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Multivalued operators with finite essential ascent or essential descent
and perturbations
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Abstract. The aim of this paper is to enlarge some known results from Fredholm and perturbation theory
via measure of non-compactness. As applications, we focus on the study of the essential ascent and the
essential descent spectra of an operator T defined on a given Banach space. Some perturbation results are
also investigated.

1. Introduction

J. Von. Neumann introduced, in 1950, the notion of multi-valued linear operators in order to study
adjoints of non-densely defined linear differential operators [25]. In fact, the adjoint of a non-densely
defined operator and the inverse of a non invertible operator is not single-valued. So it is always required
that the operators are densely defined or invertible, when one considers their adjoints or their inverses in
the classical operator theory. Further, we found recently, that minimal and maximal operators generated by
symmetric linear difference expressions are multi-valued or non-densely defined in general even though
the corresponding definiteness condition is satisfied [18, 23]. So, the classical operator theory seems not
available in some situations. For this reason, it is legitimate for us to extend some results to the multi-
valued case in order to solve some connected problems. During the past last years, a number of papers
have appeared on the spectral analysis of multi-valued linear operators.

Throughout this work, X will be an infinite dimensional Banach space on the field C. A multi-valued
linear operator T on X is a mapping from a subspace D(T), called the domain of T, into 2X (the set of all
subsets of X) satisfying T(λx1 + µx2) ⊃ λTx1 + µTx2, for all scalars λ and µ, with equality if λ and µ are
nonzero. We use the term linear relation, to refer to such a multi-valued linear operator denoted T ∈ LR(X).
The simplest naturally occurring examples of a multi-valued operators are the inverse, closure, completion
and adjoint of single-valued operators. Similar to a single-valued linear transform, a multi-valued linear
operator T is determined by its graph: G(T) = {(x, y) : x ∈ D(T), y ∈ Tx}. For this reason we identify T and
G(T) and we say that T is closed if its graph is closed in the space X×X. The class of such linear relations will
be denoted by CR(X). The inverse of T is the linear relation T−1 defined by T−1 := {(y, x) ∈ X×X : (x, y) ∈ T}.
Clearly that T is closed if and only if T−1 is closed.

Let M and N be subspaces of X. Then the inverse image of N under T is defined to be the set T−1(N) :=
{x ∈ D(T) : Tx ∩ N , ∅}.When M ∩ D(T) , ∅, the restriction T/M is given by T/M : {(m, y) ∈ T : m ∈ M}, and
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we define the image of M under T by T(M) := {y ∈ Tx : x ∈ M ∩D(T)}. The set T(0), called the multivalued
part of T, is a subspace of X. One can easy see that T is single-valued if and only if T(0) = {0}. By QT we
denote the natural quotient map from X into X/T(0) with kernel T(0). Clearly that QTT is single-valued. For
x ∈ D(T), define ∥Tx∥ by ∥Tx∥ := ∥QTTx∥, and let the quantity ∥T∥ be defined as ∥T∥ := ∥QTT∥. T is said to
be continuous if ∥T∥ < ∞ and we say that T is open if γ(T) := sup{λ ∈ R : λd(x,N(T)) ≤ ∥Tx∥, x ∈ D(T)} > 0.
From [8, III.4.2], if T is closed, then T is open if and only if R(T) is closed.

Let S,T ∈ LR(X). If D(T) ∩D(S) , ∅, then the sum S + T is defined as the linear relation

S + T := {(x, y + z) : (x, y) ∈ S and (x, z) ∈ T}.

When R(T) ∩D(S) , ∅, the product ST is given by

ST := {(x, z) : (x, y) ∈ T, (y, z) ∈ S for some y ∈ X}.

While, for λ ∈ C, λT and T + λ are the linear relations (λI)T and T + λI respectively, where I is the identity
operator in X. Since the product of linear relations is clearly associative, if n ∈ Z, Tn is defined as usual
with T0 = I, T1 = T and Tn+1 = TnT.

For T ∈ LR(X), we will write N(T) := T−1(0) for its kernel and R(T) := T(D(T)) for its range and we denote
by α(T) and β(T) the dimension of N(T) and the codimension of R(T) respectively. If T ∈ CR(X), then T is
called upper semi-Fredholm, denoted T ∈ Φ+(X), (respectively lower semi-Fredholm, denoted T ∈ Φ−(X))
if R(T) is closed and α(T) (respectively β(T)) is finite. We also write β(T) := dimX/R(T). If T is both upper
and lower semi-Fredholm, we say that T is Fredholm denoted T ∈ Φ(X). The index of such linear relation
is given by ind(T) = α(T) − β(T).

Recall that we have the following chains

N(T) ⊂ N(T2) ⊂ ... ⊂ N(Tn) ⊂ ...., and R(T) ⊃ R(T2) ⊃ ... ⊃ R(Tn) ⊃ ....

The chain singular of T, which play a fundamental role in the proofs of several main results of this paper,
is given by

Rc(T) := [
⋃
∞

n=0
N(Tn)] ∩ [

∞⋃
n=0

Tn(0)].

To notice that every single-valued operator T has a trivial singular chain, that is Rc(T) = {0}. In the same
way, we define the generalized kernel and the the generalized range of T by

N∞(T) :=
∞⋃

n=0

N(Tn) and R∞(T) :=
∞⋂

n=0

R(Tn).

For i,n ∈N, let as consider the quantities:

αi
n(T) := dim

N(Tn+i)
N(Tn)

(the essential nullity), βi
n(T) := dim

R(Tn)
R(Tn+i)

(the essential defect),

γi
n(T) := dim

Tn+i(0)
Tn(0)

(the essential co-nullity), δi
n(T) := dim

D(Tn)
D(Tn+i)

(the essential co-defect),

si
n(T) := dim

N(Ti) ∩ R(Tn)
N(Ti) ∩ R(Tn+i)

, ki
n(T) := dim

Ti(0) ∩D(Tn)
Ti(0) ∩D(Tn+1)

.

