Generalized quasi-Einstein warped products manifolds with respect to affine connections

Mohd Vasiulla ${ }^{\text {a }}$, Mohabbat Ali $^{\text {a }}$, Cenap Özel ${ }^{\text {b }}$, Alexander Pigazzini ${ }^{\text {c }}$
${ }^{a}$ Department of Applied Sciences \& Humanities, Faculty of Engineering \& Technology, Jamia Millia Islamia(Central University), New Delhi-110025, India
${ }^{b}$ Department of Mathematics, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
${ }^{c}$ Mathematical and Physical Science Foundation, Sidevej 5, 4200 Slagelse, Denmark

Abstract

In this paper, we study warped product on generalized quasi-Einstein manifolds with respect to affine connections. Initially, we deal with the elementary properties and existence of generalized quasiEinstein warped products manifolds with respect to affine connections. Furthermore, it is proved that generalized quasi-Einstein manifold to be a quasi-Einstein manifold with respect to affine connections and we give three and four examples (both Riemannian and Lorentzian) of generalized quasi-Einstein manifolds to show the existence of such manifold. Finally, we construct two examples of warped product on generalized quasi-Einstein manifolds with respect to affine connections are also discussed.

1. Introduction

A Riemannian (or semi-Riemannian) manifold $\left(M^{n}, g\right),(n \geq 3)$ is named an Einstein manifold if the Ricci tensor $\operatorname{Ric}(\neq 0)$ of type $(0,2)$ satisfies: Ric $=\frac{r}{n} g$, where r represents the scalar curvature of $\left(M^{n}, g\right)$. Einstein manifolds form a natural subclass of several classes of $\left(M^{n}, g\right)$ determined by a curvature restriction imposed on their Ricci tensor [3]. Also, Einstein manifolds play a key role in Riemannian geometry, general theory of relativity as well as in mathematical physics.

Approximately two decades ago, the idea of quasi-Einstein manifold was proposed and studied by Chaki and Maity [11]. An $\left(M^{n}, g\right),(n>2)$ is said to be quasi-Einstein manifold $(Q E)_{n}$ if its Ric $(\neq 0)$ satisfies

$$
\begin{equation*}
\operatorname{Ric}\left(Z_{1}, Z_{2}\right)=a g\left(Z_{1}, Z_{2}\right)+b A\left(Z_{1}\right) A\left(Z_{2}\right) \tag{1}
\end{equation*}
$$

where $a, b(\neq 0) \in \mathbb{R}$ and A is a non-zero 1-form such that

$$
\begin{equation*}
g\left(Z_{1}, \rho\right)=A\left(Z_{1}\right), \quad g(\rho, \rho)=A(\rho)=1 \tag{2}
\end{equation*}
$$

for all vector field Z_{1} and a unit vector field ρ called the generator of $(Q E)_{n}$. Also, the 1-form A is named the associated 1 -form. From (1) it is clear that for $b=0,(Q E)_{n}$ reduces to an Einstein manifold.

[^0]An $\left(M^{n}, g\right),(n \geq 3)$ is said to be generalized quasi-Einstein manifold $G(Q E)_{n}[12]$ if its $\operatorname{Ric}(\neq 0)$ satisfies

$$
\begin{equation*}
\operatorname{Ric}\left(\mathrm{Z}_{1}, \mathrm{Z}_{2}\right)=a g\left(\mathrm{Z}_{1}, \mathrm{Z}_{2}\right)+b A\left(\mathrm{Z}_{1}\right) A\left(\mathrm{Z}_{2}\right)+c\left[A\left(\mathrm{Z}_{1}\right) B\left(\mathrm{Z}_{2}\right)+A\left(\mathrm{Z}_{2}\right) B\left(\mathrm{Z}_{1}\right)\right] \tag{3}
\end{equation*}
$$

where $a, b(\neq 0), c(\neq 0) \in \mathbb{R}$ and $A(\neq 0), B(\neq 0)$ are 1-forms such that

$$
\begin{equation*}
g\left(Z_{1}, \rho\right)=A\left(Z_{1}\right), \quad g\left(Z_{1}, \sigma\right)=B\left(Z_{1}\right), \quad g(\rho, \rho)=1, \quad g(\sigma, \sigma)=1 \tag{4}
\end{equation*}
$$

where ρ and σ are mutually orthogonal unit vector fields, i.e., $g(\rho, \sigma)=0$ and are known as generators of $G(Q E)_{n} . G(Q E)_{n}$ has widely investigate the geometric properties and physical applications in general relativity $[16,17,28]$ and also studied by several authors [6, 18, 25-27].

The concept of a semi-symmetric linear connection on a differentiable manifold was first introduced by Friedmann and Schouten in 1924 [1]. A generalization of the semi-symmetric connection in [19], Golab first defined a quarter-symmetric linear connection on a differentiable manifold in 1975. Many writers have examined the outcomes of warped products with affine connections, including Dey et al. [4, 20, 21], Pahan et al. [22,23], Shenawy and Unal [24], among others.

An $\left(M^{n}, g\right),(n \geq 3)$ is said to be generalized quasi-constant sectional curvature [25] if its curvature tensor satisfies

$$
\begin{align*}
\tilde{K}\left(\mathrm{Z}_{1}, \mathrm{Z}_{2}, \mathrm{Z}_{3}, \mathrm{Z}_{4}\right) & =a\left[g\left(\mathrm{Z}_{2}, \mathrm{Z}_{3}\right) g\left(\mathrm{Z}_{1}, \mathrm{Z}_{4}\right)-g\left(\mathrm{Z}_{1}, \mathrm{Z}_{3}\right) g\left(\mathrm{Z}_{2}, \mathrm{Z}_{4}\right)\right] \\
& +b\left[g\left(\mathrm{Z}_{1}, \mathrm{Z}_{4}\right) A\left(\mathrm{Z}_{2}\right) A\left(\mathrm{Z}_{3}\right)-g\left(\mathrm{Z}_{2}, \mathrm{Z}_{4}\right) A\left(\mathrm{Z}_{1}\right) A\left(\mathrm{Z}_{3}\right)\right. \\
& \left.+g\left(\mathrm{Z}_{2}, \mathrm{Z}_{3}\right) A\left(\mathrm{Z}_{1}\right) A\left(\mathrm{Z}_{4}\right)-g\left(\mathrm{Z}_{1}, \mathrm{Z}_{3}\right) A\left(\mathrm{Z}_{2}\right) A\left(\mathrm{Z}_{4}\right)\right] \tag{5}\\
& +c\left[g\left(\mathrm{Z}_{1}, \mathrm{Z}_{4}\right) B\left(\mathrm{Z}_{2}\right) B\left(\mathrm{Z}_{3}\right)-g\left(\mathrm{Z}_{2}, \mathrm{Z}_{4}\right) B\left(\mathrm{Z}_{1}\right) B\left(\mathrm{Z}_{3}\right)\right. \\
& \left.+g\left(\mathrm{Z}_{2}, \mathrm{Z}_{3}\right) B\left(\mathrm{Z}_{1}\right) B\left(\mathrm{Z}_{4}\right)-g\left(\mathrm{Z}_{1}, \mathrm{Z}_{3}\right) B\left(\mathrm{Z}_{2}\right) B\left(\mathrm{Z}_{4}\right)\right]
\end{align*}
$$

where $a, b(\neq 0), c(\neq 0) \in \mathbb{R}$ and $A(\neq 0), B(\neq 0)$ are 1-forms.

2. Warped product manifolds admitting affine connection

The concept of a warped product introduced by Bishop et.al [15] in 1969 for the study of negativecurvature manifolds. Let $\left(\mathcal{B}, g_{\mathcal{B}}\right)$ and $\left(\mathcal{F}, g_{\mathcal{F}}\right)$ be two Riemannian manifolds with $\operatorname{dim} \mathcal{B}=p>0$, dim $\mathcal{F}=q>0$ and $f: B \rightarrow(0, \infty), f \in C^{\infty}(\mathcal{B})$. Consider the product manifold $\mathcal{B} \times \mathcal{F}$ with its projections $u: \mathcal{B} \times \mathcal{F} \rightarrow \mathcal{B}$ and $v: \mathcal{B} \times \mathcal{F} \rightarrow \mathcal{F}$. The warped product $\mathcal{B} \times{ }_{f} \mathcal{F}$ is the manifold $\mathcal{B} \times \mathcal{F}$ with the Riemannian structure such that $\left\|Z_{1}\right\|^{2}=\left\|u^{*}\left(Z_{1}\right)\right\|^{2}+f^{2}(u(m))\left\|v^{*}\left(Z_{1}\right)\right\|^{2}$ for any vector field Z_{1} on M. Thus we have

$$
\begin{equation*}
g_{M}=g_{\mathcal{B}}+f^{2} g_{\mathcal{F}} \tag{6}
\end{equation*}
$$

where \mathcal{B} is called the base of M and \mathcal{F} the fiber. The function f is called the warping function of the warped product [5].

Since $\mathcal{B} \times{ }_{f} \mathcal{F}$ is a warped product, then we have $D_{Z_{1}} Z_{3}=D_{Z_{3}} Z_{1}=\left(Z_{1} \ln f\right) Z_{3}$ for all vector fields Z_{1}, Z_{3} on \mathcal{B} and \mathcal{F}, respectively. Hence we find $R\left(Z_{1} \wedge Z_{3}\right)=g\left(D_{Z_{3}} D_{Z_{1}} Z_{1}-D_{Z_{1}} D_{Z_{3}} Z_{1}, Z_{3}\right)=\frac{1}{f}\left\{\left(D_{Z_{1}} Z_{1}\right) f-Z_{1}^{2} f\right\}$. If we choose a local orthonormal basis $e_{1}, \ldots . ., e_{n}$ such that $e_{1}, \ldots ., e_{n_{1}}$ are tangent to \mathcal{B} and $e_{n_{1}+1}, \ldots . ., e_{n}$ are tangent to \mathcal{F}, then we have

$$
\begin{equation*}
\frac{\Delta f}{f}=\sum_{i=1}^{n} R\left(e_{i} \wedge e_{j}\right) \tag{7}
\end{equation*}
$$

for each $j=n_{1}+1, \ldots, n$ [5].
Two lemmas from [5] are required for further work:
Lemma 2.1. Let us assume that $M=\mathcal{B} \times{ }_{f} \mathcal{F}$ is a warped product, and that K_{M} is the Riemannian curvature tensor. If we have the fields Z_{1}, Z_{2}, and Z_{3} on \mathcal{B} as well as P, Q, and Z_{4} on \mathcal{F}, then:
(1) $K_{M}\left(Z_{1}, Z_{2}\right) Z_{3}=K_{\mathcal{B}}\left(Z_{1}, Z_{2}\right) Z_{3}$,
(2) $K_{M}\left(Z_{1}, Q\right) Z_{2}=\frac{H^{f}\left(Z_{1}, Z_{2}\right)}{f} Q$, where H^{f} is the Hessian of f,
(3) $K_{M}\left(Z_{1}, Z_{2}\right) Q=K_{M}\left(Q, Z_{4}\right) Z_{1}=0$,
(4) $K_{M}\left(Z_{1}, Q\right) Z_{4}=-\left(\frac{g\left(Q, Z_{4}\right)}{f}\right) D_{Z_{1}}$ (gradf),
(5) $K_{M}\left(Q, Z_{4}\right) P=K_{\mathcal{F}}\left(Q, Z_{4}\right) P+\left(\frac{\|g r a d f\|^{2}}{f^{2}}\right) g(Q, P) Z_{4}-g\left(Z_{4}, P\right) Q$.

