Non-linear mixed Jordan bi-skew Lie triple derivations on *-algebras

Asma Ali $^{\text {a }}$, Mohd Tasleem ${ }^{\text {a,* }}$, Abdul Nadim Khan ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Aligarh Muslim University, Aligarh, India
${ }^{b}$ Department of Mathematics, College of Science \mathcal{E} Arts- Rabigh, King Abdulaziz University, Saudi Arabia

Abstract

In this article, we investigate the behaviour of a non-linear map Θ on $*$-algebra \mathfrak{X}, which satisfies $\Theta\left([X \circ Y, Z]_{\bullet}\right)=[\Theta(X) \circ Y, Z]_{\bullet}+[X \circ \Theta(Y), Z]_{\bullet}+[X \circ Y, \Theta(Z)]_{\bullet}$, where $X \circ Y=X Y+Y X$ and $[X, Y]_{\bullet}=X Y^{*}-Y X^{*}$ (namely, Jordan and bi-skew Lie product, respectively), for all $X, Y, Z \in \mathfrak{M}$. Furthermore, we apply the above mentioned result to several distinct algebras.

1. Introduction

Let \mathfrak{A} be an associative $*$-algebra over the field of complex numbers \mathbb{C}. The products defined by $X \circ Y=X Y+Y X, X * Y=X Y+Y X^{*},[X, Y]=X Y-Y X$ and $[X, Y]_{*}=X Y-Y X^{*}$ are called Jordan product, $*$-Jordan product, Lie product and $*$-Lie product of $X, Y \in \mathfrak{A}$ respectively. In recent years, several authors investigated the structure of derivations concerning these products see ([6, 9, 10, 14, 18, 19, 23]). A linear $\operatorname{map} \Theta: \mathfrak{A} \rightarrow \mathfrak{A}$ is called a derivation if $\Theta(X Y)=\Theta(X) Y+X \Theta(Y)$ for all $X, Y \in \mathfrak{H}$. Further, if Θ satisfies $\Theta\left(X^{*}\right)=\Theta(X)^{*}$ for all $X \in \mathfrak{A}$, then Θ is called a *-derivation. Obviously, every *-derivation is a derivation. Without assuming the linearity assumption if a map $\Theta: \mathfrak{A} \rightarrow \mathfrak{A}$ satisfies

$$
\Theta(X \circ Y)=\Theta(X) \circ Y+X \circ \Theta(Y)
$$

or

$$
\Theta(X \circ Y \circ Z)=\Theta(X) \circ Y \circ Z+X \circ \Theta(Y) \circ Z+X \circ Y \circ \Theta(Z)
$$

for all $X, Y, Z \in \mathfrak{U}$, then Θ is called a non-linear Jordan derivation or a non-linear Jordan triple derivation respectively. By considering Lie (or Lie triple) product, a non-linear Lie (or Lie triple) derivation is defined analogously. Very recently, Kong and Zhang [13] introduced a new product $[X, Y]_{\bullet}=X Y^{*}-Y X^{*}$, called as bi-skew Lie product of $X, Y \in \mathfrak{H}$ and they proved that every non-linear bi-skew Lie derivation on a factor von Neumann algebra \mathfrak{A} (with $\operatorname{dim}(\mathfrak{H}) \geq 2$) is an additive $*$-derivation. The third author further extended this result to multiplicative bi-skew Lie triple derivation [1]. Recall that a map $\Theta: \mathfrak{H} \rightarrow \mathfrak{A}$ is called a non-linear bi-skew Lie or Lie triple derivation if Θ satisfies

$$
\Theta\left([X, Y]_{\bullet}\right)=[\Theta(X), Y] \bullet+[X, \Theta(Y)] \bullet
$$

[^0]or
$$
\Theta\left(\left[[X, Y]_{\bullet}, Z\right]_{\bullet}\right)=\left[[\Theta(X), Y]_{\bullet}, Z\right] \bullet+[[X, \Theta(Y)] \bullet, Z] \bullet+[[X, Y] \bullet, \Theta(Z)] \bullet
$$
for all $X, Y, Z \in \mathfrak{A}$. Researchers have been studying the additivity or characterization of maps preserving various kinds of products. Many mathematicians studied alternative rings as a more general class of rings that preserve these products (see [3, 4, 11, 16]).

In recent years, several scholars considered mixed products constituting Jordan (*-Jordan) and Lie (*Lie) products and characterize the structure of derivations preserving these products ([5, 8, , 12, ,20-22]). For instance, in [22] Zhou et.al. proved that every non-linear mixed Lie triple derivation on prime $*$-algebras, is an additive *-derivation. In [5], Li and Zhang investigated the structure of non-linear mixed Jordan triple $*$-derivation on $*$-algebras. Ferreira and Wei [2] proved that every mixed $*$-Jordan (i.e., the mixed product of $X \circ Y=X Y+Y X$ and $\left.X \bullet Y=X^{*} Y+Y^{*} X\right)$ type derivation on a $*$-algebra, is an additive $*$-derivation. The authors of [17] studied non-linear mixed $*$-Jordan type derivations preserving the mixed product of $X \circ Y=X Y+Y X^{*}$ and $X \bullet Y=X Y-Y X^{*}$, on alternative $*$-algebras and proved that they are additive $*$-derivations. Let \mathfrak{A} be a *-algebra. Consider a map (not necessarily linear) $\Theta: \mathfrak{A} \rightarrow \mathfrak{A}$ satisfying

$$
\Theta([X \circ Y, Z] \bullet)=[\Theta(X) \circ Y, Z] \bullet+[X \circ \Theta(Y), Z] \bullet+[X \circ Y, \Theta(Z)] \bullet
$$

for all $X, Y, Z \in \mathfrak{A}$, then Θ is called a non-linear mixed Jordan bi-skew Lie triple derivation on \mathfrak{A}.
Motivated by the aforementioned works, our primary focus will be on the mixed product constructed by Jordan and bi-skew Lie product and we try to give the description of non-linear mixed Jordan bi-skew Lie triple derivations on *-algebras.

2. Preliminaries and Main Result

Throughout the article unless otherwise stated, \mathfrak{A} represents a *-algebra over \mathbb{C}, the field of complex numbers. Let \mathcal{H} be a complex Hilbert space and $\mathcal{B}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H}. An idempotent operator $\mathcal{P} \in \mathcal{B}(\mathcal{H})$ is called a projection if it is self-adjoint (i.e., $\mathcal{P}^{2}=\mathcal{P}$ and $\mathcal{P}^{*}=\mathcal{P}$). Any operator $X \in \mathcal{B}(\mathcal{H})$ can be expressed as $X=R X+i I m X$, where $i \in \mathbb{C}$ i.e., $i^{2}=-1, R X=\frac{X+X^{*}}{2}$ and $\operatorname{Im} X=\frac{X-X^{*}}{2 i}$. It is evident that both $R X$ and $\operatorname{Im} X$ are self-adjoint.

Denote by $\mathcal{P}_{1}=\mathcal{P}$ and $\mathcal{P}_{2}=\mathcal{J}-\mathcal{P}$ be two non-trivial projections in \mathfrak{A}. Then our main theorem reads as follows.

Main Theorem. Let \mathfrak{A} be a unital *-algebra containing non-trivial projections $\mathcal{P}_{1}, \mathcal{P}_{2}$ and satisfies

$$
\begin{equation*}
X \mathscr{H} \mathcal{P}_{k}=0 \text { implies } X=0, k=1,2 . \tag{1}
\end{equation*}
$$

Then a map $\Theta: \mathfrak{A} \rightarrow \mathfrak{A}$ satisfies

$$
\Theta([X \circ Y, Z] \bullet)=[\Theta(X) \circ Y, Z] \bullet+[X \circ \Theta(Y), Z] \bullet+[X \circ Y, \Theta(Z)] \bullet
$$

for all $X, Y, Z \in \mathfrak{A}$ if and only if Θ is an additive $*$-derivation.
Let $\mathcal{P}_{1}=\mathcal{P}$ and $\mathcal{P}_{2}=\mathcal{J}-\mathcal{P}$ be two non-trivial projections in \mathfrak{A}. Write $\mathfrak{A}_{i j}=\mathcal{P}_{\mathcal{P}} \mathfrak{M} \mathcal{P}_{j}$. Then $\mathfrak{A}=\mathfrak{A}_{11}+\mathfrak{A}_{12}+\mathfrak{A}_{21}+$ \mathfrak{A}_{22}. Let $\mathcal{L}=\left\{X \in \mathfrak{N} \mid X^{*}=X\right\}$ and $\mathcal{K}=\left\{X \in \mathfrak{N} \mid X^{*}=-X\right\}, \mathcal{K}_{12}=\left\{\mathcal{P}_{1} K \mathcal{P}_{2}+\mathcal{P}_{2} K \mathcal{P}_{1} \mid K \in \mathcal{K}\right\}$ and $\mathcal{K}_{i i}=\mathcal{P}_{i} \mathcal{K} \mathcal{P}_{i}$ $(i=1,2)$. Thus, for every $K \in \mathcal{K}, K=K_{11}+K_{12}+K_{22}$, for every $K_{12} \in \mathcal{K}_{12}$ and $K_{i i} \in \mathcal{K}_{i i}(i=1,2)$.
Only the necessity must be established. The proof of the main theorem is done by proving a series of lemmas which are as follows.

