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Abstract. Lately, M. Dehghan et al. suggested a two-step iterative method for solving linear problems
based on diagonal splitting and off-diagonal splitting (DOS) [Filomat 31:5 (2017) 1441–1452]. In this study,
a two-step nonlinear DOS-like iteration method for solving absolute value equations is presented based
on the DOS technique. Two linear subsystems need to be solved using the diagonal and lower triangular
coefficient matrices in every iteration of the proposed approach. The convergence characteristics of the
nonlinear DOS-like iteration technique are investigated under certain circumstances. Several examples are
given to demonstrate the method efficacy.

1. Introduction

Studying the algorithms of finding the solutions of linear and nonlinear matrix equations, coupled
matrix equations and linear system has wide applications in many engineering fields. The recursive or
iterative search schemes are often used for finding the solutions of linear and nonlinear matrix equations.
Many related works involve these methods, e.g., closed-form solution of non-symmetric algebraic Riccati
matrix equation [1], iterative Tikhonov regularization of tensor equations based on the Arnoldi process and
some of its generalizations [2], Hermitian and Skew Hermitian splitting-like iteration approach for solving
complex continuous time algebraic Riccati matrix equation [3], analysis of an iterative algorithm to solve
the generalized coupled Sylvester matrix equations [4], single step iterative method for linear system of
equations with complex symmetric positive semi-definite coefficient matrices [5], inexact low-rank Newton-
ADI method for large-scale algebraic Riccati equations [6].

One of the nonlinear matrix equations is the absolute value equations abbreviated as AVEs, whose form
is

Ax − |x| = b, (1)

in which |x| = (|x1|, · · · , |xn|)T, A ∈ Rn×n and b ∈ Rn. A more general form of the AVE (GAVE)

Ax − B|x| = b, (2)
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where B ∈ Rn×n, was presented by Rohn [7] and was analyzed in a more general context in [8–13]. Numerous
fields of engineering applications and scientific computing deal with the absolute value equations (1). One
can reduce convex quadratic programming, bimatrix games, and linear programming to a LCP (linear
complementarity problem), and LCP is formulated as an AVE [14]. Bai in [15] proposed the modulus-based
matrix splitting (MMS) iterative method for solving LCP fast and economically. Actually, in the MMS
iteration methods, AVE (2) is considered as a solution of LCP [16, 17]. Various form of MMS iteration
methods have been developed to solve LCPs [18–24].

Recently, some techniques have been presented to solve absolute value equations. Mangasarian in [25]
gave a direct GN (generalized Newton) technique for absolute value equation (1), that in case the singular
values of A surpass 1, it becomes globally convergent. Then, a GN technique was presented by Hu et al. [9] to
solve the AVEs related to second order cones. Also, they demonstrated that under appropriate assumptions,
the suggested technique is locally quadratically and globally linearly convergent. By separation of the non-
differential and differential parts of the generalized AVEs, a class of modified Newton-type techniques
(MN) were suggested in [26] and a globally and quadratically convergent method was also presented in
[27]. Some other forms of GN method were also proposed to solve AVE [28, 29].

The expensive costs of the GN technique are ascribable to the varied coefficient matrix in each GN
iteration. Two CSCS-based iteration methods for solving absolute value equations is proposed in [30].
An iteration technique has been developed by Rohn et al. [8] for absolute value equation. Practically,
their technique is reducible to the well-known Picard technique [31]. In accordance with Hermitian and
skew-Hermitian splitting (HSS) of the matrix A, Bai et al. in [32] investigated the efficient HSS iterative
technique to solve Ax = b. Bai and Yang developed the Picard-HSS iteration technique with regard to the
HSS approach for solving weakly nonlinear systems [33]. Salkuyeh deliberate on the Picard-HSS approach
to solve absolute value equations [31]. In real computations, it is not easy to determine the number of inner
HSS iterative steps, because it depends on the problem. Also, the iteration vector is not updatable in a timely
manner. To conquer these shortcomings, the nonlinear HSS-like iteration technique for solving AVEs has
been presented in [34] on the basis of the nonlinear HSS-like iteration technique [33]. As a generalization of
the nonlinear HSS-like iteration technique, Zhang [16] developed a relaxed nonlinear PHSS-like iterative
technique for solving AVEs. Li [35], based on MHSS method, suggested a nonlinear MHSS-like iteration
technique to find solution of a category of AVEs. Also, he suggested the convergence features of the
nonlinear MHSS-like iteration technique via a smoothing approximate function. Some classical matrix-
splitting iterative methods have been developed to solve AVE, see for example [10, 36–38]. In case B = 0
in (2), it is reduced to a linear equations system with various applications in scientific calculations [39–42].
Dehghan et al. [42] presented the DOS iterative method to solve Ax = b, which each iterate of it alternates
between a diagonal matrix and a lower triangular matrix. Besides, the DOS method for specific values of
the parameters w1 and w2 reduces to Jacobi, Gauss-seidel and SOR methods.
Given the above mentioned benefits of the DOS technique, this paper suggests a two-step nonlinear DOS-
like iterative technique used to solve absolute value equations (1). If A represents a nonsingular matrix
with nonvanishing diagonal entries, and A = D + L + U represents the splitting of A, (1) can be restated as
two systems of fixed point equations as follows

Dx = [w1D + (w1 − 1)L + (w1 − 1)U]x + (1 − w1)(|x| + b),
(D + w2L)x = [(1 − w2)D − w2U]x + w2(|x| + b), (3)

in which w1 and w2 are given constants and D = dia1(A), U represents a general matrix, and L represents
a strictly lower triangular matrix. In addition, we investigate the convergence of method when A is a
diagonally dominant matrix or an H-matrix. Some examples are given to demonstrate the effectiveness of
the nonlinear DOS-like method.