Lemma 2.2. Let us assume that $M=\mathcal{B} \times f \mathcal{F}$ is a warped product, and that Ric c_{M} is the Ricci tensor. If we have the fields Z_{1}, Z_{2}, and Z_{3} on \mathcal{B} as well as P, Q, and Z_{4} on \mathcal{F}, then:
(1) $\operatorname{Ric}_{M}\left(\mathrm{Z}_{1}, \mathrm{Z}_{2}\right)=\operatorname{Ric}_{\mathcal{B}}\left(\mathrm{Z}_{1}, \mathrm{Z}_{2}\right)-\frac{m}{f} H^{f}\left(\mathrm{Z}_{1}, \mathrm{Z}_{2}\right)$,
(2) $\operatorname{Ric}_{M}\left(Z_{1}, Q\right)=0$,
(3) $\operatorname{Ric}_{M}\left(Q, Z_{4}\right)=\operatorname{Ric}_{\mathcal{F}}\left(Q, Z_{4}\right)-g\left(Q, Z_{4}\right)\left(\frac{\Delta f}{f}+\frac{m-1}{f^{2}}\|g r a d f\|^{2}\right)$, where Δf is the Laplacian of f on \mathcal{B}

Furthermore, the condition is satisfies

$$
\begin{equation*}
s c a l_{M}=s c a l_{\mathcal{B}}+\frac{s c a l_{\mathcal{F}}}{f^{2}}-2 m \frac{\Delta f}{f}-m(m-1) \frac{|\operatorname{grad} f|^{2}}{f^{2}} \tag{8}
\end{equation*}
$$

where $\operatorname{scal}_{\mathcal{B}}$ and scal $_{\mathcal{F}}$ are scalar curvatures of \mathcal{B} and \mathcal{F}, respectively.
Gebarowski investigated Einstein's warped product manifolds in his paper [2] and demonstrated the following three theorems about them:

Theorem 2.3. Let $\operatorname{dim} I=1, \operatorname{dim\mathcal {F}}=n-1(n \geq 3)$, and let (M, g) be a warped product of $I \times_{f} \mathcal{F}$. If \mathcal{F} is an Einstein manifold with constant scalar curvature, as in the case of $n=3$, and f is determined by one of the following formulas for any real number β, then (M, g) is an Einstein manifold.

$$
\begin{aligned}
& f^{2}(x)= \begin{cases}\frac{4}{\alpha} R \sinh ^{2} \frac{\sqrt{\alpha}(x+\beta)}{2}, & \text { if } \alpha>0 \\
R(x+\beta)^{2}, & \text { if } \alpha=0 \\
\frac{-4}{\alpha} R \sin ^{2} \frac{\sqrt{-\alpha}(x+\beta)}{2}, & \text { if } \alpha<0\end{cases} \\
& f^{2}(x)= \begin{cases}e^{\alpha x} \beta, & \text { if } R>0(\alpha \neq 0) \\
\frac{-4}{\alpha} R \cosh ^{2} \frac{\sqrt{\alpha}(x+\beta)}{2}, & \text { if } R=0(\alpha>0)\end{cases}
\end{aligned}
$$

for $R<0$, after integration $q^{\prime \prime} e^{q}+2 R=0$ and $R=\frac{s^{c a l} l_{\digamma}}{(n-1)(n-2)}$.
Theorem 2.4. Let (M, g) be the warped product of a complete connected s-dimensional Riemannian manifold \mathcal{F} and a complete connected $(1<s<n)$ Riemannian manifold $\mathcal{B} . \mathcal{B}$ is a sphere of radius $\frac{1}{\sqrt{R}}$, if (M, g) is a space with constant sectional curvature $R>0$.

Theorem 2.5. Let (M, g) be a warped product $\mathcal{B} \times f \mathcal{F}$ of a $n-1$-dimensional Riemannian manifold \mathcal{B} and a onedimensional Riemannian manifold I. If (M, g) is an Einstein manifold with scalar curvature scal ${ }_{M}>0$ and the Hessian of f is proportional to the metric tensor $g_{\mathcal{B}}$, then
(1) $\left(\mathcal{B}, g_{\mathcal{B}}\right)$ is a $(n-1)$-dimensional sphere with radius $=\left(\frac{\left(\text { scal }_{\mathcal{B}}\right.}{(n-1)(n-2)}\right)^{\frac{-1}{2}}$
(2) (M, g) denotes a space with constant sectional curvature $R=\frac{\text { scal }_{M}}{n(n-1)}$.

We also investigate warped product manifolds with quarter-symmetric connections in this paper. Here, we look at propositions 3.1, 3.2, 3.3, and 3.4 of [14] and in this paper we denoted by 3.6,3.7, 3.8 and 3.9, respectively, which will help us prove our results.

Proposition 2.6. Let $M=\mathcal{B} \times f \mathcal{F}$ be a warped product. Let Ric and $\overline{\text { Ric }}$ denote the Ricci tensors of M with respect to the Levi-Civita connection and a quarter-symmetric connection respectively. Let $\operatorname{dim} \mathcal{B}=n_{1}, \operatorname{dim} \mathcal{F}=n_{2}$, $\operatorname{dim} M=\bar{n}=n_{1}+n_{2}$. If $Z_{1}, Z_{2} \in \mathfrak{X}(\mathcal{B}), Q, Z_{4} \in \mathfrak{X}(\mathcal{F})$ and $\rho \in \mathfrak{X}(\mathcal{B})$, then
(i) $\overline{\operatorname{Ric}}\left(Z_{1}, Z_{2}\right)=\overline{\operatorname{Ric}}_{\mathcal{B}}\left(Z_{1}, Z_{2}\right)+n_{2}\left[\frac{H_{\mathcal{B}}^{f}\left(Z_{1}, Z_{2}\right)}{f}+\mu_{2} \frac{\rho f}{f} g\left(Z_{1}, Z_{2}\right)+\mu_{1} \mu_{2} \Omega(\rho) g\left(Z_{1}, Z_{2}\right)+\mu_{1} g\left(Z_{2}, D_{Z_{1}} \rho\right)-\mu_{1}^{2} \Omega\left(Z_{1}\right) \Omega\left(Z_{2}\right)\right]$
(ii) $\overline{\operatorname{Ric}}\left(Z_{1}, V\right)=\overline{\operatorname{Ric}}\left(Q, Z_{1}\right)$,
(iii) $\overline{\operatorname{Ric}}\left(V, Z_{4}\right)=\operatorname{Ric}_{\mathcal{F}}\left(Q, Z_{4}\right)+\left\{\mu_{2} \operatorname{div}_{\mathcal{B}} \rho+\left(n_{2}-1\right) \frac{\left|\operatorname{lrad}_{\mathcal{B}} f\right|_{\mathcal{B}}^{2}}{f^{2}}\left[(\bar{n}-1) \mu_{1} \mu_{2}-\mu_{2}^{2}\right] \Omega(\rho)+\left[(\bar{n}-1) \mu_{1}+\left(n_{2}-1\right) \mu_{2}\right] \frac{\rho f}{f}+\right.$ $\left.\frac{\Delta_{\mathcal{B}} f}{f}\right\} g\left(Q, Z_{4}\right)$
where $\operatorname{div}_{\mathcal{B}} \rho=\sum_{k=1}^{n_{1}} \epsilon_{k}\left\langle D_{W_{k}} \rho, W_{k}\right\rangle$ and $W_{k}, 1 \leq k \leq n_{1}$, is an orthonormal basis of \mathcal{B} with $\epsilon_{k}=g\left(W_{k}, W_{k}\right)$
Proposition 2.7. Let $M=\mathcal{B} \times f \mathcal{F}$ be a warped product, $\operatorname{dim} \mathcal{B}=n_{1}, \operatorname{dim} \mathcal{F}=n_{2}, \operatorname{dim} M=\bar{n}=n_{1}+n_{2}$. If Z_{1}, Z_{2} $\in \mathfrak{X}(\mathcal{B}), Q, Z_{4} \in \mathfrak{X}(\mathcal{F})$ and $\rho \in \mathfrak{X}(\mathcal{B})$, then
(i) $\overline{\operatorname{Ric}}\left(Z_{1}, Z_{2}\right)=\overline{\operatorname{Ric}}_{\mathcal{B}}\left(Z_{1}, Z_{2}\right)+\left[(\bar{n}-1) \mu_{1} \mu_{2}-\mu_{2}^{2}\right] \Omega(\rho) g\left(Z_{1}, Z_{2}\right)+n_{2} \frac{H_{\mathcal{B}}^{f}\left(Z_{1}, Z_{2}\right)}{f}+\mu_{2} g\left(Z_{1}, Z_{2}\right) d i v_{\mathcal{F}} \rho$,
(ii) $\overline{\operatorname{Ric}}\left(Z_{1}, Q\right)=\left[(\bar{n}-1) \mu_{1}-\mu_{2}\right] \Omega(Q) \frac{Z_{1} f}{f}$,
(iii) $\overline{\operatorname{Ric}}\left(V, Z_{1}\right)=\left[\mu_{2}-(\bar{n}-1) \mu_{1}\right] \Omega(Q) \frac{Z_{1} f}{f}$,
(iv) $\overline{\operatorname{Ric}}\left(V, Z_{4}\right)=\overline{\operatorname{Ric}} \mathcal{F}\left(Q, Z_{4}\right)+g\left(Q, Z_{4}\right)\left\{\left(n_{2}-1\right) \frac{\left|\operatorname{grad}_{\mathcal{B}} f\right|_{\mathcal{G}}^{2}}{f^{2}}+\frac{\Delta_{\mathcal{B}} f}{f}+\left[(\bar{n}-1) \mu_{1} \mu_{2}-\mu_{2}^{2}\right] \Omega(\rho)+\mu_{2} \operatorname{div}_{\mathcal{F}} \rho\right\}+\left[(\bar{n}-1) \mu_{1}-\right.$ $\left.\mu_{2}\right] g\left(Z_{4}, D_{Q} \rho\right)+\left[\mu_{2}^{2}+(1-\bar{n}) \mu_{1}^{2}\right] \Omega(Q) \Omega\left(Z_{4}\right)$
Proposition 2.8. Let $M=\mathcal{B} \times{ }_{f} \mathcal{F}$ be a warped product, $\operatorname{dim} \mathcal{B}=n_{1}, \operatorname{dim} \mathcal{F}=n_{2}, \operatorname{dim} M=\bar{n}=n_{1}+n_{2}$. If $\rho \in \mathfrak{X}(\mathcal{B})$, then

$$
\begin{align*}
\overline{\operatorname{scal}}_{M} & =\overline{\operatorname{scal}}_{\mathcal{B}}+\frac{\operatorname{scal}_{\mathcal{F}}}{f^{2}}+n_{2}(n-1) \frac{\left|\operatorname{grad}_{\mathcal{B}} f\right|_{\mathcal{B}}^{2}}{f^{2}}+n_{2}(\bar{n}-1)\left(\mu_{1}+\mu_{2}\right) \frac{\rho f}{f}+2 n_{2} \frac{\Delta_{\mathcal{B}} f}{f} \tag{9}\\
& +\left[n_{2}\left(\bar{n}+n_{1}-1\right) \mu_{1} \mu_{2}-n_{2}\left(\mu_{1}^{2}+\mu_{2}^{2}\right)\right] \Omega(\rho)+n_{2}\left(\mu_{1}+\mu_{2}\right) d i v_{\mathcal{B}} \rho
\end{align*}
$$

Proposition 2.9. Let $M=\mathcal{B} \times{ }_{f} \mathcal{F}$ be a warped product, $\operatorname{dim\mathcal {B}}=n_{1}, \operatorname{dim} \mathcal{F}=n_{2}, \operatorname{dim} M=\bar{n}=n_{1}+n_{2}$. If $\rho \in \mathfrak{X}(F)$, then

$$
\begin{align*}
\overline{s c a l}_{M} & =\overline{\operatorname{scal}}_{\mathcal{B}}+\frac{\operatorname{scal}_{F}}{f^{2}}(\bar{n}-1)\left(\mu_{1}+\mu_{2}\right) \operatorname{div}_{\mathcal{F}} \rho+\left[\bar{n}(\bar{n}-1) \mu_{1} \mu_{2}+(1-\bar{n})\left(\mu_{1}^{2}+\mu_{2}^{2}\right)\right] \Omega(\rho) \\
& +n_{2}(n-1) \frac{\left|\operatorname{grad}_{\mathcal{B}} f\right|_{\mathcal{B}}^{2}}{f^{2}}+2 n_{2} \frac{\Delta_{\mathcal{B}} f}{f} \tag{10}
\end{align*}
$$

In this section, we study generalized quasi-Einstein warped product manifolds and prove several results about them.