As useful we denote αn(T) := α1
n(T) and βn(T) := β1

n(T). Clearly that α(T) = α0(T) and β(T) = β0(T). Wherefore, we
define the ascent, the descent, the essential ascent and the essential descent of T, respectively by

a(T) := inf{n ∈N : αn(T) = 0}, d(T) := inf{n ∈N : βn(T) = 0},

ae(T) := inf{n ∈N : αn(T) < ∞}, de(T) := inf{n ∈N : βn(T) < ∞},
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the infimum over the empty set is taken to be∞. A classical example of operator with finite essential ascent (respectively
essential descent) is the upper (respectively lower) semi-Fredholm operator, precisely, if T ∈ Φ+(X) (respectively
T ∈ Φ−(X)), then ae(T) = 0 (respectively de(T) = 0). Define the following sets which are used in the sequel

C(X) := {T ∈ CR(X) : Rc(T) = {0} and D(Tr) + R(Ts) = X ∀r, s ∈N},

ξ+(X) := {T ∈ C(X) : n = ae(T) < ∞ and R(Tn+1) is closed},

ξ−(X) := {T ∈ C(X) : n = de(T) < ∞ and R(Tn) is closed},

ξ±(X) := ξ+(X) ∪ ξ−(X) and ξ(X) := ξ+(X) ∩ ξ−(X).

Evidently, C(X) is a non-empty set because it contains all everywhere defined or surjective linear relations. Let T ∈ ξ±
and n ≥ in f {ae(T), de(T)}. The ith essential index of degree n of T is defined as

indi
n(T) := αi

n(T) − βi
n(T) ∈ Z ∪ {−∞,∞}.

In particular, if T is semi-Fredholm, then ind1
0(T) = α(T) − β(T) = ind(T) (the Fredholm index). For T ∈ ξ± we define the

degree of stable iteration p(T) and q(T) by

p(T) := inf{p ∈N : αn(T) = αp(T),∀n ≥ p},

respectively,
q(T) := inf{q ∈N : βn(T) = βp(T),∀n ≥ q}.

The concept of ascent and descent of linear operators is introduced by F. Riesz in [19] in connection with his
investigations of compact linear operators. Several authors are interested in studying this notion in the context of
single-valued operators [2, 12, 13]. Recently, some works has been devoted to extend these concepts to the multi-valued
case (see for instance [3–7, 21]). Further, the quantities α(T) and β(T) appear in [10, 13, 14, 20] in connection with the
perturbation theory of linear operators in Banach spaces. Our aim of this work is to study the essential index of a
given linear relation T on X. We shall proved some results related to the stability of such index under perturbations.
In Section 2, we give some preliminary properties of the essential nullity αi

n(T) and the essential defect βi
n(T) of T. In

particular we give relationships between αi
n(ST) and βi

n(ST) and those of S and T, where S and T are linear relations on
X. As consequence, a formula which relates the essential ascent and the essential descent of the relations S and T with
those of the product relation ST is presented. Section 3 is devoted to focus on the essential index of a product of linear
relations under some supplementary conditions. We finish by Section 4 where some perturbation results related to the
essential ascent and essential descent of closed linear relation on X are given. In particular, we prove the stability of
the essential index under perturbations.

2. Preliminaries

Always X is an infinite dimensional Banach space on the field C. The following algebraic results, together with
their proofs, can be found in [13, 24].

Lemma 2.1. Let M and N be subspaces of a linear space E. Then

(i) M/M ∩N ≃ (M +N)/N.
(ii) If moreover M ⊂ N, then dim(E/M) = dim(E/N) + dim(N/M).

Lemma 2.2. Let M1,M2 and N be subspaces of a linear space E. If M1 ⊂M2, then

dim
M1

M1 ∩N
≤ dim

M2

M2 ∩N
.

The next lemma is an improvement of [21, Lemma 4.4].

Lemma 2.3. Let A ∈ LR(X) and let i,n ∈N. Then

N(An+i)
N(An)

≃
N(Ai) ∩ R(An)
N(Ai) ∩ An(0)

.

In particular, if Rc(A) = {0}, then N(An+i)
N(An) ≃ N(Ai) ∩ R(An).
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As consequences of Lemma 2.3 and [21, Lemmas 4.1, 4.2, 4.4], we have the following properties.

αi
n(A) = dim[

N(Ai) ∩ R(An)
N(Ai) ∩ An(0)

]. (1)

βi
n(A) = dim[

D(An)
(N(An) + R(Ai)) ∩D(An)

]. (2)

γi
n(A) = dim[

Ai(0) ∩D(An)
Ai(0) ∩N(An)

]. (3)

δi
n(A) = dim[

R(An)
(An(0) +D(Ai)) ∩ R(An)

]. (4)

si
n(A) = dim[

N(An+i)
(N(An) + R(Ai)) ∩N(An+i)

]. (5)

ki
n(A) = dim[

An+i(0)
(An(0) +D(Ai)) ∩ An+i(0)

]. (6)

Lemma 2.4. Let A ∈ LR(X). Then
(i) αi

n(A) ≥ αi
n+i(A) + si

n(A), with equality if Rc(A) = {0}.
(ii) βi

n(A) ≥ βi
n+i(A) + si

n(A), with equality if X = D(An) + R(Ai).
(iii) γi

n(A) ≥ γi
n+i(A) + ki

n(A), with equality if Rc(A) = {0}.
(iv) δi

n(A) ≥ δi
n+i(A) + ki

n(A), with equality if X = D(Ai) + R(An).

Proof. (i)

αi
n(A) = dim

N(An+i)
N(An)

= dim[
N(Ai) ∩ R(An)
N(Ai) ∩ An(0)

] ( f rom (1))

= dim
N(Ai) ∩ R(An)

N(Ai) ∩ R(An+i)
+ dim

N(Ai) ∩ R(An+i)
N(Ai) ∩ An(0)

(Lemma 2.1)

≥ dim
N(Ai) ∩ R(An)

N(Ai) ∩ R(An+i)
+ dim

N(Ai) ∩ R(An+i)
N(Ai) ∩ An+i(0)

= si
n(A) + αi

n+i(A).

If Rc(A) = {0}, then

αi
n(A) = dim[N(Ai) ∩ R(An)]

= dim
N(Ai) ∩ R(An)

N(Ai) ∩ R(An+i)
+ dimN(Ai) ∩ R(An+i)

= si
n(A) + αi

n+i(A).