The outline of the paper is structured as follows. Section 2 presents some preliminaries and notations.
Through a smooth approximation of a nonlinear function, the nonlinear DOS-like iteration technique and
its convergence analysis are specified in section 3. Numerical results presented in Section 4, and finally, the
paper is concluded by presenting a number of concluding remarks.
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2. Preliminaries

This section presents the lemmas, some necessary definitions, and a concise analysis of the DOS tech-
nique.

For convenience, in whole of the paper we consider notations as follows. Assume matrix A = (ai, j) ∈
Rn×n, D = dia1(A), x ∈ Rn and |x| = (|xi|), U = triu(A, 1) and L = tril(A,−1). A ≥ 0 if ai, j ≥ 0 holds for all
i, j = 1(1)n. ρ(A) represents the spectral radius of A. ∥.∥ is the infinity norm, ∥.∥2 is the spectral norm, where
∥A∥2 = [ρ(AHA)]1/2.

Lemma 2.1. [14] The absolute value equation (1) can be uniquely solved for all b ∈ Rn if ∥A−1
∥2 < 1.

Definition 2.2. [43] Let us consider F : D ⊂ Rn
→ Rn, if an open neighborhood of S ⊂ D of x⋆ is considered so

that for any x(0)
∈ S, {x(k)

} lie inD and converge to x⋆, then x⋆ is a point of attraction of the iteration

x(k+1) = F x(k), k = 0, 1, 2, · · · , . (4)

Lemma 2.3. (Ostrowski Theorem 10.1.3 in [43]) Assume that F : D ⊂ Rn
→ Rn is F-differentiable at x⋆, in which

x⋆ ∈ int(D) is a fixed point ofF . In case ρ(F ′(x⋆)) < 1, then x⋆ can be deemed as a point of attraction of the iteration
(4) .

The following lemma is a generalization of Lemma 3.2 in [35] and results in [27] to infinity norm.

Lemma 2.4. Suppose ϑ : D ⊂ Rn
→ Rn is definable as

ϑ(x) = (
√

x1
2 + ϵ2, · · · ,

√
xn

2 + ϵ2)T, ∀ϵ > 0, x = (x1, ..., xn) ∈ D (5)

then ∥ϑ(x) − |x|∥ ≤ ϵ.

Proof. we start from the left hand of the equation as

∥ϑ(x) − |x|∥ = max
1≤i≤n
| −

√
x2

i +
√

x2
i + ϵ

2| =
ϵ2√

x2
l +
√

x2
l + ϵ

2
, 1 ≤ l ≤ n

and ϵ ≤
√

x2
l + ϵ

2 +
√

x2
l , so we have ϵ2√

x2
l +ϵ

2+
√

x2
l

≤ ϵ, which completes the proof.

In accordance with the preceding lemma, one can present the following properties of ϑ(x).

Lemma 2.5. Let λ = | xs+x̃s√
x2

s+ϵ2+
√

x̃2
s+ϵ2
|, 1 ≤ s ≤ n, then

∥ϑ(x) − ϑ(x̃)∥ ≤ λ∥x − x̃∥, (6)

where |
√

x2
s + ϵ2 −

√
x̃2

s + ϵ2| = max
1≤i≤n
|

√
x2

i + ϵ
2 −

√
x̃2

i + ϵ
2|.

Proof. we have

∥ϑ(x) − ϑ(x̃)∥ = |
√

x2
s + ϵ2 −

√
x̃2

s + ϵ2| = |
(xs + x̃s)(xs − x̃s)√
x2

s + ϵ2 +
√

x̃2
s + ϵ2

|

≤ λ|xs − x̃s| ≤ λmax
1≤i≤n
|xi − x̃i|,

where x = (x1, x2, ..., xn)T
∈ Rn and xs is the sth component of x.

Lemma 2.6. [35] The Jacobian of ϑ(x) at x ∈ Rn is described as

ϑ′(x) = dia1(
xi√

xi
2 + ϵ2

), i = 1(1)n, ∀ϵ > 0. (7)
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Lemma 2.7. [44] Suppose that x1 ∈ Rn and x2 ∈ Rn, then ∥|x1| − |x2|∥ ≤ ∥x1 − x2∥.

Lemma 2.8. Suppose (1) is solvable. Then it has unique solution when ∥A−1
∥ < 1.

Proof. Let us suppose y⋆ and X⋆ as two different solutions of (1). If ∥A−1
∥ < 1, thus

∥y⋆ − X⋆∥ ≤ ∥A−1
∥∥|y⋆| − |X⋆|∥ < ∥y⋆ − X⋆∥.

Therefore, y⋆ = X⋆.

Definition 2.9. The comparison matrix of A = (ai j) ∈ Rn×n presented by ⟨A⟩ = (ιi j) ∈ Rn×n is described by{
ιi j = |ai, j|, j = i,
ιi j = −|ai, j|, j , i.

Definition 2.10. The matrix A ∈ Rn×n is named anM-matrix if ⟨A⟩ = A and a vector u > 0 exists with Au > 0.

Definition 2.11. If the comparison matrix of the matrix A ∈ Rn×n is anM-matrix, then it is named anH-matrix.