Theorem 2.10. Let (M, g) be a warped product $I \times_{f} \mathcal{F}$ where I is an open interval in $\mathbb{R}, \operatorname{dim} I=1$ and $\operatorname{dim} \mathcal{F}=n-1$, $n \geq 3$. Then the following statements are equivalent.
(i) If (M, g) is a $(G Q)_{n}$ with respect to a quarter-symmetric connection then \mathcal{F} is $a(G Q)_{n}$ for $\rho=\frac{\partial}{\partial t}$ with respect to the Levi-Civita connection.
(ii) If (M, g) is a $(G Q)_{n}$ with respect to a quarter-symmetric connection then the warping function f is a constant on I for $\rho \in \mathfrak{X}(\mathcal{F}), \mu_{2} \neq(n-1) \mu_{1}$.

Proof. Suppose that $\rho \in \mathfrak{X}(\mathcal{B})$ and let g_{I} be the metric on I. Taking $f=e^{\frac{q}{2}}$ and using the Proposition 2.6, one obtains

$$
\begin{align*}
& \overline{\operatorname{Ric}}_{M}\left(\frac{\partial}{\partial t^{\prime}}, \frac{\partial}{\partial t}\right)=(1-n)\left[\frac{1}{2} q^{\prime \prime}+\frac{1}{4} q^{\prime 2}-\frac{1}{2} \mu_{2} q^{\prime}+\mu_{1} \mu_{2}-\mu_{1}^{2}\right] g_{1}\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right) \tag{11}\\
& \overline{\operatorname{Ric}}\left(\frac{\partial}{\partial t}, Q\right)=0, \tag{12}\\
& \overline{\operatorname{Ric}}\left(Q, Z_{4}\right)=\operatorname{Ric}_{\mathcal{F}}\left(Q, Z_{4}\right)+e^{q}\left[\frac{n-1}{4}\left(q^{\prime}\right)^{2}+\frac{1}{2}\left\{(n-1) \mu_{1}+(n-2) \mu_{2}\right\} q^{\prime}\right. \tag{13}\\
&\left.+\mu_{2}^{2}+\frac{1}{2} q^{\prime \prime}+(1-n) \mu_{1} \mu_{2}\right] g_{\mathcal{F}}\left(Q, Z_{4}\right)
\end{align*}
$$

for all vector fields Q, Z_{4} on \mathcal{F}.
Since M is $G(Q E)_{n}$ with respect to quarter-symmetric connection, then form (3), we have

$$
\begin{equation*}
\overline{\operatorname{Ric}}_{M}\left(\frac{\partial}{\partial t^{\prime}}, \frac{\partial}{\partial t}\right)=a g\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right)+b A\left(\frac{\partial}{\partial t}\right) A\left(\frac{\partial}{\partial t}\right)+c\left[A\left(\frac{\partial}{\partial t}\right) B\left(\frac{\partial}{\partial t}\right)+B\left(\frac{\partial}{\partial t}\right) A\left(\frac{\partial}{\partial t}\right)\right] \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{\operatorname{Ric}}_{M}\left(Q, \mathrm{Z}_{4}\right)=a g\left(Q, \mathrm{Z}_{4}\right)+b A(Q) A\left(\mathrm{Z}_{4}\right)+c\left[A(Q) B\left(\mathrm{Z}_{4}\right)+A\left(\mathrm{Z}_{4}\right) B(Q)\right] . \tag{15}
\end{equation*}
$$

Decomposing the vector fields P and P^{\prime} separately into their components $P_{I}, P_{\mathcal{F}}$ and $P_{I^{\prime}}^{\prime} P_{\mathcal{F}}^{\prime}$ on I and \mathcal{F}, respectively, we have $P=P_{I}+\eta_{I} P_{\mathcal{F}}$ and $P^{\prime}=P_{I}^{\prime}+\eta_{2} P_{\mathcal{F}}^{\prime}$. Since $\operatorname{dim} I=1$, taking $P_{I}=\frac{\partial}{\partial t}$ which gives $P=\frac{\partial}{\partial t}+\eta_{1} P_{\mathcal{F}}$ and $P_{I}^{\prime}=\frac{\partial}{\partial t}$ which gives $P^{\prime}=\frac{\partial}{\partial t}+\eta_{2} \frac{\partial}{\partial t}+P_{\mathcal{F}}^{\prime}$, where η_{1} and η_{2} are functions on M. Thus, we have the following

$$
\begin{align*}
& A\left(\frac{\partial}{\partial t}\right)=g\left(\frac{\partial}{\partial t}, P\right)=1 \tag{16}\\
& B\left(\frac{\partial}{\partial t}\right)=g\left(\frac{\partial}{\partial t}, P^{\prime}\right)=1
\end{align*}
$$

Using equations (6) and (16), the equations (14) and (15) reduces to

$$
\begin{equation*}
\overline{\operatorname{Ric}}_{M}\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right)=a+b+2 c \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{\operatorname{Ric}}_{M}\left(Q, Z_{4}\right)=a e^{q} g_{\mathcal{F}}\left(Q, Z_{4}\right)+b A(Q) A\left(Z_{4}\right)+c\left[A(Q) B\left(Z_{4}\right)+A\left(Z_{4}\right) B(Q)\right] \tag{18}
\end{equation*}
$$

Comparing the right hand side of the equations (11) and (17), one obtains

$$
\begin{equation*}
a+b+2 c=-\frac{n-1}{4}\left[2 q^{\prime \prime}+\left(q^{\prime}\right)^{2}\right] \tag{19}
\end{equation*}
$$

Similarly, comparing the right hand side of the equations (13) and (18) we get

$$
\begin{gather*}
\operatorname{Ric}_{\mathcal{F}}\left(Q, Z_{4}\right)=e^{q}\left[a-\left\{\frac{\bar{n}-1}{4}\left(q^{\prime}\right)^{2}+\frac{1}{2}\left((n-1) \mu_{1}+(\bar{n}-2) \mu_{2}\right) q^{\prime} \mu_{2}^{2}+\frac{1}{2} q^{\prime \prime}+(1-n)\right.\right. \tag{20}\\
\left.\left.\mu_{1} \mu_{2}\right\}\right] g_{\mathcal{F}}\left(Q, Z_{4}\right)+b A(Q) A\left(Z_{4}\right)+c\left[A(Q) B\left(Z_{4}\right)+A\left(Z_{4}\right) B(Q)\right],
\end{gather*}
$$

which gives that \mathcal{F} is a $(G Q)_{n}$ with respect to connection for $\rho \in \mathfrak{X}(\mathcal{B})$ and use the Proposition 2.7, one gets

$$
\begin{align*}
& \overline{\operatorname{Ric}}\left(\frac{\partial}{\partial t}, Q\right)=\frac{q^{\prime}}{2}\left[(n-1) \mu_{1}-\mu_{2}\right] \Omega(Q) \tag{21}\\
& \overline{\operatorname{Ric}}\left(Q, \frac{\partial}{\partial t}\right)=\frac{q^{\prime}}{2}\left[\mu_{2}-(n-1) \mu_{1}\right] \Omega(Q) \tag{22}
\end{align*}
$$

for any vector field $Q \in \mathfrak{X}(\mathcal{F})$. Since M is a $(G Q)_{n}$, we have

$$
\begin{align*}
\overline{\operatorname{Ric}}\left(\frac{\partial}{\partial t}, Q\right) & =\overline{\operatorname{Ric}}\left(Q, \frac{\partial}{\partial t}\right) \\
& =a g\left(Q, \frac{\partial}{\partial t}\right)+b A(Q) A\left(\frac{\partial}{\partial t}\right)+c\left[A(Q) B\left(\frac{\partial}{\partial t}\right)+B(Q) A\left(\frac{\partial}{\partial t}\right)\right] \tag{23}
\end{align*}
$$

Now, $g\left(Q, \frac{\partial}{\partial t}\right)=0$ as $\frac{\partial}{\partial t} \in \mathfrak{X}(B)$ and $Q \in \mathfrak{X}(\mathcal{F})$. Therefore, form (23), we get

$$
\begin{equation*}
\overline{\operatorname{Ric}}\left(\frac{\partial}{\partial t}, Q\right)=\overline{\operatorname{Ric}}\left(Q, \frac{\partial}{\partial t}\right)=b A(P) A\left(\frac{\partial}{\partial t}\right)+c\left[A(Q) B\left(\frac{\partial}{\partial t}\right)+B(Q) A\left(\frac{\partial}{\partial t}\right)\right] \tag{24}
\end{equation*}
$$

Hence, we have

$$
\begin{align*}
& b A(Q) A\left(\frac{\partial}{\partial t}\right)+c\left[A(P) B\left(\frac{\partial}{\partial t}\right)+B(Q) A\left(\frac{\partial}{\partial t}\right)\right]=\frac{q^{\prime}}{2}\left[(n-1) \mu_{1}-\mu_{2}\right] \Omega(Q) \tag{25}\\
& b A(Q) A\left(\frac{\partial}{\partial t}\right)=c\left[A(Q) B\left(\frac{\partial}{\partial t}\right)+B(Q) A\left(\frac{\partial}{\partial t}\right)\right]+\frac{q^{\prime}}{2}\left[\mu_{2}-(\bar{n}-1) \mu_{1}\right] \Omega(Q) . \tag{26}
\end{align*}
$$

From (24) and (25), we get

$$
\begin{equation*}
q^{\prime}=0 \tag{27}
\end{equation*}
$$

when $\mu_{2}-(n-1) \mu_{1} \neq 0$. It follows that q is a constant on I. Then f is constant on I.
Now, we consider the warped product $M=\mathcal{B} \times{ }_{f} I$ with $\operatorname{dim} \mathcal{B}=n-1, \operatorname{dim} I=1, n \geq 3$. Under this assumption, we prove the following theorem.

Theorem 2.11. Let (M, g) be a warped product $\mathcal{B} \times_{f} I$, where $\operatorname{dim} I=1$ and $\operatorname{dim} \mathcal{B}=n-1, n \geq 3$, then
(i) if $P \in \mathfrak{X}(\mathcal{B})$ is parallel on \mathcal{B} with respect to the Levi-Civita connection on \mathcal{B}, f is a constant on \mathcal{B} and (M, g) is a $(G Q)_{n}$ with respect to a quarter-symmetric connection, then,

$$
a=\left[(n-1) \mu_{1} \mu_{2}-\mu_{2}^{2}\right] \Omega(\rho)
$$

(ii) f is a constant on \mathcal{B} if (M, g) is a $(G Q)_{n}$ with respect to a quarter-symmetric connection for $\rho \in \mathfrak{X}(I)$, and $\mu_{2} \neq(n-1) \mu_{1}$.
(iii) M is a $(G Q)_{n}$ with respect to a quarter-symmetric connection if f is a constant on \mathcal{B} and \mathcal{B} is a $(G Q)_{n}$ with respect to the Levi-Civita connection for $\rho \in \mathfrak{X}(I)$.

