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Abstract. In this work, we have formulated a Wolfe type dual for a multiobjective bilevel programming
problem, which involves vector-valued objective function in the upper level and single objective function
in the lower level. Under generalized convexity assumptions, on the functions involved weak and strong
duality theorems are derived. Some examples are given to illustrate the applicability of the obtained results.

1. Introduction

Bilevel programming problems are hierarchical optimization problems consisting of a second optimiza-
tion problem as a part of the constraint of the first optimization problem. H. V. Stackelberg [15] formulated
the first bilevel programming problem on the market economy. During past few years, many researchers
[1–4, 9, 10, 13, 16, 17], has studied bilevel programming. Bard [2] established the first-order necessary
optimality conditions for the linear bilevel programming problem. Later, in [17], under nonsmooth con-
straint qualifications, Ye developed Karush-Kuhn-Tucker type necessary optimality conditions. Dempe [4]
derived necessary and sufficient conditions for the case where the solution set of the lower level problem is
a singleton. Babahadda and Gadhi [1] used the concept of convexifactors to derive the necessary optimality
conditions for bilevel optimization problems in terms of Lagrange-Kuhn-Tucker multipliers. Lafhim et al.
[13] gave Karush-Kuhn-Tucker type necessary optimality conditions of a multiobjective bilevel optimization
problem with the help of Ψ-reformulation. Later in [10], Gadhi et al. established the sufficient optimality
conditions and also formulated the Mond-Weir dual and gave duality results. Recently, Chuong [3] de-
rived the necessary optimality conditions for the nonsmooth multiobjective bilevel optimization problem
concerning the vector-valued objective functions in both levels of the program.

The bilevel programming problem is reformulated as a single level mathematical programming problem
with the help ofΨ-reformulation. The concept ofΨ-reformulation is depended on a scalarization function
proposed in optimization by Hiriart-Urruty [11] and is utilized by Gadhi and Dempe [9], Lafhim et al. [13],
Gadhi et al. [10], etc.

We have formulated Wolfe type dual of bilevel multiobjective problem by using generalized convexity
introduced by Dutta and Chandra [7]. Demyanov [5] introduced the concept of convexifactor as a gener-
alization of the notion of lower concave and upper convex approximations and was then examined in [6]
and [12]. A new notion of ∂∗-pseudoconvex function in terms of convexifactors was introduced by Dutta
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and Chandra [7, 8]. For a nonsmooth optimization problem involving locally Lipschitz functions, Li and
Zhang [14] obtained the necessary optimality conditions, under certain constraint qualification, by using
the concept of upper and lower convexifactors. Suneja and Kohli [16] used convexifactors to give sufficient
optimality conditions and derived duality results for the Wolfe dual and the Mond-Weir dual.

This paper is organized as follows. In section 2, we consider the bilevel multiobjective programming
problem, recall some notations, basic definitions of convexifactors and some preliminary results. In section
3, considered bilevel problem is reformulated as a single level programming problem with the help of
Ψ-reformulation and an example is given to show the applicability of the model and notations. In section
4, we associate the Wolfe type dual to the bilevel problem, derive weak and strong duality results under
generalized convexity and an example is provided to exhibit the applicability of the attained outcomes.
Concluding remarks are given in section 5.

2. Notations and Preliminaries

We consider the following bilevel multiobjective programming problem in this paper:

(P) Rn
+ − Minimize

x,y
F(x, y) =

{
F1(x, y), . . . ,Fn(x, y)

}
s.t. G j(x, y) ≤ 0, ∀ j ∈ J

y ∈ Λ(x),

where for each x ∈ Rn1 , Λ(x) is the set of optimal solutions of the following parametric optimization problem

(Px) Minimize
y

f (x, y)

s.t. 1s(x, y) ≤ 0, ∀s ∈ S.

Here, f : Rn1 × Rn2 → R, 1s : Rn1 × Rn2 → R, s ∈ S = {1, . . . , q}, G j : Rn1 × Rn2 → R, j ∈ J = {1, . . . , p}, Fi :
Rn1 ×Rn2 → R, i ∈ I = {1, . . . ,n} are given locally Lipschitz continuous functions and n1, n2, p, q, n ≥ 1 are
integers.