Definition 2.12. [45] One can call the matrix A ∈ Rn×n strictly generalized diagonally dominant, if there is an
entrywise positive vector u = (uk) ∈ Rn in which

|aii|ui >
n∑

k=0
k,i

|aik|uk, i = 1(1)n. (8)

Lemma 2.13. [45] Suppose that A = (ai j) ∈ Rn×n. Then, the statements that follow are equivalent.
(i) ⟨A⟩−1

≥ 0.
(ii) ⟨A⟩ is a nonsingularM-matrix.
(iii) A is a strictly generalized diagonally dominant matrix.
(iv) A is anH-matrix.
(v) There is a vector u ∈ Rn with u > 0 so that ⟨A⟩u > 0. Similarly, by supposingD = dia1(u), AD will be strictly
diagonally dominant.

Lemma 2.14. Consider a generalized strictly diagonally dominant matrix A = (ai j) ∈ Rn×n, then, a positive vector
û = (ûi) > 0 exists such that 0 < ûi < 1, i = 1(1)n and ⟨A⟩û > 0.

Proof. Since matrix A is a generalized strictly diagonally dominant matrix, thus a positive vector u exists in
which (8) holds, so

|aii|
ui

ul + 1
>

n∑
k=0
k,i

|aik|
uk
ul+1 , i = 1(1)n,

where ul = max
1≤i≤n
|ui|. We define ûi =

ui
ul+1 , so 0 < ûi < 1, i = 1(1)n, therefore,

|aii|ûi >
n∑

k=0
k,i

|aik|ûk, i = 1(1)n.

The DOS iterative method. Assume that matrix A is a nonsingular with nonvanishing diagonal entries,
A = D + L +U and x(0)

∈ Rn is an arbitrary primary guess. For k = 0, 1, 2, · · · until {x(k)
} converges, calculate{

Dx(k+ 1
2 ) = [w1D + (w1 − 1)L + (w1 − 1)U]x(k) + (1 − w1)b,

(D + w2L)x(k+1) = [D − w2D − w2U]x(k+ 1
2 ) + w2b,
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the symbols are the same as those in (3). The DOS method solves a system in the first half iteration with a
diagonal matrix and in the second system with a triangular coefficient matrix.

It should be noted that when U = triu(A, 1), the DOS method reduces to the well-known methods for
specific values of the parameters w1 and w2. For instance, with w1 = w2 = 0, the DOS method will be
Jacobi method, with w1 = w2 = 1 will be Gauss-Seidel method, with w1 = 1 − w1 and w2 = 0 will be the
Simultaneous Overrelaxation method and for w1 = 1 and free w2 will be SOR method [42].

Lemma 2.15. [42] Suppose that A = (ai j) ∈ Rn×n is a diagonally dominant matrix and
n
Σ
j=2
|ai j| < |a11|, if L = (li j),

U = (ui j) and li jui j ≥ 0, 0 ≤ w1 ≤ 1 and 0 < w2 ≤ 1, then the sequence of DOS iteration method is convergent to
x⋆ ∈ Rn for the whole primary guesses, in which x⋆ ∈ Rn is the unique solution of Ax = b.

Corollary 2.16. [42] Consider a strictly diagonally dominant matrix A ∈ Rn×n, thus the DOS iteration converges
for 0 ≤ w1 ≤ 1, 0 < w2 ≤ 1 and appropriate choices of matrices L and U that satisfy the Lemma 2.15 requirements.

In accordance with the statements discussed above, to construct a general matrix U and a strictly lower
triangular matrix L satisfying the requirements of Lemma 2.15, we set{

li j = 0, ui j = ai j, i ≤ j,
li j + ui j = ai j, li jui j ≥ 0, i > j,

in which one of the simplest choices is li j = ui j =
ai j

2
.

3. The nonlinear DOS-like iterative method

This section, via the system of nonlinear fixed-point equations (3), gives the nonlinear DOS-like iteration
method to solve AVE. Also, we take advantage of the techniques in [33] to analyze the convergence of the
introduced method.

Supposing x(0)
∈ Rn as an arbitrary primary guess, we calculate x(k+1) for k = 0, 1, · · · , according to the

procedure{
D(x(k+ 1

2 )) = [w1D + (w1 − 1)L + (w1 − 1)U]x(k) + (1 − w1)|x(k)
| + (1 − w1)b,

(D + w2L)x(k+1) = [D − w2D − w2U]x(k+ 1
2 ) + w2(|x(k+ 1

2 )
| + b).

(9)

At each iteration, we solve two subsystems with coefficient matrices D and (D + w2L) exactly. The first
linear subsystem with the diagonal coefficient matrix D is solved simply. For the second subsystem with
the lower triangular coefficients matrix (D+w2L), we can employ the forward substitution method [42, 46].
Note that the scheme (9) can be reformulated as

x(j+1) = Γ(x(j)), j = 0, 1, 2, · · · . (10)

Where

Γ(x) =VoU(x) =V(U(x)),

and {
U(x) = D−1([w1D + (w1 − 1)L + (w1 − 1)U]x + (1 − w1)(|x| + b)),
V(x) = (D + w2L)−1([(1 − w2)D − w2U]x + w2(|x| + b)). (11)

In order to evaluate the convergence analysis of iteration (10), we indirectly use Lemma 2.3. Since the term
|x|+b in (10) is non-differentiable, we substitute |x|with the smoothing approximate function ϑ(x), defined in
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[27] and according to Lemma 2.4. Then, we will have the following smoothing nonlinear DOS-like iteration
scheme

x̃(k+1) = Γ̃(x̃(k)), k = 0, 1, 2, ..., (12)

in which

Γ̃(x) = ṼoŨ = Ṽ(Ũ(x)),

and {
Ũ(x) = D−1([w1D + (w1 − 1)L + (w1 − 1)U]x + (1 − w1)(ϑ(x) + b)),
Ṽ(x) = (D + w2L)−1([(1 − w2)D − w2U]x + w2(ϑ(x) + b)).

