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Abstract. In this article, we investigate the behaviour of a non-linear mapΘ on ∗-algebra A, which satisfies
Θ([X◦Y,Z]•) = [Θ(X)◦Y,Z]•+ [X◦Θ(Y),Z]•+ [X◦Y,Θ(Z)]•, where X◦Y = XY+YX and [X,Y]• = XY∗−YX∗

(namely, Jordan and bi-skew Lie product, respectively), for all X,Y,Z ∈ A. Furthermore, we apply the above
mentioned result to several distinct algebras.

1. Introduction

Let A be an associative ∗-algebra over the field of complex numbers C. The products defined by
X ◦ Y = XY + YX, X ∗ Y = XY + YX∗, [X,Y] = XY − YX and [X,Y]∗ = XY − YX∗ are called Jordan product,
∗-Jordan product, Lie product and ∗-Lie product of X,Y ∈ A respectively. In recent years, several authors
investigated the structure of derivations concerning these products see ([6, 9, 10, 14, 18, 19, 23]). A linear
map Θ : A → A is called a derivation if Θ(XY) = Θ(X)Y + XΘ(Y) for all X,Y ∈ A. Further, if Θ satisfies
Θ(X∗) = Θ(X)∗ for all X ∈ A, then Θ is called a ∗-derivation. Obviously, every ∗-derivation is a derivation.
Without assuming the linearity assumption if a map Θ : A→ A satisfies

Θ(X ◦ Y) = Θ(X) ◦ Y + X ◦Θ(Y)

or
Θ(X ◦ Y ◦ Z) = Θ(X) ◦ Y ◦ Z + X ◦Θ(Y) ◦ Z + X ◦ Y ◦Θ(Z)

for all X,Y,Z ∈ A, then Θ is called a non-linear Jordan derivation or a non-linear Jordan triple derivation
respectively. By considering Lie (or Lie triple) product, a non-linear Lie (or Lie triple) derivation is defined
analogously. Very recently, Kong and Zhang [13] introduced a new product [X,Y]• = XY∗ − YX∗, called as
bi-skew Lie product of X,Y ∈ A and they proved that every non-linear bi-skew Lie derivation on a factor
von Neumann algebra A (with dim(A) ≥ 2) is an additive ∗-derivation. The third author further extended
this result to multiplicative bi-skew Lie triple derivation [1]. Recall that a map Θ : A → A is called a
non-linear bi-skew Lie or Lie triple derivation if Θ satisfies

Θ([X,Y]•) = [Θ(X),Y]• + [X,Θ(Y)]•
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or
Θ([[X,Y]•,Z]•) = [[Θ(X),Y]•,Z]• + [[X,Θ(Y)]•,Z]• + [[X,Y]•,Θ(Z)]•

for all X,Y,Z ∈ A. Researchers have been studying the additivity or characterization of maps preserving
various kinds of products. Many mathematicians studied alternative rings as a more general class of rings
that preserve these products (see [3, 4, 11, 16]).

In recent years, several scholars considered mixed products constituting Jordan (∗-Jordan) and Lie (∗-
Lie) products and characterize the structure of derivations preserving these products ([5, 8, 12, 20–22]). For
instance, in [22] Zhou et.al. proved that every non-linear mixed Lie triple derivation on prime ∗-algebras, is
an additive ∗-derivation. In [5], Li and Zhang investigated the structure of non-linear mixed Jordan triple
∗-derivation on ∗-algebras. Ferreira and Wei [2] proved that every mixed ∗-Jordan (i.e., the mixed product
of X ◦ Y = XY + YX and X • Y = X∗Y + Y∗X) type derivation on a ∗-algebra, is an additive ∗-derivation.
The authors of [17] studied non-linear mixed ∗-Jordan type derivations preserving the mixed product of
X ◦ Y = XY + YX∗ and X • Y = XY − YX∗, on alternative ∗-algebras and proved that they are additive
∗-derivations. Let A be a ∗-algebra. Consider a map (not necessarily linear) Θ : A→ A satisfying

Θ([X ◦ Y,Z]•) = [Θ(X) ◦ Y,Z]• + [X ◦Θ(Y),Z]• + [X ◦ Y,Θ(Z)]•

for all X,Y,Z ∈ A, then Θ is called a non-linear mixed Jordan bi-skew Lie triple derivation on A.
Motivated by the aforementioned works, our primary focus will be on the mixed product constructed

by Jordan and bi-skew Lie product and we try to give the description of non-linear mixed Jordan bi-skew
Lie triple derivations on ∗-algebras.