Lemma 2.1. $\Theta(0)=0$.
Proof. By the hypothesis, we have

$$
\Theta(0)=\Theta\left([0 \circ 0,0]_{\bullet}\right)=[\Theta(0) \circ 0,0]_{\bullet}+[0 \circ \Theta(0), 0]_{\bullet}+[0 \circ 0, \Theta(0)] \bullet=0 .
$$

Lemma 2.2. $\Theta(K)^{*}=-\Theta(K)$ for every $K \in \mathcal{K}$.
Proof. Observe, for any $K \in \mathcal{K}$ that $K=\left[\frac{1}{2} \mathcal{J} \circ K, \frac{1}{2} \mathcal{J}\right]$. Thus

$$
\begin{align*}
\Theta(K) & =\Theta\left(\left[\frac{1}{2} \mathcal{J} \circ K, \frac{1}{2} \mathcal{J}\right] \bullet\right) \tag{2}\\
& =\left[\Theta\left(\frac{1}{2} \mathcal{J}\right) \circ K, \frac{1}{2} \mathcal{J}\right] \bullet+\left[\frac{1}{2} \mathcal{J} \circ \Theta(K), \frac{1}{2} \mathcal{J}\right] \bullet \\
& +\left[\frac{1}{2} \mathcal{J} \circ K, \Theta\left(\frac{1}{2} \mathcal{J}\right)\right] \bullet \\
& =\frac{3}{2}\left(\Theta\left(\frac{1}{2} \mathcal{J}\right) K+K \Theta\left(\frac{1}{2} \mathcal{J}\right)^{*}\right)+\frac{1}{2}\left(\Theta\left(\frac{1}{2} \mathcal{J}\right)^{*} K+K \Theta\left(\frac{1}{2} \mathcal{J}\right)\right) \\
& +\frac{1}{2}\left(\Theta(K)-\Theta(K)^{*}\right) .
\end{align*}
$$

This gives

$$
\begin{align*}
\Theta(K) & =3\left(\Theta\left(\frac{1}{2} \mathcal{J}\right) K+K \Theta\left(\frac{1}{2} \mathcal{J}\right)^{*}\right) \tag{3}\\
& +\Theta\left(\frac{1}{2} \mathcal{J}\right)^{*} K+K \Theta\left(\frac{1}{2} \mathcal{J}\right)-\Theta(K)^{*}
\end{align*}
$$

Accordingly

$$
\begin{align*}
\Theta(K)^{*} & =-3\left(\Theta\left(\frac{1}{2} \mathcal{J}\right) K+K \Theta\left(\frac{1}{2} \mathcal{J}\right)^{*}\right) \tag{4}\\
& -K \Theta\left(\frac{1}{2} \mathcal{J}\right)-\Theta\left(\frac{1}{2} \mathcal{J}\right)^{*} K-\Theta(K)
\end{align*}
$$

Adding Equations (3) and (4), we obtain $\Theta(K)^{*}=-\Theta(K)$.
Lemma 2.3. For any $X_{11} \in \mathcal{K}_{11}, Y_{12} \in \mathcal{K}_{12}$ and $Z_{22} \in \mathcal{K}_{22}$, we have
(i) $\Theta\left(X_{11}+Y_{12}\right)=\Theta\left(X_{11}\right)+\Theta\left(Y_{12}\right)$;
(ii) $\Theta\left(Y_{12}+Z_{22}\right)=\Theta\left(Y_{12}\right)+\Theta\left(Z_{22}\right)$.

Proof. (i) Let $\Omega=\Theta\left(X_{11}+Y_{12}\right)-\Theta\left(X_{11}\right)-\Theta\left(Y_{12}\right)$. It is evident from Lemma 2.2 that $\Omega \in \mathcal{K}$, i.e., $\Omega^{*}=-\Omega$. It is sufficient to show that $\Omega=\Omega_{11}+\Omega_{12}+\Omega_{22}=0$. We have

$$
\begin{aligned}
& \Theta\left(\left[\mathcal{P}_{2} \circ\left(X_{11}+Y_{12}\right), \mathcal{P}_{2}\right]_{\bullet}\right)=\Theta\left(\left[\mathcal{P}_{2} \circ X_{11}, \mathcal{P}_{2}\right]_{\bullet}\right)+\Theta\left(\left[\mathcal{P}_{2} \circ Y_{12}, \mathcal{P}_{2}\right]_{\bullet}\right) \\
= & {\left[\Theta\left(\mathcal{P}_{2}\right) \circ X_{11}, \mathcal{P}_{2}\right] \bullet+\left[\mathcal{P}_{2} \circ \Theta\left(X_{11}\right), \mathcal{P}_{2}\right] . } \\
+ & {\left[\mathcal{P}_{2} \circ X_{11}, \Theta\left(\mathcal{P}_{2}\right)\right] \bullet+\left[\Theta\left(\mathcal{P}_{2}\right) \circ Y_{12}, \mathcal{P}_{2}\right] \bullet } \\
+ & {\left[\mathcal{P}_{2} \circ \Theta\left(Y_{12}\right), \mathcal{P}_{2}\right] \bullet+\left[\mathcal{P}_{2} \circ Y_{12}, \Theta\left(\mathcal{P}_{2}\right)\right] \bullet } \\
= & {\left[\Theta\left(\mathcal{P}_{2}\right) \circ\left(X_{11}+Y_{12}\right), \mathcal{P}_{2}\right] \bullet+\left[\mathcal{P}_{2} \circ\left(\Theta\left(X_{11}\right)+\Theta\left(Y_{12}\right)\right), \mathcal{P}_{2}\right] \bullet } \\
+ & {\left[\mathcal{P}_{2} \circ\left(X_{11}+Y_{12}\right), \Theta\left(\mathcal{P}_{2}\right)\right] . }
\end{aligned}
$$

Alternatively, we have

$$
\begin{aligned}
& \Theta\left(\left[\mathcal{P}_{2} \circ\left(X_{11}+Y_{12}\right), \mathcal{P}_{2}\right]_{\bullet}\right)=\left[\Theta\left(\mathcal{P}_{2}\right) \circ\left(X_{11}+Y_{12}\right), \mathcal{P}_{2}\right] . \\
+\quad & {\left[\mathcal{P}_{2} \circ \Theta\left(X_{11}+Y_{12}\right), \mathcal{P}_{2}\right]_{\bullet}+\left[\mathcal{P}_{2} \circ\left(X_{11}+Y_{12}\right), \Theta\left(\mathcal{P}_{2}\right)\right] . }
\end{aligned}
$$

From the last two relations we obtain $\left[\mathcal{P}_{2} \circ \Omega, \mathcal{P}_{2}\right]_{\bullet}=0$. This gives $\Omega_{12}=\Omega_{22}=0$. It remains to show that $\Omega_{11}=0$. Since $\left[\left(\mathcal{P}_{2}-\mathcal{P}_{1}\right) \circ Y_{12}, \frac{1}{2} \mathcal{J}\right]_{\bullet}=0$, then we have

$$
\begin{aligned}
& {\left[\Theta\left(\mathcal{P}_{2}-\mathcal{P}_{1}\right) \circ\left(X_{11}+Y_{12}\right), \frac{1}{2} \mathcal{J}\right]_{\bullet}+\left[\left(\mathcal{P}_{2}-\mathcal{P}_{1}\right) \circ \Theta\left(X_{11}+Y_{12}\right), \frac{1}{2} \mathcal{J}\right] \bullet } \\
+ & {\left[\left(\mathcal{P}_{2}-\mathcal{P}_{1}\right) \circ\left(X_{11}+Y_{12}\right), \Theta\left(\frac{1}{2} \mathcal{J}\right)\right] \bullet } \\
= & \Theta\left(\left[\left(\mathcal{P}_{2}-\mathcal{P}_{1}\right) \circ\left(X_{11}+Y_{12}\right), \frac{1}{2} \mathcal{J}\right]_{\bullet}\right) \\
= & \Theta\left(\left[\left(\mathcal{P}_{2}-\mathcal{P}_{1}\right) \circ X_{11}, \frac{1}{2} \mathcal{J}\right]_{\bullet}\right)+\Theta\left(\left[\left(\mathcal{P}_{2}-\mathcal{P}_{1}\right) \circ Y_{12}, \frac{1}{2} \mathcal{J}\right]_{\bullet}\right) \\
= & {\left[\Theta\left(\mathcal{P}_{2}-\mathcal{P}_{1}\right) \circ X_{11}, \frac{1}{2} \mathcal{J}\right]_{\bullet}+\left[\left(\mathcal{P}_{2}-\mathcal{P}_{1}\right) \circ \Theta\left(X_{11}\right), \frac{1}{2} \mathcal{J}\right]_{\bullet}+\left[\left(\mathcal{P}_{2}-\mathcal{P}_{1}\right) \circ X_{11}, \Theta\left(\frac{1}{2} \mathcal{J}\right)\right] \bullet } \\
+ & {\left.\left[\Theta\left(\mathcal{P}_{2}-\mathcal{P}_{1}\right) \circ Y_{12}, \frac{1}{2} \mathcal{J}\right]_{\bullet}\right)+\left[\left(\mathcal{P}_{2}-\mathcal{P}_{1}\right) \circ \Theta\left(Y_{12}\right), \frac{1}{2} \mathcal{J}\right]_{\bullet}+\left[\left(\mathcal{P}_{2}-\mathcal{P}_{1}\right) \circ Y_{12}, \Theta\left(\frac{1}{2} \mathcal{J}\right)\right] \bullet } \\
= & {\left[\Theta\left(\mathcal{P}_{2}-\mathcal{P}_{1}\right) \circ\left(X_{11}+Y_{12}\right), \frac{1}{2} \mathcal{J}\right]_{\bullet}+\left[\left(\mathcal{P}_{2}-\mathcal{P}_{1}\right) \circ\left(\Theta\left(X_{11}\right)+\Theta\left(Y_{12}\right)\right), \frac{1}{2} \mathcal{J}\right] \bullet } \\
+ & {\left[\left(\mathcal{P}_{2}-\mathcal{P}_{1}\right) \circ\left(X_{11}+Y_{12}\right), \Theta\left(\frac{1}{2} \mathcal{J}\right)\right] . }
\end{aligned}
$$