(13)

Now, via Lemma 2.3 and the next theorems, we give the convergence of the nonlinear DOS-like scheme.
It should be noted that the following theorems and their proofs are generalization of the Theorem 4.1,
Corollary 4.2 in [33] and Theorems 3.2, 3.3 and 3.4 in [35] to nonlinear DOS-like method.

Theorem 3.1. Suppose that matrix A satisfy in the conditions of Lemma 2.15 and ϑ(x) is F-differentiable in x⋆ ∈ D
with Ax⋆ = ϑ(x⋆) + b, thus x⋆ is a point of attraction of iteration (12), if

ϱw2 <
√

2 −Θw1,w2 − 1, (14)

where 0 ≤ w1 ≤ 1, 0 < w2 ≤ 1, ϱw2 = max{∥D−1
∥, ∥(D + w2L)−1

∥}, Θw1,w2 = ∥Mw1,w2∥, and Mw1,w2 = (D +
w2L)−1[(1 − w2)D − w2U]D−1[w1D + (w1 − 1)L + (w1 − 1)U].

Proof. Since

Ṽ
′(x⋆) =(D + w2L)−1([(1 − w2)D − w2U] + w2ϑ

′(x⋆)),

Ũ
′(x⋆) =D−1([w1D + (w1 − 1)L + (w1 − 1)U] + (1 − w1)ϑ′(x⋆)), and

Γ̃′(x⋆) =Ṽ′(Ũ(x⋆))(Ũ′(x⋆)) = Ṽ′(x⋆)Ũ′(x⋆).

So

∥Γ̃′(x⋆)∥ ≤ ∥Mw1,w2∥ + ∥(D + w2L)−1w2ϑ
′(x⋆)(1 − w1)D−1ϑ′(x⋆)∥

+ ∥(D + w2L)−1[(1 − w2)D − w2U](1 − w1)D−1ϑ′(x⋆)∥

+ ∥(D + w2L)−1w2ϑ
′(x⋆)D−1[w1D + (w1 − 1)L + (w1 − 1)U]∥

≤ ∥Mw1,w2∥ + (w2 − w1w2)∥D−1
∥∥(D + w2L)−1

∥∥ϑ′(x⋆)∥2

+ (1 − w1)∥D−1
∥∥[D − w2D − w2U](D + w2L)−1

∥∥ϑ′(x⋆)∥

+ w2∥ϑ
′(x⋆)∥∥(D + w2L)−1

∥∥D−1[w1D + (w1 − 1)L + (w1 − 1)U]∥.

By considering Lemma 2.6, we get ∥ϑ′(x)∥ < 1. Now assume that

Lw1 = D−1[w1D + (w1 − 1)L + (w1 − 1)U], Lw2 = (D + w2L)−1[(1 − w2)D − w2U], (15)

we acquire ∥Lw1∥ ≤ 1, ∥Lw2∥ < 1 and Θw1,w2 = ∥Mw1,w2∥ < 1 from proof of Theorem 2.1 in [42], so

∥Γ̃′(x⋆)∥ ≤ Θw1,w2 + w2(1 − w1)ϱ2
w2
+ (w2 + 1 − w1)ϱw2 ≤ Θw1,w2 + ϱ

2
w2
+ 2ϱw2 (16)

Therefore ρ(Γ̃′(x⋆)) < 1 and based on Ostrowski theorem, the proof is completed.

Theorem 3.2. Suppose that the Lemma 2.15 conditions are satisfied. The iterative sequence {x(k)
}
∞

k=0 of the nonlinear
DOS-like technique (10), can be approximated via (12) for the whole primary guesses x(0)

∈ Rn and any arbitrary
ξ > 0, provided that

ϵ <
ξ(1 − (Θw1 ,w2 + 2ϱw2 + ϱ

2
w2

))

1 −Θw1 ,w2

, (17)

where 0 ≤ w1 ≤ 1, 0 < w2 ≤ 1 and ϱw2 <
√

2 −Θw1,w2 − 1.
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Proof. By using the definitions of Γ(x( j)) and Γ̃(x̃( j)) in (10) and (12), respectively, gets

∥x(k+1)
− x̃(k+1)

∥ ≤ ∥Γ(x(k)) − Γ̃(x(k))∥ + ∥Γ̃(x(k)) − Γ̃(x̃(k))∥, (18)

hence

∥Γ(x(k)) − Γ̃(x(k))∥ ≤∥(D + w2L)−1([(1 − w2)D − w2U]D−1(1 − w1)(ϑ(x(k)) − |x(k)
|))∥

+ ∥(D + w2L)−1w2(ϑ(Ũ(x(k))) − |U(x(k))| + |Ũ(x(k))| − |Ũ(x(k))|)∥

≤ ∥(D + w2L)−1[(1 − w2)D − w2U]D−1
∥(1 − w1)∥(ϑ(x(k)) − |x(k)

|)∥

+ w2∥(D + w2L)−1
∥ ∥ |Ũ(x(k))| − ϑ(Ũ(x(k)))∥

+ w2∥(D + w2L)−1
∥ ∥ |U(x(k))| − |Ũ(x(k))|∥

≤ ∥(D + w2L)−1[(1 − w2)D − w2U]∥(1 − w1)∥D−1
∥∥(ϑ(x(k)) − |x(k)

|)∥

+ w2∥(D + w2L)−1
∥ ∥| Ũ(x(k))| − ϑ(Ũ(x(k)))∥

+ w2∥(D + w2L)−1
∥ ∥D−1

∥(1 − w1)∥ϑ(x(k)) − |x(k)
|∥.