A pair (x̄, ȳ) is said to be a weak efficient solution if there exists no other (x, y) ∈ E such that

F(x̄, ȳ) − F(x, y) ∈ int Rn
+

where
E = {(x, y) ∈ Rn1 ×Rn2 : G j(x, y) ≤ 0, ∀ j ∈ J and y ∈ Λ(x)}

is the feasible set of (P).
Let the closure, the convex hull and the negative polar cone of a subset C ofRn be denoted by cl C, conv C and Co,
respectively. Let us consider a function ∆C : Rn

→ R defined by

∆C(x) =
{
−d(x, Rn

\ C) if x ∈ C,
d(x, C) if x ∈ Rn

\ C,

where
d(x, C) = inf

{
∥x − y∥, y ∈ C

}
.

Proposition 2.1. [11] Let C ⊂ Rn (C , Rn) be a closed and convex cone with nonempty interior. The function
∆C is convex, positively homogenous, 1-Lipschitzian and decreasing on Rn with respect to the order introduced by
C. Moreover (Rn

\ C) = {x ∈ Rn : ∆C(x) > 0}, int(C) = {x ∈ Rn : ∆C(x) < 0} and the boundary of C is the set
bd(C) = {x ∈ Rn : ∆C(x) = 0}.

Proposition 2.2. [10] Let C ⊂ Rn (C , Rn) be a nonempty, closed and convex cone with nonempty interior. Then
for all x ∈ Rn

0 < ∂∆C(x).

Where, the set ∂ f (x) represents the subdifferential of convex analysis of f at x.
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Let F : Rn
→ R

⋃
{±∞} be an extended real-valued function and let x ∈ Rn where F(x) is finite. The lower

and upper Dini directional derivatives of F at x in the direction v are defined, respectively, by

F−d (x, v) = lim inf
t→0+

F(x + tv) − F(x)
t

and

F+d (x, v) = lim sup
t→0+

F(x + tv) − F(x)
t

Definition 2.3. [8, 12] Let F : Rn
→ R

⋃
{±∞} be an extended real-valued function

• The function F is said to admit an upper convexifactor (UCF) ∂∗F(x) at x if ∂∗F(x) ⊂ Rn is closed and for each
v ∈ Rn,

F−d (x, v) ≤ sup
x∗∈∂∗F(x)

⟨x∗, v⟩.

• The function F is said to admit a lower convexifactor (LCF) ∂∗F(x) at x if ∂∗F(x) ⊂ Rn is closed and for each
v ∈ Rn,

F+d (x, v) ≥ inf
x∗∈∂∗F(x)

⟨x∗, v⟩.

• F is said to admit a convexifactor ∂∗F(x) at x if ∂∗F(x) is both an upper and lower convexifactor of F at x.

• F is said to have an upper semi-regular convexifactor (USRCF) ∂∗F(x) at x if ∂∗F(x) is an upper convexifactor
at x and for each v ∈ Rn,

F+d (x, v) ≤ sup
x∗∈∂∗F(x)

⟨x∗, v⟩.

Definition 2.4. [16] Let F : Rn1 ×Rn2 → R and (u, v) ∈ Rn1 ×Rn2 . Assume that F admits convexifactor ∂∗F(u, v),
F is said to be ∂∗-convex at (u, v) iff for all (x, y) ∈ Rn1 ×Rn2 :

⟨ρ, (x, y) − (u, v)⟩ ≤ F(x, y) − F(u, v), ∀ρ ∈ ∂∗F(u, v).

If the strict inequality holds in above definition for (x, y) , (u, v), then F is said to be strict ∂∗-convex at
(u, v).

Definition 2.5. [13] We say that the nonsmooth Abadie constraint qualification holds at ū = (x̄, ȳ) ∈ E with respect
to (UCFs) ∂∗G j(ū); j ∈ J0(ū), ∂∗1s(ū); s ∈ S0(ū) and ∂∗Ψ(ū) if

[C(ū)]o
⊆ K(E, ū),

where

J0(ū) = { j ∈ J : G j(ū) = 0}, S0(ū) = {s ∈ S : 1s(ū) = 0}

and

C(ū) =
( ⋃

j∈J0(ū)

∂∗G j(ū)
)
∪

( ⋃
s∈S0(ū)

∂∗1s(ū)
)
∪ ∂∗Ψ(ū).