(ii)

βi
n(A) = dim

D(An)
[N(An) + R(Ai)] ∩D(An)

( f rom (2))

= dim
D(An) + R(Ai)
N(An) + R(Ai)

(Lemma2.1(i))

= dim
D(An) + R(Ai)

N(An+i) + R(Ai)
+ dim

N(An+i) + R(Ai)
N(An) + R(Ai)

(Lemma 2.1(ii))

≥ dim
D(An+i) + R(Ai)
N(An+i) + R(Ai)

+ dim
N(An+i) + R(Ai)
N(An) + R(Ai)

= dim
D(An+i) + R(Ai)
N(An+i) + R(Ai)

+ dim
N(An+i)

(N(An) + R(Ai)) ∩N(An+i)
(Lemma 2.1(i))

= dim
D(An+i)

[N(An+i) + R(Ai)] ∩D(An+i)
+ dim

N(An+i)
(N(An) + R(Ai)) ∩N(An+i)

= βi
n+i(A) + si

n(A).
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Suppose, moreover, that X = D(An) + R(Ai). It follows that

βi
n(A) = dim

X
N(An+i) + R(Ai)

+ dim
N(An+i) + R(Ai)
N(An) + R(Ai)

= βi
n+i(A) + si

n(A).

To show (iii) and (iv) it suffices to replace A−1 instead to A in (i) and (ii) respectively.

Lemma 2.5. Let A ∈ C(X). Then

(i) For i ∈N, (αi
n(A))n, (βi

n(A))n, (γi
n(A))n and (δi

n(A))n are decreasing sequences.
(ii) For n ∈N, (αi

n(A))i, (βi
n(A))i, (γi

n(A))i and (δi
n(A))i are increasing sequences.

Proof. (i) Since R(An+1) ⊂ R(An) and A ∈ C(X), then αi
n(A) = dim[N(Ai) ∩ R(An)] ≥ dim[N(Ai) ∩ R(An+1)] = αi

n+1(A).

Combining Formula (2) together with Lemma 2.1(i) and the fact that A ∈ C(X), one has βi
n(A) = dim D(An)+R(Ai)

N(An)+R(Ai) =

dim X
N(An)+R(Ai) ≥ dim X

N(An+1)+R(Ai) = β
i
n+1(A). Furthermore, clearly that A−1

∈ C(X) whenever A ∈ C(X), and since
γi

n(A) = αi
n(A−1) and δi

n(A) = βi
n(A−1), then it follows that (γi

n(A))n and (δi
n(A))n are also decreasing sequences.

(ii) Since N(Ai) ⊂ N(Ai+1) and A ∈ C(X), then αi
n(A) = dim[N(Ai) ∩ R(An)] ≤ dim[N(Ai+1

∩ R(An)] = αi+1
n (A). In the

same way we prove that βi
n(A) ≤ βi+1

n (A). To prove that (γi
n(A))i and (δi

n(A))i are increasing sequences it suffices to
take A−1 instead to A in αi

n(A) and βi
n(A) respectively.

The next proposition is an improvement of [21, Lemma 5.4]. Our techniques used in this proof are different from those
used in [21, Lemma 5.4].

Proposition 2.6. Let A ∈ C(X) and n ∈N,m ∈N\{0}. Then

(i) αi
nm(A) ≤ αi

n(Am) ≤ miα1
nm(A).

(ii) βi
nm(A) ≤ βi

n(Am) ≤ miβ1
nm(A).

Proof. The use of Lemma 2.1(ii) together with the fact that (αi
n(A))n is a decreasing sequence, one can deduce that

αi
n(Am) = dim

N(Anm+mi)
N(Anm)

=

mi−1∑
j=0

dim
N(Amn+mi− j)

N(Amn+mi− j−1)

=

mi−1∑
j=0

α1
nm+mi− j−1

≤ miα1
nm(A).

On the other hand, since N(Anm+i) ⊂ N(Anm+mi), then

αi
nm(A) = dim

N(Anm+i)
N(Anm)

≤ dim
N(Anm+mi)

N(Anm)
= αi

n(Am).

This proves (i). In the same way we prove (ii).

Corollary 2.7. Let A ∈ C(X) and let m ∈N. Then

(i) a(Am) ≤ a(A) ≤ ma(Am).
(ii) ae(Am) ≤ ae(A) ≤ mae(Am).

(iii) d(Am) ≤ d(A) ≤ md(Am).
(iv) de(Am) ≤ de(A) ≤ mde(Am).

Proof. (i) Since (αn(A))n is a decreasing sequence, one can deduce from Proposition 2.6(i), that αnm(A) ≤ αn(Am) ≤
mαnm(A) ≤ mαn(A). Therefore the result is trivial if a(A) = ∞. Assume now that r = a(A) < ∞. Then αr(A) = 0 and
hence αr(Am) ≤ mαr(A) = 0. This implies that s = a(Am) ≤ r. The fact that αsm(A) ≤ αs(Am) = 0 gives that r ≤ ms.
Consequently, a(Am) ≤ a(A) ≤ ma(Am).
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(ii) First observe that, for T ∈ LR(X), ae(T) ≤ k if and only if αn(T) < ∞ for all n ≥ k. Let us suppose that p = ae(A) < ∞.
Then αp(Am) ≤ αpm(A) < ∞ (Proposition 2.6). Hence q = ae(Am) ≤ p. On the other hand, αmq(A) ≤ αq(Am) < ∞,
which implies that p ≤ mq. The result is evident when ae(A) = ∞. I omit the proofs of (iii) and (iv) because they
are similar to those of (i) and (ii).

The next lemma gives a relationship between the essential nullity and the essential defect of a linear relation which
extend the classical very well known result α(T) ≤ β(T) (see [21, Lemma 5.3]).

Lemma 2.8. Let A ∈ LR(X) and i,n ∈N. If N(A) ∩ R(Anr) = {0} for some r ∈N, then αi
n(A) ≤ βi

n(A).

Proof. For k ∈ N, let Ak be the restriction of A viewed as a map from R(Ak) into R(Ak). Since N(A) ∩ R(Anr) = {0}, then
N(An+ j) ∩ R((An+ j)r) = N(A) ∩ R(A(n+ j)r) = {0}, for all j ∈N. Now, from [21, Lemma 5.3], it follows that

αi
n(A) =

i−1∑
j=0

α1
n+ j(A) =

i−1∑
j=0

α(An+ j) ≤
i−1∑
j=0

β(An+ j) =
i−1∑
j=0

β1
n+ j(A) = βi

n(A).

Lemma 2.9. Let A ∈ LR(X). Then
(i) ae(A) ≤ a(A),

(ii) de(A) ≤ d(A),
(iii) if a(A) < ∞ and d(A) < ∞, then a(A) ≤ d(A), with equality if D(Am) ⊂ R(A) +D(An), for some m,n ∈N,
(iv) if ae(A) < ∞ and de(A) < ∞, then ae(A) ≤ de(A), with equality if R(A) +D(An) = X, for some n ∈N.