According to Lemma 2.4, considering ∥Lw2∥ < 1 and the definition of ϱw2 , we get

∥Γ(x(k)) − Γ̃(x(k))∥ ≤ ϵ(∥D−1
∥ − w1∥D−1

∥ + w2∥(D + w2L)−1
∥(∥D−1

∥ − w1∥D−1
∥ + 1))

≤ ϵ(ϱw2 (w2 + 1 − w1) − ϱ2
w2

(w1 − 1)w2),

so by (16) and (14), we conclude

∥Γ(x(k)) − Γ̃(x(k))∥ < ϵ(1 −Θw1,w2 ). (19)

Moreover, according to Lemma 2.5 and considering λ < 1, we obtain

∥Γ̃(x(k)) − Γ̃(x̃(k))∥ ≤

∥(D + w2L)−1[(1 − w2)D − w2U]D−1[w1D + (w1 − 1)(L + U)]∥∥x(k)
− x̃(k)

∥

+ ∥(D + w2L)−1([(1 − w2)D − w2U]D−1(1 − w1)∥∥ϑ(x(k)) − ϑ(x̃(k))∥

+ ∥(D + w2L)−1w2∥∥ϑ(Ũ(x(k))) − ϑ(Ũ(x̃(k))∥

≤ Θw1 ,w2∥x
(k)
− x̃(k)

∥ + ∥Lw2∥ϱw2 (λ − λw1)∥x(k)
− x̃(k)

∥

+ ϱw2λw2∥x(k)
− x̃(k)

∥∥Lw1∥ + ϱw2
2λ2w2 − ϱw2

2λ2w2w1∥x(k)
− x̃(k)

∥

≤ (Θw1 ,w2 + 2ϱw2 + ϱw2
2)∥x(k)

− x̃(k)
∥. (20)

Therefore, from the fact that x(0) = x̃(0) and from (17), (18), (20), and using the mathematical induction, it
follows that

∥x(k+1)
− x̃(k+1)

∥ ≤ ϵ(1 −Θw1,w2 ) + (Θw1,w2 + 2ϱw2 + ϱw2
2)∥x(k)

− x̃(k)
∥

≤ ϵ(1 −Θw1,w2 )(1 + (Θw1,w2 + 2ϱw2 + ϱw2
2) + · · · + (Θw1,w2 + 2ϱw2 + ϱw2

2)k)

= ϵ(1 −Θw1,w2 )
1 − (Θw1,w2 + 2ϱw2 + ϱw2

2)k+1

1 − (Θw1,w2 + 2ϱw2 + ϱ
2
w2

)

≤
ϵ(1 −Θw1,w2 )

1 − (Θw1,w2 + 2ϱw2 + ϱw2
2)
< ξ.

Theorem 3.3. Let AVE (1) be solvable, ∥A−1
∥ < 1 and conditions of Theorem 3.1 and 3.2 are satisfied. Then

(1) possess a unique solution x⋆ and the iterative sequence {x(k)
}
∞

k=0 created via the nonlinear DOS-like iteration
technique (9), for any desirable initial point x(0), converges to a solution of (1).
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Proof. Since ∥A−1
∥ < 1, according to lemma 2.8, the equation (1) has a unique solution. Besides

∥x(k+1)
− x⋆∥ ≤ |x̃(k+1)

− x⋆∥ + ∥x(k+1)
− x̃(k+1)

∥.

According to Theorem 3.1 and Definition 2.2 for any ξ1 > 0 we get ∥x̃(k+1)) − x⋆∥ < ξ1. In addition, it is
obvious that according to the previous theorem, for all ξ2 > 0 we have ∥x(k+1)

−x⋆∥ < ξ2 where ξ+ξ1 < ξ2.

In the following part, the nonlinear DOS-like iterative method for AVE with H-matrix coefficient is pro-
posed.

As a consequence of Lemma 2.13, A is anH-matrix if and only if there is a matrixD = dia1(u1,u2, ...,un)
so that AD is strictly diagonally dominant. This enables us to apply matrixD as a right preconditioner in
(1) and solve both ADx− |Dx| = b andDx = y instead of only (1). This approach needs some assumptions,
which are as follows. Let A = D + L + Uwhere A = AD and{

U(x) = D−1([w1D + w1L − L + (w1 − 1)U]x + (1 − w1)(|Dx| + b)),
V(x) = (D + w2L)−1([(1 − w2)D − w2U]x + w2(|Dx| + b)),

besides

Γ(x) =V(U(x)).

We define φ : D ⊂ Rn
→ Rn with

φ(x) = (
√

u1
2x1

2 + ϵ2, · · · ,
√

un
2xn

2 + ϵ2 )T,

where ϵ > 0 and x ∈ D. Now we have φ′(x) = dia1( ui
2xi√

ui2xi2+ϵ2
), i = 1, 2, ...,n. Furthermore by using Lemma

2.14, we can conclude that ∥φ′(x)∥ < 1. Finally, by similar definition for smoothing nonlinear DOS-like
method (12), i.e.
x̃( j+1) = Γ̃(x̃( j)), j = 0, 1, 2, ...,where Γ̃(x) = Ṽ(Ũ(x)),{

Ũ(x) = D−1([w1D + (w1L − L) + (w1 − 1)U]x + (1 − w1)(φ(x) + b)),
Ṽ(x) = (D + w2L)−1([(1 − w2)D − w2U]x + w2(φ(x) + b)),

(21)

we conclude the next theorem.

