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Abstract. In this paper we characterize hypercyclic generalized bilateral weighted shift operators on
the standard Hilbert module over the C∗-algebra of compact operators on the separable Hilbert space.
Moreover, we give necessary and sufficient conditions for these operators to be chaotic and we provide
concrete examples.

1. Introduction

Hypercyclicity and topological transitivity, as important linear dynamical properties of bounded linear
operators, have been investigated in many research works; see [1, 3, 6, 8, 15] and their references. Specially,
hypercyclic weighted shifts on ℓp(Z) were characterized in [10, 18], and then C.C. Chen and C.H. Chu,
using aperiodic elements of locally compact groups, extended the results in [18] to weighted translations
on Lebesgue spaces in the context of a second countable group [7].

Recently, in [12] we have for instance characterized hypercyclic weighted composition operators on the
commutative C∗-algebra of continuous functions vanishing at infinity on a locally compact, non-compact
Hausdorff space. Moreover, in [13] and [14] we have characterized hypercyclic elementary operators on
the C∗-algebra of compact operators on a separable Hilbert space. The dynamics of some similar operators
have been considered earlier such as conjugate operators, see [17], and left multiplication operators, see
[5, 19, 20].

The main aim of this paper is to study the dynamics of generalized bilateral weighted shift operators
on the standard Hilbert C∗-module over the C∗-algebra of compact operators on a separable Hilbert space,
thus to generalize in this setting the results from [10, 18]. In Section 3 we characterize hypercyclic such
operators and we also give necessary and sufficient conditions for these operators to be chaotic. In addition,
we provide concrete examples.

Moreover, in Section 4 we provide an algebraic generalization of our results given in [12, 13] to the case
of arbitrary non-unital C∗-algebras.

2. Preliminaries

If X is a Banach space, the set of all bounded linear operators from X into X is denoted by B(X). Also,
we denoteN0 :=N ∪ {0}.
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Definition 2.1. [11, Definition 2.1] Let X be a Banach space. A sequence (Tn)n∈N0 of operators in B(X) is called
topologically transitive if for each non-empty open subsets U,V ofX, Tn(U)∩V , ∅ for some n ∈N. If Tn(U)∩V , ∅
holds from some n onwards, then (Tn)n∈N0 is called topologically mixing.

Definition 2.2. [11, Definition 2.2] Let X be a Banach space. A sequence (Tn)n∈N0 of operators in B(X) is called
hypercyclic if there is an element x ∈ X (called hypercyclic vector) such that the orbit {Tnx : n ∈ N0} is dense in
X. The set of all hypercyclic vectors of a sequence (Tn)n∈N0 is denoted by HC((Tn)n∈N0 ). If HC((Tn)n∈N0 ) is dense in
X, the sequence (Tn)n∈N0 is called densely hypercyclic. An operator T ∈ B(X) is called hypercyclic if the sequence
(Tn)n∈N0 is hypercyclic.

Note that a sequence (Tn)n∈N0 of operators in B(X) is topologically transitive if and only if it is densely
hypercyclic [9]. Also, a Banach space admits a hypercyclic operator if and only if it is separable and
infinite-dimensional [1, 3].

Definition 2.3. [11, Definition 2.3] Let X be a Banach space, and (Tn)n∈N0 be a sequence of operators in B(X). A
vector x ∈ X is called a periodic element of (Tn)n∈N0 if there exists a constant N ∈ N such that for each k ∈ N,
TkNx = x. The set of all periodic elements of (Tn)n∈N0 is denoted by P((Tn)n∈N0 ). The sequence (Tn)n∈N0 is called
chaotic if (Tn)n∈N0 is topologically transitive and P((Tn)n∈N0 ) is dense in X. An operator T ∈ B(X) is called chaotic
if the sequence {Tn

}n∈N0 is chaotic.

3. Generalized weighted bilateral shift operators over C∗-algebras

Let H be a separable Hilbert space. The C∗-algebra of all bounded linear operators on H is denoted by
B(H) whereas we let A := B0(H) be the C∗-algebra of all compact operators on H. For every self-adjoint
T,S ∈ B(H) we denote T ≤ S whenever ⟨(T − S)h, h⟩ ≥ 0 for all h ∈ H. Assume that {e j} j∈Z is an orthonormal
basis for H, and for each m ∈ N, Pm is the orthogonal projection onto Span{e−m, . . . , em}. Let W := {W j} j∈Z
be a uniformly bounded sequence of invertible operators in B(H) such that the sequence {W−1

j } j∈Z is also
uniformly bounded in B(H). Moreover, let U be a unitary operator on H. We define TU,W to be the operator
on ℓ2(A), the standard right Hilbert module overA, given by

(TU,W(x))ξ :=Wξ xξ−1 U

for all ξ ∈ Z and x := (x j) j∈Z ∈ ℓ2(A). It is easy to see that TU,W is a linear operator. Put M := sup j∈Z ∥W j∥.
Then, since for all j ∈ Z, M2U∗x∗j−1x j−1U − U∗x∗j−1W∗

jW jx j−1U is a positive semidefinite operator on H, we
have ∑

j∈Z

U∗x∗j−1W∗

jW jx j−1U ≤M2
∑
j∈Z

U∗x∗j−1x j−1U

=M2 U∗(
∑
j∈Z

x∗j−1x j−1)U

=M2 U∗ ⟨x, x⟩U,

so ImTU,W ⊆ ℓ2(A) and ∥TU,W∥ ≤M. Moreover, TU,W is invertible and its inverse SU,W is given by