Here, K(E, ū) denotes the contingent cone to E at ū.
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3. Ψ- reformulation of the (P)

In this section, according to [9], (P) can be reformulated as a single level programming problem (RP)
given as follows:
Let x ∈ Rn1 and let

Y(x) = {y ∈ Rn2 : 1s(x, y) ≤ 0, ∀s ∈ S}

be the feasible region of the lower level problem (Px).
(RP) Rn

+ − Minimize
x,y

F(x, y) =
{
F1(x, y), . . . ,Fn(x, y)

}
subject to :


G j(x, y) ≤ 0 j ∈ J,
1s(x, y) ≤ 0 s ∈ S,
Ψ(x, y) ≤ 0,
(x, y) ∈ Rn1 ×Rn2 ,

where
Ψ(x, y) = max

z∈Y(x)
ψ(x, y, z)

and
ψ(x, y, z) = min

{
f (x, y) − f (x, z),−∆(−Rq

+)

(
11(x, z), . . . , 1q(x, z)

)}
.

Taking x ∈ Rn1 , we assume that Y(x) is closed and bounded. The optimal value function of the lower level
problem (Px) is defined by

V(x) = inf
y
{ f (x, y) : 1s(x, y) ≤ 0, ∀s ∈ S}.

Lemma 3.1. [10]
{

(x, y) ∈ Rn1 ×Rn2 :
y ∈ Y(x) and f (x, y) − V(x) < 0

}
=

{
(x, y) ∈ Rn1 ×Rn2 :

y ∈ Y(x) andΨ(x, y) < 0

}
= ∅.

Lemma 3.2. [10]
{

(x, y) ∈ Rn1 ×Rn2 :
y ∈ Y(x) and f (x, y) − V(x) = 0

}
=

{
(x, y) ∈ Rn1 ×Rn2 :

y ∈ Y(x) andΨ(x, y) = 0

}
.

Theorem 3.3. [10] Let ū = (x̄, ȳ) ∈ E be a local weak efficient solution of (P). Assume that Fi; i ∈ I admit bounded
(USRCF) ∂∗Fi(ū) at ū, G j; j ∈ J, 1s; s ∈ S, admit (UCFs) ∂∗G j(ū), ∂∗1s(ū), respectively at ū. If the nonsmooth
Abadie constraint qualification holds at ū, then there exists π̄∗ = (λ∗, µ∗, ν∗, η∗) ∈ Rn̄

+, λ
∗ , 0Rn ,

0 ∈
n∑

i=1

λ∗i∂
∗Fi(ū) +

p∑
j=1

µ∗j∂
∗G j(ū) +

q∑
s=1

ν∗s∂
∗1s(ū) + η∗∂∗Ψ(ū)

µ∗jG j(ū) = 0, ν∗s1s(ū) = 0, j ∈ J, s ∈ S.

(1)

Theorem 3.4. [10] Let ū ∈ E be a feasible solution of (P). Suppose that Fi, i ∈ I, G j, j ∈ J0(ū), 1s, s ∈ S0(ū), and
Ψ are ∂∗-convex at ū and that there exists π̄∗ = (λ∗, µ∗, ν∗, η∗) ∈ Rn̄

+, λ
∗ , 0Rn , satisfying (1). Then, ū is a weak

efficient solution of (P).

Example 3.5. Consider the following multiobjective bilevel optimization problem:

(Q) :


R2
+ −min

x,y
F(x, y) =

{
x2
− y, x + y + 1

}
subject to :


G1(x, y) = −x − 2y ≤ 0,
G2(x, y) = −y ≤ 0,
y ∈ Λ(x),

where for each x ∈ R, Λ(x) is the set of optimal solutions of the following parametric optimization problem

(Qx) :

 min
y

f (x, y) = |x| + y2

subject to : 11(x, y) = y ≤ 0.
We have,

F1(x, y) = x2
− y and F2(x, y) = x + y + 1.



S. Saini, N. Kailey / Filomat 38:6 (2024), 2015–2022 2019

We claim that ū = (0, 0) is a feasible point of (Q) with

Λ(x) = {0}, E = R+ × {0}, J0(ū) = {1, 2}, S0(ū) = {1}

and
Ψ(x, y) = min{y2, 0}.