Theorem 3.4. Assume that equation (1) be uniquely solvable, matrix A be anH-matrix, and φ(x) be F-differentiable
in x⋆ ∈ D with Ax⋆ = φ(x⋆) + b. The iteration sequance {x(k)

}
∞

k=0 defined by the process (9), with any initial guess
x(0)
∈ Rn, converges to x⋆ when

ϱw2 <
√

2 −Θw1,w2 − 1,
and

ϵ <
ξ(1 − (Θw1 ,w2 + 2ϱw2 + ϱw2

2))
1 −Θw1 ,w2

,

where ϱw2 = max{∥D−1
∥, ∥(D + w2L)−1

∥},Θw1,w2 = ∥Mw1,w2∥, 0 ≤ w1 ≤ 1 and 0 < w2 ≤ 1.

Proof. A is an H-matrix, therefore there exists a matrix D so that A = AD where A is strictly diagonally
dominant matrix. Therefore

∥Γ̃′(x⋆)∥ ≤ ∥Mw1,w2∥ + ∥(D + w2L)−1
∥∥D−1

∥∥φ′(x⋆)∥2

+ ∥(D + w2L)−1[(1 − w2)D − w2U]∥∥D−1
∥∥φ′(x⋆)∥

+ ∥(D + w2L)−1
∥∥φ′(x⋆)∥∥D−1[w1D + (w1 − 1)L + (w1 − 1)U]∥,

where the symbols are as defined in Theorem 3.1. According to Lemma 2.16, we have ∥Lw1∥ ≤ 1, ∥Lw2∥ < 1
and Θw1,w2 < 1. Since the rest of the proof is the same as Theorem 3.3, rewriting it would be redundant.

It should be noted that according to Theorems 2.1 and 2.2 in [47], for every nonsingular matrix A there exists
nonsingular matrices P and Q such that PAQ is strictly diagonally dominant matrix. Hence, for general
nonsingular matrices, one can use preconditioned techniques [48].
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4. Numerical experiments

This section provides several examples to express the efficiency of DOS-like iterative technique to solve
system (1). We examine the numerical properties of nonlinear DOS-like, nonlinear HSS-like [34], relaxed
nonlinear PHSS-like (RPHSS) [16], generalization Gauss-Seidel (GGS) [38], AOR [10], modified Newton-
type (MN)[26] and SSOR iterative methods using some test problems in terms of processing time and
iteration number for different problem sizes n.

In numerical examples, we use SSOR techniques to solve AVEs, which is based on the SSOR method
proposed in [22, 49, 50]. Let matrix A = D + L +U ∈ Rn×n and w ∈ (0, 2), we have

(D + wL)x(k+ 1
2 ) = [−w(D +U) +D]x(k) + w|x(k)

| + wb,
(D + wU)x(k+1) = [−w(D + L) +D]x(k+ 1

2 ) + w|x(k+ 1
2 )
| + wb.

(22)

The SSOR method requires solving two half subsystems in each iteration with triangular coefficient matrices.
All the numerical experiments have been carried out using MATLAB 2017 (64-bit) on a system with

IntelRO CoreTM i5-10210U processor @ 1.60GHz 2.11 GHz, 8GB RAM, running Windows 10. The process is
run by using the zero vector as an initial guess, while we consider the maximum number of iterations to
500 or

∥Ax(k)
− |x(k)

| − b∥
∥b∥

≤ 10−7,

as a stopping criterion. Results are presented for three examples in four tables. For all examples, we choose
Ω = wI in the MN iteration technique and U = U. In the tables, we denote the iterations number and CPU
time by Iter and CPU, respectively and RES is the norm of absolute residual. Given the fact that finding
the optimal parameters is often dependent on the problem and it is not easily determined, the optimal
parameters are decided experimentally and denoted by w1exp,w2exp, wexp, rexp and αexp in tables. CPU time
in the methods that fails to converge in 500 iterations is listed by ”fail”. The Cholesky factorization and LU
factorization are used to solve subsystems of the nonlinear HSS-like and RPHSS methods. Subsystems with
the diagonal matrix are solved exactly, and subsystems with the triangular coefficient matrices (D + wL)
and (D + wU) are solved using the substitution methods.

Example 4.1. [18] Consider the AVE (1), in which A = tridia1(−1.5I,S,−0.5I) + 4I ∈ Rn×n, b = −Az∗ ∈ Rn,
S = tridia1(−1.5, 4,−0.5) ∈ Rm×m, n = m2 and z∗ = (1, 2, 1, 2, ..., 1, 2, ...)T

∈ Rn.
Table 1 presents the numerical results of Example 4.1 for the different values of n. It is easy to see that all of the

mentioned methods in this table are convergent. It should be noted that in this exampleΘw1,w2 + ϱ
2
w2
+ 2ϱw2 = 0.5722

and ∥A−1
∥ = 0.25.

