) in Ω ∖ E0.

Proof. Firstly we will prove that (1)⇔ (2). Using Lemma 3.1, we get that∫
{−J≤ f<0}∩E

(− f )R ∧ γn−p
≤

∞∑
j=0

|R ∧ γn−m
|E( f < − j).
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By tending J to +∞, we obtain (1) ⇒ (2). For the converse sense, we combine (∗) and the assumption that
f ∈ L1

loc(R ∧ γ
n−p) to get that

∞∑
j=0

|R ∧ γn−m
|E( f < − j) < ∞.

Hence we obtain the assertion (1).

Now we will prove that (3)⇒ (2). Let V2 ⋐ V1 ⋐ Ω and f j a sequence of negative smooth m−sh functions
which is decreasing towards f in V1. Using the hypothesis (3), we get that for all j ∈N, | f jR ∧ γn−m

|Ω have
a uniformly bounded mass on V1\V2. If φ is a positive test function with support relatively compact in V1
and φ ≡ 1 near V2 then using the integration by parts we get∫

V2

ddc f j ∧ R ∧ γn−p−1
≤

∫
V1

φddc f j ∧ R ∧ γn−p−1

=

∫
V1\V2

f jddcφ ∧ R ∧ γn−p−1

which are uniformly bounded for all j. Now if we take V3 ⋐ V2 and ψ a positive test function with support
relatively compact in V2 such that, for a neighborhood of V3, the function ψ is equal to |z|2 then∫

V3

| f j| ∧ R ∧ γn−p =

∫
V2

(− f j)R ∧ ddcψ ∧ γn−p−1 +

∫
V2\V3

f jR ∧ ddcψ ∧ γn−p−1

=

∫
V2

(−ψ)R ∧ ddc f j ∧ γ
n−p−1 +

∫
V2\V3

f jR ∧ ddcψ ∧ γn−p−1.

Now if we let j goes to +∞, we get using the Fatou’s lemma that∫
V3

| f |R ∧ γn−p < ∞.

It follows that f ∈ L1
loc(R ∧ γ

n−p) in Ω and this proves that (3) ⇒ (2). As the converse implication (2) ⇒ (3)
is obvious, the proof of the theorem is completed.

In the rest of this section, we take fk a sequence of m−subharmonic functions and Rk a sequence of m−positive
currents. We will treat the problem of convergence of fk.Rk∧γn−m to f .R∧γn−m. More precisely we look for a
suitable type of convergence for fk to f that guarantees the convergence of fk.Rk∧γn−m toward f .R∧γn−m. In
the classic case m = n Demailly [5], Fornaess and Sibony [7] obtained some convergence and approximation
theorems. We will use the convergence in capacity to deal with this problem when the currents Rk are
m−positive.

Definition 3.3. Let 1 ≤ r ≤ m ≤ n and f j, f ∈ SHm(Ω) for all j ∈ N. We say that ( f j) j is convergent to f with
respect to Capr on A if

∀ε > 0, lim
j→+∞

Capr(A ∩
{
| f − f j| > ε

}
) = 0.

Theorem 3.4. (Main Result)
Let R and Rk be m−positive currents defined on Ω with bidegree equal to (p, p) where (p ≤ m ≤ n). Take f and fk
m−subharmonic functions satisfying fk ∈ L1

loc(Rk ∧ γn−p) and f ∈ L1
loc(R ∧ γ

n−p). Assume that there is 1 ≤ r ≤ m
such that

1. fk converges to f in Capr on each A ⋐ Ω,
2. Rk ∧ γn−m

→ R ∧ γn−m as currents in Ω,
3. (R + Rk) ∧ γn−p

≪ Capr on every A ⋐ Ω and the convergence is uniforme for all k,
4. | f |R ∧ γn−p

≪ Capr on every A ⋐ Ω and | fk|Rk ∧ γn−p
≪ Capr on every A ⋐ Ω uniformly for all k,



J. Hbil, M. Zaway / Filomat 38:5 (2024), 1613–1622 1618

then fkRk ∧ γn−m
→ f R ∧ γn−m and hence ddc fk ∧ Rk ∧ γn−m

→ ddc f ∧ R ∧ γn−m in the sense of currents.