Proof. The parts (i) and (ii) are trivial and the part (iii) is proved in [21, Theorem 5.7]. In [5, Theorem 2.1] the authors
proved that ae(A) ≤ de(A) whenever these quantities are finite and we have equality when A is everywhere defined.
We will prove that the equality in Part (iv) holds when R(A) + D(An) = X, for some n ∈ N. For this, let m = ae(A) and
n = de(A). Since m ≤ n, then n = m + j for some j ∈N. It follows, from Lemma 2.4, that

βm(A) = βm+1(A) + sm(A)

= βm+2(A) + sm+1(A) + sm(A)

= ......

= βm+ j(A) + sm+ j−1(A) + ... + sm(A)

= βn(A) + sm+ j−1(A) + ... + sm(A).

Now, since αm(A) < ∞, then αk(A) < ∞ for all k ≥ m, and hence one can deduce from Lemma 2.4 (i), that sk(A) < ∞, for
all k ≥ m. It follows, since βn(A) < ∞, that βm(A) = βn(A) + sm+ j−1(A) + ... + sm(A) < ∞, so that de(A) ≤ m. Consequently,
n = m.

It is very well known, for A,B ∈ LR(X), that α(AB) ≤ α(A) + α(B) and β(AB) ≤ β(A) + β(B). In the next proposition we
show that we have, under supplementary conditions, a similar relation in terms of essential nullity and essential defect.

Proposition 2.10. Let A,B ∈ LR(X) be such that AB ∈ C(X). Suppose that AB = BA, N(AkBk) = N(Ak) + N(Bk), R(AkBk) =
R(Ak) ∩ R(Bk), N(Bi) ⊂ R(Ak) and N(Ai) ⊂ R(Bk), ∀i, k ∈N. Then we have the following:

(i) max{αi
n(A), αi

n(B)} ≤ αi
n(AB) ≤ αi

n(A) + αi
n(B).

(ii) max{βi
n(A), βi

n(B)} ≤ βi
n(AB) ≤ βi

n(A) + βi
n(B).

Proof. Since Rc(AB) = {0}, then one can deduce that Rc(A) = Rc(B) = {0}.
(i)

αi
n(AB) = dim

N((AB)i)
N((AB)n)

= dim[N(AiBi) ∩ R(AnBn)]

= dim[N(Ai) +N(Bi)] ∩ R(An) ∩ R(Bn)

= dim[N(Ai) ∩ R(An) +N(Bi)] ∩ R(Bn) (equality since N(Bi) ⊂ R(An))

= dim[N(Ai) ∩ R(An) +N(Bi) ∩ R(Bn)] (equality since N(Ai) ∩ R(An) ⊂ R(Bn))

≤ dim[N(Ai) ∩ R(An)] + dim[N(Bi) ∩ R(Bn)]

= αi
n(A) + αi

n(B).
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Now we show that αi
n(A) ≤ αi

n(AB). We have

αi
n(A) = dimN(Ai) ∩ R(An)

= dimN(Ai) ∩N(AiBi) ∩ R(An)

≤ dimN(AiBi) ∩ R(Bn) ∩ R(An) (since N(Ai) ⊂ R(Bn))

= dimN((AB)i) ∩ R((AB)n)

= αi
n(AB).

In the same way ( by interchanging the roles of A and B ) we show that αi
n(B) ≤ αi

n(AB) and this completes the
proof of the part (i).

(ii) By using (2) and Lemma 2.1 we have that

βi
n(AB) = dim

D((AB)n) + R((AB)i)
N((AB)n) + R((AB)i)

= dim
X

N(An) +N(Bn) + R(Ai) ∩ R(Bi)

= dim
X

N(An) +N(Bn) + R(Ai) ∩ R(Bi)

= dim
X

[N(An) + R(Ai)] ∩ R(Bi) +N(Bn)
(since N(An) ⊂ R(Bi))

= dim
X

[N(An) + R(Ai)] ∩ [R(Bi) +N(Bn)]
(since N(Bn) ⊂ R(Ai))

= dim
X

[N(An) + R(Ai)]
+ dim

N(An) + R(Ai)
[N(An) + R(Ai)] ∩ [N(Bn) + R(Bi)]

= dim
X

[N(An) + R(Ai)]
+ dim

N(An) + R(Ai) +N(Bn) + R(Bi)
N(Bn) + R(Bi)

(Lemma2.1)

≤ dim
X

[N(An) + R(Ai)]
+ dim

X
N(Bn) + R(Bi)

= βi
n(A) + βi

n(B).

On the other hand

βi
n(A) = dim

X
N(An) + R(Ai)

≤ dim
X

[N(An) + R(Ai)] ∩ [N(Bn) + R(Bi)]

= dim
X

[N(An) + R(Ai)] ∩N(Bn) + [N(An) + R(Ai)] ∩ R(Bi)
(since N(An) ⊂ N(Bn) + R(Bi))

= dim
X

[N(Bn) +N(An) + R(Ai) ∩ R(Bi)]
(since N(Bn) ⊂ N(An) + R(Bi) and N(An) ⊂ R(Bi))

= dim
X

[N(An) +N(Bn) + R(Ai) + R(Bi)]

= dim
X

N(AnBn) + R(AiBi)

= dim
X

N((AB)n) + R((AB)i)

= βi
n(AB).

In the same way we show that βi
n(B) ≤ βi

n(AB). This complete the proof.

By substituting A and B in the Proposition 2.10 by A−1 and B−1 respectively and by observing that AB ∈ C(X) if, and
only if A−1B−1

∈ C(X), we have the immediate next corollary.

Corollary 2.11. Let A,B ∈ LR(X) such that AB ∈ C(X). Suppose that AB = BA, AkBk(0) = Ak(0) + Bk(0), D(AkBk) =
D(Ak) ∩D(Bk), Bi(0) ⊂ D(Ak) and Ai(0) ⊂ D(Bk), ∀i, k ∈N. Then the following assertions hold:
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(i) max{γi
n(A), γi

n(B)} ≤ γi
n(AB) ≤ γi

n(A) + γi
n(B).

(ii) max{δi
n(A), δi

n(B)} ≤ δi
n(AB) ≤ δi

n(A) + δi
n(B).