Example 4.2. [16, 31, 34] Consider{
−(νxx + νyy) + (νx + νy) + 2ν = f (x, y), (x, y) ∈ ω,
ν(x, y) = 0, (x, y) ∈ ∂ω,

where p ∈ R , q is a positive constant, ω = (0, 1) × (0, 1) and ∂ω is boundary of ω. The central difference scheme
to the convective terms and the five-point finite difference scheme to the diffusive terms are used to acquire the linear
equations system Ax = d, where

A = Tx ⊗ Im + Im ⊗ Ty + 2In ∈ R
n×n, (23)

n = m2, ⊗ represent the Kronecker product, Tx = tridia1(−Re − 1, 4,Re − 1), Ty = tridia1(−Re − 1, 0,Re − 1),
h = 1

m+1 and Re = h
2 . Now, in system (1), suppose that matrix A is as (23). The vector b is also adopted as if

x = (x1, x2, ..., xn)T
∈ Rn with xl = (−1)li, l = 1(1)n would be the solution, where i denotes the imaginary unit.

Numerical experiments of Example 4.2 are listed in Table 2, and Θw1,w2 + ϱ
2
w2
+ 2ϱw2 = 0.9720 and ∥A−1

∥ = 0.5.
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Table 1: Numerical experiments of Example 4.1.

Method n 10000 40000 90000 250000
DOS-like Iter. 5 5 5 5

CPU 0.0046 0.0155 0.0555 0.0715
RES 1.40267e − 07 1.40267e − 07 1.40267e − 07 1.40267e − 07

w1exp,w2exp 0.1875, 0.9711 0.1875, 0.9711 0.1875, 0.9711 0.1875, 0.9711
SSOR Iter. 5 5 5 5

CPU 0.0109 0.02596 0.1755 0.2793
RES 3.62052e − 06 5.77528e − 06 7.782301e − 06 1.16566e − 05
wexp 0.96 0.96 0.96 0.96

AOR Iter. 8 8 8 8
CPU 0.0282 0.0404 0.2193 0.3177
RES 3.54011e − 05 4.6113e − 05 5.52029e − 05 7.09377e − 05

wexp, rexp 0.8, 1.2 0.8, 1.2 0.8, 1.2 0.8, 1.2
RPHSS Iter. 9 8 8 8

CPU 0.0701 0.8925 1.9126 32.2329
RES 1.5866e − 05 1.42251e − 04 1.96039e − 4 26.1516e − 04
αexp,wexp 8.1, 1.2 8.1, 1.2 8.1, 1.2 8.1, 1.2

HSS-like Iter. 10 10 10 9
CPU 0.0843 0.9747 2.1446 40.0113
RES 3.32596e − 05 4.75901e − 05 5.86912e − 05 2.98187e − 04
αexp 6.9 6.9 6.9 6.9

MN Iter. 4 4 4 4
CPU 0.1380 1.0158 1.8774 7.0569
RES 7.490458e − 07 1.50981e − 06 2.27059e − 06 3.792147e − 06
wexp 1.03 1.03 1.03 1.03

GGS Iter. 9 9 9 9
CPU 0.0393 0.14403 0.3464 1.1146
RES 5.67150e − 05 1.16252e − 04 1.7579e − 04 2.94865e − 04

Table 2: Numerical experiments of Example 4.2.

Method n 2500 10000 40000 250000
DOS-like Iter. 9 9 9 9

CPU 0.0053 0.0134 0.03378 0.2534
RES 4.26023e − 07 4.56024e − 07 4.71190e − 07 4.81701e − 07

w1exp,w2exp 0.12, 1.24 0.12, 1.24 0.12, 1.24 0.12, 1.24
SSOR Iter. 8 8 8 8

CPU 0.0089 0.0155 0.04667 0.5110
RES 4.87836e − 06 8.92217e − 06 1.67461e − 05 4.04956e − 05
wexp 1.17 1.17 1.17 1.17

AOR Iter. 14 14 13 13
CPU 0.0078 0.0417 0.0680 0.6093
RES 1.93119e − 05 2.45639e − 05 1.14185e − 04 2.79883e − 04

wexp, rexp 1.05, 1.45 1.05, 1.45 1.05, 1.45 1.05, 1.45
RPHSS Iter. 9 9 9 9

CPU 0.0168 0.1067 1.0421 27.3804
RES 2.12981e − 05 1.6281e − 05 3.3010e − 05 4.1052e − 05
αexp,wexp 4.3, 1.45 4.3, 1.45 4.3, 1.45 4.3, 1.45

HSS-like Iter. 14 14 14 14
CPU 0.0458 0.1573 1.5165 35.2495
RES 2.42739e − 05 4.741546e − 05 9.36804e − 05 2.32441e − 04
αexp 4.3 4.3 4.3 4.3

MN Iter. 5 5 5 5
CPU 0.0451 0.1826 0.7541 7.4054
RES 2.40539e − 06 5.06521e − 06 1.03852e − 05 2.63452e − 05
wexp 0.01 0.01 0.01 0.01

GGS Iter. f ail f ail f ail f ail
CPU − − − −
RES − − − −
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Example 4.3. [10, 18, 26] Consider the LCP(q,M) as

ζ ≥ 0,W =Mζ + q ≥ 0,WTζ = 0 (24)

to finding two unknown vectorsW and ζ ∈ Rn, in whichW is real vector, M ∈ Rn×n and q ∈ Rn. We rewrite (24)
as

(I +M)x + (I −M)|x| = q, (25)

which x = 1
2 ((M − I)ζ + q) and (25) is a generalized AVE [14]. We consider A = I +M and B = −I +M, in which

M = M̄+ µI and q = −Mζ⋆, where M̄ = tridia1(−I,S,−I) ∈ Rm2
×m2 , S = tridia1(−1, 4,−1) ∈ Rm×m and ζ⋆ = 1.2τ,

where τ = (1, 1, · · · , 1)T
∈ Rn, is the unique solution of the LCP (24). x⋆ = −0.6τ ∈ Rn is the exact solution of the

GAVE (25). Since det(M) , 1, (25) can be converted to (1), but here we extend the nonlinear DOS-like method for
GAVE, and we have{

D(x(k+ 1
2 )) = [w1D + (w1 − 1)L + (w1 − 1)U]x(k) + (1 − w1)(B|x(k)

| + b),
(D + w2L)x(k+1) = [(1 − w2)D − w2U]x(k+ 1

2 ) + w2(B|x(k+ 1
2 )
| + b).