Proof. Without loss of generality, we can assume that the functions fk and f are negative in Ω. Since for all
s > 0, the function fk can be written as fk = max( fk,−s)+ fk −max( fk,−s) hence the proof will be established
in two steps. In the first step we will deal with the bounded part in the last decomposition ( so one may
suppose that the functions fk and f are uniformly bounded in Ω) and in the second step we will focus on
the unbounded part.

First step: We assume that the functions fk and f are uniformly bounded in Ω.
In this case we can use the quasicontinuity property for bounded m−subharmonic function (see Propo-

sition 2.8). Using the same argument as in [? ] we deduce by the assumption (1) and quasicontinuity of
m−sh function with respect to Capr for any ε > 0 we can write

f = f1 + f2 and fk = fk,1 + fk,2 ∈ Ω

such that

• (i) f1 is a continuous on Ω

• (ii) fk,2(z) = f2(z) = 0 on Ω \ U for someU ⊂ Ωwith Capr(U) < ε.

• (iii) For each A ⋐ Ω \ U, we have | fk,1 − f1| < ε on A if k is large enough.

• (iv) All the functions fk,1, fk,2, f1 and f2 are uniformly bounded by a constant that does not depend on
ε.

A simple computation show that the following decompositions hold

fkRk ∧ γn−m
− f R ∧ γn−m = ( fk,1 − f1)Rk ∧ γn−m + f1(Rk − R) ∧ γn−m

+ ( fk,2Rk − f2R) ∧ γn−m

= ak + bk + ck

so the proof will be completed in this case if we show that all the sequences ak, bk and ck tend weakly to
0. Since the following inequality∫

A
| fk,1 − f1|Rk ∧ γ

n−p
≤ ε

∫
A\U

Rk ∧ γ
n−p + sup

j
| f j,1 − f1|

∫
U

Rk ∧ γ
n−p,

holds for any A ⋐ Ω and sufficently large k then using the assumption (3) we deduce that ak goes weakly to
zero uniformly for all k as ε→ 0.

For each fixed ε > 0 it follows from the assumption (2) that the sequence bk tends weakly to zero as
k→∞. Finally for ck we have for a test form φ there exist two constants α, β > 0 such that

| < ck, φ > | ≤ α

(∫
U

| fk|Rk ∧ γ
n−m
− | f |R ∧ γn−m

)
≤ β capr(U).

By the assumption (4), we get that ck goes weakly to zero and uniformly for all k when ε tends to 0. The
result of the theorem in the stated first case follows.

Second step: The general case
It suffices to prove that for every s > 0

( fk −max( fk,−s)) ∧ Rk ∧ γ
n−p
→ ( f −max( f ,−s)) ∧ R ∧ γn−p
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weakly to finish the proof of the theorem. For each A ⋐ Ωwe have∣∣∣∣∣∫
A

( fkRk − f R) ∧ γn−p
−

∫
A

(max( fk,−s)Rk −max( f ,−s)R) ∧ γn−p
∣∣∣∣∣

=

∣∣∣∣∣∣
∫

A∩{ fk<−s}
( fk + s)Rk ∧ γ

n−p
−

∫
A∩{u<−s}

( f + s)R ∧ γn−p

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫

A∩{ fk<−s}
( fk + s)Rk ∧ γ

n−p

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∫

A∩{ f<−s}
( f + s)R ∧ γn−p

∣∣∣∣∣∣
≤

∫
A∩{ fk<−s}

(− fk − s)Rk ∧ γ
n−p +

∫
A∩{ f<−s}

(− f − s)R ∧ γn−p

≤

∫
A∩{ fk<−s}

| fk|Rk ∧ γ
n−p +

∫
A∩{ f<−s}

| f |R ∧ γn−p.

Since Capr(A ∩ { fk < −s}) ≤ CACapm(A ∩ { fk < −s}) → 0 as s → ∞( see Corollary 1.6.10 in [3]), it turns out
from the hypothesis (1) and (2) that the R.H.S in the last inequality tends uniformly to zero as s→∞. Hence
we get the desired result.

4. Application: The case Rk = (ddc fk)p

This section is an application of the Theorem 3.4 since we will deal with a special family of m−positive
currents: the family of currents that can be written as Rk = (ddc fk)p. Following the proof of Theorem 3.2 in
[1], one can prove the following lemma.