(SU,W(y))ξ :=W−1
ξ+1yξ+1U∗

for all y := (y j) j ∈ ℓ2(A) and ξ ∈ Z. By some calculations we can see that

(Tn
U,W(x))ξ =WξWξ−1 . . .Wξ−n+1xξ−nUn

and
(Sn

U,W(y))ξ :=W−1
ξ+1W−1

ξ+2 . . .W
−1
ξ+nyξ+nU∗n

for all n ∈N, ξ ∈ Z and x := (x j) j, y := (y j) j in ℓ2(A).
For each J ∈N, we denote [J] := {−J,−J+ 1, . . . , J− 1, J}. In the following result, we give some equivalent

condition for a sequence of powers of an operator TU,W to be densely hypercyclic on ℓ2(A).
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Proposition 3.1. Let (tn)n be an unbounded sequence of nonnegative integers. We denote TU,W,n := Ttn
U,W for all

n ∈N. Then, the followings are equivalent:

1. (TU,W,n)n is a densely hypercyclic sequence on ℓ2(A).
2. For every J,m ∈N there exist a strictly increasing sequence {nk}k ⊆N and sequences {D(k)

i }k and {G(k)
i }k for all

i ∈ [J] of operators in B0(H) such that

lim
k→∞
∥D(k)

j − Pm∥ = lim
k→∞
∥G(k)

j − Pm∥ = 0

and
lim
k→∞
∥W j+tnk

W j+tnk−1 . . .W j+1D(k)
j ∥

= lim
k→∞
∥W−1

j−tnk+1W−1
j−tnk+2 . . .W

−1
j G(k)

j ∥ = 0

for all j ∈ [J].

Proof. (1)⇒ (2): Let (TU,W,n)n be densely hypercyclic. Assume that J,m ∈N, and define x = (x j) j ∈ ℓ2(A) by
x j := Pm for all j ∈ [J], and x j := 0 for all j < [J]. Then, for each k ∈ N, there exist an element y(k)

∈ ℓ2(A)
and a term tnk such that ∥y(k)

− x∥2 < 1
4k and ∥TU,W,nk (y(k)) − x∥2 < 1

4k . We can assume that the sequence (nk)k
is strictly increasing, and 2J < tn1 < tn2 < . . .. Hence,

∥W jW j−1 . . .W j−tnk+1y j−tnk
Utnk − Pm∥ <

1
4k

for all j ∈ [J]. However, since tnk > 2J and ∥y(k)
− x∥2 < 1

4k , we have ∥y(k)
j−tnk
∥ < 1

4k as x j−tnk
= 0 for all j ∈ [J].

Thus
∥W−1

j−tnk+1 . . .W
−1
j W j . . .W j−tnk+1y(k)

j−tnk
Utnk ∥ = ∥y(k)

j−tnk
Utnk ∥ = ∥y(k)

j−tnk
∥ <

1
4k

for all j ∈ [J]. Similarly, since ∥T
tnk
U,W(y(k)) − x∥2 < 1

4k , we have

∥W j+tnk
. . .W j+1y(k)

j Utnk ∥ <
1
4k
,

so ∥W j+tnk
. . .W j+1y(k)

j ∥ <
1
4k . Set

D(k)
j := y(k)

j and G(k)
j :=W jW j−1 . . .W j−tnk+1y(k)

j−tnk
Utnk

for all j ∈ [J]. Then,

∥D(k)
j − Pm∥ <

1
4k
, ∥G(k)

j − Pm∥ <
1
4k
, ∥W j+tnk

. . .W j+1D(k)
j ∥ <

1
4k

and ∥W−1
j−tnk+1 . . .W

−1
j G(k)

j ∥ <
1
4k . Notice that since the coefficients of y(k) belong to A = B0(H) which is an

ideal of B(H), by construction, D(k)
j and G(k)

j belong to B0(H) for all j ∈ [J]. This completes the proof.
(2) ⇒ (1): Assume that the condition (2) holds. Choose two non-empty open subsets O1 and O2 of

ℓ2(A). Assume that F denotes the set of all elements x = (x j) j ∈ ℓ2(A) such that for some J,m ∈ N, x j = 0
for all j < [J] and x j = Pmx j for all j ∈ [J]. Since F is dense in ℓ2(A) [16, Proposition 2.2.1], we can find
some x = (x j) j ∈ O1 and y = (y j) j ∈ O2 and sufficiently large J,m such that x j = y j = 0 for all j < [J] and
x j = Pmx j and y j = Pmy j for all j ∈ [J]. Choose the sequences {D(k)

j }k and {G(k)
j }k for j ∈ [J] and the increasing

sequence {nk}k satisfying (ii) regarding these J,m. For each k, let uk and vk be sequences in ℓ2(A) defined by
(uk) j := D(k)

j x j for j ∈ [J], (uk) j := 0 for j < [J], (vk) j := G(k)
j y j for j ∈ [J] and (vk) j := 0 for all j < [J]. Set

ηk := uk + S
tnk
U,Wvk.