2. Preliminaries and Main Result

Throughout the article unless otherwise stated, A represents a ∗-algebra over C, the field of complex
numbers. LetH be a complex Hilbert space and B(H) denote the algebra of all bounded linear operators
onH . An idempotent operator P ∈ B(H) is called a projection if it is self-adjoint (i.e., P2 = P and P ∗ = P).
Any operator X ∈ B(H) can be expressed as X = RX + iImX, where i ∈ C i.e., i2 = −1, RX = X+X∗

2 and
ImX = X−X∗

2i . It is evident that both RX and ImX are self-adjoint.
Denote by P1 = P and P2 = I − P be two non-trivial projections in A. Then our main theorem reads as

follows.
Main Theorem. Let A be a unital ∗-algebra containing non-trivial projections P1,P2 and satisfies

XAPk = 0 implies X = 0, k = 1, 2. (1)

Then a map Θ : A→ A satisfies

Θ([X ◦ Y,Z]•) = [Θ(X) ◦ Y,Z]• + [X ◦Θ(Y),Z]• + [X ◦ Y,Θ(Z)]•

for all X,Y,Z ∈ A if and only if Θ is an additive ∗-derivation.
Let P1 = P and P2 = I−P be two non-trivial projections inA. WriteAi j = PiAP j. ThenA = A11+A12+A21+
A22. Let L = {X ∈ A| X∗ = X} and K = {X ∈ A| X∗ = −X}, K12 = {P1KP2 + P2KP1| K ∈ K} and Kii = PiKPi
(i = 1, 2). Thus, for every K ∈ K ,K = K11 + K12 + K22, for every K12 ∈ K12 and Kii ∈ Kii (i = 1, 2).
Only the necessity must be established. The proof of the main theorem is done by proving a series of
lemmas which are as follows.

Lemma 2.1. Θ(0) = 0.

Proof. By the hypothesis, we have

Θ(0) = Θ([0 ◦ 0, 0]•) = [Θ(0) ◦ 0, 0]• + [0 ◦Θ(0), 0]• + [0 ◦ 0,Θ(0)]• = 0.
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Lemma 2.2. Θ(K)∗ = −Θ(K) for every K ∈ K .

Proof. Observe, for any K ∈ K that K = [ 1
2I ◦ K, 1

2I]•. Thus

Θ(K) = Θ([
1
2
I ◦ K,

1
2
I]•) (2)

= [Θ(
1
2
I) ◦ K,

1
2
I]• + [

1
2
I ◦Θ(K),

1
2
I]•

+ [
1
2
I ◦ K,Θ(

1
2
I)]•

=
3
2

(
Θ(

1
2
I)K + KΘ(

1
2
I)∗
)
+

1
2

(
Θ(

1
2
I)∗K + KΘ(

1
2
I)
)

+
1
2

(
Θ(K) −Θ(K)∗

)
.

This gives

Θ(K) = 3
(
Θ(

1
2
I)K + KΘ(

1
2
I)∗
)

(3)

+ Θ(
1
2
I)∗K + KΘ(

1
2
I) −Θ(K)∗.

Accordingly

Θ(K)∗ = −3
(
Θ(

1
2
I)K + KΘ(

1
2
I)∗
)

(4)

− KΘ(
1
2
I) −Θ(

1
2
I)∗K −Θ(K).

Adding Equations (3) and (4), we obtain Θ(K)∗ = −Θ(K).

Lemma 2.3. For any X11 ∈ K11,Y12 ∈ K12 and Z22 ∈ K22, we have

(i) Θ(X11 + Y12) = Θ(X11) + Θ(Y12);

(ii) Θ(Y12 + Z22) = Θ(Y12) + Θ(Z22).

Proof. (i) LetΩ = Θ(X11 +Y12)−Θ(X11)−Θ(Y12). It is evident from Lemma 2.2 thatΩ ∈ K , i.e.,Ω∗ = −Ω. It
is sufficient to show that Ω = Ω11 +Ω12 +Ω22 = 0. We have

Θ([P2 ◦ (X11 + Y12),P2]•) = Θ([P2 ◦ X11,P2]•) + Θ([P2 ◦ Y12,P2]•)
= [Θ(P2) ◦ X11,P2]• + [P2 ◦Θ(X11),P2]•
+ [P2 ◦ X11,Θ(P2)]• + [Θ(P2) ◦ Y12,P2]•
+ [P2 ◦Θ(Y12),P2]• + [P2 ◦ Y12,Θ(P2)]•
= [Θ(P2) ◦ (X11 + Y12),P2]• + [P2 ◦ (Θ(X11) + Θ(Y12)),P2]•
+ [P2 ◦ (X11 + Y12),Θ(P2)]•.