Thus, we have $\left[\left(\mathcal{P}_{2}-\mathcal{P}_{1}\right) \circ \Omega, \frac{1}{2} \mathcal{J}\right]_{\bullet}=0$. This together with the fact $\Omega^{*}=-\Omega$ gives $\Omega_{11}=0$. Therefore $\Omega=0$ i.e.,

$$
\Theta\left(X_{11}+Y_{12}\right)=\Theta\left(X_{11}\right)+\Theta\left(Y_{12}\right)
$$

Following the same procedure we can establish (ii). This completes the proof.
Lemma 2.4. For any $X_{11} \in \mathcal{K}_{11}, Y_{12} \in \mathcal{K}_{12}$ and $Z_{22} \in \mathcal{K}_{22}$, we have

$$
\Theta\left(X_{11}+Y_{12}+Z_{22}\right)=\Theta\left(X_{11}\right)+\Theta\left(Y_{12}\right)+\Theta\left(Z_{22}\right)
$$

Proof. Assume that $\Omega=\Theta\left(X_{11}+Y_{12}+Z_{22}\right)-\Theta\left(X_{11}\right)-\Theta\left(Y_{12}\right)-\Theta\left(Z_{22}\right)$. We will show that $\Omega=0$. From Lemma 2.3 and $\left[\mathcal{P}_{1} \circ \mathrm{Z}_{22}, \mathcal{P}_{1}\right]_{\bullet}=0$, we can write

$$
\begin{aligned}
& \Theta\left(\left[\mathcal{P}_{1} \circ\left(X_{11}+Y_{12}+Z_{22}\right), \mathcal{P}_{1}\right] \bullet\right) \\
= & \Theta\left(\left[\mathcal{P}_{1} \circ\left(X_{11}+Y_{12}\right), \mathcal{P}_{1}\right] \bullet\right)+\Theta\left(\left[\mathcal{P}_{1} \circ Z_{22}, \mathcal{P}_{1}\right] \bullet\right) \\
= & {\left[\Theta\left(\mathcal{P}_{1}\right),\left(X_{11}+Y_{12}\right), \mathcal{P}_{1}\right] \bullet\left[\mathcal{P}_{1} \circ \Theta\left(X_{11}+Y_{12}\right), \mathcal{P}_{1}\right] \bullet } \\
+ & {\left[\mathcal{P}_{1} \circ\left(X_{11}+Y_{12}\right), \Theta\left(\mathcal{P}_{1}\right)\right] \bullet\left[\Theta\left(\mathcal{P}_{1}\right) \circ Z_{22}, \mathcal{P}_{1}\right] \bullet } \\
+ & {\left[\mathcal{P}_{1} \circ \Theta\left(Z_{22}\right), \mathcal{P}_{1}\right] \bullet+\left[\mathcal{P}_{1} \circ Z_{22}, \Theta\left(\mathcal{P}_{1}\right)\right] \bullet } \\
= & {\left[\Theta\left(\mathcal{P}_{1}\right) \circ\left(X_{11}+Y_{12}\right), \mathcal{P}_{1}\right] \bullet+\left[\mathcal{P}_{1} \circ\left(\Theta\left(X_{11}\right)+\Theta\left(Y_{12}\right)\right), \mathcal{P}_{1}\right] \bullet } \\
+ & {\left[\mathcal{P}_{1} \circ\left(X_{11}+Y_{12}\right), \Theta\left(\mathcal{P}_{1}\right)\right] \bullet+\left[\Theta\left(\mathcal{P}_{1}\right) \circ Z_{22}, \mathcal{P}_{1}\right] \bullet } \\
+ & {\left[\mathcal{P}_{1} \circ \Theta\left(Z_{22}\right), \mathcal{P}_{1}\right] \bullet+\left[\mathcal{P}_{1} \circ Z_{22}, \Theta\left(\mathcal{P}_{1}\right)\right] \bullet } \\
= & {\left[\Theta\left(\mathcal{P}_{1}\right) \circ\left(X_{11}+Y_{12}+Z_{22}\right), \mathcal{P}_{1}\right] \bullet+\left[\mathcal{P}_{1} \circ\left(\Theta\left(X_{11}\right)+\Theta\left(Y_{12}\right)+\Theta\left(Z_{22}\right)\right), \mathcal{P}_{1}\right] \bullet } \\
+ & {\left[\mathcal{P}_{1} \circ\left(X_{11}+Y_{12}+Z_{22}\right), \Theta\left(\mathcal{P}_{1}\right)\right] \bullet . }
\end{aligned}
$$

Also, we have

$$
\begin{aligned}
& \Theta\left(\left[\mathcal{P}_{1} \circ\left(X_{11}+Y_{12}+Z_{22}\right), \mathcal{P}_{1}\right]_{\bullet}\right)=\left[\Theta\left(\mathcal{P}_{1}\right) \circ\left(X_{11}+Y_{12}+Z_{22}\right), \mathcal{P}_{1}\right] \bullet \\
+\quad & {\left[\mathcal{P}_{1} \circ \Theta\left(X_{11}+Y_{12}+Z_{22}\right), \mathcal{P}_{1}\right] \bullet+\left[\mathcal{P}_{1} \circ\left(X_{11}+Y_{12}+Z_{22}\right), \Theta\left(\mathcal{P}_{1}\right)\right] . }
\end{aligned}
$$

It follows from the last two expressions that $\left[\mathcal{P}_{1} \circ \Omega, \mathcal{P}_{1}\right] \bullet=0$. In view of Lemma 2.2 this implies $\Omega_{11}=$ $\Omega_{12}=0$. Next, since $\left[\mathcal{P}_{2} \circ X_{11}, \mathcal{P}_{2}\right] .=0$. Following the same technique as above, we can get $\Omega_{22}=0$ and thus $\Omega=0$. Therefore, we obtain the desired result.

Lemma 2.5. For any $X_{12}, Y_{12} \in \mathcal{K}_{12}$, we have

$$
\Theta\left(X_{12}+Y_{12}\right)=\Theta\left(X_{12}\right)+\Theta\left(Y_{12}\right)
$$

Proof. Let $X_{12}=A_{12}-A_{12}^{*} \in \mathcal{K}_{12}$ and $Y_{12}=B_{12}-B_{12}^{*} \in \mathcal{K}_{12}$ for $A_{12}, B_{12} \in \mathfrak{A}_{12}$. So,

$$
\begin{aligned}
& {\left[\left(i \mathcal{P}_{1}+i A_{12}+i A_{12}^{*}\right) \circ \frac{1}{2} \mathcal{J},\left(i \mathcal{P}_{2}+i B_{12}+i B_{12}^{*}\right)\right] } \\
= & \left(A_{12}-A_{12}^{*}\right)+\left(B_{12}-B_{12}^{*}\right)+\left(A_{12} B_{12}^{*}+A_{12}^{*} B_{12}-B_{12} A_{12}^{*}-B_{12}^{*} A_{12}\right) \\
= & X_{12}+Y_{12}+X_{12} Y_{12}^{*}-Y_{12} X_{12}^{*} .
\end{aligned}
$$