S. Ivković / Filomat 38:6 (2024), 1901–1913 1904

Since ∥D(k)
j − Pm∥ → 0 and ∥G(k)

j − Pm∥ → 0 as k tends to∞, and x j = Pmx j and y j = Pmy j for j ∈ [J], it would
be routine to see that uk → x and vk → y as k→∞. Next, for each j ∈ [J] we have

∥(S
tnk
U,W(vk)) j−tnk

∥ = ∥W−1
j+1−tnk

. . .W−1
j G(k)

j y jU−tnk ∥

≤ ∥W−1
j+1−tnk

. . .W−1
j G(k)

j ∥ ∥y j∥ → 0,

as k → ∞. On the other hand, for each j < [J] we have (S
tnk
U,W(vk)) j−tnk

= 0. Thus, S
tnk
U,W(vk) → 0 as k → ∞.

Similarly, since

∥ T
tnk
U,W(µk) j+tnk

∥=∥W j+tnk
. . .W jD

(k)
j x jUtnk ∥

≤∥W j+tnk
. . .W jD

(k)
j ∥ ∥ x j ∥→ 0

as k→ ∞ for all j ∈ [J] and T
tnk
U,W(µk) j+tnk

= 0 for j < [J], we have that T
tnk
U,W(uk)→ 0 as k→ ∞. It follows that

ηk → x and T
tnk
U,W(ηk) → y as k → ∞. Hence, the sequence (TU,W,n)n is topologically transitive, and thus it is

densely hypercyclic on ℓ2(A).

Theorem 3.2. Let (tn)n be an unbounded sequence of nonnegative integers. Suppose that for every j ∈ Z there exist
subsets H(1)

j and H(2)
j of H and a strictly increasing sequence (nk)k ⊆N such that

lim
k→∞

W j+tnk
W j+tnk−1 . . .W j+1 = 0 pointwise on H(1)

j

and
lim
k→∞

W−1
j−tnk+1W−1

j−tnk+2 . . .W
−1
j = 0 pointwise on H(2)

j

for all j ∈ Z. Then, the sequence (TU,W,n)n is densely hypercyclic on ℓ2(A), where TU,W,n := Ttn
U,W for all n ∈N.

Proof. Assume that m, J ∈ N. Since for each j ∈ Z, H(1)
j and H(2)

j are dense in H, we can find sequences

( f ( j)
i,l )i ⊆ H(1)

j and (1( j)
i,l )i ⊆ H(2)

j such that f ( j)
i,l → el and 1( j)

i,l → el as i → ∞ for all j ∈ [J] and l ∈ [m]. By the
assumptions, one can construct a subsequence (nki )i such that

∥W j+tnki
W j+tnki

−1 . . .W j+1 f ( j)
i,l ∥ <

1
2mi

and

∥W−1
j−tnki

+1W−1
j−tnki

+2 . . .W
−1
j 1

( j)
i,l ∥ <

1
2mi

for all j ∈ [J] and l ∈ [m]. For each j ∈ [J] define the operators D(i)
j and G(i)

j as

D(i)
j el :=


f ( j)
i,l , if l ∈ [m]

0, if l < [m]
and G(i)

j el :=


1

( j)
i,l , if l ∈ [m]

0, if l < [m].

By using the fact that strong convergence and uniform convergence coincide on finite dimensional sub-
spaces, we can do the same as in the proof of [14, Proposition 2.7].

Example 3.3. Let H := L2(R). Assume that (w j) j∈Z ⊆ L∞(R) such that each w j is positive and invertible in L∞(R),
and also there exists an M > 0 such that ∥w j∥∞, ∥w−1

j ∥∞ ≤ M for all j ∈ Z. Assume in addition that there exists an
ϵ > 0 such that |w jχ[0,∞)| ≤ 1 − ϵ for all j ≥ 0 and |w jχ(−∞,0)| ≥ 1 + ϵ for all j < 0. Let (r j) j be a sequence of positive
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numbers such that r j ≥ C for all j ∈ Z and some C > 0. For each j ∈ Z let α j to be the translation on R given by
α j(t) := t − r j. For each j ∈ Z assume that W j is an operator on L2(R) defined by

W j( f ) := w j ( f ◦ α j)

for every f ∈ L2(R) = H. Then, each W j is invertible in B(H), and ∥W j∥, ∥W−1
j ∥ ≤M. By some calculations we have

W j+nW j+n−1 . . .W j f = w j+n(w j+n−1 ◦ α j+n) . . .
(w j ◦ α j+1 ◦ . . . α j+n)( f ◦ α j ◦ . . . ◦ α j+n)

for all f ∈ H and j,n ∈N. It follows that

∥W j+nW j+n−1 . . .W j f ∥ ≤

sup
t∈supp f

(
(w j+n ◦ α

−1
j+n ◦ . . . ◦ α

−1
j )(w j+n−1 ◦ α

−1
j+n−2 ◦ . . . ◦ α

−1
j ) . . .

(w j ◦ α
−1
j )
)
(t) ∥ f ∥

for all f ∈ H and j,n ∈ N. Similarly, since for each j we have W−1
j ( f ) = (w−1

j ◦ α
−1
j ) ( f ◦ α−1

j ) for all f ∈ H, we get
that

W−1
j−n+1W−1

j−n+2 . . .W
−1
j f = (w−1

j−n+1 ◦ α
−1
j−n+1) (w−1

j−n+2 ◦ α
−1
j−n+2 ◦ α

−1
j−n+1) . . .