• The sets ∂∗F1(ū) = {(0,−1)} and ∂∗F2(ū) = {(1, 1)} are bounded upper semi-regular convexifactors of F1 and F2.
Moreover, F1 and F2 are ∂∗-convex functions at ū.

• The sets ∂∗G1(ū) = {(−1,−2)}, ∂∗G2(ū) = {(0,−1)}, ∂∗11(ū) = {(0, 1)} and ∂∗Ψ(ū) = {(0, 0)} are upper
convexifactors of G1, G2, 11 andΨ. Moreover, G1, G2, 11 andΨ are ∂∗-convex functions at ū.

• The nonsmooth Abadie constraint qualification holds at ū. Indeed, since

C(ū) = {(−1,−2), (0,−1), (0, 1), (0, 0)} and E = R+ × {0}

we obtain,
[C(ū)]◦ = R+ × {0} = K(E, ū).

• For π∗ =
(

1
2 ,

1
2 ,

1
2 ,

1
2 ,

3
2 , 1

)
, the condition (1) is satisfied. Indeed,

1
2

(0,−1) +
1
2

(1, 1) +
1
2

(−1,−2) +
1
2

(0,−1) +
3
2

(0, 1) + 1(0, 0) = (0, 0)

by Theorem 3.4, we conclude that ū is a weak efficient solution of (Q).

4. Duality

Let n̄ = n + p + q + 1 and suppose that Fi; i ∈ I admit bounded (USRCF) ∂∗Fi(v) at v ∈ Rn1+n2 and
G j, j ∈ J, 1s, s ∈ S, admit (UCFs) ∂∗G j(t) and ∂∗1s(t) at v. We formulate the Wolfe dual problem (D) and
establish duality theorems for (P) and (D). Consider the Wolfe dual problem (D) of (P):

(D) Rn
+ − Maximize

v,π∗
ϕ(v, π∗) =

{
ϕ1(v, π∗), . . . , ϕn(v, π∗)

}
subject to 0 ∈

n∑
i=1

λ∗i∂
∗Fi(v) +

p∑
j=1

µ∗j∂
∗G j(v) +

q∑
s=1

ν∗s∂
∗1s(v) + η∗∂∗Ψ(v),

π∗ = (λ∗1, . . . , λ
∗

n, µ
∗

1, . . . , µ
∗

p, ν
∗

1, . . . , ν
∗

q, η
∗) ≥ 0,

(λ∗1, . . . , λ
∗

n) , (0, . . . , 0),
n∑

i=1

λ∗i = 1,

where,

ϕi(v, π∗) = Fi(v) +
p∑

j=1

µ∗jG j(v) +
q∑

s=1

ν∗s1s(v) + η∗Ψ(v).

The set Ẽ of all feasible points of (D) is defined as:

Ẽ =
{
(v, π∗) ∈ Rn1+n2 ×Rn̄ : 0 ∈

n∑
i=1

λ∗i∂
∗Fi(v) +

p∑
j=1

µ∗j∂
∗G j(v) +

q∑
s=1

ν∗s∂
∗1s(v) + η∗∂∗Ψ(v),

π∗ ≥ 0, (λ∗1, . . . , λ
∗

n) , (0, . . . , 0),
n∑

i=1

λ∗i = 1
}
.
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Remark 4.1. Under the hypotheses of Theorem 3.3, the set Ẽ of all feasible points of (D) is nonempty.

Theorem 4.2 (Weak Duality). Let u be feasible for (P) and for any feasible point (v, π∗) of (D), such that Fi, i ∈
I, G j, j ∈ J0(ū), 1s, s ∈ S0(ū) andΨ are ∂∗-convex at v, then F(u) ≰ ϕ(v, π∗).

Proof Suppose, to the contrary that F(u) ≤ ϕ(v, π∗)
that is, {

F1(u), . . . ,Fn(u)
}
≤

{
ϕ1(v, π∗), . . . , ϕn(v, π∗)

}
Since (λ∗1, . . . , λ

∗
n) ≥ 0 and (λ∗1, . . . , λ

∗
n) , 0 we obtain,

n∑
i=1

λ∗i Fi(u) ≤
n∑

i=1

λ∗iϕi(v, π∗). (2)

Since v is feasible for dual so,

0 ∈
n∑

i=1

λ∗i∂
∗Fi(v) +

p∑
j=1

µ∗j∂
∗G j(v) +

q∑
s=1

ν∗s∂
∗1s(v) + η∗∂∗Ψ(v).