Observe that $X_{12} \Upsilon_{12}^{*}-Y_{12} X_{12}^{*}=A_{12} B_{12}^{*}-B_{12} A_{12}^{*}+A_{12}^{*} B_{12}-B_{12}^{*} A_{12}=Z_{11}+W_{22}$, where $Z_{11}=A_{12} B_{12}^{*}-B_{12} A_{12}^{*} \in \mathcal{K}_{11}$ and $W_{22}=A_{12}^{*} B_{12}-B_{12}^{*} A_{12} \in \mathcal{K}_{22}$. Since $i A_{12}+i A_{12}^{*}, i B_{12}+i B_{12}^{*} \in \mathcal{K}_{12}$, then from Lemmas 2.3 and 2.4 it follows that

$$
\begin{aligned}
& \Theta\left(X_{12}+Y_{12}\right)+\Theta\left(Z_{11}\right)+\Theta\left(W_{22}\right) \\
= & \Theta\left(X_{12}+Y_{12}+Z_{11}+W_{22}\right) \\
= & \Theta\left(X_{12}+Y_{12}+X_{12} Y_{12}^{*}-Y_{12} X_{12}^{*}\right) \\
= & \Theta\left(\left[\left(i \mathcal{P}_{1}+i A_{12}+i A_{12}^{*}\right) \circ \frac{1}{2} \mathcal{J},\left(i \mathcal{P}_{2}+i B_{12}+i B_{12}^{*}\right)\right] \bullet\right) \\
= & {\left[\Theta\left(i \mathcal{P}_{1}\right)+\Theta\left(i A_{12}+i A_{12}^{*}\right) \circ \frac{1}{2} \mathcal{J},\left(i \mathcal{P}_{2}+i B_{12}+i B_{12}^{*}\right)\right] \bullet } \\
+ & {\left[\left(i \mathcal{P}_{1}+i A_{12}+i A_{12}^{*}\right) \circ \Theta\left(\frac{1}{2} \mathcal{J}\right),\left(i \mathcal{P}_{2}+i B_{12}+i B_{12}^{*}\right)\right] \bullet } \\
+ & {\left[\left(i \mathcal{P}_{1}+i A_{12}+i A_{12}^{*}\right) \circ \frac{1}{2} \mathcal{J},\left(\Theta\left(i \mathcal{P}_{2}\right)+\Theta\left(i B_{12}+i B_{12}^{*}\right)\right)\right] \bullet } \\
= & \Theta\left(\left[i \mathcal{P}_{1} \circ \frac{1}{2} \mathcal{J}, i \mathcal{P}_{2}\right]_{\bullet}\right)+\Theta\left(\left[i \mathcal{P}_{1} \circ \frac{1}{2} \mathcal{J},\left(i B_{12}+i B_{12}^{*}\right)\right] \bullet\right) \\
+ & \Theta\left(\left[\left(i A_{12}+i A_{12}^{*}\right) \circ \frac{1}{2} \mathcal{J}, i \mathcal{P}_{2}\right]_{\bullet}\right)+\Theta\left(\left[\left(i A_{12}+i A_{12}^{*}\right) \circ \frac{1}{2} \mathcal{J},\left(i B_{12}+i B_{12}^{*}\right)\right] \bullet\right) \\
= & \Theta\left(X_{12}\right)+\Theta\left(Y_{12}\right)+\Theta\left(X_{12} Y_{12}^{*}-Y_{12} X_{12}^{*}\right) \\
= & \Theta\left(X_{12}\right)+\Theta\left(Y_{12}\right)+\Theta\left(Z_{11}\right)+\Theta\left(W_{22}\right) .
\end{aligned}
$$

This implies $\Theta\left(X_{12}+Y_{12}\right)=\Theta\left(X_{12}\right)+\Theta\left(Y_{12}\right)$. Hence the proof.
Lemma 2.6. For every $X_{i i}, Y_{i i} \in \mathcal{K}_{i i}(i=1,2)$, we have
(i) $\Theta\left(X_{11}+Y_{11}\right)=\Theta\left(X_{11}\right)+\Theta\left(Y_{11}\right)$;
(ii) $\Theta\left(X_{22}+Y_{22}\right)=\Theta\left(X_{22}\right)+\Theta\left(Y_{22}\right)$.

Proof. Let $\Omega=\Theta\left(X_{11}+Y_{11}\right)-\Theta\left(X_{11}\right)-\Theta\left(Y_{11}\right)$. We have to show that $\Omega=0$. On the one hand, we have

$$
\begin{aligned}
& \Theta\left(\left[\mathcal{P}_{2} \circ\left(X_{11}+Y_{11}\right), \mathcal{P}_{2}\right]_{\bullet}\right)=\Theta\left(\left[\mathcal{P}_{2} \circ X_{11}, \mathcal{P}_{2}\right]_{\bullet}\right)+\Theta\left(\left[\mathcal{P}_{2} \circ Y_{11}, \mathcal{P}_{2}\right]_{\bullet}\right) \\
= & {\left[\Theta\left(\mathcal{P}_{2}\right) \circ X_{11}, \mathcal{P}_{2}\right]_{\bullet}+\left[\mathcal{P}_{2} \circ \Theta\left(X_{11}\right), \mathcal{P}_{2}\right]_{\bullet} . } \\
+ & {\left[\mathcal{P}_{2} \circ X_{11}, \Theta\left(\mathcal{P}_{2}\right)\right] \bullet+\left[\Theta\left(\mathcal{P}_{2}\right) \circ Y_{11}, \mathcal{P}_{2}\right]_{\bullet} } \\
+ & {\left[\mathcal{P}_{2} \circ \Theta\left(Y_{11}\right), \mathcal{P}_{2}\right]_{\bullet}+\left[\mathcal{P}_{2} \circ Y_{11}, \Theta\left(\mathcal{P}_{2}\right)\right] \bullet } \\
= & {\left[\Theta\left(\mathcal{P}_{2}\right) \circ\left(X_{11}+Y_{11}\right), \mathcal{P}_{2}\right]_{\bullet}+\left[\mathcal{P}_{2} \circ\left(\Theta\left(X_{11}\right)+\Theta\left(Y_{11}\right)\right), \mathcal{P}_{2}\right]_{\bullet} } \\
+ & {\left[\mathcal{P}_{2} \circ\left(X_{11}+Y_{11}\right), \Theta\left(\mathcal{P}_{2}\right)\right] . }
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
& \Theta\left(\left[\mathcal{P}_{2} \circ\left(X_{11}+Y_{11}\right), \mathcal{P}_{2}\right]_{\bullet}\right)=\left[\Theta\left(\mathcal{P}_{2}\right) \circ\left(X_{11}+Y_{11}\right), \mathcal{P}_{2}\right] . \\
+\quad & {\left[\mathcal{P}_{2} \circ \Theta\left(X_{11}+Y_{11}\right), \mathcal{P}_{2}\right] \bullet+\left[\mathcal{P}_{2} \circ\left(X_{11}+Y_{11}\right), \Theta\left(\mathcal{P}_{2}\right)\right] . }
\end{aligned}
$$

We obtain from the above two relations that $\left[\mathcal{P}_{2} \circ \Omega, \mathcal{P}_{2}\right] .=0$ and since $\Omega^{*}=-\Omega$, then we get $\Omega_{12}=\Omega_{22}=0$. Further assume that $Z=A_{12}-A_{12}^{*} \in \mathcal{K}_{12}$ for $A_{12} \in \mathfrak{A}_{12}$. Then $\left[Z \circ \frac{1}{2} \mathcal{J}, X_{11}\right]_{\bullet},\left[Z \circ \frac{1}{2} \mathcal{J}, Y_{11}\right], \in \mathcal{K}_{12}$. Thus from Lemma 2.5, we can write

$$
\begin{aligned}
& {\left[\Theta(Z) \circ \frac{1}{2} \mathcal{J},\left(X_{11}+Y_{11}\right)\right] \bullet\left[Z \circ \Theta\left(\frac{1}{2} \mathcal{J}\right),\left(X_{11}+Y_{11}\right)\right] . } \\
+ & {\left[Z \circ \frac{1}{2} \mathcal{J},\left(\Theta\left(X_{11}+Y_{11}\right)\right)\right] . } \\
= & \Theta\left(\left[Z \circ \frac{1}{2} \mathcal{J},\left(X_{11}+Y_{11}\right)\right] \bullet\right) \\
= & \Theta\left(\left[Z \circ \frac{1}{2} \mathcal{J}, X_{11}\right] \bullet\right)+\Theta\left(\left[Z \circ \frac{1}{2} \mathcal{J}, Y_{11}\right] \bullet\right) \\
= & {\left[\Theta(Z) \circ \frac{1}{2} \mathcal{J},\left(X_{11}+Y_{11}\right)\right] \bullet+\left[Z \circ \Theta\left(\frac{1}{2} \mathcal{J}\right),\left(X_{11}+Y_{11}\right)\right] \bullet } \\
+ & {\left[Z \circ \frac{1}{2} \mathcal{J},\left(\Theta\left(X_{11}\right)+\Theta\left(Y_{11}\right)\right)\right] . }
\end{aligned}
$$

Reasoning as above, we get $\left[Z \circ \frac{1}{2} \mathcal{J}, \Omega\right] .=0$ which gives $\Omega_{11}=0$. Thus $\Omega=0$. Thereby the proof is completed.