(w−1
j ◦ α

−1
j ◦ . . . ◦ α

−1
j−n+1)( f ◦ α−1

j ◦ . . . ◦ α
−1
j−n+1)

for all f ∈ H and j,n ∈N. Hence,
∥W−1

j−n+1W−1
j−n+2 . . .W

−1
j f ∥

≤ sup
t∈supp f

(
(w−1

j−n+1 ◦ α j−n+2 ◦ . . . ◦ α j) (w−1
j−n+2 ◦ α j−n+3 ◦ . . . ◦ α j) . . .w j

)
(t) ∥ f ∥

for all f ∈ H and j,n ∈ N. It follows that for every j ∈ Z, the sequences (W j+n . . .W j)n and (W j−n+1 . . .W−1
j )n

converge pointwise on Cc(R) which is dense in L2(R). Hence, the conditions in Theorem 3.2 are satisfied.
In fact, it sufficies to assume that there exist two strictly increasing sequences {nk}k, {ni}i ∈ N such that for each

j ∈ {nk}k∪{−ni}i the operator W j is constructed as above. If, for all j ∈ Z \ ({nk}k∪{−ni}i),we have that W j( f ) = w j f

for all f ∈ H where w j is a function on R satisfying that
1
M
≤ |w j| ≤ 1 whenever j ≥ 0 and M ≥ |w j| ≥ 1 whenever

j < 0, then it is not hard to see that the conditions of Theorem 3.2 are still satisfied.

Proposition 3.4. We have (ii)⇒ (i).
(i) The operator TU,W is chaotic.
(ii) For every J,m ∈ N there exist a strictly increasing sequence {nk}k ⊆ N and a sequence {D(k)

i }k for i ∈ [J] of
operators in B0(H) such that

lim
k→∞
∥ D(k)

i − Pm ∥= 0

and

lim
k→∞

∞∑
l=1

∥W j+lnk W j+lnk−1 . . .W j+1D(k)
j ∥

= lim
k→∞

∞∑
l=1

∥W−1
j−lnk+1W−1

j−lnk+2 . . .W
−1
j D(k)

j ∥= 0,

for all j ∈ [J], where the corresponding series are convergent for each k.
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Proof. By Proposition 3.1. it suffices to show that P(Tn
U,W)n is dense in ℓ2(A). Let O be an open subset of

ℓ2(A) and x = (x j) j∈Z ∈ O. Then there exist some J,m ∈N such that y ∈ Owith

y j =


Pmx j, for j ∈ [J],

0, else .

Choose sequences {nk}k and {D(k)
i }k with i ∈ [J] that satisfy the assumptions in (ii) with respect to J and m.

For each k ∈N, set Z(k) = (Z(k)
j ) j∈Z to be given by

Z(k)
j =


D(k)

j y j, for j ∈ [J],

0, else ,

and put

qk =

∞∑
l=0

Tlnk
U,W(Z(k)) +

∞∑
l=1

Slnk
U,W(Z(k)).

Now, as in the proof of Proposition 3.1 part (2) implies (1), we observe that for each j ∈ [J] and l, k ∈ N we
have

∥ Tlnk
U,W(Z(k)) j−lnk ∥≤∥W j+lnk W j+lnk−1 . . .W j+1D(k)

j ∥∥ y j ∥,

and
∥ Slnk

U,W(Z(k)) j−lnk ∥≤∥W−1
j−lnk+1W−1

j−lnk+2 . . .W
−1
j D(k)

j ∥∥ y j ∥,

whereas for j < [J] we have that
Tlnk

U,W(Z(k)) j−lnk = Slnk
U,W(Z(k)) j−lnk = 0.

So
∥ qk − y ∥≤∥ D(k)

(0) − Pm ∥∥ y0 ∥

+

∞∑
l=1

∑
j∈[J]

∥W j+lnk W j+lnk−1 . . .W j+1D(k)
j ∥∥ y j ∥

+

∞∑
l=1

∑
j∈[J]

∥W−1
j−lnk+1W−1

j−lnk+2 . . .W
−1
j D(k)

j ∥∥ y j ∥

≤∥ D(k)
(0) − Pm ∥∥ y0 ∥

+
∑
j∈[J]

∥ y ∥ (
∞∑

l=1

∥W j+lnk W j+lnk−1 . . .W j+1D(k)
j ∥

+

∞∑
l=1

∥W−1
j−lnk+1W−1

j−lnk+2 . . .W
−1
j D(k)

j ∥)

for all k ∈N,which gives that qk → y as k→∞.
Moreover, it is straightforward to check that Tlnk

U,W(qk) = qk for all l and k, hence qk ∈ P(Tn
U,W)n for all k.

Next, for each n ∈N,we set C(n)
U,W =

1
2

(Tn
U,W + Sn

U,W).
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Proposition 3.5. We have that (ii) implies (i).
(i) The sequence {C(n)

U,W}n is topologically transitive on l2(A).