Alternatively, we have

Θ([P2 ◦ (X11 + Y12),P2]•) = [Θ(P2) ◦ (X11 + Y12),P2]•
+ [P2 ◦Θ(X11 + Y12),P2]• + [P2 ◦ (X11 + Y12),Θ(P2)]•.
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From the last two relations we obtain [P2 ◦Ω,P2]• = 0. This gives Ω12 = Ω22 = 0. It remains to show that
Ω11 = 0. Since [(P2 − P1) ◦ Y12, 1

2I]• = 0, then we have

[Θ(P2 − P1) ◦ (X11 + Y12),
1
2
I]• + [(P2 − P1) ◦Θ(X11 + Y12),

1
2
I]•

+ [(P2 − P1) ◦ (X11 + Y12),Θ(
1
2
I)]•

= Θ([(P2 − P1) ◦ (X11 + Y12),
1
2
I]•)

= Θ([(P2 − P1) ◦ X11,
1
2
I]•) + Θ([(P2 − P1) ◦ Y12,

1
2
I]•)

= [Θ(P2 − P1) ◦ X11,
1
2
I]• + [(P2 − P1) ◦Θ(X11),

1
2
I]• + [(P2 − P1) ◦ X11,Θ(

1
2
I)]•

+ [Θ(P2 − P1) ◦ Y12,
1
2
I]•) + [(P2 − P1) ◦Θ(Y12),

1
2
I]• + [(P2 − P1) ◦ Y12,Θ(

1
2
I)]•

= [Θ(P2 − P1) ◦ (X11 + Y12),
1
2
I]• + [(P2 − P1) ◦ (Θ(X11) + Θ(Y12)),

1
2
I]•

+ [(P2 − P1) ◦ (X11 + Y12),Θ(
1
2
I)]•.

Thus, we have [(P2 − P1) ◦Ω, 1
2I]• = 0. This together with the factΩ∗ = −Ω givesΩ11 = 0. ThereforeΩ = 0

i.e.,
Θ(X11 + Y12) = Θ(X11) + Θ(Y12).

Following the same procedure we can establish (ii). This completes the proof.

Lemma 2.4. For any X11 ∈ K11,Y12 ∈ K12 and Z22 ∈ K22, we have

Θ(X11 + Y12 + Z22) = Θ(X11) + Θ(Y12) + Θ(Z22).

Proof. Assume that Ω = Θ(X11 + Y12 + Z22) − Θ(X11) − Θ(Y12) − Θ(Z22). We will show that Ω = 0. From
Lemma 2.3 and [P1 ◦ Z22,P1]• = 0, we can write

Θ([P1 ◦ (X11 + Y12 + Z22),P1]•)
= Θ([P1 ◦ (X11 + Y12),P1]•) + Θ([P1 ◦ Z22,P1]•)
= [Θ(P1), (X11 + Y12),P1]• + [P1 ◦Θ(X11 + Y12),P1]•
+ [P1 ◦ (X11 + Y12),Θ(P1)]• + [Θ(P1) ◦ Z22,P1]•
+ [P1 ◦Θ(Z22),P1]• + [P1 ◦ Z22,Θ(P1)]•
= [Θ(P1) ◦ (X11 + Y12),P1]• + [P1 ◦ (Θ(X11) + Θ(Y12)),P1]•
+ [P1 ◦ (X11 + Y12),Θ(P1)]• + [Θ(P1) ◦ Z22,P1]•
+ [P1 ◦Θ(Z22),P1]• + [P1 ◦ Z22,Θ(P1)]•
= [Θ(P1) ◦ (X11 + Y12 + Z22),P1]• + [P1 ◦ (Θ(X11) + Θ(Y12) + Θ(Z22)),P1]•
+ [P1 ◦ (X11 + Y12 + Z22),Θ(P1)]•.

Also, we have

Θ([P1 ◦ (X11 + Y12 + Z22),P1]•) = [Θ(P1) ◦ (X11 + Y12 + Z22),P1]•
+ [P1 ◦Θ(X11 + Y12 + Z22),P1]• + [P1 ◦ (X11 + Y12 + Z22),Θ(P1)]•.