Remark 2.7. The additivity of Θ on \mathcal{K} can easily be observed from Lemmas $2.3-2.6$
Lemma 2.8. $\Theta(\mathcal{J})=0$.
Proof. Let $K \in \mathcal{K}$. From Lemma 2.2 and Remark 2.7, we have

$$
4 \Theta(K)=\Theta\left([K \circ \mathcal{J}, \mathcal{J}]_{\bullet}\right)=4 \Theta(K)+K \Theta(\mathcal{J})+\Theta(\mathcal{J})^{*} K+3\left(\Theta(\mathcal{J}) K+K \Theta(\mathcal{J})^{*}\right)
$$

This implies

$$
\begin{equation*}
3\left(\Theta(\mathcal{J}) K+K \Theta(\mathcal{J})^{*}\right)+K \Theta(\mathcal{J})+\Theta(\mathcal{J})^{*} K=0 \tag{5}
\end{equation*}
$$

Putting $K=i J$ in (5), we obtain

$$
4 i\left(\Theta(\mathcal{J})+\Theta(\mathcal{J})^{*}\right)=0
$$

Thus

$$
\begin{equation*}
\Theta(\mathcal{J})^{*}=-\Theta(\mathcal{J}) . \tag{6}
\end{equation*}
$$

It follows from (5) and (6) that

$$
\Theta(\mathcal{J}) K=K \Theta(\mathcal{J})
$$

for any $K \in \mathcal{K}$. Since for any $\mathcal{A} \in \mathfrak{A}, \mathcal{A}=K_{1}+i K_{2}$ with $K_{1}=\frac{\mathcal{A}-\mathcal{F}^{*}}{2} \in \mathcal{K}$ and $K_{2}=\frac{\mathcal{A}+\mathcal{F}^{*}}{2 i} \in \mathcal{K}$. Thus

$$
\begin{equation*}
\Theta(\mathcal{J}) \mathcal{A}=\mathcal{A} \Theta(\mathcal{J}) \tag{7}
\end{equation*}
$$

for all $\mathcal{A} \in \mathfrak{A}$. For any $A_{12} \in \mathfrak{A}_{12}$, let $X=A_{12}-A_{12}^{*} \in \mathcal{K}$ observe that $[X \circ i \mathcal{J}, \mathcal{J}]_{\bullet}=0$. It follows from Lemmas 2.1. 2.2 and Equations (6) and (7) that

$$
\begin{aligned}
0 & =\Theta\left([X \circ i \mathcal{J}, \mathcal{J}]_{\bullet}\right) \\
& =\left[\Theta(X) \circ i \mathcal{J}, \mathcal{J} \bullet_{\bullet}+[X \circ \Theta(i \mathcal{J}), \mathcal{J}]_{\bullet}+[X \circ i \mathcal{J}, \Theta(\mathcal{J})] \bullet\right. \\
& =[2 i \Theta(X), \mathcal{J}] \bullet+[X \Theta(i \mathcal{J})+\Theta(i \mathcal{J}) X, \mathcal{J}]_{\bullet}+[2 i X, \Theta(\mathcal{J})] \bullet \\
& =-4 i \Theta(\mathcal{J}) X .
\end{aligned}
$$

This implies

$$
\Theta(\mathcal{J}) X=\Theta(\mathcal{J})\left(A_{12}-A_{12}^{*}\right)=0
$$

Multiply the above equation by \mathcal{P}_{2} from the right and left respectively we get $\Theta(\mathcal{J}) A_{12}=0$ and $\Theta(\mathcal{J}) A_{12}^{*}=0$. Using equation (1) we obtain $\Theta(\mathcal{J}) \mathcal{P}_{1}=0$ and $\Theta(\mathcal{J}) \mathcal{P}_{2}=0$ and thus $\Theta(\mathcal{J})=\Theta(\mathcal{J}) \mathcal{P}_{1}+\Theta(\mathcal{J}) \mathcal{P}_{2}=0$.

Lemma 2.9. For any $L \in \mathcal{L}, \Theta(L)^{*}=\Theta(L)$.
Proof. Let $L \in \mathcal{L}$. Then $[\mathcal{J} \circ L, \mathcal{J}] \bullet=0$, so from Lemma 2.8 , we can write

$$
\begin{equation*}
0=\Theta\left([\mathcal{J} \circ L, \mathcal{J}]_{\bullet}\right)=[\mathcal{J} \circ \Theta(L), \mathcal{J}]_{\bullet}=2\left(\Theta(L)-\Theta(L)^{*}\right) \tag{8}
\end{equation*}
$$

Hence, we have $\Theta(L)^{*}=\Theta(L)$ for all $L \in \mathcal{L}$.
Lemma 2.10. For any $L \in \mathcal{L}, \Theta(i L)=i \Theta(L)+\Theta(i J) L$.
Proof. Observe that for any $L \in \mathcal{L},[L \circ i \mathcal{J}, i J] \bullet=0$. Therefore,

$$
\begin{aligned}
0 & =\Theta\left([L \circ i J, i J]_{\bullet}\right) \\
& =[\Theta(L) \circ i \mathcal{J}, i J]_{\bullet}+[L \circ \Theta(i \mathcal{J}), i J]_{\bullet}+[L \circ i J, \Theta(i J)] \bullet \\
& =2 i(\Theta(i J) L-L \Theta(i J))
\end{aligned}
$$

This implies $\Theta(i \mathcal{J}) L=L \Theta(i \mathcal{J})$ for all $L \in \mathcal{L}$. Since for any $\mathcal{A} \in \mathfrak{H}, \mathcal{A}=L_{1}+i L_{2}$ with $L_{1}=\frac{\mathcal{A}+\mathcal{F}^{*}}{2} \in \mathcal{L}$ and $L_{2}=\frac{\mathcal{A}-\mathcal{H}^{*}}{2 i} \in \mathcal{L}$. Thus

$$
\begin{equation*}
\Theta(i \mathcal{J}) \mathcal{A}=\mathcal{A} \Theta(i \mathcal{J}) \tag{10}
\end{equation*}
$$

for all $\mathcal{A} \in \mathfrak{H}$. Now

$$
\begin{aligned}
4 \Theta(i L) & =\Theta([i \mathcal{J} \circ \mathcal{J}, L] \bullet) \\
& =[\Theta(i \mathcal{J}) \circ \mathcal{J}, L] \bullet[i J \circ \mathcal{J}, \Theta(L)] \\
& =4(i \Theta(L)+\Theta(i \mathcal{J}) L)
\end{aligned}
$$

Thus

$$
\Theta(i L)=i \Theta(L)+\Theta(i J) L
$$

Lemma 2.11. Θ is additive on \mathcal{L}.
Proof. Let $L_{1}, L_{2} \in \mathcal{L}$. Then $i L_{1}, i L_{2} \in \mathcal{K}$. Then, it follows from Remark 2.7 and Lemma 2.10 that

$$
\begin{align*}
\Theta\left(i L_{1}+i L_{2}\right) & =\Theta\left(i L_{1}\right)+\Theta\left(i L_{2}\right) \tag{11}\\
& =i \Theta\left(L_{1}\right)+i \Theta\left(L_{2}\right)+\Theta(i J)\left(L_{1}+L_{2}\right)
\end{align*}
$$

Also

$$
\begin{equation*}
\Theta\left(i\left(L_{1}+L_{2}\right)\right)=i \Theta\left(L_{1}+L_{2}\right)+\Theta(i J)\left(L_{1}+L_{2}\right) . \tag{12}
\end{equation*}
$$

From (11) and (12), we obtain

$$
\Theta\left(L_{1}+L_{2}\right)=\Theta\left(L_{1}\right)+\Theta\left(L_{2}\right)
$$

Hence the result.
Lemma 2.12. $\Theta\left(X^{*}\right)=\Theta(X)^{*}$ for all $X \in \mathfrak{N}$.
Proof. Let $L_{1}, L_{2} \in \mathcal{L}$. Then, in view of Remark 2.7. Lemmas $2.8,2.10$ and $\left[L_{1} \circ \mathcal{J}, \mathcal{J}\right] \bullet=0$, we have

$$
\begin{align*}
\Theta\left(\left[L_{1}+i L_{2} \circ \mathcal{J}, \mathcal{J}\right]_{\bullet}\right) & =\Theta\left(\left[L_{1} \circ \mathcal{J}, \mathcal{J}\right]_{\bullet}\right)+\Theta\left(\left[i L_{2} \circ \mathcal{J}, \mathcal{J}\right]_{\bullet}\right) \tag{13}\\
& =4\left(i \Theta\left(L_{2}\right)+\Theta(i \mathcal{J}) L_{2}\right) .
\end{align*}
$$

On the other hand

$$
\begin{equation*}
\Theta\left(\left[L_{1}+i L_{2} \circ \mathcal{J}, \mathcal{J}\right]_{\bullet}\right)=2\left(\Theta\left(L_{1}+i L_{2}\right)-\Theta\left(L_{1}+i L_{2}\right)^{*}\right) \tag{14}
\end{equation*}
$$

From (13) and (14), we have

$$
\begin{equation*}
4\left(i \Theta\left(L_{2}\right)+\Theta(i J) L_{2}\right)=2\left(\Theta\left(L_{1}+i L_{2}\right)-\Theta\left(L_{1}+i L_{2}\right)^{*}\right) \tag{15}
\end{equation*}
$$