(ii) For every J,m ∈N there exist a strictly increasing sequence {nk}k ⊆N and sequences of operators {D(k)
i }k, {G

(k)
i }k

in B0(H) for i ∈ [J] such that for all j ∈ [J] we have that

lim
k→∞
∥ D(k)

j − Pm ∥= lim
k→∞
∥ G(k)

j − Pm ∥= 0,

lim
k→∞
∥W j+nk W j+nk−1 . . .W j+1D(k)

j ∥

= lim
k→∞
∥W−1

j−nk+1W−1
j−nk+2 . . .W

−1
j D(k)

j ∥

= lim
k→∞
∥W j+nk W j+nk−1 . . .W j+1G(k)

j ∥

= lim
k→∞
∥W−1

j−nk+1W−1
j−nk+2 . . .W

−1
j G(k)

j ∥= 0

and
lim
k→∞
∥W j+2nk W j+2nk−1 . . .W j+1G(k)

j ∥

= lim
k→∞
∥W−1

j−2nk+1W−1
j−2nk+2 . . .W

−1
j G(k)

j ∥= 0

Proof. LetO1 andO2 be two non-empty open subset of l2(A).As in the proof of Proposition 3.1, part 2)⇒ 1),
we can find some J,m ∈N, x = (x j) j ∈ O1 and y = (y j) j ∈ O2 such that x j = y j = 0 for all j , [J] and x j = Pmx j,

y j = Pmy j for all j ∈ [J]. Choose the sequences {D(k)
j }k, {G

(k)
j }k for j ∈ [J] and the strictly increasing sequence

{nk}k ⊆ N that satisfy the assumptions in (ii) with respect to these J,m. For each k ∈ N, let µk, vk ∈ l2(A) be
given by (µk) j = D(k)

j x j, (vk) j = G(k)
j y j for j ∈ [J] and (µk) j = (vk) j = 0 for j < [J]. Set

ηk = µk + Tnk
U,W(vk) + Snk

U,W(vk).

By the similar calculations as in the proof of Proposition 3.1, part 2) ⇒ 1), we can show that the
assumptions in (ii) imply that

lim
k→∞

Tnk
U,W(vk) = lim

k→∞
Snk

U,W(vk) = 0,

lim
k→∞

T2nk
U,W(vk) = lim

k→∞
Sn2k

U,W(vk) = 0,

lim
k→∞
∥ µk − x ∥= lim

k→∞
∥ vk − y ∥= 0,

lim
k→∞

Tnk
U,W(µk) = lim

k→∞
Snk

U,W(µk) = 0.

It follows that ηk → x and C(nk)
U,W(ηk)→ y as k→∞.

Example 3.6. Let H = L2(R). Given m ∈ N, put for each j, k ∈ N the operator D(k)
j to be D(k)

j = G(k)
j = LX[−k,k] Pm

where LX[−k,k] denotes the multiplication operator by X[−k,k]. Since the convergence in the operator norm and the
pointwise convergence coincide on finite dimensional spaces, it follows that ∥ D(k)

j −Pm ∥→ 0 as k→∞ for all j ∈N.
If we now for each j ∈N let W j be the operator from Example 3.3, it is not hard to see that the sufficient conditions of
Proposition 3.4 and Proposition 3.5 are satisfied in this case.
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At the end of this section we give some necessary conditions for the set of periodic elements of TU,W to
be dense in l2(A). For an operator R ∈ B(H) we set

m(R) := sup{C > 0 | ∥ Rh ∥≥ C ∥ h ∥ for all h ∈ H}.

Further, for J,m ∈Nwe let P̃J,m ∈ l2(A) be given as

(P̃J,m) j =


Pm, for j ∈ [J],

0, else .

We have the following proposition.

Proposition 3.7. Let J,m ∈N.We have that (i) implies (ii).
(i) P̃J,m belongs to the closure of P(Tn

U,W)n.
(ii) There exists a strictly increasing sequence {nk}k ⊆N such that

lim
k→∞

m(W j+nk W j+nk−1 . . .W j+1) = 0

for all j ∈ [J].

Proof. Let J,m ∈ N be given. For each k ∈ N there exists by the assumption some x(k)
∈ l2(A) and some

nk ∈N such that
1
k2 ≥∥ x(k)

− P̃J,m ∥2 and Tnk
U,W(x(k)) = x(k).

Hence, for each k ∈N and j ∈ [J] we have that

1
k2 ≥∥ x(k)

j − Pm ∥≥∥ x(k)
j Pm − Pm ∥,

whic gives that

∥ x(k)
j Pm ∥≥ 1 −

1
k2

Thus, for each k ∈N and j ∈ [J] we can find some h(k)
j ∈ H with h(k)

j , 0 such that

∥ x(k)
j Pmh(k)

j ∥≥ (1 −
1
k2 ) ∥ h(k)

j ∥ .

Now, we also have that
1
k2 ≥∥ Tnk

U,W(x(k)) − P̃J,m ∥2

since Tnk
U,W(x(k)) = x(k) for each k ∈ N. We may in fact assume that J < n1 < n2 < . . . . Hence, as

J < n1 < n2 < . . . , we must have
1
k2 ≥∥ (Tnk

U,W(x(k))) j ∥ for all j ∈ [J] which gives for all j ∈ [J] and

k ∈N that
∥W j+nk W j+nk−1 . . .W j+1x(k)

j ∥≤
1
k2 .