It follows from the last two expressions that [P1 ◦ Ω,P1]• = 0. In view of Lemma 2.2 this implies Ω11 =
Ω12 = 0. Next, since [P2 ◦ X11,P2]• = 0. Following the same technique as above, we can get Ω22 = 0 and
thus Ω = 0. Therefore, we obtain the desired result.
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Lemma 2.5. For any X12,Y12 ∈ K12, we have

Θ(X12 + Y12) = Θ(X12) + Θ(Y12).

Proof. Let X12 = A12 − A∗12 ∈ K12 and Y12 = B12 − B∗12 ∈ K12 for A12,B12 ∈ A12. So,

[(iP1 + iA12 + iA∗12) ◦
1
2
I, (iP2 + iB12 + iB∗12)]•

= (A12 − A∗12) + (B12 − B∗12) + (A12B∗12 + A∗12B12 − B12A∗12 − B∗12A12)
= X12 + Y12 + X12Y∗12 − Y12X∗12.

Observe that X12Y∗12−Y12X∗12 = A12B∗12−B12A∗12+A∗12B12−B∗12A12 = Z11+W22, where Z11 = A12B∗12−B12A∗12 ∈ K11
and W22 = A∗12B12−B∗12A12 ∈ K22. Since iA12+ iA∗12, iB12+ iB∗12 ∈ K12, then from Lemmas 2.3 and 2.4 it follows
that

Θ(X12 + Y12) + Θ(Z11) + Θ(W22)
= Θ(X12 + Y12 + Z11 +W22)
= Θ(X12 + Y12 + X12Y∗12 − Y12X∗12)

= Θ([(iP1 + iA12 + iA∗12) ◦
1
2
I, (iP2 + iB12 + iB∗12)]•)

= [Θ(iP1) + Θ(iA12 + iA∗12) ◦
1
2
I, (iP2 + iB12 + iB∗12)]•

+ [(iP1 + iA12 + iA∗12) ◦Θ(
1
2
I), (iP2 + iB12 + iB∗12)]•

+ [(iP1 + iA12 + iA∗12) ◦
1
2
I, (Θ(iP2) + Θ(iB12 + iB∗12))]•

= Θ([iP1 ◦
1
2
I, iP2]•) + Θ([iP1 ◦

1
2
I, (iB12 + iB∗12)]•)

+ Θ([(iA12 + iA∗12) ◦
1
2
I, iP2]•) + Θ([(iA12 + iA∗12) ◦

1
2
I, (iB12 + iB∗12)]•)

= Θ(X12) + Θ(Y12) + Θ(X12Y∗12 − Y12X∗12)
= Θ(X12) + Θ(Y12) + Θ(Z11) + Θ(W22).

This implies Θ(X12 + Y12) = Θ(X12) + Θ(Y12). Hence the proof.

Lemma 2.6. For every Xii,Yii ∈ Kii (i = 1, 2), we have

(i) Θ(X11 + Y11) = Θ(X11) + Θ(Y11);

(ii) Θ(X22 + Y22) = Θ(X22) + Θ(Y22).

Proof. Let Ω = Θ(X11 + Y11) −Θ(X11) −Θ(Y11). We have to show that Ω = 0. On the one hand, we have

Θ([P2 ◦ (X11 + Y11),P2]•) = Θ([P2 ◦ X11,P2]•) + Θ([P2 ◦ Y11,P2]•)
= [Θ(P2) ◦ X11,P2]• + [P2 ◦Θ(X11),P2]•
+ [P2 ◦ X11,Θ(P2)]• + [Θ(P2) ◦ Y11,P2]•
+ [P2 ◦Θ(Y11),P2]• + [P2 ◦ Y11,Θ(P2)]•
= [Θ(P2) ◦ (X11 + Y11),P2]• + [P2 ◦ (Θ(X11) + Θ(Y11)),P2]•
+ [P2 ◦ (X11 + Y11),Θ(P2)]•.