Since $\left[i J \circ i L_{2}, \mathcal{J}\right]_{\bullet}=0$, then we have

$$
\begin{align*}
& \left.4\left(i \Theta\left(L_{1}\right)+\Theta(i \mathcal{J}) L_{1}\right)=\Theta\left([i J)\left(L_{1}+i L_{2}\right), \mathcal{J}\right]_{\bullet}\right) \tag{16}\\
= & 2 i\left(\Theta\left(L_{1}+i L_{2}\right)+\Theta\left(L_{1}+i L_{2}\right)^{*}\right)+4 \Theta(i J) L_{1} .
\end{align*}
$$

From (15) and (16), we obtain

$$
\begin{equation*}
\Theta\left(L_{1}+i L_{2}\right)=\Theta\left(L_{1}\right)+i \Theta\left(L_{2}\right)+\Theta(i J) L_{2} \tag{17}
\end{equation*}
$$

Let $X \in \mathfrak{A}$. Then $X=L+i M$ for $L, M \in \mathcal{L}$, so from Equation (17, Lemmas 2.9 and 2.11, we have

$$
\begin{aligned}
\Theta(X)^{*} & =\Theta(L+i M)^{*} \\
& =(\Theta(L)+i \Theta(M)+\Theta(i J) M)^{*} \\
& =\Theta(L)-i \Theta(M)-\Theta(i J) M \\
& =\Theta(L-i M) \\
& =\Theta\left(X^{*}\right) .
\end{aligned}
$$

This gives the assertion.
Lemma 2.13. Θ is additive on \mathfrak{A}.
Proof. Let $X, Y \in \mathfrak{H}$ such that $X=L_{1}+i L_{2}$ and $Y=M_{1}+i M_{2}$ for all $L_{1}, L_{2}, M_{1}, M_{2} \in \mathcal{L}$. Then, in view of Equation (17) and Lemma 2.11. we have

$$
\begin{align*}
\Theta(X+Y) & =\Theta\left(\left(L_{1}+M_{1}\right)+i\left(L_{2}+M_{2}\right)\right) \tag{19}\\
& =\Theta\left(L_{1}+M_{1}\right)+i \Theta\left(L_{2}+M_{2}\right)+\Theta(i J)\left(L_{2}+M_{2}\right) \\
& =\left(\Theta\left(L_{1}\right)+i \Theta\left(L_{2}\right)+\Theta(i J) L_{2}\right) \\
& \left.+\Theta\left(M_{1}\right)+i \Theta\left(M_{2}\right)+\Theta(i J) M_{2}\right) \\
& =\Theta\left(L_{1}+i L_{2}\right)+\Theta\left(M_{1}+i M_{2}\right) \\
& =\Theta(X)+\Theta(Y) .
\end{align*}
$$

Hence the result.
Lemma 2.14. $\Theta(i J)=0$.
Proof. In view of Lemmas 2.8, 2.9, and 2.12, let us assume that

$$
\begin{equation*}
\Theta\left(\mathcal{P}_{1}\right)=L \tag{20}
\end{equation*}
$$

for some $L \in \mathcal{L}$, and

$$
\begin{equation*}
\Theta\left(i \mathcal{P}_{1}\right)=i L+\Theta(i J) \mathcal{P}_{1} \tag{21}
\end{equation*}
$$

Also

$$
\begin{aligned}
4 \Theta\left(i \mathcal{P}_{1}\right) & =\Theta\left(\left[i \mathcal{P}_{1} \circ \mathcal{P}_{1}, \mathcal{J}\right]_{\bullet}\right) \\
& =\left[\Theta\left(i \mathcal{P}_{1}\right) \circ \mathcal{P}_{1}, \mathcal{J}\right]_{\bullet}+\left[i \mathcal{P}_{1} \circ \Theta\left(\mathcal{P}_{1}\right), \mathcal{J}\right]_{\bullet} \\
& =4 \Theta(i \mathcal{J}) \mathcal{P}_{1}+4 i\left(\mathcal{P}_{1} L+L \mathcal{P}_{1}\right)
\end{aligned}
$$

This implies

$$
\begin{equation*}
\Theta\left(i \mathcal{P}_{1}\right)=\Theta(i \mathcal{J}) \mathcal{P}_{1}+i\left(\mathcal{P}_{1} L+L \mathcal{P}_{1}\right) \tag{22}
\end{equation*}
$$

From Equations (21) and (22), we have

$$
L=\mathcal{P}_{1} L+L \mathcal{P}_{1}
$$

This gives

$$
\mathcal{P}_{1} L \mathcal{P}_{1}=\mathcal{P}_{2} L \mathcal{P}_{2}=0
$$

and hence

$$
\begin{equation*}
\Theta\left(i \mathcal{P}_{1}\right)=\Theta(i \mathcal{J}) \mathcal{P}_{1}+i \mathcal{P}_{1} L \mathcal{P}_{2}+i \mathcal{P}_{2} L \mathcal{P}_{1} \tag{23}
\end{equation*}
$$

Observe, for any $X_{12} \in \mathfrak{H}_{12}$ that

$$
\Theta\left(\left[J \circ i \mathcal{P}_{1},\left(X_{12}-X_{12}^{*}\right)\right] \bullet\right)=-2 \Theta\left(i\left(X_{12}+X_{12}^{*}\right)\right) .
$$

In view of Lemma 2.10, we have

$$
-2 \Theta\left(i\left(X_{12}+X_{12}^{*}\right)\right)=-2 i\left(\Theta\left(X_{12}\right)+\Theta\left(X_{12}\right)^{*}\right)-2 \Theta(i J)\left(X_{12}+X_{12}^{*}\right)
$$

Thus

$$
\begin{align*}
\Theta\left(\left[\mathcal{J} \circ i \mathcal{P}_{1},\left(X_{12}-X_{12}^{*}\right)\right] \bullet\right) & =-2 i\left(\Theta\left(X_{12}\right)+\Theta\left(X_{12}\right)^{*}\right) \tag{24}\\
& -2 \Theta(i \mathcal{J})\left(X_{12}+X_{12}^{*}\right) .
\end{align*}
$$

Alternatively, from 23) and Lemma 2.8, we have

$$
\begin{align*}
& \Theta\left(\left[\mathcal{J} \circ i \mathcal{P}_{1},\left(X_{12}-X_{12}^{*}\right)\right] \bullet\right) \tag{25}\\
= & {\left[\mathcal{J} \circ \Theta\left(i \mathcal{P}_{1}\right),\left(X_{12}-X_{12}^{*}\right)\right] \bullet+\left[\mathcal{J} \circ i \mathcal{P}_{1}, \Theta\left(X_{12}-X_{12}^{*}\right)\right] \bullet } \\
= & {\left[\mathcal{J} \circ\left(\Theta(i \mathcal{J}) \mathcal{P}_{1}+i \mathcal{P}_{1} L \mathcal{P}_{2}+i \mathcal{P}_{2} L \mathcal{P}_{1}\right),\left(X_{12}-X_{12}^{*}\right)\right] \bullet } \\
+ & {\left[\mathcal{J} \circ i \mathcal{P}_{1},\left(\Theta\left(X_{12}\right)-\Theta\left(X_{12}^{*}\right)\right)\right] \cdot } \\
= & 2\left(\Theta(i \mathcal{J}) \mathcal{P}_{1}+i \mathcal{P}_{1} L \mathcal{P}_{2}+i \mathcal{P}_{2} L \mathcal{P}_{1}\right)\left(X_{12}^{*}-X_{12}\right) \\
+ & 2\left(X_{12}-X_{12}^{*}\right)\left(\Theta(i \mathcal{J}) \mathcal{P}_{1}+i \mathcal{P}_{1} L \mathcal{P}_{2}+i \mathcal{P}_{2} L \mathcal{P}_{1}\right) \\
+ & 2 i \mathcal{P}_{1}\left(\Theta\left(X_{12}\right)^{*}-\Theta\left(X_{12}\right)\right)+2 i\left(\Theta\left(X_{12}\right)-\Theta\left(X_{12}\right)^{*}\right) \mathcal{P}_{1} .
\end{align*}
$$

Now from (24) and (25), we obtain

$$
\begin{align*}
& -i \Theta\left(X_{12}\right)-i \Theta\left(X_{12}\right)^{*}-\Theta(i \mathcal{J})\left(X_{12}+X_{12}^{*}\right) \tag{26}\\
& =\left(\Theta(i J) \mathcal{P}_{1}+i \mathcal{P}_{1} L \mathcal{P}_{2}+i \mathcal{P}_{2} L \mathcal{P}_{1}\right)\left(X_{12}^{*}-X_{12}\right) \\
& + \\
& +\quad\left(X_{12}-X_{12}^{*}\right)\left(\Theta(i J) \mathcal{P}_{1}+i \mathcal{P}_{1} L \mathcal{P}_{2}+i \mathcal{P}_{2} L \mathcal{P}_{1}\right) \\
& \left.+\left(X_{12}\right)^{*}-\Theta\left(X_{12}\right)\right)+i\left(\Theta\left(X_{12}\right)-\Theta\left(X_{12}\right)^{*}\right) \mathcal{P}_{1} .
\end{align*}
$$