Thus,
1
k2 ≥∥W j+nk W j+nk−1 . . .W j+1x(k)

j Pm ∥,

so
1
k2 ∥ h(k)

j ∥≥∥W j+nk W j+nk−1 . . .W j+1x(k)
j Pm ∥ ∥ h(k)

j ∥

≥∥W j+nk W j+nk−1 . . .W j+1x(k)
j Pmh(k)

j ∥
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≥ m(W j+nk W j+nk−1 . . .W j+1) ∥ x(k)
j Pmh(k)

j ∥

≥ (1 −
1
k2 ) ∥ h(k)

j ∥ m(W j+nk W j+nk−1 . . .W j+1)

for all j ∈ [J] and k ∈N. Since h(k)
j , 0,we can divide on the both side of the inequality by ∥ h(k)

j ∥ and obtain
that

1
k2 − 1

≥ m(W j+nk W j+nk−1 . . .W j+1)

for all j ∈ [J] and k ∈N.

Similarly we can prove the following proposition.

Proposition 3.8. Let J,m ∈N.We have that (i) implies (ii).
(i) P̃J,m belongs to the closure of P(Sn

U,W)n.
(ii) There exists a strictly increasing sequence {nk}k ⊆N such that

lim
k→∞

m(W−1
j−nk+1W−1

j−nk+2 . . .W
−1
j ) = 0

for all j ∈ [J].

4. Hypercyclic operators on C∗-algebras

Let A be a non-unital C∗-algebra such that A is a closed two-sided ideal in a unital C∗-algebra A1. Let
Φ be an isometric ∗-isomorphism of A1 such that Φ(A) = A. Assume that there exists a net {pα}α ⊆ A
consisting of self-adjoint elements with ∥ pα ∥≤ 1 for all α and such that {p2

α}α is an approximate unit forA.
Suppose in addition that for all α there exists some Nα ∈ N such that Φn(pα) · pα = 0 for all n ≥ Nα (which
gives that 0 = (Φn(pα) · pα)∗ = pα ·Φn(pα) since Φ is a ∗-isomorphism). Let b ∈ G(A1) and TΦ,b be the operator
onA1 defined by TΦ,b(a) = b ·Φ(a) for all a ∈ A1. Then TΦ,b is a bounded linear operator onA1 and sinceA
is an ideal inA1, it follows that TΦ,b(A) ⊆ A because Φ(A) = A. The inverse of TΦ,b, which we will denote
by SΦ,b, is given as SΦ,b(a) = Φ−1(b−1) · Φ−1(a) for all a ∈ A1. Again, since Φ−1(A) = A andA is a two-sided
ideal inA1,we have that SΦ,b(A) ⊆ A, hence TΦ,b(A) = A = SΦ,b(A).

By some calculations one can check that for all a ∈ A and n ∈Nwe have

Tn
Φ,b(a) = b ·Φ(b) . . .Φn−1(b)Φn(a),

Sn
Φ,b(a) = Φ−1(b−1)Φ−2(b−1) . . .Φ−n(b−1) ·Φ−n(a).

Proposition 4.1. The following statements are equivalent.
(i) TΦ,b is hypercyclic onA.
(ii) For every pα there exists a strictly increasing sequence {nk}k ⊆N and sequences {qk}k, {dk}k inA such that

lim
k→∞
∥ qk − p2

α ∥=∥ dk − p2
α ∥= 0

and
lim
k→∞
∥ Φ−nk (b)Φ−nk+1(b) . . .Φ−1(b)qk ∥

= lim
k→∞
∥ Φnk−1(b−1)Φnk−2(b−1) . . .Φ(b−1)b−1dk ∥= 0
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Proof. We prove first i)⇒ ii).

Let pα be given. Since TΦ,b is hypercyclic, there exists some n1 ≥ Nα and some a1 ∈ A such that ∥ a1−pα ∥<
1
4

and ∥ b ·Φ(b) . . .Φn1−1(b)Φn1 (a1) − pα ∥<
1
4
. Since 0 = pαΦn1 (pα) = Φn1 (pα) · pα,we get

∥ Φn1 (a1) · pα ∥ =∥ (Φn1 (a1) −Φn1 (pα)) · pα ∥
≤∥ Φn1 (a1 − pα) ∥

=∥ a1 − pα ∥≤
1
4
, so

∥ Φn1 (a1) · pα ∥≤∥ a1 − pα ∥≤
1
4
. (1)

Moreover,

∥ (a1 − pα)pα ∥≤∥ a1 − pα ∥≤
1
4
. (2)

Similarly, 0 = Φ−n1 (pα) · pα = pα ·Φ−n1 (pα), so we get

∥ Φ−n1 (b)Φ−n1+1(b) . . .Φ−1(b)a1pα ∥

=∥ Φ−n1 (bΦ(b) . . .Φn1−1(b)Φn1 (a1) − pα)pα ∥

≤∥ Φ−n1 (bΦ(b) . . .Φn1−1(b)Φn1 (a1) − pα) ∥

=∥ bΦ(b) . . .Φn1−1(b)Φn1 (a1) − pα ∥≤
1
4
, so

∥ Φ−n1 (b)Φ−n1+1(b) . . .Φ−1(b)a1pα ∥≤
1
4
. (3)

Finally, we have

∥ bΦ(b) . . .Φn1−1(b)Φn1 (a1)pα − p2
α ∥

=∥ (bΦ(b) . . .Φn1−1(b)Φn1 (a1) − pα) · pα ∥

≤∥ bΦ(b) . . .Φn1−1(b)Φn1 (a1) − pα ∥≤
1
4
, so

∥ bΦ(b) . . .Φn1−1(b)Φn1 (a1)pα − p2
α ∥≤

1
4
. (4)

By (1) we also get that

∥ Φn1−1(b−1)Φn1−2(b−1) . . .Φ(b−1)b−1bΦ(b) . . .Φn1−1(b)Φn1 (a1)pα ∥

=∥ Φn1 (a1)pα ∥≤
1
4
.