(26)

Since the GGS method, relaxed nonlinear PHSS-like and the nonlinear HSS-like methods have not developed to
GAVE, we didn’t list their numerical results in Table 3 and 4. In Table 3 we have Θw1,w2 + ϱ

2
w2
+ 2ϱw2 ≤ 0.6319 and

∥A−1
∥ = 0.2. These values for Table 4 are 0.8532 and 0.33, respectively.

Table 3: Numerical experiments of Example 4.3 for µ = 4.

Method n 10000 40000 90000 250000
DOS-like Iter. 7 7 7 7

CPU 0.0086 0.0310 0.0802 0.2390
RES 1.6628e − 07 1.4582e − 07 1.45545e − 07 1.45545e − 07

w1exp,w2exp .5214, 0.7890 0.5294, 0.7925 0.5304, 0.7927 0.5304, 0.7927

SSOR Iter. 7 7 7 7
CPU 0.0124 0.0457 0.1547 0.4434
RES 2.6969e − 05 4.7677e − 05 6.9993e − 05 1.1572e − 04
wexp 0.67 0.67 0.67 0.67

AOR Iter. 16 17 17 17
CPU 0.0184 0.0825 0.2692 0.7932
RES 1.8944e − 05 3.9319e − 05 5.9694e − 05 1.00444e − 04

wexp, rexp 0.6, 0.7 0.6, 07 0.6, 07 0.6, 07

MN Iter. 11 11 11 11
CPU 0.1363 0.8352 1.8620 6.7701
RES 1.4032e − 05 2.9098e − 05 4.4167e − 05 7.43064e − 05
wexp 5.1 5.1 5.1 5.1

The numerical results of examples presented in 4 tables for different values of n. These tables show that all
listed schemes can rightly generate an approximate solution for all examples, except for the GGS method
that fails to converge in 500 iterations in Table 2. Also, we found that the iterations number for the entire
techniques is independent of the problem size as increases in Table 1, and 2, while the processing time in
all tables increases with the increase in the problem size. It is also observed that in terms of CPU time, the
nonlinear DOS-like, SSOR and AOR methods are the best ones among the listed methods, and the CPU
time required by the nonlinear DOS-like technique is less than or equivalent to that required by the SSOR
method. Additionally, the CPU time required by the SSOR technique is less than or equivalent to that
required by the AOR method. Regarding CPU time in Table 1 and 2, we have the following results,

CPUDOS−like ≤ CPUSSOR ≤ CPUAOR < CPURPHSS < CPUHSS−like.

Regarding CPU time and the number of iteration in Table 3 and 4, we have the following results

CPUDOS−like ≤ CPUSSOR ≤ CPUAOR < CPUMN.
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Table 4: Numerical experiments of Example 4.3 for µ = 2.

Method n 10000 40000 90000 250000
DOS-like Iter. 10 10 10 10

CPU 0.0104 0.0439 0.1157 0.3332
RES 8.8018e − 08 8.806734e − 08 8.8067e − 08 8.80673e − 08

w1exp,w2exp 0.5436, 0.9604 0.5437, 0.9600 0.5436, 0.9600 .5436, 0.9600

SSOR Iter. 12 12 12 12
CPU 0.0216 0.0717 0.2400 0.7647
RES 1.3100e − 05 2.7337e − 05 4.1664e − 05 7.02660e − 05
wexp 0.7 0.7 0.7 0.7

AOR Iter. 22 22 23 23
CPU 0.0232 0.0997 0.3272 1.0217
RES 2.3452e − 05 4.7957e − 05 3.5080e − 05 5.90154e − 05

wexp, rexp 0.7, 0.8 0.7, 08 0.7, 08 0.7, 08

MN Iter. 15 15 15 15
CPU 0.1776 0.7712 2.5073 8.44133
RES 1.5239e − 05 3.1965e − 05 4.8690e − 05 8.21427e − 05
wexp 3 3 3 3

IterDOS−like ≤ IterSSOR < IterMN < IterAOR.

Where CPUx signifies the CPU time of the x method and Iterx signifies the number of iterations for the x
method.

In our numerical experiments, the optimal parameters of the DOS-like method have been obtained
experimentally. The upper bound Θw1,w2 + ϱ

2
w2
+ 2ϱw2 at Theorems 1 and 2 has role as the upper bound for

the spectral radius of the iteration matrix of propose method. The theoretical optimal parameters w1 and
w2 can be determined by minimizing this bound in the future, although it is a very difficult task.

5. Conclusion

This paper has investigated the nonlinear DOS-like iteration technique on the basis of diagonal and off
diagonal splitting of the coefficient matrix A to solve the AVEs. In addition, we investigated the convergence
features of the suggested technique. According to numerical experiments, the nonlinear DOS-like technique
is a efficient and practical solver for absolute value equations.
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