Multiply [26) by \mathcal{P}_{1} from left and \mathcal{P}_{2} from right, we get $\mathcal{P}_{1} \Theta\left(X_{12}\right)^{*} \mathcal{P}_{2}=0$. Next, consider

$$
\begin{align*}
& 2\left(\Theta\left(X_{12}\right)-\Theta\left(X_{12}\right)^{*}\right) \tag{27}\\
= & \Theta\left(\left[\mathcal{J} \circ i \mathcal{P}_{1}, i\left(X_{12}+X_{12}^{*}\right)\right] \cdot\right) \\
= & {\left[\mathcal{J} \circ \Theta\left(i \mathcal{P}_{1}\right), i\left(X_{12}+X_{12}^{*}\right)\right] \bullet+\left[\mathcal{J} \circ i \mathcal{P}_{1}, \Theta\left(i\left(X_{12}+X_{12}^{*}\right)\right)\right] \bullet } \\
= & {\left[\mathcal{J} \circ\left(\Theta(i \mathcal{J}) \mathcal{P}_{1}+i \mathcal{P}_{1} L \mathcal{P}_{2}+i \mathcal{P}_{2} L \mathcal{P}_{1}\right), i\left(X_{12}+X_{12}^{*}\right)\right] } \\
+ & {\left[\mathcal{J} \circ i \mathcal{P}_{1},\left(i\left(\Theta\left(X_{12}\right)+\Theta\left(X_{12}^{*}\right)\right)+\Theta(i J)\left(X_{12}+X_{12}^{*}\right)\right)\right] . } \\
= & -2 i\left(\Theta(i \mathcal{J}) \mathcal{P}_{1}+i \mathcal{P}_{1} L \mathcal{P}_{2}+i \mathcal{P}_{2} L \mathcal{P}_{1}\right)\left(X_{12}^{*}+X_{12}\right) \\
+ & 2 i\left(X_{12}^{*}+X_{12}\right)\left(\Theta(i \mathcal{J}) \mathcal{P}_{1}+i \mathcal{P}_{1} L \mathcal{P}_{2}+i \mathcal{P}_{2} L \mathcal{P}_{1}\right) \\
- & 2 i \mathcal{P}_{1}\left(i \Theta\left(X_{12}\right)^{*}+i \Theta\left(X_{12}\right)+\Theta(i \mathcal{J})\left(X_{12}^{*}+X_{12}\right)\right) \\
+ & 2 i\left(i \Theta\left(X_{12}\right)+i \Theta\left(X_{12}\right)^{*}+\Theta(i \mathcal{J})\left(X_{12}^{*}+X_{12}\right)\right) \mathcal{P}_{1} .
\end{align*}
$$

Multiply above relation by \mathcal{P}_{1} from left and \mathcal{P}_{2} from right, we obtain $\Theta(i J) X_{12}=0$ and so by Equation(1) we have $\Theta(i J) \mathcal{P}_{1}=0$. Also by Equation 10 we get $\Theta(i J) X_{12}^{*}=0$ and thus by Equation(1) we obtain $\Theta(i J) \mathcal{P}_{2}=0$. And hence, $\Theta(i \mathcal{J})=\Theta(i J) \mathcal{P}_{1}+\Theta(i J) \mathcal{P}_{2}=0$. This completes the proof.

Lemma 2.15. $\Theta(i X)=i \Theta(X)$ for all $X \in \mathfrak{A}$.
Proof. It follows from Lemmas 2.10 and 2.14 that $\Theta(i L)=i \Theta(L)$ for all $L \in \mathcal{L}$. Thus, for any $X \in \mathfrak{A}$ and $L_{1}, L_{2} \in \mathcal{L}$ and using the fact that Θ is additive on \mathfrak{H}, we have

$$
\left.\Theta(i X)=\Theta\left(i L_{1}-L_{2}\right)\right)=i \Theta\left(L_{1}\right)-\Theta\left(L_{2}\right)=i\left(\Theta\left(L_{1}\right)+i \Theta\left(L_{2}\right)\right)=i \Theta(X)
$$

Hence the result.
Lemma 2.16. Θ is a derivation on \mathfrak{A}.
Proof. Let $L_{1}, L_{2} \in \mathcal{L}$. Then

$$
\begin{align*}
2 \Theta\left(L_{1} L_{2}-L_{2} L_{1}\right) & =\Theta\left(\left[\mathcal{J} \circ L_{1}, L_{2}\right]_{\bullet}\right) \tag{28}\\
& =\left[\mathcal{J} \circ \Theta\left(L_{1}\right), L_{2}\right] \bullet+\left[\mathcal{J} \circ L_{1}, \Theta\left(L_{2}\right)\right] \bullet \\
& =2\left(\Theta\left(L_{1}\right) L_{2}-L_{2} \Theta\left(L_{1}\right)+L_{1} \Theta\left(L_{2}\right)\right. \\
& \left.-\Theta\left(L_{2}\right) L_{1}\right) .
\end{align*}
$$

Also

$$
\begin{align*}
2 i \Theta\left(L_{1} L_{2}+L_{2} L_{1}\right) & =\Theta\left(\left[\mathcal{J} \circ i L_{1}, L_{2}\right] \bullet\right) \tag{29}\\
& =\left[\mathcal{J} \circ \Theta\left(i L_{1}\right), L_{2}\right] \bullet+\left[\mathcal{J} \circ i L_{1}, \Theta\left(L_{2}\right)\right] \bullet \\
& =2 i\left(\Theta\left(L_{1}\right) L_{2}+L_{2} \Theta\left(L_{1}\right)+L_{1} \Theta\left(L_{2}\right)\right. \\
& \left.+\Theta\left(L_{2}\right) L_{1}\right) .
\end{align*}
$$

Addition of (28) and (29) gives $\Theta\left(L_{1} L_{2}\right)=\Theta\left(L_{1}\right) L_{2}+L_{1} \Theta\left(L_{2}\right)$ for all $L_{1}, L_{2} \in \mathcal{L}$. Further, for any $X, Y \in \mathfrak{A}$ assume that $X=L_{1}+i L_{2}$ and $Y=M_{1}+i M_{2}$ for $L_{1}, L_{2}, M_{1}, M_{2} \in \mathcal{L}$. Then

$$
\begin{align*}
\Theta(X Y) & =\Theta\left(\left(L_{1}+i L_{2}\right)\left(M_{1}+i M_{2}\right)\right) \tag{30}\\
& =\Theta\left(L_{1} M_{1}+i L_{1} M_{2}+i L_{2} M_{1}-L_{2} M_{2}\right) \\
& =\Theta\left(L_{1}\right) M_{1}+L_{1} \Theta\left(M_{1}\right)+i \Theta\left(L_{1}\right) M_{2} \\
& +i L_{1} \Theta\left(M_{2}\right)+i \Theta\left(L_{2}\right) M_{1}+i L_{2} \Theta\left(M_{1}\right) \\
& -\Theta\left(L_{2}\right) M_{2}-L_{2} \Theta\left(M_{2}\right)
\end{align*}
$$

On the other hand

$$
\begin{align*}
\Theta(X) Y+X \Theta(Y) & =\Theta\left(L_{1}+i L_{2}\right)\left(M_{1}+i M_{2}\right) \tag{31}\\
& +\left(L_{1}+i L_{2}\right) \Theta\left(M_{1}+i M_{2}\right) \\
& =\left(\Theta\left(L_{1}\right)+i \Theta\left(L_{2}\right)\right)\left(M_{1}+i M_{2}\right) \\
& +\left(L_{1}+i L_{2}\right)\left(\Theta\left(M_{1}\right)+i \Theta\left(M_{2}\right)\right) \\
& =\Theta\left(L_{1}\right) M_{1}+L_{1} \Theta\left(M_{1}\right)+i \Theta\left(L_{1}\right) M_{2} \\
& +i L_{1} \Theta\left(M_{2}\right)+i \Theta\left(L_{2}\right) M_{1}+i L_{2} \Theta\left(M_{1}\right) \\
& -\Theta\left(L_{2}\right) M_{2}-L_{2} \Theta\left(M_{2}\right)
\end{align*}
$$

Comparing Equations (30) and 31 , we conclude that Θ is a derivation on \mathfrak{A}. Therefore, the proof of our Main Theorem is completed.

3. Corollaries

The following result [16, Theorem 1.1], is useful to describe the primeness of alternative rings.
Theorem 3.1. Let R be a 3-torsion free alternative ring. So R is a prime ring if and only if $a R \cdot b=0($ or $a \cdot R b=0)$ implies $a=0$ or $b=0$ for $a, b \in R$.

Let \mathfrak{A} be an associative $*$-algebra. Then \mathfrak{A} is said to be prime if $I J \neq(0)$ for any two nonzero ideals $I, J \subseteq \mathfrak{A}$. Theorem 3.1 can be applied to associative algebras over \mathbb{C}. In view of Theorem 3.1. we can say that prime *-algebras satisfy Equation (1). Then we have the following corollary.

