Projection-type methods for nonlinear integral equations with non-smooth kernels

Chafik Allouch ${ }^{\text {a }}$
${ }^{a}$ The Multidisciplinary Faculty of Nador, Team of Modeling and Scientific Computing, Nador, Morocco

Abstract

In this paper, we explore two methods for estimating the solution of Urysohn integral equations with a Green's function type kernel: the Kantorovich approach and a projection-type method. Either the orthogonal projection or an interpolatory projection onto the space of piecewise polynomials of degre $\leq r$ is used as the approximating operator. Compared to the projection-type solutions, it is shown that if the right hand side of the operator equation is only continuous, then the iterated Kantorovich solution converge more rapidly. However, the projection-type method has lower computational costs. Several numerical examples are provided to validate the theoretical estimates.

1. Introduction

We consider the following Urysohn integral equation defined on $\mathbb{X}=L^{\infty}[0,1]$ by

$$
\begin{equation*}
x(s)-\int_{0}^{1} \kappa(s, t, x(t)) d t=f(t), \quad s \in[0,1] \tag{1.1}
\end{equation*}
$$

where $f \in \mathbb{X}$, the kernel $\kappa(s, t, u)$ is a real valued non-smooth function and $x \in \mathbb{X}$ is the unknown function. Equation (1.1) include the following special case of Hammerstein equation

$$
\begin{equation*}
x(s)-\int_{0}^{1} \kappa(s, t) \psi(t, x(t)) d t=f(t) \tag{1.2}
\end{equation*}
$$

where $\psi \in \mathcal{C}([0,1] \times \mathbb{R})$. For the solution of (1.1), there are a number of numerical approaches available. Atkinson and Potra [7] investigated projection and iterated projection methods and Atkinson and Potra [8] studied the discrete version of Galerkin and iterated Galerkin methods. Kulkarni and Nidhin [15] suggested an alternative approach, the modified projection method, for solving (1.1) with a continuous kernel, and Grammont et al. [14] investigated a more general type of kernels. Convergence of the iterated modified projection approach is demonstrated to be faster than that of the iterated projection solution. Specifically for orthogonal projection, the discrete variant of the modified projection method is examined in Kulkarni and Rakshit [12].

[^0]Kumar and Sloan presented a new collocation approach in [17] for solving the Hammerstein problem (1.2), and Kumar[16] investigated the superconvergence features of this method. Allouch et al. [3] proposed a superconvergent variant of the Kumar and Sloan approach that converges as quickly as the modified projection method.
There are also many publications discussing alternative approaches for solving Hammerstein equations with smooth kernels using spline quasi-interpolation. (see for instance [9, 10]).
In this study, we employ the classical projection approach to provide several strategies for resolving equations (1.1) and (1.2).
Using piecewise polynomial basis functions, we first establish the Kantorovich technique for the numerical solution of (1.1), which is based on "Kantorovich regularization" (Kantorovich, 1948). The use of this technique for linear Fredholm integral equations is explored in Schock [19] and Sloan [20], but it does not appear to have been studied yet for nonlinear integral equations with non-smooth kernels. We point out that for solving Uryshon equations with smooth kernels, the proposed method and its discrete version are studied in Allouch et. al [4] (see also Grammont et. al [13]).
For (1.2), we next suggest a redefinition of the Kumar and Sloan approach, which is called the collocationtype method in the literature, by making use of the orthogonal projection. This last approximation does not seem to have been considered previously for Green's kernels. However, it was analyzed in Allouch et. al [5] for solving Hammerstein equations with weakly singular kernels. When the orthogonal projection is employed, this technique will be referred to as a Galerkin-type method, whereas when the type of projection is not specified, it will be referred to as a projection-type method.
We provide an error analysis for the projection-type approach, and we prove that if the right hand side f of (1.2) is less smooth, the iterated Kantorovich solution is generally more accurate than the projection-type methods. However, we will notice that the projection-type method has better performance, in term of the computational cost.

Although spline quasi-interpolation has previously been employed in the treatment of linear Fredholm integral equations using Green's kernels (see [2]), the projections operators employed here exhibit greater convergence orders.

Here is a quick overview of the paper. In Section 2, we establish notation, describe the numerical approaches, and recall some useful results. In Section 3, for both the orthogonal projection and the interpolatory projection, the orders of convergence of the given approaches are established. In Section 4, our results are illustrated by numerical tests.