Put q1 = a1pα and d1 = bΦ(b) . . .Φn1−1(b)Φn1 (a1)pα. Then ∥ q1 − p2
α ∥<

1
4

, ∥ d1 − p2
α ∥<

1
4

,

∥ Φ−n1 (b)Φ−n1+1(b) . . .Φ−1(b)q1 ∥≤
1
4

and

∥ Φn1−1(b−1)Φn1−2(b−1) . . .Φ−1(b−1)b−1d1 ∥≤
1
4
.
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Next, since TΦ,b is hypercyclic, we can find a hypercyclic vector a2 and some n2 > n1 such that ∥ a2−pα ∥<
1
42

and ∥ Tn2
Φ,b(a2)−pα ∥<

1
42 and continue as above to find q2 and d2 inA such that ∥ q2−p2

α ∥<
1
42 , ∥ d2−p2

α ∥<
1
42

and
∥ Φ−n2 (b)Φ−n2+1(b) . . .Φ−1(b)q2 ∥≤

1
42 ,

∥ Φn2−1(b−1)Φn2−2(b−1) . . .Φ(b−1)d2 ∥≤
1
4
.

Proceeding inductively, we can construct the sequences {nk}k, {qk}k and {dk}k with the properties in ii), so
i)⇒ ii).
Now we prove the opposite implication.
LetO1 andO2 be two open non-empty subsets ofA. Since {p2

α} is an approximate unit inA,we can find some
x ∈ O1, y ∈ O2 such that x = p2

αx and y = p2
αy for so sufficiently large α.Choose the sequences {nk}k, {qk}k, {dk}k

satisfying the conditions of (ii) with respect to pα. For each k ∈N, set xk = qkx + Snk
Φ,b(dky).

We have that

∥ Snk
Φ,b(dky) ∥ =∥ Φ−1(b−1) . . .Φ−nk (b−1)Φ−nk (dky) ∥

=∥ Φnk (Φ−1(b−1) . . .Φ−nk (b−1)Φ−nk (dky)) ∥

=∥ Φnk−1(b−1) . . .Φ(b−1) · b−1dky ∥

≤∥ Φnk−1(b−1) . . .Φ−1(b−1)b−1dk ∥∥ y ∥→ 0 as k→∞.

Similarly,

∥ Tnk
Φ,b(qky) ∥ =∥ bΦ(b) . . .Φnk−1(b)Φnk (qky) ∥

=∥ Φ−nk (bΦ(b) . . .Φnk−1(b)Φnk (qky)) ∥

≤∥ Φ−nk (b)Φ−nk+1(b) . . .Φ−1(b)qk ∥∥ y ∥→ 0 as k→∞.

It follows that xk → x and Tnk
Φ,b(xk) → y, as k → ∞, so TΦ,b is topologically transitive, thus hypercyclic on

A.

Remark 4.2. We notice that the assumption that for all α there exists some Nα such thatΦn(pα)pα = 0 for all n ≥ Nα
is in fact not needed for the proof of the implication (ii) implies (i) in Proposition 4.1.

Example 4.3. Let H be a separable Hilbert space and U be a unitary operator on H satisfying the condition (2) from
[13] with respect to an orthonormal basis {e j} j∈Z. Set Φ to be the ∗-isomorphism on B(H) given by Φ(F) = U∗FU.
Then, by the condition (2) from [13], given m ∈ N there exists an Nm ∈ N such that PmUnPm = 0 for n ≥ Nm
(where Pm is the orthogonal projection onto Span{e−m, . . . , em} as in [13].) Moreover, {Pm}m∈N is an approximate
unit for B0(H) by [16, Proposition 2.2.1]. Hence, for all n ≥ Nm we have Φn(Pm)Pm = U∗nPmUnPm = 0. Here
A1 = B(H) and A = B0(H). By some calculations we see that the conditions in part (ii) in Proposition 4.1 are the
same as the conditions (3) and (4) in [13]. The operator TU,W from [13] is actually the operator TΦ,WU ( because
WFU =WU(U∗FU) for all F ∈ B0(H) ). For concrete examples satisfying these conditions we refer to examples from
[13] and [14]. In fact, in [14] it has been proved that these conditions are equivalent to the condition that the operator
W satisfies hypercyclicity criterion on H. For more details about this criterion, see [4].