Proof. Let (M, g) is a $(G Q)_{n}$ with respect to a quarter-symmetric connection. Then we have

$$
\begin{equation*}
\overline{\operatorname{Ric}}\left(\mathrm{Z}_{1}, \mathrm{Z}_{2}\right)=a g\left(\mathrm{Z}_{1}, \mathrm{Z}_{2}\right)+b A\left(\mathrm{Z}_{1}\right) A\left(\mathrm{Z}_{2}\right)+c\left[A\left(\mathrm{Z}_{1}\right) B\left(\mathrm{Z}_{2}\right)+A\left(\mathrm{Z}_{2}\right) B\left(\mathrm{Z}_{1}\right)\right] \tag{28}
\end{equation*}
$$

Decomposing the vector fields P and Q separately into their components $P_{\mathcal{B}}$ and P_{I} on \mathcal{B} and I, respectively, we have

$$
\begin{equation*}
P=P_{I}+P_{\mathcal{B}} \quad \text { and } \quad Q=Q_{I}+Q_{\mathcal{B}} \tag{29}
\end{equation*}
$$

Since $\operatorname{dim} I=1$, we can take $P_{I}=\eta_{1} \frac{\partial}{\partial t}$ and $Q_{I}+\eta_{2} \frac{\partial}{\partial t}$ which gives $P=P_{\mathcal{B}}+\eta_{1} \frac{\partial}{\partial t}$ and $Q=Q_{\mathcal{B}}+\eta_{2} \frac{\partial}{\partial t}$ where η_{1}, η_{2} is a function on M. From (28), (29) and Proposition 2.6, one gets

$$
\begin{align*}
\overline{\operatorname{Ric}}^{\mathcal{B}}\left(Z_{1}, Z_{2}\right) & =a g_{\mathcal{B}}\left(Z_{1}, Z_{2}\right)+b g_{B}\left(Z_{1}, P_{B}\right) g_{B}\left(Z_{2}, P_{B}\right)+c\left[g_{B}\left(Z_{1}, P_{B}\right) g_{B}\left(Z_{2}, Q_{B}\right)\right. \\
& \left.+g_{B}\left(Z_{2}, P_{B}\right) g_{B}\left(Z_{1}, Q_{B}\right)\right]-\left[\frac{H^{f}\left(Z_{1}, Z_{2}\right)}{f}+\mu_{2} \frac{\rho f}{f} g\left(Z_{1}, Z_{2}\right)\right. \tag{30}\\
& \left.+\mu_{1} \mu_{2} \Omega(\rho) g\left(Z_{1}, Z_{2}\right)+\mu_{1} g\left(Z_{2}, D_{Z_{1}} \rho\right)-\mu_{1}^{2} \Omega\left(Z_{1}\right) \Omega\left(Z_{2}\right)\right]
\end{align*}
$$

Now, contraction of (28) over Z_{1} and Z_{2}, gives

$$
\begin{align*}
\overline{s c a l}^{\mathcal{B}} & =a(n-1)+b g_{\mathcal{B}}\left(P_{\mathcal{B}}, P_{\mathcal{B}}\right)+c\left[g_{\mathcal{B}}\left(Z_{1}, P_{\mathcal{B}}\right) g_{\mathcal{B}}\left(Z_{2}, Q_{\mathcal{B}}\right)+g_{\mathcal{B}}\left(Z_{1}, Q_{\mathcal{B}}\right) g_{\mathcal{B}}\left(Z_{2}, P_{\mathcal{B}}\right)\right] \\
& -\left[\frac{\Delta_{B}}{f}+\mu_{2}(n-1) \frac{\rho f}{f}+\left[(n-1) \mu_{1} \mu_{2}-\mu_{1}^{2}\right] \Omega(\rho)+\mu_{1} \sum_{i=1}^{n-1} g\left(e_{i}, D_{e_{i}} \rho\right)\right] \tag{31}
\end{align*}
$$

Again, contraction of (28) over Z_{1} and Z_{2}, yields

$$
\begin{equation*}
\overline{s c a l}^{M}=a n+b g_{\mathcal{B}}\left(P_{\mathcal{B}}, P_{\mathcal{B}}\right)+c\left[g_{\mathcal{B}}\left(Z_{1}, P_{\mathcal{B}}\right) g_{\mathcal{B}}\left(Z_{2}, Q_{\mathcal{B}}\right)+g_{\mathcal{B}}\left(Z_{1}, Q_{\mathcal{B}}\right) g_{\mathcal{B}}\left(Z_{2}, P_{\mathcal{B}}\right)\right] . \tag{32}
\end{equation*}
$$

Making use of (32) in (31), one gets

$$
\begin{align*}
\overline{s c a l}^{\mathcal{B}} & =\overline{s c a l}^{M}-a-\frac{\Delta_{\mathcal{B}} f}{f}-\mu_{2}(n-1) \frac{\rho f}{f}-\left[(n-1) \mu_{1} \mu_{2}-\mu_{1}^{2}\right] \Omega(\rho) \\
& \left.-\mu_{1} \sum_{i=1}^{n-1} g\left(e_{i}, D_{e_{i}} \rho\right)\right] \tag{33}
\end{align*}
$$

On the other hand form Proposition 2.8, one obtains

$$
\begin{align*}
\overline{s c a l}^{M} & =\overline{s c a l}^{\mathcal{B}}+(n-1)\left(\mu_{1}+\mu_{2}\right) \frac{\rho f}{f}+2 \frac{\Delta_{\mathcal{B}} f}{f}+\left[2(n-1) \mu_{1} \mu_{2}-\left(\mu_{1}^{2}+\mu_{2}^{2}\right)\right] \Omega(\rho) \\
& \left.+\left(\mu_{1}+\mu_{2}\right) \sum_{i=1}^{n-1} g\left(e_{i}, D_{e_{i}} \rho\right)\right] \tag{34}
\end{align*}
$$

From (33) and (34), we obtain

$$
\begin{align*}
& \left.a+\frac{\Delta_{\mathcal{B}} f}{f}+\mu_{2}(\bar{n}-1) \frac{\rho f}{f}+\left[(n-1) \mu_{1} \mu_{2}-\mu_{1}^{2}\right] \Omega(\rho)+\mu_{1} \sum_{i=1}^{\bar{n}-1} g\left(e_{i}, D_{e_{i}} \rho\right)\right] \\
& =(n-1)\left(\mu_{1}+\mu_{2}\right) \frac{\rho f}{f}+2 \frac{\Delta_{\mathcal{B}} f}{f}+\left[2(\bar{n}-1) \mu_{1} \mu_{2}-\left(\mu_{1}^{2}+\mu_{2}^{2}\right)\right] \Omega(\rho) \tag{35}\\
& \left.+\left(\mu_{1}+\mu_{2}\right) \sum_{i=1}^{\bar{n}-1} g\left(e_{i}, D_{e_{i}} \rho\right)\right]
\end{align*}
$$

Since f is a constant on \mathcal{B} and $\rho \in \mathfrak{X}(\mathcal{B})$ is parallel, then one gets

$$
a=\left[(\bar{n}-1) \mu_{1} \mu_{2}-\mu_{2}^{2}\right] \Omega(\rho) .
$$

(ii) Let $\rho \in \mathfrak{X}(I)$. By the use of Proposition 2.7 , we obtain

$$
\begin{equation*}
\overline{\operatorname{Ric}}\left(Z_{1}, \rho\right)=\left[(n-1) \mu_{1} \mu_{2}-\mu_{2}^{2}\right] \Omega(\rho) \frac{Z_{1} f}{f} \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{\operatorname{Ric}}\left(\rho, Z_{1}\right)=\left[\mu_{2}-(n-1) \mu_{1}\right] \Omega(\rho) \frac{Z_{1} f}{f} \tag{37}
\end{equation*}
$$

Since M is a $(G Q)_{n}$, we have

$$
\overline{\operatorname{Ric}}\left(Z_{1}, \rho\right)=\overline{\operatorname{Ric}}\left(\rho, Z_{1}\right)=a g\left(Z_{1}, \rho\right)+b A\left(Z_{1}\right) A(\rho)+c\left[A\left(Z_{1}\right) B(\rho)+A(\rho) B\left(Z_{1}\right)\right]
$$

Again, we have $g\left(Z_{1}, \rho\right)=0$ for $Z_{1} \in \mathfrak{X}(\mathcal{B})$ and $\rho \in \mathfrak{X}(I)$. Thus, we obtain

$$
Z_{1} f=0
$$

where $\mu_{2} \neq(n-1) \mu_{1}$. Which implies that f is constant on \mathcal{B}.
(iii) Suppose that \mathcal{B} is a $(G Q)_{n}$ with respect to the Levi-Civita connection. Then we have

$$
\begin{equation*}
\overline{\operatorname{Ric}}^{\mathcal{B}}\left(\mathrm{Z}_{1}, \mathrm{Z}_{2}\right)=a g\left(\mathrm{Z}_{1}, \mathrm{Z}_{2}\right)+b A\left(\mathrm{Z}_{1}\right) A\left(\mathrm{Z}_{2}\right)+c\left[A\left(\mathrm{Z}_{1}\right) B\left(\mathrm{Z}_{2}\right)+A\left(\mathrm{Z}_{2}\right) B\left(\mathrm{Z}_{1}\right)\right] \tag{38}
\end{equation*}
$$

for every vector fields Z_{1}, Z_{2} tangent to \mathcal{B}. From Proposition 2.7, we obtain

$$
\overline{\operatorname{Ric}}^{M}\left(Z_{1}, Z_{2}\right)=\overline{\operatorname{Ric}}^{\mathcal{B}}\left(Z_{1}, Z_{2}\right)+\left[(n-1) \mu_{1} \mu_{2}-\mu_{2}^{2}\right] \Omega(\rho) g\left(Z_{1}, Z_{2}\right)+\frac{H^{f}\left(Z_{1}, Z_{2}\right)}{f}
$$

for every vector fields $\rho \in \mathfrak{X}(I)$. Since f is a constant, $H^{f}\left(Z_{1}, Z_{2}\right)=0 \forall Z_{1}, Z_{2} \in \mathfrak{X}(\mathcal{B})$. Then the above equation reduces to

$$
\begin{equation*}
\overline{\operatorname{Ric}}^{M}\left(Z_{1}, Z_{2}\right)=\overline{\operatorname{Ric}}^{\mathcal{B}}\left(Z_{1}, Z_{2}\right)+\left[(n-1) \mu_{1} \mu_{2}-\mu_{2}^{2}\right] \Omega(\rho) g\left(Z_{1}, Z_{2}\right) . \tag{39}
\end{equation*}
$$

Using (38) and (39), one obtains

$$
\begin{align*}
\overline{\operatorname{Ric}}^{M}\left(Z_{1}, Z_{2}\right) & =\left(a+\left[(n-1) \mu_{1} \mu_{2}-\mu_{2}^{2}\right] \Omega(\rho)\right) g\left(Z_{1}, Z_{2}\right)+b A\left(Z_{1}\right) A\left(Z_{2}\right) \tag{40}\\
& +c\left[A\left(Z_{1}\right) B\left(Z_{2}\right)+A\left(Z_{2}\right) B\left(Z_{1}\right)\right] .
\end{align*}
$$

This implies that M is a $(G Q)_{n}$ with respect to a quarter-symmetric connection.
Theorem 2.12. Consider the warped product manifold (M, g) of $I \times_{f} \mathcal{B}$. If the two generators P and Q in a $(G Q)_{n}$ are parallel to I with respect to a quarter-symmetric connection, then M is a $(Q E)_{n}$ with respect to a quarter-symmetric connection.