Example 2.12. Let T ∈ LR(X) be everywhere defined with trivial singular chain and let λ , µ ∈ C. Consider the linear relations
A = T − λ and B = T − µ. From [22, Corollary 21,Theorems 3.2,3.3 and 3.4], we have AB = BA, N(AkBk) = N(Ak) + N(Bk),

R(AkBk) = R(Ak) ∩ R(Bk) and N(Ai) ⊂ R(Bk), ∀i, k ∈ N. Moreover AB ∈ C(X). Now, let P(X) =
k∏

j=1

(X − λ j)m j be a complex

polynomial and define the polynomial in T as the linear relation

P(T) :=
k∏

j=1

(T − λ j)m j .

Then one has

max
j
{αi

nm j
(T − λ j)} ≤ αi

n(P(T)) ≤
k∑

j=1

m jα
i
nm j

(T − λ j).

max
j
{βi

nm j
(T − λ j)} ≤ βi

n(P(T)) ≤
k∑

j=1

m jβ
i
nm j

(T − λ j).

Example 2.13. Let A,B,C and D be bounded mutually commuting operators on X such that AC+DB = I. Then A and B satisfy
the conditions of Proposition 2.10. Indeed, A and B are bounded, hence AB ∈ C(X). Moreover, the fact that AC + DB = I and
that A,B,C and D are mutually commuting operators allows us to easily show (using the binomial expansion for commuting
operators), that all conditions in Proposition 2.10 are satisfied.

Corollary 2.14. Let A,B ∈ LR(X) defined as in Proposition 2.10. Then

(i) ae(AB) = max{ae(A), ae(B)}.
(ii) a(AB) = max{a(A), a(B)}.

(iii) de(AB) = max{de(A), de(B)}.
(iv) d(AB) = max{d(A), d(B)}.

Proof. (i) Suppose that ae(AB) = ∞, thenαn(AB) = ∞, for all n ∈N. Hence, from Proposition 2.10 (i), max{αn(A), αn(B)} =
∞, for all n ∈ N. This means that max{ae(A), ae(B)} = ∞. Now, suppose that n = ae(AB) < ∞. Then
max{αn(A), αn(B)} ≤ αn(AB) < ∞. It follows that p = max{ae(A), ae(B)} ≤ n. On the other hand, αp(AB) ≤
αp(A) + αp(B) < ∞, hence ae(AB) ≤ p. Consequently, ae(AB) = max{ae(A), ae(B)}.

(ii) If AB has an infinite ascent, then αn(AB) > 0, for all n ∈ N, which implies that max{αn(A), αn(B)} ≥ 1
2 [αn(A) +

αn(B)] ≥ 1
2αn(AB) > 0, for all n ∈ N. Therefore max{a(A), a(B)} = ∞. Assume now that n = a(AB) < ∞. Then,

max{αn(A), αn(B)} ≤ αn(AB) = 0, so that p = max{a(A), a(B)} ≤ n. On the other hand, αp(AB) ≤ αp(A) + αp(B) = 0.
Hence n = a(AB) ≤ p. This proves (ii). In the same way we prove the Parts (iii) and (iv).

3. The essential index

Let A,B ∈ LR(X). Our aim in this section is to give relationship between the essential index of AB and those of A
and B. Also the index of the power Am, m ∈ N is studied. From Lemma 2.4, it is easy to see that sn(A) < ∞ if and only
if αn(A) or βn(A) is finite.

Theorem 3.1. Let A,B ∈ LR(X) such that AB ∈ C(X). Suppose that AB = BA, N(AkBk) = N(Ak) + N(Bk), R(AkBk) =
R(Ak) ∩ R(Bk), N(Bi) ⊂ R(Ak) and N(Ai) ⊂ R(Bk), ∀i, k ∈ N. If A and B have finite indices indi

n(A) and indi
n(B), for some

n, i ∈N, then indi
n(AB) is finite and

− inf{αi
n(A), αi

n(B)} ≤ indi
n(AB) − indi

n(A) − indi
n(B) ≤ inf{βi

n(A), βi
n(B)}.

Proof. Clearly, since indi
n(A) and indi

n(B) are finite, then αi
n(A), βi

n(A), αi
n(B) and βi

n(B) are finite. Hence, from Proposition
2.10, one can deduce that AB has a finite ith-essential index of degree n. The result follows easily from Proposition
2.10.
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Corollary 3.2. Let A,B ∈ LR(X) as in Theorem 3.1. Suppose that A has finite ascent and descent. If n = d(A), then

indi
n(AB) = indi

n(A) + indi
n(B).

Proof. First observe, since a(A) and d(A) are finite, then a(A) ≤ d(A) (Lemma 2.9). Hence αi
n(A) = βi

n(A) = 0. The result
follows from Theorem 3.1.

Theorem 3.3. Let A ∈ LR(X) and let m ∈ N\{0}. If A finite index indi
n(A), for some i,n ∈ N. Then Am has a finite index

indi
n(Am), moreover

−(mi − 1)αi
nm(A) ≤ indi

n(Am) −mi indi
nm(A) ≤ (mi − 1)βi

nm(A).

Proof. From Proposition 2.6, since αi
n(Am) and βi

n(Am) are finite, then αi
nm(A) and βi

nm(A) are both finite. Hence, again by
using Proposition 2.6, we deduce that

αi
nm(A) −miβi

nm(A) ≤ αi
n(Am) − βi

n(Am) ≤ miαi
nm(A) − βi

nm(A) (7)

The result follows immediately from (7).

Suppose that A has a finite ascent and descent. Then ae(A) ≤ a(A) ≤ d(A) = q (Lemma 2.9) and hence αi
n(A) = βi

n(A) = 0
for all n ≥ q. Which implies, from the above theorem, that indi

n(Am) − mi indi
nm(A) = 0. The next corollary improved a

result in [20, Proposition 6.2].

Corollary 3.4. Let A ∈ LR(X) with finite ascent and descent. If n = d(A), then, for i,m ∈N\{0},

indi
n(Am) = mi indi

nm(A).

4. Stability of the essential index

We start by some lemmas which will be needed to obtain the main results of this section. The next lemma extend
the result proved in [26, Proposition 1.6] to the multi-valued case.

Lemma 4.1. Let A ∈ C(X).

(i) If a(A) < ∞, then N∞(A) ∩ R∞(A) = {0}.
(ii) If ae(A) < ∞ and N∞(A) ∩ R∞(A) = {0}, then a(A) < ∞.

(iii) If q = d(A) < ∞, then D(Aq) ⊂ N∞(A) + R∞(A).
(iv) If q = de(A) < ∞ and D(Aq) ⊂ N∞(A) + R∞(A), then d(A) ≤ q < ∞.