Corollary 3.2. Let \mathfrak{M} be a unital prime *-algebra containing non-trivial projections \mathcal{P}_{1} and \mathcal{P}_{2}. Then Θ is a non-linear mixed Jordan bi-skew Lie triple derivation on \mathfrak{A} if and only if Θ is an additive $*$-derivation on \mathfrak{A}.

A von Neumann algebra \mathfrak{U} is a weakly closed self-adjoint algebra of operators on a complex Hilbert space \mathcal{H} containing the identity operator \mathcal{J}. \mathfrak{H} is said to be a factor if its centre is trivial. Since a factor von Neumann algebra is a prime *-algebra, then we have the following corollary.

Corollary 3.3. Let \mathfrak{A} be a factor von Neumann algebra with $\operatorname{dim}(\mathfrak{H}) \geq 2$. Then $\Theta: \mathfrak{A} \rightarrow \mathfrak{A}$ is a non-linear mixed Jordan bi-skew Lie triple derivation if and only if Θ is an additive $*$-derivation.

Corollary 3.4. Let \mathfrak{A} be a von Neumann algebra with no central summands of type I_{1}. Then $\Theta: \mathfrak{A} \rightarrow \mathfrak{A}$ is a non-linear mixed Jordan bi-skew Lie triple derivation if and only if Θ is an additive $*$-derivation.

Let $\mathcal{B}(\mathcal{H})$ be the algebra of all bounded linear operators on a complex Hilbert space \mathcal{H}. A subalgebra \mathfrak{A} of $\mathcal{B}(\mathcal{H})$ is said to be a standard operator algebra if $\mathcal{F}(\mathcal{H}) \subseteq \mathfrak{A}$ where $\mathcal{F}(\mathcal{H})$ is the subalgebra of all finite rank operators on \mathcal{H}. As we know that a standard operator algebra is a prime $*$-algebra, thus we have the following corollary.

Corollary 3.5. Let \mathcal{H} be an infinite dimensional complex Hilbert space and \mathfrak{A} be a standard operator algebra on \mathcal{H} containing the identity operator \mathfrak{J}. Suppose that \mathfrak{A} is closed under the adjoint operation. Then $\Theta: \mathfrak{U} \rightarrow \mathfrak{A}$ is a non-linear mixed Jordan bi-skew Lie triple derivation if and only if Θ is an additive *-derivation. Moreover, there exists an operator $Y \in B(\mathcal{H})$ satisfying $Y+Y^{*}=0$ such that $\Theta(X)=X Y-Y X$ for all $X \in \mathfrak{A}$, i.e., Θ is inner.

Proof. As Θ is an additive *-derivation on standard operator algebra \mathfrak{N} from [15] it follows that Θ is an inner derivation, i.e., there exists $Y \in B(\mathcal{H})$ such that $\Theta(X)=X Y-Y X$ for all $X \in \mathfrak{A}$. Since $\Theta\left(X^{*}\right)=\Theta(X)^{*}$ for all $X \in \mathfrak{M}$, then we have

$$
X^{*} Y-Y X^{*}=\Theta\left(X^{*}\right)=Y^{*} X^{*}-X^{*} Y^{*}
$$

for all $X \in \mathfrak{A}$. This implies $X^{*}\left(Y+Y^{*}\right)=\left(Y+Y^{*}\right) X^{*}$. Thus, $Y+Y^{*}=\alpha J$ for some $\alpha \in \mathbb{R}$. Let us set $Z=Y-\frac{1}{2} \alpha J$. One can check that $Z+Z^{*}=0$ such that $\Theta(X)=X Z-Z X$.

Acknowledgement : The second author was supported by CSIR-UGC Junior Research Fellowship, India, Human Resource Development Group (Ref. No. Nov/06/2020(i)EU-V). The authors appreciate the anonymous referee's insightful comments and suggestions.

Authors' contribution : All authors have equal contribution.
Conflict of interest : The authors affirm that they do not have any competing interests.

References

[1] A. N. Khan, Multiplicative bi-skew Lie triple derivations on factor von Neumann algebras, Rocky Mountain J. Math. 51(6) (2021), 2103-2114.
[2] B. L. M. Ferreira, F. Wei, Mixed *-Jordan-type derivations on *-algebras, J. Algebra its Appl., 22 (2023), pp. 2350100-1-2350100-14, https://doi.org/10.1142/S0219498823501001
[3] B. L. M. Ferreira, H. Guzzo, I. Kaygorodov, Lie maps on alternative rings preserving idempotents, Colloq. Math., 166 (2021), 227-238, doi:10.4064/cm8195-10-2020.
[4] B. L. M. Ferreira, I. Kaygorodov, Commuting maps on alternative rings, Ricerche. mat. 71 (2022), 67-78. https://doi.org/10.1007/s11587-020-00547-z
[5] C. Li, D. Zhang, Nonlinear Mixed Jordan Triple *-Derivations on *-Algebras, Sib. Math. J. 63 (2022), 735-742.https://doi.org/10.1134/S0037446622040140
[6] C. J. Li, F. F. Zhao, Q. Y. Chen, Nonlinear skew Lie triple derivations between factors, Acta Math. Sinica (English Series). 32(7) (2016), 821-830.
[7] C. Li, X. Fang, Lie triple and Jordan derivable mappings on nest algebras, Linear Multilinear Algebra. 61(5) (2013), 653-666.
[8] C. Lia, D. Zhanga, Nonlinear Mixed Jordan triple *-Derivations on Factor von Neumann Algebras, Filomat. 36(8) (2022), $2637-2644$.
[9] C. R. Miers, Lie triple derivations of von Neumann algebras, Pro. Amer. Math. Soc. 71(1) (1978), 57-61.
[10] F. Zhao, C. Li, Nonlinear *-Jordan triple derivations on von Neumann algebras, Math. Slovaca. 68(1) (2018), 163-170.
[11] J. C. D. M. Ferreira, B. L. M. Ferreira, Additivity of n-multiplicative maps on alternative rings, Communications in algebra, 44(4) (2016), 1557-1568.
[12] L. Kong, C. Li, Nonlinear mixed Lie triple derivations on prime $*$-rings, SCIENCEASIA. 48(3) (2022), 335-339.
[13] L. Kong, J. Zhang, Nonlinear bi-skew Lie derivations on factor von Neumann algebras, Bull. Iran. Math. Soc. 47 (2021), 1097-1106.
[14] P. S. Ji, R. Liu, Y. Z. Zhao, Nonlinear Lie triple derivations of triangular algebras, Linear Multilinear Algebra. 60(10) (2012), $1155-1164$.
[15] P. Šemrl, Additive derivations of some operator algebras. Illinois J. Math. 35(2) (1991), 234-240.
[16] R. N. Ferreira, B. L. Ferreira, Jordan triple derivation on alternative rings, Proyecciones (Antofagasta), 37(1) (2018), 171-180.
[17] T. C. Pierin, R. N. Ferreira, F. Borges, B. L. M. Ferreira, Nonlinear mixed *-Jordan type derivations on alternative *-algebras, J. Algebra its Appl., doi: 10.1142/S0219498825500288
[18] V. Darvish, M. Nouri, M. Razeghi, A. Taghavi, Nonlinear *-Jordan triple derivations on prime *-algebras, Rocky Mountain J. Math. 50 (2020), 543-549.
[19] W. Jing, Nonlinear *-Lie derivations of standard operator algebras, Quaes. Math. 39(8) (2016), 1037-1046.
[20] X. Zhao, X. Fang, The Second Nonlinear Mixed Lie Triple Derivations on Finite Von Neumann Algebras. Bull. Iran. Math. Soc. 47(1) (2021), 237-254.
[21] Y. Liang, J. Zhang, Nonlinear mixed Lie triple derivations on factor von Neumann algebras. Acta Math. Sin., Chinese Ser. 62 (2019), 1-13.
[22] Y. Zhou, Z. Yang, J. Zhang, Nonlinear mixed Lie triple derivations on prime *-algebras, Comm. Algebra. 47(11) (2019), 4791-4796.
[23] Z. Bai, S. Du, The structure of nonlinear Lie derivation on von Neumann algebras, Linear Algebra Appl. 436(7) (2012), 2701-2708.

[^0]: 2020 Mathematics Subject Classification. 16W25; 47B47, 46L10.
 Keywords. Mixed Jordan bi-skew Lie triple derivations; *-derivation; *-algebras.
 Received: 03 May 2023; Revised: 28 August 2023; Accepted: 15 September 2023
 Communicated by Dijana Mosić
 Research supported by CSIR-UGC Junior Research Fellowship (Ref. No. Nov/06/2020(i)EU-V).

 * Corresponding author: Mohd Tasleem

 Email addresses: asma_ali2@rediffmail.com (Asma Ali), tasleemh59@gmail.com (Mohd Tasleem), abdulnadimkhan@gmail.com (Abdul Nadim Khan)