Proof. Let the generator P is a parallel vector field, then $\bar{K}\left(Z_{1}, Z_{2}\right) P=0$. Thus

$$
\begin{equation*}
\overline{\operatorname{Ric}}\left(Z_{1}, P\right)=0 \tag{41}
\end{equation*}
$$

Consider

$$
\begin{equation*}
P=P_{\mathcal{B}}+f^{2} P_{I} \quad \text { and } \quad Q=Q_{\mathcal{B}}+f^{2} Q_{I} \tag{42}
\end{equation*}
$$

From (3), we have

$$
\begin{equation*}
\overline{\operatorname{Ric}}\left(\mathrm{Z}_{1}, \mathrm{Z}_{2}\right)=a g\left(\mathrm{Z}_{1}, \mathrm{Z}_{2}\right)+b A\left(\mathrm{Z}_{1}\right) A\left(\mathrm{Z}_{2}\right)+c\left[A\left(\mathrm{Z}_{1}\right) B\left(\mathrm{Z}_{2}\right)+A\left(\mathrm{Z}_{2}\right) B\left(\mathrm{Z}_{1}\right)\right] \tag{43}
\end{equation*}
$$

Putting $Z_{2}=P$ and using (42) in (43), one gets

$$
\begin{align*}
\overline{\operatorname{Ric}}\left(Z_{1}, P\right) & =a g\left(Z_{1}, P\right)+b A\left(Z_{1}\right) A(P)+c\left[A\left(Z_{1}\right) B(P)+A(P) B\left(Z_{1}\right)\right] \\
& =\left\{a+b\left(f^{4}+1\right)\right\} g_{I}\left(Z_{1}, P_{I}\right) f^{2}+c\left(f^{4}+1\right) g_{I}\left(Z_{1}, Q_{I}\right) f^{2} \tag{44}
\end{align*}
$$

From (13), we have

$$
\begin{align*}
\overline{\operatorname{Ric}}_{M}\left(Z_{1}, Z_{2}\right) & =\operatorname{Ric}_{I}\left(Z_{1}, Z_{2}\right)+e^{q}\left[\frac{n-1}{4}\left(q^{\prime}\right)^{2}+\frac{1}{2}\left\{(n-1) \mu_{1}+(n-2) \mu_{2}\right\} q^{\prime}\right. \\
& \left.+\mu_{2}^{2}+\frac{1}{2} q^{\prime \prime}+(1-n) \mu_{1} \mu_{2}\right] g_{I}\left(Z_{1}, Z_{2}\right) \tag{45}
\end{align*}
$$

for vector fields Z_{1}, Z_{2} on I.
Since P is parallel to I, then from above relation

$$
\begin{align*}
\overline{\operatorname{Ric}}_{M}\left(Z_{1}, Z_{2}\right) & =e^{q}\left[\frac{n-1}{4}\left(q^{\prime}\right)^{2}+\frac{1}{2}\left\{(n-1) \mu_{1}+(n-2) \mu_{2}\right\} q^{\prime}+\mu_{2}^{2}+\frac{1}{2} q^{\prime \prime}\right. \\
& \left.+(1-n) \mu_{1} \mu_{2}\right] g_{I}\left(Z_{1}, P_{B}+f^{2} P_{I}\right) \\
& =f^{2} e^{q}\left[\frac{n-1}{4}\left(q^{\prime}\right)^{2}+\frac{1}{2}\left\{(n-1) \mu_{1}+(n-2) \mu_{2}\right\} q^{\prime}\right. \tag{46}\\
& \left.+\mu_{2}^{2}+\frac{1}{2} q^{\prime \prime}+(1-n) \mu_{1} \mu_{2}\right] g_{I}\left(Z_{1}, Z_{2}\right) .
\end{align*}
$$

Comparing (44) and (46), one obtains

$$
\begin{equation*}
c=0 \tag{47}
\end{equation*}
$$

Making use of (47) in (3), one gets

$$
\operatorname{Ric}\left(\mathrm{Z}_{1}, \mathrm{Z}_{2}\right)=a g\left(\mathrm{Z}_{1}, \mathrm{Z}_{2}\right)+b A\left(\mathrm{Z}_{1}\right) A\left(\mathrm{Z}_{2}\right)
$$

i.e., $(Q E)_{n}$ with respect to quarter symmetric connection. Similarly, if Q is parallel to I, one also gets

$$
c=0
$$

So the manifold also becomes $(Q E)_{n}$ with respect to quarter symmetric connection.
Theorem 2.13. Let (M, g) be a warped product $\mathcal{B} \times_{f} \mathcal{F}$ of a complete connected r-dimensional $(1<k<n)$ Riemannian manifold \mathcal{B} and $(n-k)$-dimensional Riemannian manifold \mathcal{F}.
(i) \mathcal{B} is a two-dimensional Einstein manifold if (M, g) is a space with generalized quasi-constant sectional curvature, the Hessian of f is proportional to the metric tensor $g_{\mathcal{B}}$, and the associated vector fields W and W^{\prime} are the general vector field on M or $W, W^{\prime} \in \mathfrak{X}(\mathcal{B})$.
(ii) \mathcal{B} is a two-dimensional Einstein manifold if (M, g) is a space of generalized quasi-constant sectional curvature with the associated vector fields $W, W^{\prime} \in \mathfrak{X}(\mathcal{F})$.

Let M is a generalized quasi-constant sectional curvature space. Then, using (5) we can write

$$
\begin{align*}
\tilde{K}\left(Z_{1}, Z_{2}, Z_{3}, Z_{4}\right) & =a\left[g\left(Z_{2}, Z_{3}\right) g\left(Z_{1}, Z_{4}\right)-g\left(Z_{1}, Z_{3}\right) g\left(Z_{2}, Z_{4}\right)\right]+b\left[g\left(Z_{1}, Z_{4}\right) A\left(Z_{2}\right) A\left(Z_{3}\right)\right. \\
& \left.-g\left(Z_{2}, Z_{4}\right) A\left(Z_{1}\right) A\left(Z_{3}\right)+g\left(Z_{2}, Z_{3}\right) A\left(Z_{1}\right) A\left(Z_{4}\right)-g\left(Z_{1}, Z_{3}\right) A\left(Z_{2}\right) A\left(Z_{4}\right)\right] \\
& +c\left[g\left(Z_{1}, Z_{4}\right) B\left(Z_{2}\right) B\left(Z_{3}\right)-g\left(Z_{2}, Z_{4}\right) B\left(Z_{1}\right) B\left(Z_{3}\right)\right. \tag{48}\\
& \left.+g\left(Z_{2}, Z_{3}\right) B\left(Z_{1}\right) B\left(Z_{4}\right)-g\left(Z_{1}, Z_{3}\right) B\left(Z_{2}\right) B\left(Z_{4}\right)\right]
\end{align*}
$$

for all $Z_{1}, Z_{2}, Z_{3}, Z_{4}$ on \mathcal{B}.
Decomposing the vector fields W and W^{\prime} uniquely into its components $W_{\mathcal{B}}, W_{\mathcal{F}}$ and $W_{\mathcal{B}}^{\prime}, W_{\mathcal{F}}^{\prime}$ on \mathcal{B} and \mathcal{F}, respectively, we can write $W=W_{\mathcal{B}}+W_{\mathcal{F}}$ and $W^{\prime}=W_{\mathcal{B}}^{\prime}+W_{\mathcal{F}}^{\prime}$. Then we can write

$$
\begin{align*}
& g\left(Z_{1}, W\right)=g\left(Z_{1}, W_{\mathcal{B}}\right)=g_{\mathcal{B}}\left(Z_{1}, W_{\mathcal{B}}\right)=A\left(Z_{1}\right) \tag{49}\\
& g\left(Z_{1}, W^{\prime}\right)=g\left(Z_{1}, W_{\mathcal{B}}^{\prime}\right)=g_{\mathcal{B}}\left(Z_{1}, W_{\mathcal{B}}^{\prime}\right)=B\left(Z_{1}\right)
\end{align*}
$$

Making use of (6) and (49) in (48) and by use of Lemma 2.1 and then putting $Z_{1}=Z_{4}=e_{i}$, where e_{i} is an orthonormal basis, one obtains

$$
\begin{align*}
\operatorname{Ric}_{\mathcal{B}}\left(\mathrm{Z}_{2}, \mathrm{Z}_{3}\right) & =\left[a(k-1)+b g_{\mathcal{B}}\left(W_{\mathcal{B}}, W_{\mathcal{B}}\right)\right] g_{\mathcal{B}}\left(\mathrm{Z}_{2}, \mathrm{Z}_{3}\right)+b(k-2) A\left(\mathrm{Z}_{2}\right) A\left(\mathrm{Z}_{3}\right) \\
& +c(k-1)\left[A\left(\mathrm{Z}_{2}\right) B\left(\mathrm{Z}_{3}\right)+A\left(\mathrm{Z}_{3}\right) B\left(\mathrm{Z}_{2}\right)\right] . \tag{50}
\end{align*}
$$

This shows that \mathcal{B} is a generalized quasi-Einstein manifold. Again, putting $Z_{2}=Z=e_{i}$, where e_{i} is an orthonormal basis, one obtains

$$
\begin{equation*}
\operatorname{scal}_{\mathcal{B}}=(k-1)\left[a k+2 b g_{\mathcal{B}}\left(W_{\mathcal{B}}, W_{\mathcal{B}}\right)\right] \tag{51}
\end{equation*}
$$

In view of (7) and (51), we infer that

$$
\begin{equation*}
\frac{\Delta f}{f}=\frac{a k+b g_{\mathcal{B}}\left(W_{\mathcal{B}}, W_{\mathcal{B}}\right)}{2} \tag{52}
\end{equation*}
$$

However, since the metric tensor g_{B} is proportional to the Hesssian of f, we can write as

$$
\begin{equation*}
H^{f}\left(Z_{1}, Z_{2}\right)=\frac{\Delta f}{k} g_{\mathcal{B}}\left(Z_{1}, Z_{2}\right) \tag{53}
\end{equation*}
$$

Using (51) and (52) in (53) we get

$$
H^{f}\left(Z_{1}, Z_{2}\right)+R f g_{\mathcal{B}}\left(Z_{1}, Z_{2}\right)=0
$$

where $R=\frac{(k-1)\left(b g_{\mathcal{B}}\left(W_{\mathcal{B}} W_{\mathcal{B}}\right)\right)-\text { sacl } \mathcal{I}_{\mathcal{B}}}{2 k(k-1)}$ holds on \mathcal{B}. According to OBATA's theorem [10], in $(k+1)$-dimensional Euclidean space, \mathcal{B} is isometric to the sphere of radius $\frac{1}{\sqrt{R}}$. Since \mathcal{B} is a result of this, we know that it is an Einstein manifold. Therefore, $k=2$ because $b \neq 0, c \neq 0$. As a result, \mathcal{B} is a two-dimensional Einstein manifold.