Therefore there exist ξi ∈ ∂∗Fi(v), η j ∈ ∂∗G j(v), θs ∈ ∂∗1s(v) and χ ∈ ∂∗Ψ(v), such that,

0 =
n∑

i=1

λ∗iξi +

p∑
j=1

µ∗jη j +

q∑
s=1

ν∗sθs + η∗χ, (3)

Since Fi, i ∈ I is ∂∗-convex at v, we have,
⟨ ξi, u − v⟩ ≤ Fi(u) − Fi(v), ∀i ∈ I
for λ∗i ≥ 0 and λ∗i , 0, we have, λ∗i (Fi(u) − Fi(v)) ≥ ⟨λ∗iξi, u − v⟩, ∀i ∈ I.

n∑
i=1

λ∗i Fi(u) ≥
n∑

i=1

λ∗i Fi(v) +
〈 n∑

i=1

λ∗iξi, u − v
〉
.

From (3)

n∑
i=1

λ∗i Fi(u) ≥
n∑

i=1

λ∗i Fi(v) +
〈
−

( p∑
j=1

µ∗jη j +

q∑
s=1

ν∗sθs + η∗χ
)
, u − v

〉
,

n∑
i=1

λ∗i Fi(u) ≥
n∑

i=1

λ∗i Fi(v) −
〈 p∑

j=1

µ∗jη j, u − v
〉

−

〈 q∑
s=1

ν∗sθs, u − v
〉
− ⟨ η∗χ, u − v⟩.

(4)

Since G j; j ∈ J0(ū), 1s; s ∈ S0(ū) andΨ are ∂∗-convex at v and µ∗j ≥ 0, ν∗s ≥ 0 and η∗ ≥ 0, we have,

p∑
j=1

µ∗j
(
G j(u) − G j(v)

)
≥

〈 p∑
j=1

µ∗jη j, u − v
〉
, ∀ j ∈ J0(ū),

q∑
s=1

ν∗s
(
1s(u) − 1s(v)

)
≥

〈 q∑
s=1

ν∗sθs, u − v
〉
, ∀s ∈ S0(ū),

η∗
(
Ψ(u) −Ψ(v)

)
≥ ⟨ η∗χ, u − v⟩.

(5)
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Putting (5) in (4)

n∑
i=1

λ∗i F(u) ≥
n∑

i=1

λ∗i F(v) +
p∑

j=1

µ∗j
(
G j(v) − G j(u)

)
+

n∑
i=1

ν∗s
(
1s(v) − 1s(u)

)
+ η∗

(
Ψ(v) −Ψ(u)

)
since u is feasible for (P) therefore, by Lemma 3.1 and Lemma 3.2 it is feasible for (RP), we have,

n∑
i=1

λ∗i Fi(u) ≥
n∑

i=1

λ∗i Fi(v) +
p∑

j=1

µ∗jG j(v) +
n∑

i=1

ν∗s1s(v) + η∗Ψ(v)

Since
n∑

i=1
λ∗i = 1, λ∗i ≥ 0 and λ∗i , 0, we obtain,

n∑
i=1

λ∗i Fi(u) ≥
n∑

i=1

λ∗iϕi(v, π∗)

which is contradiction to (2). Hence the result.

Theorem 4.3 (Strong Duality). Let ū be a weak efficient solution of (P) where the nonsmooth Abadie constraint
qualification holds. Then, there exists π̄∗ = (λ∗, µ∗, ν∗, η∗) ∈ Rn̄

+, λ
∗ , 0Rn̄ , such that (ū, π̄∗) is a feasible point of

(D) and optimal values of objective functions are equal. Moreover, if Fi, i ∈ I, G j, j ∈ J0(ū), 1s, s ∈ S0(ū), andΨ are
∂∗-convex at ū, then (ū, π̄∗) is a weak efficient solution of (D).