Lemma 4.1. Let R j be a sequence of m−positive currents of bidimension (n − p,n − p), (p ≤ m ≤ n) in Ω such that
R j ∧ γn−m

→ R ∧ γn−m. The statements that follow are equivalent:

1. For all m−polar set M ⊂ Ω one has R∧γn−m(M) = 0 and f .R j ∧γn−m
→ f .R∧γn−m for every locally bounded

m−subharmonic function f on Ω;
2. the sequence R j ∧ γn−m has uniformly a small mass on sets of small m−capacity.

Since the proof is completely similar to the proof of Theorem 3.2 in [1], we will omit it. We prove in the
following example that when fk decreases to f , the condition (4) of Theorem 3.4 will be satisfied.

Example 4.2. Let ξk ∈ SHm(Ω) a bounded sequence of functions that decrease to a function ξ in Ω. We consider
R = (ddcξ)p

∧γn−m and Rk = (ddcξk)p
∧γn−m. Take f and fk m−subharmonic functions satisfying fk ∈ L1

loc(Rk∧γn−p)
and f ∈ L1

loc(R ∧ γ
n−p). It is easy to check that

(− fk)Rk ∧ γ
n−p
≪ (ddcξk)p

∧ γn−p
≪ Capp

for each k. Using Lemma 4.1, we find that

(− f )R ∧ γn−p
≪ Capp.

Hence the hypothesis (4) of Theorem 3.4 holds.

The previous example represents a motivation to study the converse implication for this special family
of currents. In this direction we will show that the assumption (1) in Theorem 3.4 is necessary in some
particular cases. This is the objective of the following theorem.

Theorem 4.3. Suppose that 1 ≤ p ≤ m and f , fk are locally uniformly bounded m−sh functions in Ω satisfying all
the following:

1. There exists E ⋐ Ω such that fk = f in Ω \ E for all k = 1, 2, ....
2. fk(ddc fk)m−p

∧ γn−m tends weakly in the sense of currents to f (ddc f )m−p
∧ γn−m in Ω.

3. fk → f in L1
loc(Ω).
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Then fk → f in Capm−p on Ω.

Proof. Let t > 0 and fix 1 ∈ SHm(Ω) with value in [0, 1]. By combining the well-known Schwarz inequality
and integration by parts, we get that∫

{| fk− f |>t}
(ddc1)m−p

∧ γn+p−m

≤
1
t2

∫
Ω

( fk − f )2(ddc1)m−p
∧ γn+p−m

=
−1
t2

∫
Ω

d( fk − f )2
∧ dc1 ∧ (ddc1)m−p−1

∧ γn+p−m

≤ C1

(∫
Ω

d( fk − f )2
∧ dc( fk − f )2

∧ (ddc1)m−p−1
∧ γn+p−m

) 1
2

≤ 2C1C2

(∫
Ω

d( fk − f ) ∧ dc( fk − f ) ∧ (ddc1)m−p−1
∧ γn+p−m

) 1
2

≤ 2C1C2

(∫
Ω

d( fk − f ) ∧ dc1 ∧ ddc( fk − f ) ∧ (ddc1)m−p−2
∧ γn+p−m

) 1
2

where the constant C1 := 1
t2

(∫
Ω

d1 ∧ dc1 ∧ (ddc1)m−p−1
∧ γn+p−m

) 1
2 and C2 is a constant greater than || fk− f ||∞ <

∞ for all k and z ∈ Ω. By the Chern-Levine-Nirenberg estimate in [3], we get that C1 is uniformly bounded
for all functions 1 ∈ SHm(Ω) with 0 < 1 < 1. As

ddc( fk − f ) ∧ T ∧ γn−m
≤ ddc( fk + f ) ∧ T ∧ γn−m

and if we repeat the same operation (m − p − 2)−times, we obtain that there exists S > 0 such that∫
{| fk− f |>t}

(ddc1)m−p
∧ γn+p−m

≤ S
(∫
Ω

( fk − f )ddc( fk − f ) ∧ (ddc( fk + f ))m−p−1
∧ γn+p−m

) 1
2m−p

for all k, t and such functions 1.
By combining the Hartogs’ Lemma and the Proposition 2.8 we obtain that for every ε > 0 there exists l > 0
and A ⊂ E such that Capm−p(A) < ε and fk(z) ≤ f (z) + ε in Ω \ A for all k ≥ l. As the sequence fk is locally
uniformly bounded, then for k ≥ l one has∫