Suppose that the associated vector fields $W, W^{\prime} \in \mathfrak{X}(\mathcal{B})$ then in view of (6) and (48) and then putting $Z_{1}=Z_{4}=e_{i}$, where e_{i} is an orthonormal basis, one obtains

$$
\begin{align*}
\operatorname{scal}_{\mathcal{B}}\left(Z_{2}, Z_{3}\right) & =[a(k-1)+b] g_{\mathcal{B}}\left(Z_{2}, Z_{3}\right) \\
& =b(k-2) g_{\mathcal{B}}\left(Z_{2}, W\right) g_{\mathcal{B}}\left(Z_{3}, W\right)+c(k-1)\left[g_{\mathcal{B}}\left(Z_{2}, W\right) g_{\mathcal{B}}\left(Z_{3}, W^{\prime}\right)\right. \tag{54}\\
& \left.+g_{\mathcal{B}}\left(Z_{2}, W^{\prime}\right) g_{\mathcal{B}}\left(Z_{3}, W\right)\right]
\end{align*}
$$

which shows that \mathcal{B} is a $G(Q E)_{n}$. Putting $Z_{2}=Z_{3}=e_{i}$ in (54), where e_{i} is an orthonormal basis, one obtains

$$
\begin{equation*}
\operatorname{scal}_{\mathcal{B}}=(k-1)[a k+2 b] . \tag{55}
\end{equation*}
$$

In view of (6) and (48) (for $W, W^{\prime} \in \mathfrak{X}(\mathcal{B})$), one obtains

$$
\begin{equation*}
\frac{\Delta f}{f}=\frac{a k+b}{2} \tag{56}
\end{equation*}
$$

However, since the metric tensor $g_{\mathcal{B}}$ is proportional to the Hesssian of f, we can write as

$$
\begin{equation*}
H^{f}\left(Z_{1}, Z_{2}\right)=\frac{\Delta f}{k} g_{\mathcal{B}}\left(Z_{1}, Z_{2}\right) \tag{57}
\end{equation*}
$$

Using (55) and (56) in (57) we get

$$
H^{f}\left(Z_{1}, Z_{2}\right)+R f g_{\mathcal{B}}\left(Z_{1}, Z_{2}\right)=0
$$

where $R=\frac{(k-1) b-\text { sacl }_{\mathcal{B}}}{2 k(k-1)}$ holds on \mathcal{B}. According to OBATA's theorem [10], in $(k+1)$-dimensional Euclidean space, \mathcal{B} is isometric to the sphere of radius $\frac{1}{\sqrt{R}}$. Since \mathcal{B} is a result of this, we know that it is an Einstein manifold. Therefore, $k=2$ because $b \neq 0, c \neq 0$. As a result, \mathcal{B} is a two-dimensional Einstein manifold. Suppose that the associated vector fields $W, W^{\prime} \in \mathfrak{X}(\mathcal{F})$, then the relation (48) reduces to

$$
\begin{equation*}
\tilde{K}\left(Z_{1}, Z_{2}, Z_{3}, Z_{4}\right)=a\left[g\left(Z_{2}, Z_{3}\right) g\left(Z_{1}, Z_{4}\right)-g\left(Z_{1}, Z_{3}\right) g\left(Z_{2}, Z_{4}\right)\right] . \tag{58}
\end{equation*}
$$

Making use of (6) in (58), one gets

$$
\begin{equation*}
\tilde{K}\left(Z_{1}, Z_{2}, Z_{3}, Z_{4}\right)=a\left[g_{\mathcal{B}}\left(Z_{2}, Z_{3}\right) g_{\mathcal{B}}\left(Z_{1}, Z_{4}\right)-g_{\mathcal{B}}\left(Z_{1}, Z_{3}\right) g_{\mathcal{B}}\left(Z_{2}, Z_{4}\right)\right] . \tag{59}
\end{equation*}
$$

Contraction of (59) over Z_{1} and Z_{4}, one gets

$$
\begin{equation*}
\operatorname{Ric}_{\mathcal{B}}\left(Z_{2}, Z_{3}\right)=a(k-1) g_{\mathcal{B}}\left(Z_{2}, Z_{3}\right), \tag{60}
\end{equation*}
$$

which shows that \mathcal{B} is an Einstein manifold with scalar curvature $\operatorname{scal}_{\mathcal{B}}=a k(k-1)$. This complete the proofs.

Theorem 2.14. Let (M, g) be a warped product $\mathcal{B} \times{ }_{f}$ I of a complete connected ($n-1$)-dimensional Riemannian manifold \mathcal{B} and one-dimensional Riemannian manifold $I .\left(\mathcal{B}, g_{\mathcal{B}}\right)$ is $a(n-1)$-dimensional sphere with radius $r d=\frac{n-1}{\sqrt{\text { scal }+a}}$ if (M, g) is a $G(Q E)_{n}$ with constant associated scalars a, b, c and $d P, P^{\prime} \in \mathfrak{X}(M)$ and if the Hessian of f is proportional to the metric tensor $g_{\mathcal{B}}$.

Proof. Suppose that M is a warped product manifold. Then by use of Lemma 2.2 we can write

$$
\begin{equation*}
\operatorname{Ric}_{\mathcal{B}}\left(Z_{1}, Z_{2}\right)=\operatorname{Ric}_{M}\left(Z_{1}, Z_{2}\right)+\frac{1}{f} H^{f}\left(Z_{1}, Z_{2}\right) \tag{61}
\end{equation*}
$$

for all Z_{1}, Z_{2} on \mathcal{B}. Since M is a $G(Q E)_{n}$, we have

$$
\begin{equation*}
\operatorname{Ric}_{M}\left(\mathrm{Z}_{1}, \mathrm{Z}_{2}\right)=a g\left(\mathrm{Z}_{1}, \mathrm{Z}_{2}\right)=b A\left(\mathrm{Z}_{1}\right) A\left(\mathrm{Z}_{2}\right)+c\left[A\left(\mathrm{Z}_{1}\right) B\left(\mathrm{Z}_{2}\right)+A\left(\mathrm{Z}_{2}\right) B\left(\mathrm{Z}_{1}\right)\right] \tag{62}
\end{equation*}
$$

Decomposing the vector fields P and P^{\prime} uniquely into its components P_{I}, P_{F} and $P_{I^{\prime}}^{\prime}, P_{F}^{\prime}$ on \mathcal{B} and I, respectively, we can write

$$
\begin{equation*}
P=P_{\mathcal{B}}+P_{I} \quad P^{\prime}=P_{\mathcal{B}}^{\prime}+P_{I}^{\prime} \tag{63}
\end{equation*}
$$

In view of (6),(62) and (63) the relation (61) can be write as

$$
\begin{align*}
\operatorname{Ric}_{\mathcal{B}}\left(Z_{1}, Z_{2}\right) & =a g_{\mathcal{B}}\left(Z_{1}, Z_{2}\right)+b g_{\mathcal{B}}\left(Z_{1}, P_{\mathcal{B}}\right) g_{\mathcal{B}}\left(Z_{2}, P_{\mathcal{B}}\right)+c\left[g_{\mathcal{B}}\left(Z_{1}, P_{\mathcal{B}}\right) g_{\mathcal{B}}\left(Z_{2}, P_{\mathcal{B}}^{\prime}\right)\right. \\
& \left.+g_{\mathcal{B}}\left(Z_{1}, P_{\mathcal{B}}^{\prime}\right) g_{\mathcal{B}}\left(Z_{2}, P_{\mathcal{B}}\right)\right]+\frac{1}{f} H^{f}\left(Z_{1}, Z_{2}\right) \tag{64}
\end{align*}
$$

Contraction above relation over Z_{1} and Z_{2}, one gets

$$
\begin{equation*}
s c a l_{\mathcal{B}}=a(n-1)+b g_{\mathcal{B}}\left(P_{\mathcal{B}}, P_{\mathcal{B}}\right)+\frac{\Delta f}{f} . \tag{65}
\end{equation*}
$$

Again Contraction of (61) over Z_{1} and Z_{2}, one gets

$$
\begin{equation*}
s c a l_{\mathcal{B}}=a n+b g_{\mathcal{B}}\left(P_{\mathcal{B}}, P_{\mathcal{B}}\right) \tag{66}
\end{equation*}
$$

Making use of (66) in (65), one gets

$$
\operatorname{scal}_{\mathcal{B}}=\operatorname{scal}_{M}-a+\frac{\Delta f}{f}
$$

In view of Lemma 2.2, we know that

$$
\begin{equation*}
-\frac{\mathrm{scal}_{M}}{n}=\frac{\Delta f}{f} . \tag{67}
\end{equation*}
$$

The above two relations gives us $s c a l_{\mathcal{B}}=\frac{n-1}{n} s c a l_{M}-a$. However, since the metric tensor $g_{\mathcal{B}}$ is proportional to the Hesssian of f, we can write as

$$
H^{f}\left(Z_{1}, Z_{2}\right)=\frac{\Delta f}{n-1} g_{\mathcal{B}}\left(Z_{1}, Z_{2}\right)
$$

As the consequence of (67) we have $\frac{\Delta f}{n-1}=-\frac{1}{n(n-1)} s^{\prime} s l_{M} f$, that is,

$$
H^{f}\left(Z_{1}, Z_{2}\right)+\frac{s c a l_{\mathcal{B}}+a}{(n-1)^{2}} f g_{\mathcal{B}}\left(Z_{1}, Z_{2}\right)=0
$$

Thus, B is isometric to the $(n-1)$-dimensional sphere of radius $r d=\frac{n-1}{\sqrt{\text { scal }+a} \text {. }}$.

3. Examples of 3 and 4-dimensional $G(Q E)_{n}$

Example 3.1. We define a Riemannian metric g in 3-dimensional space \mathbb{R}^{3} by the relation

$$
\begin{equation*}
d s^{2}=g_{i j} d x^{i} d x^{j}=\left(x^{3}\right)^{4 / 3}\left[\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}\right]+\left(d x^{3}\right)^{2} \tag{68}
\end{equation*}
$$

where x^{1}, x^{2}, x^{3} are non-zero finite. The covariant and contravariant components of the metric tensor are

$$
\begin{equation*}
g_{11}=g_{22}=\left(x^{3}\right)^{4 / 3}, \quad g_{33}=1, \quad g_{i j}=0 \quad \forall \quad i \neq j \tag{69}
\end{equation*}
$$

and

$$
\begin{equation*}
g^{11}=g^{22}=\frac{1}{\left(x^{3}\right)^{4 / 3}}, \quad g^{33}=1, \quad g^{i j}=0 \quad \forall \quad i \neq j \tag{70}
\end{equation*}
$$

The only non-vanishing components of the Christoffel symbols are

$$
\left\{\begin{array}{c}
1 \tag{71}\\
13
\end{array}\right\}=\left\{\begin{array}{c}
2 \\
23
\end{array}\right\}=\frac{2}{3 x^{3}}, \quad\left\{\begin{array}{c}
3 \\
11
\end{array}\right\}=\left\{\begin{array}{c}
3 \\
22
\end{array}\right\}=\frac{-2}{3}\left(x^{3}\right)^{\frac{1}{3}} .
$$

The non-zero derivatives of (71), we have

$$
\frac{\partial}{\partial x^{3}}\left\{\begin{array}{c}
1 \tag{72}\\
13
\end{array}\right\}=\frac{\partial}{\partial x^{3}}\left\{\begin{array}{c}
2 \\
23
\end{array}\right\}=\frac{-2}{3\left(x^{3}\right)^{2}}, \quad \frac{\partial}{\partial x^{3}}\left\{\begin{array}{c}
3 \\
11
\end{array}\right\}=\frac{\partial}{\partial x^{3}}\left\{\begin{array}{c}
3 \\
22
\end{array}\right\}=\frac{-2}{9\left(x^{3}\right)^{\frac{2}{3}}} .
$$

For the Riemannian curvature tensor,

The non-zero components of (I) are:

$$
\begin{aligned}
& K_{331}^{1}=\frac{\partial}{\partial x^{3}}\left\{\begin{array}{c}
1 \\
31
\end{array}\right\}=\frac{-2}{3\left(x^{3}\right)^{2}}, \\
& K_{332}^{2}=\frac{\partial}{\partial x^{3}}\left\{\begin{array}{c}
2 \\
32
\end{array}\right\}=\frac{-2}{3\left(x^{3}\right)^{2}},
\end{aligned}
$$

and the non-zero components of (II) are:

$$
\begin{aligned}
& K_{331}^{1}=\left\{\begin{array}{c}
m \\
31
\end{array}\right\}\left\{\begin{array}{c}
1 \\
m 3
\end{array}\right\}-\left\{\begin{array}{c}
m \\
33
\end{array}\right\}\left\{\begin{array}{c}
1 \\
m 1
\end{array}\right\}=\left\{\begin{array}{c}
1 \\
31
\end{array}\right\}\left\{\begin{array}{c}
1 \\
13
\end{array}\right\}-\left\{\begin{array}{c}
1 \\
33
\end{array}\right\}\left\{\begin{array}{c}
1 \\
11
\end{array}\right\}=\frac{4}{9\left(x^{3}\right)^{2}}, \\
& K_{332}^{2}=\left\{\begin{array}{c}
m \\
32
\end{array}\right\}\left\{\begin{array}{c}
2 \\
m 3
\end{array}\right\}-\left\{\begin{array}{c}
m \\
33
\end{array}\right\}\left\{\begin{array}{c}
2 \\
m 2
\end{array}\right\}=\left\{\begin{array}{c}
2 \\
32
\end{array}\right\}\left\{\begin{array}{c}
2 \\
23
\end{array}\right\}-\left\{\begin{array}{c}
2 \\
33
\end{array}\right\}\left\{\begin{array}{c}
2 \\
22
\end{array}\right\}=\frac{4}{9\left(x^{3}\right)^{2}} \\
& K_{221}^{1}=\left\{\begin{array}{c}
m \\
21
\end{array}\right\}\left\{\begin{array}{c}
1 \\
m 2
\end{array}\right\}-\left\{\begin{array}{c}
m \\
22
\end{array}\right\}\left\{\begin{array}{c}
1 \\
m 1
\end{array}\right\}=\left\{\begin{array}{c}
3 \\
21
\end{array}\right\}\left\{\begin{array}{c}
1 \\
32
\end{array}\right\}-\left\{\begin{array}{c}
3 \\
22
\end{array}\right\}\left\{\begin{array}{c}
1 \\
31
\end{array}\right\}=\frac{4}{9\left(x^{3}\right)^{\frac{2}{3}}}
\end{aligned}
$$