Proof. (i) Suppose that p = a(A) < ∞ and let x ∈ N∞(A) ∩ R∞(A). Then x ∈ N(Ap) ∩ R(Ap). Hence x ∈ Ap y,
for some y ∈ D(A), so that y ∈ N(A2p) = N(Ap). It follows that x = x + 0 ∈ Ap y − Ap y = Ap(0). Thus
x ∈ Ap(0) ∩N(Ap) ⊂ Rc(A) = {0}.

(ii) Since ae(A) < ∞, then the decreasing sequence αn(A) terminates. Hence, there exists p ∈ N such that αp(A) =
dimN(A) ∩ R(Ap) = dimN(A) ∩ R∞(A) ≤ dimN∞(A) ∩ R∞(A) = 0. This implies that a(A) ≤ p < ∞.

(iii) Let q = d(A) < ∞. Then N(Aq) + R(Aq) = N(Aq) + R∞(A) ⊂ N∞(A) + R∞(A). Let x ∈ D(Aq) and let y ∈ Aqx ⊂
R(Aq) = R(A2q). So that, y ∈ A2qz, for some z ∈ D(Aq). Hence z ∈ Aqt, for some t ∈ Aqz. It follows that
0 ∈ Aqx − Aqt = Aq(x − t) and consequently x − t ∈ N(Aq).

(iv) Suppose now that de(A) = q < ∞ and D(Aq) ⊂ N∞(A)+R∞(A). Then X = D(Aq)+R(A) ⊂ N∞(A)+R∞(A)+R(A) =
N∞(A) + R(A). It follows that

βn(A) = dim
D(An)

[N(An) + R(A)] ∩D(An)

= dim
D(An) + R(A)
N(An) + R(A)

(Lemma 2.1)

= dim
X

N(An) + R(A)
.

Since q = de(A) < ∞, then the decreasing sequence (βn(A))n terminates and hence N(Aq) + R(A) = N∞(A) + R(A).
It follows that

βq(A) = dim
X

N(Aq) + R(A)
= dim

X
N∞(A) + R(A)

= 0.

Consequently, d(A) ≤ q.
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Lemma 4.2. Let A ∈ CR(X) be continuous.

(i) If Rc(A) = {0}, ae(A) < ∞ and Rae(T)+1 is closed, then R(An) is closed for all n ≥ ae(A).
(ii) If de(A) < ∞ and Rde(T) is closed, then R(An) is closed for all n ≥ de(A).

Proof. (i) Let n = ae(A) + 1. Arguing as in the proof of [7, Lemma 4.2], we prove that R(An+1) and R(An−1) is closed.
This prove (i).

(ii) First suppose that de(A) = 0. This means that β(A) = 0, so that X =M⊕R(T) for some subspace M of X. Consider
the linear relation Â : X

N(A) ⊕M → X defined by Â(x + m) = Ax + m. Since A is continuous, then X
N(A) ⊕M is

closed and hence Â is closed (as A is closed). Furthermore, A is surjective and hence, by the open mapping
theorem for linear relations, Â is bounded below. It follows that R(A) = Â( X

N(A) ⊕{0}) is closed. Now, suppose that
n = de(A) > 0 and that R(An) is closed. It suffices to prove that R(An+1) is closed. Let An the linear relation induced
by A to the Banach space R(An). Then β(An) = βn(A) = 0, so that de(An) = 0 and, since A and R(An) is closed, then
An is closed. Moreover, An is continuous (as A is continuous). It follows, from preceding, that R(An+1) = R(An) is
closed.

Lemma 4.3. [8, Theorem III.7.4,Corollaries III.7.5 and III.7.6]
Let A,B ∈ LR(X). If ∥B∥ < γ(A), then

(i) α(A + B) ≤ α(A) and β(A + B) ≤ β(A).
(ii) If A is injective, then γ(A + B) ≥ γ(A) − ∥B∥.

(iii) If A is surjective, then so is A + B.

Lemma 4.4. [1, Lemma 14]. Let A,B ∈ CR(X). If B is continuous with B(0) ⊂ A(0) and D(A) ⊂ D(B). Then A + B is closed.

The next lemma extend the result of [7, Theorem 3.2].

Lemma 4.5. Let A ∈ CR(X) and let B ∈ CR(X) be nonzero and bounded satisfying B(0) ⊂ A(0) and AB−1 = B−1A.

(i) If A ∈ Φ+(X) and ∥B∥ < γ(A), then A + B ∈ Φ+(X) with α(A + B) = α(A) and ind(A + B) = ind(A).
(ii) If A ∈ Φ−(X) and ∥B∥ < γ(A), then A + B ∈ Φ−(X) with β(A + B) = β(A) and ind(A + B) = ind(A).

Proof. Since A is closed, then A + B is closed (by Lemma 4.4), A + B ∈ Φ+(X) (by [8, V.3.2])and ind(A + B) = ind(A) ([8,
V.15.7]). We shall prove that

N(A + B) ⊂ R∞(A). (8)

Let x ∈ N(A+B). Then Ax+Bx = A(0), which implies that Bx ⊂ A(−x)+A(0) ⊂ R(A). Hence x+N(B) ⊂ B−1(R(A)) ⊂ R(A) (
as AB−1 = B−1A). This means that x ∈ R(A) and consequently, N(A+B) ⊂ R(A). Suppose that N(A+B) ⊂ R(Am) for some
m ∈ N and let x ∈ N(A + B). Then x ∈ Am y for some y ∈ D(Am). It follows that Bx ⊂ Am+1 y + A(0) ⊂ Am+1 y + Am+1(0) ⊂
R(Am+1). Therefore, x + N(B) ⊂ B−1R(Am+1) ⊂ R(Am+1). This prove (8). Now, define A∞ := A/R∞(A) and B∞ := BR∞(A).
Since A is open, then so is A∞. Moreover, ∥B∞∥ < ∥B∥ < γ(A) ≤ γ(A∞). According to [8, III.7.4 and III.7.5], A∞ + B∞ is
surjective (as A∞ is surjective) and hence β(A∞ + B∞) = ind(A∞ + B∞). It follows that

α(A + B) = dimN(A + B) = dimN(A∞ + B∞) (as N(A + B) ⊂ R∞(A))

= ind(A∞ + B∞)

= ind(A∞) ([8, V.15.7])

= dimN(A∞)

= dimN(A)

= α(A).

The proof of (ii) may be achieved by the same reasoning as for (i) by using Lemma 2.9.