Ω

( fk − f )ddc( fk − f ) ∧ (ddc( fk + f ))m−p−1
∧ γn+p−m

≤

∫
Ω\A

(ε + f − fk)ddc( f − fk) ∧ (ddc( fk + f ))m−p−1
∧ γn+p−m + O(Capm−p(A) + ε)

≤ (m − p)!
∫

E\A
(ε + f − fk)

m−p∑
i=0

(ddc fk)i
∧ (ddc f )m−p−i

∧ γn+p−m + O(ε)

≤ (m − p)!
∫
Ω

|z|2((ddc f )m−p+1
− (ddc fk)m−p+1) ∧ γn+p−m−1 + O(ε).

Since (ddc fk)m−p+1
∧ γn−m

− (ddc f )m−p+1
∧ γn−m is supported by a compact subset of Ω and

(ddc fk)m−p+1
∧ γn−m

− (ddc f )m−p+1
∧ γn−m

→ 0

weakly, we get that fk → f in Capm−p on Ω and the proof is completed.

We give, in the following theorem, another version of Theorem 3.4 where the fourth condition will be
replaced by another condition.
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Theorem 4.4. Let R,Rk ∈ D
′

p(Ω) for p ≤ m ≤ n. Assume that fk, f ∈ SHm(Ω) such that f ∈ L1
locR ∧ γ

n−p. If there
is r ∈N (1 ≤ r ≤ m) such that

1. fk → f in Capr on every A ⋐ Ω,
2. Rk ∧ γn−m

→ R ∧ γn−m as currents in Ω,
3. (R + Rk) ∧ γn−p

≪ Capr on every A ⋐ Ω uniformly for all k,

4. For all k,
∞∑
j=0

|Rk ∧ γ
n−m
|E( fk < − j) < ∞ is uniformly convergent on every A ⋐ Ω.

then fkRk ∧ γn−m
→ f R ∧ γn−m as currents in Ω.

Proof. Using Theorem 3.2, the assumption (4) implies that for all k, the current fkRk ∧ γn−m has locally
bounded mass inΩ. As | f |R∧γn−p

≪ R∧γn−p
≪ Capr on every A ⋐ Ω, Theorem 3.4 says that ” it suffices to

show that | fk|Rk∧γn−p
≪ Capr uniformly for every k and A ⋐ Ω” which is a direct consequence of hypothesis

(3) in the case when all fk are uniformly bounded on A.
We can suppose, by Hartog’s Lemma and proposition 2.8, that fk are uniformly bounded from above on E.
If J is a sufficiently large integer then we have∫

{ fk<−J}∩E
| fk|Rk ∧ γ

n−p
≤ 2

∞∑
j=J

j|Rk ∧ γ
n−m
|E(− j − 1 ≤ fk < − j)

= 2J
∞∑
j=J

|Rk ∧ γ
n−m
|E(− j − 1 ≤ fk < − j) + 2

∞∑
i=J+1

∞∑
j=i

|Rk ∧ γ
n−m
|E(− j − 1 ≤ fk < − j)

= 2J|Rk ∧ γn−m
|E( fk < −J) + 2

∞∑
i=J+1

|Rk ∧ γ
n−m
|E( fk < −i) ≤ 4

∞∑
i=[ J

2 ]−1

|Rk ∧ γ
n−m
|E( fk < −i)

which tends uniformly to zero for all k as J→∞ using hypothesis (4). The desired result follows.

Conclusion : In conclusion, this work represents an extension on the study of the problem of the conver-
gence in capacity for complex operators. In the classical case, several works have studied this problem to
find sufficient conditions so that the convergence in capacity will ensure the convergence of the associated
operator ( See [1, 2, 6, 11]). This work deals with a more general and more complicated case as the operators
are associated with a closed positive current R and the functions are m−subharmonics it suffices to take
the trivial current R = 1 to get the results in [3] or m = n and R = 1 to recover the results found in [1, 11].
The application of the main result for the particular currents Rk = (ddc fk)p is more general and shows
the importance of the found result. Such application may be also useful to solve the Dirichlet problem
whenever this problem is associated to a given closed current.
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