Adding components corresponding (I) and (II), we have

$$
K_{221}^{1}=\frac{4}{9\left(x^{3}\right)^{\frac{2}{3}}}, K_{331}^{1}=\frac{-2}{9\left(x^{3}\right)^{2}}=K_{332}^{2} .
$$

Thus, the non-zero components of curvature tensor, up to symmetry are,

$$
\bar{K}_{1331}=\bar{K}_{2332}=\frac{-2}{9\left(x^{3}\right)^{\frac{2}{3}}}, \quad \bar{K}_{1221}=\frac{4}{9}\left(x^{3}\right)^{\frac{2}{3}},
$$

and the Ricci tensor

$$
\begin{aligned}
& \operatorname{Ric}_{11}=g^{j h} \bar{K}_{1 j 1 h}=g^{22} \bar{K}_{1212}+g^{33} \bar{K}_{1313}=\frac{2}{9\left(x^{3}\right)^{\frac{2}{3}}}, \\
& \operatorname{Ric}_{22}=g^{j h} \bar{K}_{2 j 2 h}=g^{11} \bar{K}_{2121}+g^{33} \bar{K}_{2323}=\frac{2}{9\left(x^{3}\right)^{\frac{2}{3}}}, \\
& \operatorname{Ric}_{33}=g^{j h} \bar{K}_{3 j 3 h}=g^{11} \bar{K}_{3131}+g^{22} \bar{K}_{3232}=\frac{-4}{9\left(x^{3}\right)^{2}},
\end{aligned}
$$

Let us consider the associated scalars a, b, c and the 1-forms are defined by

$$
\begin{aligned}
& a=\frac{-4}{9\left(x^{3}\right)^{2}}, b=\frac{6\left(x^{3}\right)^{\frac{4}{3}}}{9}, c=\frac{1}{9\left(x^{3}\right)^{2}}, \\
& \quad A_{i}(x)=\left\{\begin{array}{ll}
\frac{1}{x^{3}}, & \text { if } i=1 \\
\left(x^{3}\right)^{\frac{2}{3}}, & \text { if } i=2 \\
0, & \text { otherwise }
\end{array} \text { and } B_{i}(x)= \begin{cases}\left(x^{3}\right)^{\frac{2}{3}}, & \text { if } i=2 \\
0, & \text { otherwise }\end{cases} \right.
\end{aligned}
$$

where generators are unit vector fields, then from (3), we have

$$
\begin{align*}
& \text { Ric }_{11}=a g_{11}+b A_{1} A_{1}+2 c A_{1} B_{1} \tag{73}\\
& \text { Ric }_{22}=a g_{22}+b A_{2} A_{2}+2 c A_{2} B_{2} \tag{74}\\
& \text { Ric }_{33}=a g_{33}+b A_{3} A_{3}+2 c A_{3} B_{3} \tag{75}
\end{align*}
$$

R.H.S. of $(73)=a g_{11}+b A_{1} A_{1}+2 c A_{1} B_{1}$
$=\frac{-4}{9\left(x^{3}\right)^{\frac{2}{3}}}+\frac{6}{9\left(x^{3}\right)^{\frac{2}{3}}}$
$=\frac{2}{9\left(x^{3}\right)^{\frac{2}{3}}}$
$=$ L.H.S. \quad of
By similar argument it can be shown that (74) and (75) are also true.
Hence $\left(\mathbb{R}^{3}, g\right)$ is a $G(Q E)_{3}$.
Example 3.2. Lorentzian manifold $\left(\mathbb{R}^{3}, g\right)$ endowed with the metric given by

$$
\begin{equation*}
d s^{2}=g_{i j} d x^{i} d x^{j}=-\left(x^{3}\right)^{4 / 3}\left[\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}\right]+\left(d x^{3}\right)^{2} \tag{76}
\end{equation*}
$$

where x^{1}, x^{2}, x^{3} are non-zero finite, then $\left(\mathbb{R}^{3}, g\right)$ is a $G(Q E)_{3}$.
Example 3.3. We define a Riemannian metric g in 4 -dimensional space \mathbb{R}^{4} by the relation

$$
\begin{equation*}
d s^{2}=g_{i j} d x^{i} d x^{j}=(1+2 p)\left[\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}+\left(d x^{4}\right)^{2}\right] \tag{77}
\end{equation*}
$$

where $x^{1}, x^{2}, x^{3}, x^{4}$ are non-zero finite and $p=e^{x^{1}} k^{-2}$. Then the covariant and contravariant components of the metric are

$$
\begin{equation*}
g_{11}=g_{22}=g_{33}=g_{44}=(1+2 p), \quad g_{i j}=0 \quad \forall \quad i \neq j \tag{78}
\end{equation*}
$$

and

$$
\begin{equation*}
g^{11}=g^{22}=g^{33}=g^{44}=\frac{1}{1+2 p}, \quad g^{i j}=0 \quad \forall \quad i \neq j \tag{79}
\end{equation*}
$$

The only non-vanishing components of the Christoffel symbols are

$$
\begin{align*}
& \left\{\begin{array}{c}
1 \\
11
\end{array}\right\}=\left\{\begin{array}{c}
2 \\
12
\end{array}\right\}=\left\{\begin{array}{c}
3 \\
13
\end{array}\right\}=\left\{\begin{array}{c}
4 \\
14
\end{array}\right\}=\frac{\partial}{\partial x^{1}}\left\{\begin{array}{c}
4 \\
14
\end{array}\right\}=\frac{p}{1+2 p^{\prime}} \\
& \left\{\begin{array}{c}
1 \\
22
\end{array}\right\}=\left\{\begin{array}{c}
1 \\
33
\end{array}\right\}=\left\{\begin{array}{c}
1 \\
44
\end{array}\right\}=\frac{-p}{1+2 p} . \tag{80}
\end{align*}
$$

The non-zero derivatives of (80), we have

$$
\begin{align*}
& \frac{\partial}{\partial x^{1}}\left\{\begin{array}{c}
1 \\
11
\end{array}\right\}=\frac{\partial}{\partial x^{1}}\left\{\begin{array}{c}
2 \\
12
\end{array}\right\}=\frac{\partial}{\partial x^{1}}\left\{\begin{array}{c}
3 \\
13
\end{array}\right\}=\frac{p}{(1+2 p)^{2}}, \tag{81}\\
& \frac{\partial}{\partial x^{1}}\left\{\begin{array}{c}
1 \\
22
\end{array}\right\}=\frac{\partial}{\partial x^{1}}\left\{\begin{array}{c}
1 \\
33
\end{array}\right\}=\frac{\partial}{\partial x^{1}}\left\{\begin{array}{c}
1 \\
44
\end{array}\right\}=\frac{-p}{1+2 p)^{2}} .
\end{align*}
$$

For the Riemannian curvature tensor,

$$
K_{i j k}^{l}=\underbrace{\left|\begin{array}{cc}
\frac{\partial}{\partial x^{j}} & \frac{\partial}{\partial x^{k}} \\
\left\{\begin{array}{l}
l \\
i j
\end{array}\right\} & \left\{\begin{array}{c}
l \\
i k
\end{array}\right. \\
\hline
\end{array}\right|}_{=I}+\underbrace{\left.\left\lvert\, \begin{array}{c}
m \\
i k
\end{array}\right.\right\}}_{=I I} \begin{array}{c}
\left\{\begin{array}{c}
m \\
i j
\end{array}\right\} \\
m k
\end{array}\} \left.\quad\left\{\begin{array}{c}
l \\
m j
\end{array}\right\} \right\rvert\, . ~ .
$$

The non-zero components of (I) are:

$$
\begin{aligned}
& K_{212}^{1}=\frac{\partial}{\partial x^{1}}\left\{\begin{array}{c}
1 \\
22
\end{array}\right\}=\frac{-p}{(1+2 p)^{2}}, \\
& K_{313}^{1}=\frac{\partial}{\partial x^{1}}\left\{\begin{array}{c}
1 \\
33
\end{array}\right\}=\frac{-p}{(1+2 p)^{2}}, \\
& K_{414}^{1}=\frac{\partial}{\partial x^{1}}\left\{\begin{array}{c}
1 \\
44
\end{array}\right\}=\frac{-p}{(1+2 p)^{2}}
\end{aligned}
$$

and the non-zero components of (II) are:

$$
\begin{aligned}
& K_{332}^{2}=\left\{\begin{array}{l}
m \\
32
\end{array}\right\}\left\{\begin{array}{c}
2 \\
m 3
\end{array}\right\}-\left\{\begin{array}{c}
m \\
33
\end{array}\right\}\left\{\begin{array}{c}
2 \\
m 2
\end{array}\right\}=-\left\{\begin{array}{c}
1 \\
33
\end{array}\right\}\left\{\begin{array}{c}
2 \\
12
\end{array}\right\}=\frac{p^{2}}{(1+2 p)^{2}} \\
& K_{442}^{2}=\left\{\begin{array}{c}
m \\
42
\end{array}\right\}\left\{\begin{array}{c}
2 \\
m 4
\end{array}\right\}-\left\{\begin{array}{c}
m \\
44
\end{array}\right\}\left\{\begin{array}{c}
2 \\
m 2
\end{array}\right\}=-\left\{\begin{array}{c}
1 \\
44
\end{array}\right\}\left\{\begin{array}{c}
2 \\
12
\end{array}\right\}=\frac{p^{2}}{(1+2 p)^{2}} \\
& K_{443}^{3}=\left\{\begin{array}{c}
m \\
43
\end{array}\right\}\left\{\begin{array}{c}
3 \\
m 4
\end{array}\right\}-\left\{\begin{array}{c}
m \\
44
\end{array}\right\}\left\{\begin{array}{c}
3 \\
m 3
\end{array}\right\}=-\left\{\begin{array}{c}
1 \\
44
\end{array}\right\}\left\{\begin{array}{c}
3 \\
13
\end{array}\right\}=\frac{p^{2}}{(1+2 p)^{2}}
\end{aligned}
$$

Adding components corresponding (I) and (II), we have

$$
\begin{aligned}
& K_{221}^{1}=K_{331}^{1}=K_{441}^{1}=\frac{p}{(1+2 p)^{2}} \\
& K_{332}^{2}=K_{442}^{2}=K_{443}^{3}=\frac{p^{2}}{(1+2 p)^{2}} .
\end{aligned}
$$