Proof Let ū be a weak efficient solution of (P) where the nonsmooth Abadie constraint qualification holds.

• By Theorem 3.3 one can find λ∗ ∈ (−Rn
+)o
\ {0} and (µ∗, ν∗, η∗) ∈ Rp+q+1

+ such that

0 ∈
n∑

i=1

λ∗i∂
∗Fi(ū) +

p∑
j=1

µ∗j∂
∗G j(ū) +

q∑
s=1

ν∗s∂
∗1s(ū) + η∗∂∗Ψ(ū)

µ∗jG j(ū) = 0, ν∗s1s(ū) = 0, j ∈ J, s ∈ S.

SinceΨ(ū) = 0, concludes that (ū, π̄∗) is a feasible point of (D).

• Let us prove that (ū, π̄∗) is a weak efficient solution of (D) by contrary, suppose that there exists a
point (v̄, π̄1

∗) ∈ Ẽ such that

ϕ(v̄, π̄1
∗) − F(ū) ∈ int(Rn

+) (6)

Since (ū, π̄∗) is a feasible point of (D) and since ū is a feasible solution of (P), by Theorem 4.2 one get
a contradiction to (6). Hence the result.

Example 4.4. The Wolfe dual of the problem (Q) considered in Example 3.5 is

(D) :



R2
+ − max

x̂,ŷ,π∗

{
ϕ1(x̂, ŷ, π∗), ϕ2(x̂, ŷ, π∗)

}
subject to :
0 ∈ λ∗1∂

∗F1(x̂, ŷ) + λ∗2∂
∗F2(x̂, ŷ) + µ∗1∂

∗G1(x̂, ŷ)
+ µ∗2∂

∗G2(x̂, ŷ) + ν∗1∂
∗11(x̂, ŷ) + η∗∂∗Ψ(x̂, ŷ),

π∗ = (λ∗1, λ
∗

2, µ
∗

1, µ
∗

2, ν
∗

1, η
∗) ≥ 0,

(λ∗1, λ
∗

2) , (0, 0), λ∗1 + λ
∗

2 = 1
(x̂, ŷ) ∈ R2.
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We claim that v = (−1, 0) is a feasible point of (D). Indeed, for
π∗ =

(
1
4 ,

3
4 ,

1
4 ,

1
2 ,

1
4 , 1

)
, one get

1
4

(−2,−1) +
3
4

(1, 1) +
1
4

(−1,−1) +
1
2

(0,−1) +
1
4

(0, 1) + 1(0, 0) = (0, 0).

Which implies

0 ∈ λ∗1∂
∗F1(−1, 0) + λ∗2∂

∗F2(−1, 0) + µ∗1∂
∗G1(−1, 0)

+ µ∗2∂
∗G2(−1, 0) + ν∗1∂

∗11(−1, 0) + η∗∂∗Ψ(−1, 0).

Here, the sets ∂∗F1(−1, 0) = {(−2,−1)} and ∂∗F2(−1, 0) = {(1, 1)} are bounded upper semi-regular convexifactors of
F1 and F2 at (−1, 0) and the sets
∂∗G1(−1, 0) = {(−1,−2)}, ∂∗G2(−1, 0) = {(0,−1)}, ∂∗11(−1, 0) = {(0, 1)} and ∂∗Ψ(−1, 0) = {(0, 0)} are upper
convexifactors of G1, G2, 11 andΨ at (−1, 0). Moreover, F1, F2, G1, G2, 11 andΨ are ∂∗-convex at (−1, 0).
Since E = R+ × {0}, for any feasible solution (x, y) ∈ E of (Q) and any feasible solution (x̂, ŷ, π∗) ∈ Ẽ of (D), we have

ϕ(x̂, ŷ, π∗) − F(x, y) < R2
+/{0}.

Hence, the Theorem 4.2 holds for (P) and (D).

5. Conclusion

In this paper, we have formulated a Wolfe type dual for a multiobjective bilevel programming problem.
Using the single level programming problem we obtained weak and strong duality assertions under ∂∗-
convexity assumption. Some examples are constructed to demonstrate the applicability of results. For
future research, same approach could be used to obtain duality results for nonsmooth bilevel optimization
problems, where both the lower and the upper level problems are vector optimization problems.
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