On the other hand

Θ([P2 ◦ (X11 + Y11),P2]•) = [Θ(P2) ◦ (X11 + Y11),P2]•
+ [P2 ◦Θ(X11 + Y11),P2]• + [P2 ◦ (X11 + Y11),Θ(P2)]•.
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We obtain from the above two relations that [P2 ◦Ω,P2]• = 0 and sinceΩ∗ = −Ω, then we getΩ12 = Ω22 = 0.
Further assume that Z = A12 − A∗12 ∈ K12 for A12 ∈ A12. Then [Z ◦ 1

2I,X11]•, [Z ◦ 1
2I,Y11]• ∈ K12. Thus from

Lemma 2.5, we can write

[Θ(Z) ◦
1
2
I, (X11 + Y11)]• + [Z ◦Θ(

1
2
I), (X11 + Y11)]•

+ [Z ◦
1
2
I, (Θ(X11 + Y11))]•

= Θ([Z ◦
1
2
I, (X11 + Y11)]•)

= Θ([Z ◦
1
2
I,X11]•) + Θ([Z ◦

1
2
I,Y11]•)

= [Θ(Z) ◦
1
2
I, (X11 + Y11)]• + [Z ◦Θ(

1
2
I), (X11 + Y11)]•

+ [Z ◦
1
2
I, (Θ(X11) + Θ(Y11))]•.

Reasoning as above, we get [Z ◦ 1
2I,Ω]• = 0 which gives Ω11 = 0. Thus Ω = 0. Thereby the proof is

completed.

Remark 2.7. The additivity of Θ onK can easily be observed from Lemmas 2.3−2.6.

Lemma 2.8. Θ(I) = 0.

Proof. Let K ∈ K . From Lemma 2.2 and Remark 2.7, we have

4Θ(K) = Θ([K ◦ I, I]•) = 4Θ(K) + KΘ(I) + Θ(I)∗K + 3(Θ(I)K + KΘ(I)∗).

This implies

3
(
Θ(I)K + KΘ(I)∗

)
+ KΘ(I) + Θ(I)∗K = 0. (5)

Putting K = iI in (5), we obtain
4i(Θ(I) + Θ(I)∗) = 0.

Thus

Θ(I)∗ = −Θ(I). (6)

It follows from (5) and (6) that
Θ(I)K = KΘ(I)

for any K ∈ K . Since for anyA ∈ A,A = K1 + iK2 with K1 =
A−A

∗

2 ∈ K and K2 =
A+A∗

2i ∈ K . Thus

Θ(I)A = AΘ(I) (7)

for allA ∈ A. For any A12 ∈ A12, let X = A12 −A∗12 ∈ K observe that [X ◦ iI, I]• = 0. It follows from Lemmas
2.1, 2.2 and Equations (6) and (7) that

0 = Θ([X ◦ iI, I]•)
= [Θ(X) ◦ iI, I]• + [X ◦Θ(iI), I]• + [X ◦ iI,Θ(I)]•
= [2iΘ(X), I]• + [XΘ(iI) + Θ(iI)X, I]• + [2iX,Θ(I)]•
= −4iΘ(I)X.

This implies
Θ(I)X = Θ(I)(A12 − A∗12) = 0.

Multiply the above equation by P2 from the right and left respectively we get Θ(I)A12 = 0 and Θ(I)A∗12 = 0.
Using equation (1) we obtain Θ(I)P1 = 0 and Θ(I)P2 = 0 and thus Θ(I) = Θ(I)P1 + Θ(I)P2 = 0.
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Lemma 2.9. For any L ∈ L, Θ(L)∗ = Θ(L).

Proof. Let L ∈ L. Then [I ◦ L, I]• = 0, so from Lemma 2.8, we can write

0 = Θ([I ◦ L, I]•) = [I ◦Θ(L), I]• = 2(Θ(L) −Θ(L)∗). (8)

Hence, we have Θ(L)∗ = Θ(L) for all L ∈ L.

Lemma 2.10. For any L ∈ L, Θ(iL) = iΘ(L) + Θ(iI)L.

Proof. Observe that for any L ∈ L, [L ◦ iI, iI]• = 0. Therefore,

0 = Θ([L ◦ iI, iI]•) (9)
= [Θ(L) ◦ iI, iI]• + [L ◦Θ(iI), iI]• + [L ◦ iI,Θ(iI)]•
= 2i(Θ(iI)L − LΘ(iI))

This implies Θ(iI)L = LΘ(iI) for all L ∈ L. Since for any A ∈ A,A = L1 + iL2 with L1 =
A+A∗

2 ∈ L and
L2 =

A−A
∗

2i ∈ L. Thus

Θ(iI)A = AΘ(iI) (10)

for allA ∈ A. Now

4Θ(iL) = Θ([iI ◦ I,L]•)
= [Θ(iI) ◦ I,L]• + [iI ◦ I,Θ(L)]•
= 4(iΘ(L) + Θ(iI)L)

Thus
Θ(iL) = iΘ(L) + Θ(iI)L.