Example 4.4. Let H = L2(R). For each j, k,m ∈ N we let D(k)
j ,Pm be the operators on H as in Example 3.6 and for

each J ∈ N we let P̃J,m be the orthogonal projection on l2(B0(H)) induced by Pm and [J], as defined on page 10 in
Section 3. LetK (l2(B0(H))) denote the C∗-algebra of compact operators on l2(B0(H)) in the sense of [16, Section 2.2].
Then it is not hard to see that {P̃J,m}J.m∈N is an approximate unit forK (l2(B0(H))). For j ∈ Z we let W j be the operator
on H from Example 3.3. Let TU,W be the operator on l2(B0(H)) defined in Section 3, where W = {W j} j∈Z. If U = I,
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then TI,W is a bounded, adjointable operator on l2(B0(H)) which is linear with respect to the C∗-algebra B0(H). (Recall
that we consider l2(B0(H)) as the right Hilbert C∗-module). For each k ∈ N, set D̃k to be the operator on l2(B0(H))
given by D̃k({x j} j∈Z) = {D(k)

j x j} j∈Z for all {x j} j∈Z ∈ l2(B0(H)). Since ∥ D(k)
j ∥≤ 1 for all j ∈ Z and k ∈ N, we have

that D̃k is a bounded B0(H)-linear, adjointable operator on l2(B0(H)) for all k ∈ N. By the similar arguments as in
Example 3.6 we can deduce that

lim
k→∞
∥ D̃kP̃J,m − P̃J,m ∥= 0

for all J,m ∈N.Moreover, for all k, J,m ∈N we have that

lim
n→∞

∥ Tn
I,WD̃kPJ,m ∥= lim

n→∞
∥ T−n

I,WD̃kP̃J,m ∥= 0

Hence, for all J,m ∈N we can construct a strictly increasing sequence {nk}k ⊆N such that

0 = lim
k→∞
∥ Tnk

I,WD̃kP̃J,m ∥= lim
k→∞
∥ T−nk

I,W D̃kP̃J,m ∥= 0

Let nowA = K (l2(B0(H))) andA1 be the C∗-algebra of all bounded B0(H)-linear, adjointable operators on l2(B0(H)).
If Ũ is a unitary operator on l2(B0(H)), we let Φ be the ∗-isomorphism onA1 given by Φ(F) = Ũ∗FŨ for all F ∈ A1.
Put then b = TI,WŨ ∈ G(A1). By the same arguments as in Example 4.3 we can deduce that the conditions of
Proposition 4.1 are satisfied in this case.

Example 4.5. Let X be a locally compact Hausdorff space,A = C0(X),A1 = Cb(X) and Φ be given by Φ( f ) = f ◦ α
for all f ∈ Cb(X) where α is a homeomorphism of X. Put

S = { f ∈ Cc(X) | 0 ≤ f ≤ 1 and f|K = 1 for some compact K ⊂ X}.

If S̃ = { f 2
| f ∈ S}, then S̃ is an approximate unit for C0(X). Suppose that α is aperiodic, that is for each compact

subset K of X, there exists a constant N > 0 such that for each n ≥ N, we have K ∩ αn(K) = ∅. By some calculations
it is not hard to see that in this case the conditions in Proposition 4.1 are equivalent to the condition that for every
compact subset K of Ω there exists a strictly increasing sequence {nk}k ⊆N, such that

0 = lim
k→∞

(sup
t∈K

nk−1∏
j=0

(b ◦ α j−nk )(t)) = lim
k→∞

(sup
t∈K

nk−1∏
j=0

(b ◦ α j)−1(t)),

For the concrete examples satisfying these conditions, we refer to examples in [12].

If a ∈ A1, in the sequel we shall denote by La the left multiplier by a.

Corollary 4.6. If there exist dense subsets Ω1 and Ω2 ofA and a strictly increasing sequence {nk}k ⊆N such that

LΦ−nk (b)Φ−nk+1(b)...Φ−1(b)
k→∞
−→ 0

pointwise on Ω1 and

LΦnk−1(b−1)Φnk−2(b−1)...Φ(b−1)b−1
k→∞
−→ 0

pointwise on Ω2, then TΦ,b is hypercyclic onA.

Proof. Let pα be given. Since Ω1 and Ω2 are dense inA, there exist some q1 ∈ Ω1 and d1 ∈ Ω2 such that

∥ q1 − p2
α ∥<

1
4

and ∥ d1 − p2
α ∥<

1
4
.

By the assumption we can find some nk1 such that

∥ Φ−nk (b)Φ−nk+1(b) . . .Φ−1(b)q1 ∥<
1
4
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and
∥ Φnk−1(b−1)Φnk−2(b−1) . . .Φ(b−1)b−1d1 ∥<

1
4

for all k ≥ k1. Then we find some q2 ∈ Ω1, d2 ∈ Ω2 such that

∥ q2 − p2
α ∥<

1
42 and ∥ d2 − p2

α ∥<
1
42 .

By the assumption, we can find some k2 ≥ k1 such that

∥ Φ−nk (b)Φ−nk+1(b) . . .Φ−1(b)q2 ∥<
1
42

and
∥ Φnk−1(b−1)Φnk−2(b−1) . . .Φ(b−1)b−1d2 ∥<

1
42 ,

for all k ≥ k2. Proceeding inductively, we can construct the strictly increasing sequence {nki }i and the
sequences {qi}i in {di}i inA satisfying the conditions of Proposition 4.1.

Acknowledgement
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[11] S. Ivković and S. M. Tabatabaie , Linear dynamics of discrete cosine functions on solid Banach function spaces., Positivity, 25, 1437–1448

(2021). https://doi.org/10.1007/s11117-021-00823-8
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[13] S. Ivković and S. M. Tabatabaie. Hypercyclic Translation Operators on the Algebra of Compact Operators, Iran. J. Sci. Technol. Trans. A

Sci., 45, 1765–1775 (2021). https://doi.org/10.1007/s40995-021-01186-1
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