The next lemma shows the stability of the generalized kernel and range of a regular linear relation with finite essential
ascent or descent under small perturbation.

Lemma 4.6. Let A ∈ ξ±(X) be regular and let B ∈ LR(X) be bounded with B(0) ⊂ A(0). Assume that AB = BA and ∥B∥ < 1
2γ(A),

then
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(i) R∞(A + B) = R∞(A).
(ii) N∞(A + B) = N∞(A).

If, moreover, AB−1 = B−1A, then

αn(A + B) = αn(A), βn(A + B) = βn(A) and indn(A + B) = indn(A).

Proof. Suppose that A ∈ ξ+(X) and let p = ae(A) < ∞. Then R(Tn) is closed for all n ≥ p, so that R∞(A) is also closed. Let
A∞ and B∞ the maps induced by A and B to the Banach space R∞(A). The fact that A(D(A)∩R∞(A)) = R∞(A) and A and
B commute ensure that A∞ and B∞ are well defined. Further, A∞ is surjective and closed (as A is closed and R∞(A) is
closed), and ∥B∞∥ ≤ ∥B∥. Now, since A/N(A)+D(A)∩R∞(A) and A have the same kernel and A is regular, then

0 < γ(A) ≤ γ(A/N(A)+D(A)∩R∞(A)) = γ(A/N(A)R∞(A)) = γ(A/R∞(A)) = γ(A∞).

On the other hand, the use of Lemma 4.4 leads to A∞ + B∞ is closed. Furthermore, since A∞ is surjective, so is A∞ + B∞
(Lemma 4.3). This implies that R∞(A) = Rn(A∞ + B∞) = (A + B)n(R(A∞)) ⊂ R(A + B)n, ∀n ∈N. Thus

R∞(A) ⊂ R∞(A + B). (9)

Now, consider the maps Â and B̂ induced by A and B on the Banach space X/R∞(A). It is easy to see that Â and B̂ are
correctly defined and single valued (as B(0) ⊂ A(0) ⊂ R∞(A). As above, we show that

∥B̂∥ ≤ ∥B∥ and γ(A) ≤ γ(Â). (10)

Since Â is injective, it follows, from Lemma 4.3(ii), that

γ(Â + B̂) ≥ γ(Â) − ∥B̂∥. (11)

The formula (10) together with (11) leads to

∥B̂∥ ≤ ∥B∥ <
1
2
γ(A) ≤

1
2
γ(Â) ≤

1
2

[γ(Â + B̂) + ∥B̂∥].

It follows, from this, that ∥B̂∥ ≤ γ(Â + B̂).Hence we can apply formula (9), with A + B replaced by Â and A replaced by
Â + B̂ , to obtain R∞(Â + B̂) ⊂ R∞(Â) = {0}. Hence

R∞(A + B) ⊂ R∞(A). (12)

The formulas (9) and (12) leads to R∞(A+ B) = R∞(A). This prove the part (i). We omit the proof of the part (ii) because
they follow from an argument very similar to the above, with the maps induced on X/R∞(A) replaced by the maps
induced on N∞(A). Suppose now that AB−1 = B−1A. Since A ∈ ξ+(X), then A∞ ∈ Φ+(R∞(A)). By using Lemma 4.5, one
can deduce that A∞ + B∞ ∈ Φ+(R∞(A)) and α(A∞ + B∞) = α(A∞). It follows that

αn(A + B) = α(A∞ + B∞) = α(A∞) = αn(A) < ∞,

and
indn(A + B) = ind(A∞ + B∞) = ind(A∞) = indn(A).

Consequently,
βn(A + B) = indn(A + B) − αn(A + B) = indn(A) − αn(A) = βn(A).

Now we are ready to state the first main result of this section.

Theorem 4.7. Let A ∈ C(X) and let B ∈ CR(X) be nonzero and bounded such that B(0) ⊂ A(0) and AB−1 = B−1A.

(i) If A ∈ ξ+(X), then there exists ε > 0 such that A + B ∈ Φ+(X) whenever ∥B∥ < ε. Moreover αi
n(A) = iα(A + B), for all

i ∈N and n ≥ p(A).
(ii) If A ∈ ξ−(X), then there exists ε > 0 such that A + B ∈ Φ−(X) whenever ∥B∥ < ε. Moreover βi

n(A) = iβ(A + B), for all
i ∈N and n ≥ q(A).



E. Chafai / Filomat 38:6 (2024), 1887–1900 1898

(iii) If A ∈ ξ(X), then there exists ε > 0 such that A + B ∈ Φ(X) whenever ∥B∥ < ε. Moreover indi
n(A) = i[ind(A + B)], for all

i ∈N and n ≥ q(A).

Proof. (i) Let n ≥ ae(A) and define the linear relations An := A/R(An) and Bn := BR(An). Then, according to Lemma 4.2,
R(An) is closed and An ∈ Φ+(R(An)). Furthermore, there exists, from Lemma 4.5, ε > 0, for which An +Bn is upper
semi-Fredholm whenever ∥Bn∥ < ε, moreover, α(An + Bn) = α(An). It follows that

α(A + B) = dimN(A + B) = dimN(A + B) ∩ R(An) (by 8)

= α(An + Bn)

= α(An)

= dimN(A) ∩ R(An)

= αn(A).

Hence

αi
n(A) = Σi

j=1αn+ j−1(A) =
i
Σ
j=1
αn(A) = iαn(A) = i α(A + B).

(ii) Suppose that A ∈ ξ−(X) and let n ≥ de(A). Then R(An) is closed (Lemma 4.2), and the relation An = A/R(An) viewed
as a linear relation on the Banach space R(An) is closed. Since de(A) < ∞, then An is lower semi-Fredholm. Indeed,
dim(R(An)) = dim R(An)

R(An+1) = βn(A) < ∞. Now, by using Lemma 4.5, it follows that

β(A + B) = dim
D(A + B)
R(A + B)

= dim
D(A)

R(A + B)
(as B is bounded)

= dim
Tn(D(A))

Tn(R(A + B))

= dim
R(An)

R(An + Bn)
= β(An + Bn)

= β(An)

= βn(A).

Consequently,

βi
n(A) =

i
Σ
j=1
βn+ j−1(A) =

i
Σ
j=1
βn(A) = iβn(A) = iβ(A + B).

(iii) Immediately consequence of Parts (i) and (ii).

The next corollary is a direct consequence of Theorem 4.7.