Lemma 2.11. Θ is additive on L.

Proof. Let L1,L2 ∈ L. Then iL1, iL2 ∈ K . Then, it follows from Remark 2.7 and Lemma 2.10 that

Θ(iL1 + iL2) = Θ(iL1) + Θ(iL2) (11)
= iΘ(L1) + iΘ(L2) + Θ(iI)(L1 + L2).

Also

Θ(i(L1 + L2)) = iΘ(L1 + L2) + Θ(iI)(L1 + L2). (12)

From (11) and (12), we obtain
Θ(L1 + L2) = Θ(L1) + Θ(L2).

Hence the result.

Lemma 2.12. Θ(X∗) = Θ(X)∗ for all X ∈ A.

Proof. Let L1,L2 ∈ L. Then, in view of Remark 2.7, Lemmas 2.8, 2.10 and [L1 ◦ I, I]• = 0, we have

Θ([L1 + iL2 ◦ I, I]•) = Θ([L1 ◦ I, I]•) + Θ([iL2 ◦ I, I]•) (13)

= 4
(
iΘ(L2) + Θ(iI)L2

)
.

On the other hand

Θ([L1 + iL2 ◦ I, I]•) = 2(Θ(L1 + iL2) −Θ(L1 + iL2)∗). (14)
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From (13) and (14), we have

4
(
iΘ(L2) + Θ(iI)L2

)
= 2
(
Θ(L1 + iL2) −Θ(L1 + iL2)∗

)
. (15)

Since [iI ◦ iL2, I]• = 0, then we have

4
(
iΘ(L1) + Θ(iI)L1

)
= Θ([iI ◦ (L1 + iL2), I]•) (16)

= 2i
(
Θ(L1 + iL2) + Θ(L1 + iL2)∗

)
+ 4Θ(iI)L1.

From (15) and (16), we obtain

Θ(L1 + iL2) = Θ(L1) + iΘ(L2) + Θ(iI)L2. (17)

Let X ∈ A. Then X = L + iM for L,M ∈ L, so from Equation (17), Lemmas 2.9 and 2.11, we have

Θ(X)∗ = Θ(L + iM)∗ (18)
= (Θ(L) + iΘ(M) + Θ(iI)M)∗

= Θ(L) − iΘ(M) −Θ(iI)M
= Θ(L − iM)
= Θ(X∗).

This gives the assertion.

Lemma 2.13. Θ is additive on A.

Proof. Let X,Y ∈ A such that X = L1 + iL2 and Y = M1 + iM2 for all L1,L2,M1,M2 ∈ L. Then, in view of
Equation (17) and Lemma 2.11, we have

Θ(X + Y) = Θ((L1 +M1) + i(L2 +M2)) (19)
= Θ(L1 +M1) + iΘ(L2 +M2) + Θ(iI)(L2 +M2)
= (Θ(L1) + iΘ(L2) + Θ(iI)L2)
+ (Θ(M1) + iΘ(M2) + Θ(iI)M2)
= Θ(L1 + iL2) + Θ(M1 + iM2)
= Θ(X) + Θ(Y).

Hence the result.

Lemma 2.14. Θ(iI) = 0.

Proof. In view of Lemmas 2.8, 2.9 and 2.12, let us assume that

Θ(P1) = L (20)

for some L ∈ L, and

Θ(iP1) = iL + Θ(iI)P1 (21)

Also

4Θ(iP1) = Θ([iP1 ◦ P1, I]•)
= [Θ(iP1) ◦ P1, I]• + [iP1 ◦Θ(P1), I]•
= 4Θ(iI)P1 + 4i(P1L + LP1)

This implies

Θ(iP1) = Θ(iI)P1 + i(P1L + LP1) (22)
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From Equations (21) and (22), we have
L = P1L + LP1.

This gives
P1LP1 = P2LP2 = 0

and hence

Θ(iP1) = Θ(iI)P1 + iP1LP2 + iP2LP1. (23)

Observe, for any X12 ∈ A12 that

Θ([I ◦ iP1, (X12 − X∗12)]•) = −2Θ(i(X12 + X∗12)).

In view of Lemma 2.10, we have

−2Θ(i(X12 + X∗12)) = −2i(Θ(X12) + Θ(X12)∗) − 2Θ(iI)(X12 + X∗12).