Thus, the non-zero components of curvature tensor, up to symmetry are given by

$$
\begin{aligned}
& \bar{K}_{1221}=\bar{K}_{1331}=\bar{K}_{1441}=\frac{p}{1+2 p} \\
& \bar{K}_{2332}=\bar{K}_{2442}=\bar{K}_{3443}=\frac{p^{2}}{1+2 p}
\end{aligned}
$$

and the Ricci tensor are given by

$$
\begin{aligned}
& \operatorname{Ric}_{11}=g^{j h} \bar{K}_{1 j 1 h}=g^{22} \bar{K}_{1212}+g^{33} \bar{K}_{1313}+g^{44} \bar{K}_{1414}=\frac{3 p}{(1+2 p)^{2}}, \\
& \text { Ric }_{22}=g^{j h} \bar{K}_{2 j 2 h}=g^{11} \bar{K}_{2121}+g^{33} \bar{K}_{2323}+g^{44} \bar{K}_{2424}=\frac{p}{(1+2 p)}, \\
& \operatorname{Ric}_{33}=g^{j h} \bar{K}_{3 j 3 h}=g^{11} \bar{K}_{3131}+g^{22} \bar{K}_{3232}+g^{44} \bar{K}_{3434}=\frac{p}{(1+2 p)}, \\
& \text { Ric }_{44}=g^{j h} \bar{K}_{4 j 4 h}=g^{11} \bar{K}_{4141}+g^{22} \bar{K}_{4242}+g^{33} \bar{K}_{4343}=\frac{p}{(1+2 p)}
\end{aligned}
$$

The scalar curvature r is given by

$$
r=g^{11} \text { Ric }_{11}+g^{22} \text { Ric }_{22}+g^{33} \text { Ric }_{33}+g^{44} \text { Ric }_{44}=\frac{6 p(1+p)}{(1+2 p)^{3}}
$$

Let us consider the associated scalars a, b, c and the 1 -forms are defined by

$$
\begin{aligned}
& a=\frac{3 p}{(1+2 p)^{3}}, \quad b=2 p, \quad c=\frac{-p}{(1+2 p)^{2}} \\
& A_{i}(x)=\left\{\begin{array}{ll}
\frac{1}{1+2 p}, & \text { if } i=1 \\
0, & \text { otherwise }
\end{array} \text { and } \quad B_{i}(x)= \begin{cases}1, & \text { if } i=1 \\
-1, & \text { if } i=2 \\
0, & \text { otherwise }\end{cases} \right.
\end{aligned}
$$

where generators are unit vector fields, then from (3), we have

$$
\begin{align*}
& \text { Ric }_{11}=a g_{11}+b A_{1} A_{1}+2 c A_{1} B_{1} \tag{82}\\
& R i c_{22}=a g_{22}+b A_{2} A_{2}+2 c A_{2} B_{2} \tag{83}\\
& R i_{33}=a g_{33}+b A_{3} A_{3}+2 c A_{3} B_{3} \tag{84}\\
& \text { Ric }_{44}=a g_{44}+b A_{4} A_{4}+2 c A_{4} B_{4} \tag{85}
\end{align*}
$$

$$
\begin{align*}
\text { R.H.S. of } \quad(82) & =a g_{11}+b A_{1} A_{1}+2 c A_{1} B_{1} \\
& =\frac{3 p}{(1+2 p)^{2}}+\frac{2 p}{(1+2 p)^{2}}-\frac{2 p}{(1+2 p)^{2}} \\
& =\frac{3 p}{(1+2 p)^{2}} \\
& =\text { L.H.S. of } \tag{82}
\end{align*}
$$

By similar argument it can be shown that (83) to (85) are also true.
Hence $\left(\mathbb{R}^{4}, g\right)$ is a $G(Q E)_{4}$.
Example 3.4. Lorentzian manifold $\left(\mathbb{R}^{4}, g\right)$ endowed with the metric given by

$$
d s^{2}=g_{i j} d x^{i} d x^{j}=-(1+2 p)\left(d x^{1}\right)^{2}+(1+2 p)\left[\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}+\left(d x^{4}\right)^{2}\right]
$$

where x^{1}, x^{2}, x^{3} and x^{4} are non-zero finite, then $\left(\mathbb{R}^{4}, g\right)$ is a $G(Q E)_{4}$.

4. Example of generalized quasi-Einstein warped product manifold

In this section, we will have look at examples 3.1 and 3.3, which is a three and four dimensional examples of a generalized quasi-Einstein manifold.

Example 4.1. Let us assume that the Riemannian manifold denoted by $\left(R^{3}, g\right)$ is endowed with the metric

$$
d s^{2}=g_{i j} d x^{i} d x^{j}=\left(x^{3}\right)^{4 / 3}\left[\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}\right]+\left(d x^{3}\right)^{2}
$$

where x^{1}, x^{2}, x^{3} are non-zero finite. In order to define the warped product on $G(Q E)_{3}$, we consider the warping function $f: \mathbb{R}_{\neq 0} \rightarrow(0, \infty)$ by $f\left(x^{3}\right)=\left(x^{3}\right)^{\frac{2}{3}}$ and notice that $f=\left(x^{3}\right)^{\frac{2}{3}}>0$ is a smooth function. This allows us to define the warped product. The line element that is defined on $\mathbb{R}_{\neq 0} \times R^{2}$ and has the form $B \times{ }_{f} F$, where $B=\mathbb{R}_{\neq 0}$ is the base and $F=R^{2}$ is the fibre.

So, we can write $d s_{M}^{2}=d s_{B}^{2}+f^{2} d s_{F}^{2}$, i.e.,

$$
d s^{2}=g_{i j} d x^{i} d x^{j}=\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}+\left\{\left(x^{3}\right)^{2 / 3}\right\}\left[\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}\right],
$$

which represents an example of a Riemannian warped product on $G(Q E)_{3}$.
Example 4.2. Let us assume that the Riemannian manifold denoted by $\left(R^{4}, g\right)$ is endowed with the metric

$$
d s^{2}=g_{i j} d x^{i} d x^{j}=(1+2 p)\left[\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}+\left(d x^{4}\right)^{2}\right]
$$

where x^{1}, x^{2}, x^{3} and x^{4} are non-zero finite. In order to define the warped product on $G(Q E)_{3}$, we consider the warping function $f: R^{3} \rightarrow(0, \infty)$ by $f\left(x^{1}, x^{2}, x^{3}\right)=\sqrt{1+2 p}$ and notice that $f>0$ is a smooth function. This allows us to define the warped product. The line element that is defined on $R^{3} \times R$ and has the form $B \times{ }_{f} F$, where $B=R^{3}$ is the base and $F=R$ is the fibre.

So, we can write $d s_{M}^{2}=d s_{B}^{2}+f^{2} d s_{F}^{2}$, i.e.,

$$
d s^{2}=g_{i j} d x^{i} d x^{j}=(1+2 p)\left[\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}\right]+\sqrt{1+2 p}\left(d x^{4}\right)^{2}
$$

which also represents an example of a Riemannian warped product on $G(Q E)_{4}$.

References

[1] A. Friedmann and J. A. Schouten, Über die Geometrie der halbsymmetrischen Ubertragungen. Math. Z. 21 (1924) 211--223.
[2] A. Gebarowski, On Einstein warped products. Tensor (N. S.) 52 (1993) 204-207.
[3] A. L. Besse, Einstein manifolds, Ergeb. Math. Grenzgeb. 3. Folge, Bd. 10. Berlin, Heidelberg, New York: Springer-Verlag (1987).
[4] B. Pal, S. Dey and S. Pahan, On a non flat Riemannian warped product manifold with respect to quartersymmetric connection. Acta Univ. Sapientiae, Math. 11(2) (2019) 332--349.
[5] B. O'Neill, Semi-Riemannian Geometry with applications to Relativity, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983.
[6] D. G. Prakasha and H. Venkatesha, Some results on generalized quasi-Einstein manifolds, Chin. J. Math. 18 (2014) 563803.
[7] El Naschie M.S., Gödel universe, dualities and high energy particle in E-infinity, Chaos Solitons Fractals 25 (2005) 759-764.
[8] El Naschie M.S., Is Einstein's general field equation more fundamental than quantum field theory and particle 22 physics?, Chaos Solitons Fractals 30 (2006) 525-531.
[9] G. Catino, Generalized quasi-Einstein manifolds with harmonic Weyl tensor. Mathematische Zeitschrift 271 (2012) 751--756.
[10] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962) 333--340.
[11] M. C. Chaki and R. K. Maity, On quasi-Einstein manifolds, Publ. Math. Debrecen 57 (2000) 297-306.
[12] M. C. Chaki, On generalized quasi-Einstein manifold. Publ. Math. Debrecen 58 (2001) 638-691.
[13] M. M. Tripathi, A new connection in a Riemannian manifold, International Electronic Journal of Geometry 1 (2008) 15-24.
[14] Q. Qu and Y. Wang, Multiply warped products with a quarter-symmetric connection, J. Math.Anal. Appl. 431 (2015) 955-987.
[15] R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969) 1-49.
[16] S. Güler and S. A. Demirbag, A study of generalized quasi Einstein spacetimes with applications in general relativity. Int. J. Theor. Phys. 55 (2016) 548-562.
[17] S. Mallick and U. C. De, On a Class of Generalized quasi-Einstein Manifolds with applications to relativity. Acta Univ. Palacki. Olomuc. Fac. Rerum Nat. Math. 55 (2016) 111--127.
[18] S. Sular and C. Özgür, Characterizations of generalized quasi-Einstein manifolds, An. Univ. Ovidius Constanta-Seria Mat. 20 (2012) 407--416.
[19] S. Golab, On semi-symmetric and quarter-symmetric linear connections. Tensor (N. S.) 29 (1975) 249--254.
[20] S. Dey, B. Pal and A. Bhattacharyya, Warped products and quasi-Einstein metrics, Caspian J. Math. Sci. 6(1) (2017) 1--8.
[21] S. Dey, B. Pal and A. Bhattacharyya, On some classes of mixed-super quasi-Einstein manifolds, Acta Univ. Sapientiae Math. 8(1) (2016), 32-52.
[22] S. Pahan, B. Pal and A. Bhattacharyya, Multiply warped products as quasi-Einstein manifolds with a quarter-symmetric connection. Rend. Istit. Mat. Univ. Trieste 48 (2016) 587-605.
[23] S. Pahan, B. Pal and A. Bhattacharyya, On Einstein warped products with a quarter-symmetric connection, Int. J. Geom. Methods Mod. Phys. 14(4) (2017) 15.
[24] S. Shenawy and B. Ünal, 2-Killing vector fields on warped product manifolds, Int. J. Math. 26 (2015) 1—17.
[25] U. C. De and G. C. Ghosh, On generalized quasi-Einstein manifolds, Kyungpook Mathematical Journal 44 (2004) 607--615.
[26] U. C. De and S. Mallick, On the existence of generalized quasi-Einstein manifolds, Arch. Math. 47 (2011) 279--291.
[27] U. C. De and S. Mallick, On generalized quasi-Einstein manifolds admitting certain vector fields, Filomat 29 (2015) 599-609.
[28] U. C. De and S. Shenawy, Generalized quasi-Einstein GRWspace-times, Int. J. Geom. Methods Mod. Phys. 16 (2019) 1950124.
[29] U. C. De and G. C. Ghosh, On generalized quasi Einstein manifolds, Kyungpook Math. J. 44 (2004) 607.

[^0]: 2020 Mathematics Subject Classification. 53C25, 53B30, 53C15
 Keywords. quasi-Einstein manifold, generalized quasi-Einstein manifold, warped products manifold, affine connection
 Received: 03 June 2023; Revised: 27 July 2023; Accepted: 30 August 2023
 Communicated by Ljubica Velimirović
 Email addresses: vsmlk45@gmail.com (Mohd Vasiulla), ali.math509@gmail.com (Mohabbat Ali), cozel@kau. edu.sa (Cenap Özel), pigazzini@topositus.com (Alexander Pigazzini)