2. Methods and notations

2.1. Urysohn integral operators of class $C_{2}(\alpha, \gamma)$

Let $\Pi=[0,1] \times[0,1] \times \mathbb{R}$. Divide Π into two subests Π_{1} and Π_{2}, where

$$
\Pi_{1}=\{(s, t, u): 0 \leq s \leq t \leq 1, u \in \mathbb{R}\}
$$

and

$$
\Pi_{2}=\{(s, t, u): 0 \leq t \leq s \leq 1, u \in \mathbb{R}\} .
$$

Let α and γ be integers such that $\alpha \geq \gamma, \alpha \geq 0$ and $\gamma \geq-1$. The kernel κ defined in (1.1) is assumed to be of the following form

$$
\mathcal{K}(s, t, u)= \begin{cases}\kappa_{1}(s, t, u), & (s, t, u) \in \Pi_{1}, \\ \kappa_{2}(s, t, u), & (s, t, u) \in \Pi_{2},\end{cases}
$$

where $\kappa_{i} \in \mathcal{C}^{\alpha}\left(\Pi_{i}\right), i=1,2$. We assume that if $\gamma \geq 0$, we have $\kappa \in \mathcal{C}^{\gamma}(\Pi)$ and if $\gamma=-1$, then κ may have a discontinuity of the first kind along the line $s=t$. Assume that the partial derivative $\ell(s, t, u)=\frac{\partial \kappa}{\partial u}(s, t, u)$
exists for all $(s, t, u) \in \Pi$ and

$$
\ell(s, t, u)= \begin{cases}\ell_{1}(s, t, u), & (s, t, u) \in \Pi_{1}, \\ \ell_{2}(s, t, u), & (s, t, u) \in \Pi_{2},\end{cases}
$$

where $\ell_{i} \in \mathcal{C}^{\alpha}\left(\Pi_{i}\right), i=1,2$. Following Atkinson and Potra [7], we say that κ is of class $C_{2}(\alpha, \gamma)$. Consider the Urysohn integral operator denoted by \mathcal{K}

$$
\begin{equation*}
(\mathcal{K} x)(s)=\int_{0}^{1} \kappa(s, t, x(t)) d t, \quad s \in[0,1] . \tag{2.1}
\end{equation*}
$$

The operator \mathcal{K} is compact and is completely continuous from $L^{\infty}[0,1]$ into $\mathcal{C}^{\gamma_{1}}[0,1]$, where

$$
\gamma_{1}=\min \{\alpha, \gamma+1\} .
$$

Moreover, \mathcal{K} is Fréchet differentiable and its Fréchet derivative at $x \in \mathbb{X}$ is given by

$$
\left(\mathcal{K}^{\prime}(x) g\right)(t)=\int_{0}^{1} \frac{\partial \mathcal{K}}{\partial u}(s, t, x(t)) g(t) d t .
$$

In operator form, the integral equation (1.1) can be represented as

$$
\begin{equation*}
x-\mathcal{K}(x)=f . \tag{2.2}
\end{equation*}
$$

Let x_{0} be the unique solution of (2.2). If $f \in \mathcal{C}^{a}[0,1]$, then from Corollary 3.2 of Atkinson and Potra [7], $x_{0} \in \mathcal{C}^{\alpha}[0,1]$. As the range of \mathcal{K} is contained in $\mathcal{C}^{\gamma_{1}}[0,1]$, then if $f \in \mathcal{C}[0,1]$, we have also $x_{0} \in \mathcal{C}[0,1]$. For $\delta_{0}>0$, let

$$
\mathcal{B}\left(x, \delta_{0}\right)=\left\{v \in \mathbb{X}:\|x-y\|_{\infty}<\delta_{0}\right\} .
$$

The operator \mathcal{K}^{\prime} is Lipschitz continuous in a neighborhood $\mathcal{B}\left(x_{0}, \delta_{0}\right)$ of x_{0}, that is, there exists a constant Λ such that

$$
\begin{equation*}
\left\|\mathcal{K}^{\prime}\left(x_{0}\right)-\mathcal{K}^{\prime}(x)\right\| \leq \Lambda\left\|x_{0}-x\right\|_{\infty}, \quad x \in \mathcal{B}\left(x, \delta_{0}\right) . \tag{2.3}
\end{equation*}
$$

Note that $\mathcal{K}^{\prime}\left(x_{0}\right): L^{\infty}[0,1] \rightarrow C[0,1]$ is a compact linear operator (See Krasnoselskii [22]). Assume that 1 is not an eigenvalue of $\mathcal{K}^{\prime}\left(x_{0}\right)$. Then (See Riesz-Nagy [21])

$$
M=\left(I-\mathcal{K}^{\prime}\left(x_{0}\right)\right)^{-1} \mathcal{K}^{\prime}\left(x_{0}\right)
$$

is the compact linear integral operator given by

$$
(M g)(s)=\int_{0}^{1} m(s, t) g(t) d t,
$$

and the kernel m has the same smoothness as kernel $\ell_{*}(s, t)=\ell\left(s, t, x_{0}(t)\right)$ of $\mathcal{K}^{\prime}\left(x_{0}\right)$. (See Atkinson and Potra [7, Lemma 5.1]). In fact, since $x_{0} \in \mathcal{C}^{a}[0,1]$, it follows that

$$
m \in \mathcal{C}^{\alpha}\{0 \leq s \leq t \leq 1\} \text { and } m \in C^{\alpha}\{0 \leq t \leq s \leq 1\} .
$$

If $\gamma \geq 0$, then $m \in C^{\gamma}([0,1] \times[0,1])$, whereas for $\gamma=-1$, the kernel m may have a discontinuity of the first kind along the line $s=t$. Following Chatelin and Lebbar [11], the class of the kernel m is denoted by $C(\alpha, \gamma)$.