Thus

Θ([I ◦ iP1, (X12 − X∗12)]•) = −2i(Θ(X12) + Θ(X12)∗) (24)
− 2Θ(iI)(X12 + X∗12).

Alternatively, from (23) and Lemma 2.8, we have

Θ([I ◦ iP1, (X12 − X∗12)]•) (25)
= [I ◦Θ(iP1), (X12 − X∗12)]• + [I ◦ iP1,Θ(X12 − X∗12)]•
= [I ◦ (Θ(iI)P1 + iP1LP2 + iP2LP1), (X12 − X∗12)]•
+ [I ◦ iP1, (Θ(X12) −Θ(X∗12))]•
= 2(Θ(iI)P1 + iP1LP2 + iP2LP1)(X∗12 − X12)
+ 2(X12 − X∗12)(Θ(iI)P1 + iP1LP2 + iP2LP1)
+ 2iP1(Θ(X12)∗ −Θ(X12)) + 2i(Θ(X12) −Θ(X12)∗)P1.

Now from (24) and (25), we obtain

− iΘ(X12) − iΘ(X12)∗ −Θ(iI)(X12 + X∗12) (26)
= (Θ(iI)P1 + iP1LP2 + iP2LP1)(X∗12 − X12)
+ (X12 − X∗12)(Θ(iI)P1 + iP1LP2 + iP2LP1)
+ iP1(Θ(X12)∗ −Θ(X12)) + i(Θ(X12) −Θ(X12)∗)P1.

Multiply (26) by P1 from left and P2 from right, we get P1Θ(X12)∗P2 = 0. Next, consider

2(Θ(X12) −Θ(X12)∗) (27)
= Θ([I ◦ iP1, i(X12 + X∗12)]•)
= [I ◦Θ(iP1), i(X12 + X∗12)]• + [I ◦ iP1,Θ(i(X12 + X∗12))]•
= [I ◦ (Θ(iI)P1 + iP1LP2 + iP2LP1), i(X12 + X∗12)]•
+ [I ◦ iP1, (i(Θ(X12) + Θ(X∗12)) + Θ(iI)(X12 + X∗12))]•

= −2i
(
Θ(iI)P1 + iP1LP2 + iP2LP1

)
(X∗12 + X12)

+ 2i(X∗12 + X12)
(
Θ(iI)P1 + iP1LP2 + iP2LP1

)
− 2iP1

(
iΘ(X12)∗ + iΘ(X12) + Θ(iI)(X∗12 + X12)

)
+ 2i

(
iΘ(X12) + iΘ(X12)∗ + Θ(iI)(X∗12 + X12)

)
P1.
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Multiply above relation by P1 from left and P2 from right, we obtainΘ(iI)X12 = 0 and so by Equation(1) we
haveΘ(iI)P1 = 0. Also by Equation (10) we getΘ(iI)X∗12 = 0 and thus by Equation(1) we obtainΘ(iI)P2 = 0.
And hence, Θ(iI) = Θ(iI)P1 + Θ(iI)P2 = 0. This completes the proof.

Lemma 2.15. Θ(iX) = iΘ(X) for all X ∈ A.

Proof. It follows from Lemmas 2.10 and 2.14 that Θ(iL) = iΘ(L) for all L ∈ L. Thus, for any X ∈ A and
L1,L2 ∈ L and using the fact that Θ is additive on A, we have

Θ(iX) = Θ(iL1 − L2)) = iΘ(L1) −Θ(L2) = i(Θ(L1) + iΘ(L2)) = iΘ(X).

Hence the result.

Lemma 2.16. Θ is a derivation on A.

Proof. Let L1,L2 ∈ L. Then

2Θ(L1L2 − L2L1) = Θ([I ◦ L1,L2]•) (28)
= [I ◦Θ(L1),L2]• + [I ◦ L1,Θ(L2)]•

= 2
(
Θ(L1)L2 − L2Θ(L1) + L1Θ(L2)

− Θ(L2)L1

)
.

Also

2iΘ(L1L2 + L2L1) = Θ([I ◦ iL1,L2]•) (29)
= [I ◦Θ(iL1),L2]• + [I ◦ iL1,Θ(L2)]•

= 2i
(
Θ(L1)L2 + L2Θ(L1) + L1Θ(L2)

+ Θ(L2)L1

)
.