Corollary 4.8. Let A ∈ C(X) and let B be a nonzero bounded operator such that AB−1 = B−1A.

(i) If a(A) < ∞, then there exists ε > 0 such that A+ B is bounded below, whenever ∥B∥ < ε. Moreover, β(A+ B) = βn(A), for
all n ≥ a(A).

(ii) If d(A) < ∞, then there exists ε > 0 such that A + B is surjective, whenever ∥B∥ < ε. Moreover, α(A + B) = αn(A), for all
n ≥ d(A).

(iii) If A has finite ascent and descent, then there exists ε > 0 such that A + B is bijective, whenever ∥B∥ < ε.

Corollary 4.9. Let A ∈ C(X) and let B a nonzero bounded operator such that AB−1 = B−1A.

(i) If A ∈ ξ+(X) and B ∈ P(Φ+(X)), then A + B ∈ Φ+(X) and αi
n(A) = iα(A + B), for all i ∈N and n ≥ p(A).

(ii) If A ∈ ξ−(X) and B ∈ PΦ−(X), then A + B ∈ Φ−(X) and βi
n(A) = iβ(A + B), for all i ∈N and n ≥ q(A).

(iii) If A ∈ ξ(X) and B ∈ P(Φ(X)), then A + B ∈ Φ(X) and indi
n(A) = i[ind(A + B)], for all i ∈N and n ≥ q(A).

Proof. Suppose that A ∈ ξ+(X), then there exists, from Theorem 4.7, ε1 > 0 such that A + λB ∈ Φ+(X), with αi
n(A) =

iα(A + λB), for all 0 < λ < ε1. It follows that A + µB ∈ Φ+(X), for all 0 < µ ≤ 1 (as B ∈ P(Φ+(X)) and hence so is µB).
Moreover, the function f (λ) = α(A + λB) is locally constant in the compact connected set [ε, 1], for all 0 < ε < 1, and so
it is constant. Thus α(A + εB) = α(A + B), for all 0 < ε < 1. Let 0 < λ1 < ε1, then αi

n(A) = iα(A + λ1B) = iα(A + B). This
prove (i). The proof of (ii) is in the same way as (i) and the part (iii) is a trivial consequence of Parts (i) and (ii) and the
fact that ae(A) ≤ de(A) when ae(A) and de(A) are finite.
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Lemma 4.10. Let A,B ∈ LR(X) be everywhere defined such that AB = BA. Assume that B is a bounded operator and bijective.
Then

(i) AB−1 = B−1A.
(ii) (A + λB)B = B(A − λB), for all λ ∈ C.

(iii) If A ∈ C(X), then A + λB ∈ C(X), for all λ ∈ C.

Proof. (i) First observe that AB−1 and B−1A are everywhere defined. Indeed, D(AB−1) = B(D(A)) = B(X) = R(B) = X
(as B is surjective), and D(B−1A) = A−1(D(B−1)) = A−1(R(B)) = A−1(X) = D(X) = X. Now, let x ∈ X. Then, there
exits y ∈ X such that y = Bx which equivalent to x = B−1 y. It follows that AB−1 y = Ax and B−1Ay = B−1ABx =
B−1BAx = Ax ∩D(B) + B−1(0) = Ax = AB−1 y. Consequently, AB−1 = B−1A.

(ii) Follows immediately from [8, I.4.2 (d) and (e)].
(iii) Suppose that A ∈ C(X). Then, from [7, Lemma 2.2], Rc(A + λB) = {0}, and according to Lemma 4.4, A + λB is

closed. The identity D(A + λB)r + R(A + λB)s = X is trivial. Consequently A + λB ∈ C(X).

Theorem 4.11. Let A ∈ C(X) be regular and everywhere defined and let B be a bijective and bounded operator on X such that
AB = BA.

(i) If a(A) < ∞ and B ∈ P(ξ+(X)), then a(A + B) < ∞ and αi
n(A + B) = βi

n(A) for all i ∈N and n ≥ max{p(A), p(A + B)}.
(ii) If d(A) < ∞ and B ∈ P(ξ−(X), then d(A + B) < ∞ and βi

n(A + B) = βi
n(A) for all i ∈N and n ≥ max{q(A), q(A + B)}.

(iii) If A has finite ascent and descent and B ∈ P(ξ(X), then A + B has finite ascent and descent and indi
n(A + B) = indi

n(A) for
all i ∈N and for some n ∈N .

Proof. We only prove (i). The proof of (ii) may be achieved by the same reasoning as for (i) and the part (iii) is a direct
consequence of Parts (i) and (ii). First, observe by Lemma 4.10, that A + λB ∈ C(X), for all λ ∈ C. Suppose that A

has a finite ascent, then ae(A) < ∞ (Lemma 2.9(i)), and hence A + λB ∈ ξ+(X) for all λ ∈ C. Moreover, from Lemma
4.10, A + λB ∈ C, for every λ ∈ C. From ([7, Theorem 3.1]) together with Lemma 4.10, for λ, µ ∈ C such that |λ − µ| is
sufficiently small, we have that

R∞(A + λB) = R∞(A − µB), N∞(A + λB) = N∞(A − µB), αn(A + λB) = αn(A + µB). (13)

On the other hand, since [0, 1] is compact, then [0, 1] ⊂
m⋃

j=1

I j, for some m ∈ N, where I j =]λ j − ε j, λ j + ε j[ satisfying

I j ∩ I j+1 , ∅ and ε j is sufficiently small. If follows, from (13), that

R∞(A + λ jB) = R∞(A), N∞(A + λ jB) = N∞(A), αn(A + λ jB) = αn(A), for 1 ≤ j ≤ m.

This means that

R∞(A + B) = R∞(A), N∞(A + B) = N(A), αn(A + B) = αn(A). (14)

The formula (14) together with Lemma 4.1 lead to R∞(A + B) ∩ N∞(A + B) = {0}. Thus a(A + B) < ∞. Let n ≥
max{p(A), p(A + B)}. Then αk(A) = αn(A) and αk(A + B) = αn(A + B) for all k ≥ n. It follows that

αi
n(A + B) =

i∑
j=1

αn+ j−1(A + B) = iαn(A + B) = iαn(A) =
i∑

j=1

αn+ j−1(A) = αi
n(A).
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[4] E. Chafai, T. Álvarez, Finite Rank and Small Perturbations of Linear Relations, Mediterr. J. Math. 15:202 (2018).



E. Chafai / Filomat 38:6 (2024), 1887–1900 1900
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