Addition of (28) and (29) gives Θ(L1L2) = Θ(L1)L2 + L1Θ(L2) for all L1,L2 ∈ L. Further, for any X,Y ∈ A
assume that X = L1 + iL2 and Y =M1 + iM2 for L1,L2,M1,M2 ∈ L. Then

Θ(XY) = Θ
(
(L1 + iL2)(M1 + iM2)

)
(30)

= Θ(L1M1 + iL1M2 + iL2M1 − L2M2)
= Θ(L1)M1 + L1Θ(M1) + iΘ(L1)M2

+ iL1Θ(M2) + iΘ(L2)M1 + iL2Θ(M1)
− Θ(L2)M2 − L2Θ(M2)

On the other hand

Θ(X)Y + XΘ(Y) = Θ(L1 + iL2)(M1 + iM2) (31)
+ (L1 + iL2)Θ(M1 + iM2)
= (Θ(L1) + iΘ(L2))(M1 + iM2)
+ (L1 + iL2)(Θ(M1) + iΘ(M2))
= Θ(L1)M1 + L1Θ(M1) + iΘ(L1)M2

+ iL1Θ(M2) + iΘ(L2)M1 + iL2Θ(M1)
− Θ(L2)M2 − L2Θ(M2)

Comparing Equations (30) and (31), we conclude that Θ is a derivation on A. Therefore, the proof of our
Main Theorem is completed.
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3. Corollaries

The following result [16, Theorem 1.1], is useful to describe the primeness of alternative rings.

Theorem 3.1. Let R be a 3-torsion free alternative ring. So R is a prime ring if and only if aR · b = 0 (or a · Rb = 0)
implies a = 0 or b = 0 for a, b ∈ R.

Let A be an associative ∗-algebra. Then A is said to be prime if IJ , (0) for any two nonzero ideals I, J ⊆ A.
Theorem 3.1 can be applied to associative algebras over C. In view of Theorem 3.1, we can say that prime
∗-algebras satisfy Equation (1). Then we have the following corollary.

Corollary 3.2. LetA be a unital prime ∗-algebra containing non-trivial projectionsP1 andP2. ThenΘ is a non-linear
mixed Jordan bi-skew Lie triple derivation on A if and only if Θ is an additive ∗-derivation on A.

A von Neumann algebra A is a weakly closed self-adjoint algebra of operators on a complex Hilbert space
H containing the identity operator I. A is said to be a factor if its centre is trivial. Since a factor von
Neumann algebra is a prime ∗-algebra, then we have the following corollary.

Corollary 3.3. Let A be a factor von Neumann algebra with dim(A) ≥ 2. Then Θ : A → A is a non-linear mixed
Jordan bi-skew Lie triple derivation if and only if Θ is an additive ∗-derivation.

Corollary 3.4. Let A be a von Neumann algebra with no central summands of type I1. Then Θ : A → A is a
non-linear mixed Jordan bi-skew Lie triple derivation if and only if Θ is an additive ∗-derivation.

Let B(H) be the algebra of all bounded linear operators on a complex Hilbert space H . A subalgebra A
of B(H) is said to be a standard operator algebra if F (H) ⊆ A where F (H) is the subalgebra of all finite
rank operators onH . As we know that a standard operator algebra is a prime ∗-algebra, thus we have the
following corollary.

Corollary 3.5. LetH be an infinite dimensional complex Hilbert space and A be a standard operator algebra onH
containing the identity operator I. Suppose that A is closed under the adjoint operation. Then Θ : A → A is a
non-linear mixed Jordan bi-skew Lie triple derivation if and only if Θ is an additive ∗-derivation. Moreover, there
exists an operator Y ∈ B(H) satisfying Y + Y∗ = 0 such that Θ(X) = XY − YX for all X ∈ A, i.e., Θ is inner.

Proof. AsΘ is an additive ∗-derivation on standard operator algebraA from [15] it follows thatΘ is an inner
derivation, i.e., there exists Y ∈ B(H) such that Θ(X) = XY − YX for all X ∈ A. Since Θ(X∗) = Θ(X)∗ for all
X ∈ A, then we have

X∗Y − YX∗ = Θ(X∗) = Y∗X∗ − X∗Y∗

for all X ∈ A. This implies X∗(Y+Y∗) = (Y+Y∗)X∗. Thus, Y+Y∗ = αI for some α ∈ R. Let us set Z = Y− 1
2αI.

One can check that Z + Z∗ = 0 such that Θ(X) = XZ − ZX.
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