2.2. Approximating projection operators

For any integer n, let

$$
\Delta^{(n)}: 0=t_{0}<t_{1}<\ldots<t_{n}=1
$$

be a quasi-uniform partition of $[0,1]$, that is

$$
\sup _{n} q^{(n)}<\infty, \quad \text { where } \quad q^{(n)}=\max _{1 \leq i, j \leq n} \frac{h_{i}^{(n)}}{h_{j}^{(n)}} \text { and } h_{i}^{(n)}=t_{i}-t_{i-1}
$$

Let $\Delta_{i}^{(n)}=\left[t_{i-1}, t_{i}\right]$ and $h^{(n)}=\max _{1 \leq i \leq n} h_{i}^{(n)}$. In order to keep notations as simple as possible, from here on, we will no longer use the index (n) when referring to the partition or its elements. For $v \geq 0$, set

$$
C_{\Delta}^{v}=\left\{y \in L^{\infty}[0,1]: y_{i}=\left.y\right|_{\Delta_{i}} \in C^{v}\left(\Delta_{i}\right), i=1, \ldots, n\right\} .
$$

For $x \in \mathcal{C}^{j}[0,1]$, we define

$$
\|x\|_{j, \infty}=\sum_{i=0}^{j}\left\|x^{(i)}\right\|_{\infty}
$$

where $x^{(i)}$ denotes the $i^{\text {th }}$ derivative of x. For $y \in C_{\Delta}^{0}=C_{\Delta}$, the following notations will be used

$$
\|y\|_{2, \Delta_{i}}=\left\|y_{i}\right\|_{2}, \quad\|y\|_{\infty, \Delta_{i}}=\left\|y_{i}\right\|_{\infty}, \quad\|y\|_{\infty}=\max _{1 \leq i \leq n}\left\|y_{i}\right\|_{\infty} .
$$

Hence, we obtain the following bound

$$
\begin{equation*}
\|y\|_{2, \Delta_{i}} \leq h_{i}^{1 / 2}\|y\|_{\infty, \Delta_{i}} \leq h_{i}^{1 / 2}\|y\|_{\infty}, \quad i=1, \ldots, n \tag{2.4}
\end{equation*}
$$

Let \mathbb{P}_{r} denote the set of all polynomials of degree $\leq r$, where r is a given integer and let \mathbb{X}_{n} be the set of functions belonging to \mathbb{P}_{r} on each subinterval Δ_{i}.
Let $\eta_{0}, \eta_{1}, \ldots$, be the sequence of orthonormal polynomials in $L^{2}[0,1]$ i.e. η_{p} is a polynomial of degree p, and

$$
\left\langle\eta_{p}, \eta_{q}\right\rangle=\delta_{p q} \quad \text { for all } p, q \geq 0
$$

For $i=1, \ldots, n$ define $\eta_{i p}$ on $\left[t_{i-1}, t_{i}\right]$ by

$$
\eta_{i p}\left(t_{i-1}+\tau h_{i}\right)=h_{i}^{-1 / 2} \eta_{p}(\tau), \quad 0 \leq \tau \leq 1,
$$

and then extend by zero to $[0,1]$. The set

$$
\begin{equation*}
\left\{\eta_{i p}, 1 \leq i \leq n, 0 \leq p \leq r\right\} \tag{2.5}
\end{equation*}
$$

form an orthonormal basis for \mathbb{X}_{n} and the restriction to $L^{\infty}[0,1]$ of the orthogonal projection π_{n}^{G} from $L^{2}[0,1]$ to \mathbb{X}_{n} is given by

$$
\begin{equation*}
\pi_{n}^{G} g=\sum_{i=1}^{n} \sum_{p=0}^{r}\left\langle g, \eta_{i p}\right\rangle \eta_{i p} \tag{2.6}
\end{equation*}
$$

and satisfies

$$
\begin{equation*}
\left\langle\pi_{n}^{G} g, \eta_{i p}\right\rangle=\left\langle g, \eta_{i p}\right\rangle, \quad 1 \leq i \leq n, \quad 0 \leq p \leq r . \tag{2.7}
\end{equation*}
$$

For $g \in C_{\Delta}$, let $\pi_{n}^{C} g$ denote the unique piecewise polynomial of degree r that satisfies

$$
\begin{equation*}
\left(\pi_{n}^{C} g\right)\left(\tau_{i p}\right)=g\left(\tau_{i p}\right), \quad 1 \leq i \leq n, \quad 0 \leq p \leq r \tag{2.8}
\end{equation*}
$$

where the collocation points are

$$
\begin{equation*}
\tau_{i p}=\left(i-1+\tau_{p}\right) h_{i}, \quad 1 \leq i \leq n, \quad 0 \leq p \leq r \tag{2.9}
\end{equation*}
$$

and $\left\{\tau_{0}, \tau_{1}, \ldots, \tau_{r}\right\}$ are the $r+1$ Gauss points in $[0,1]$. This map can be extended to $L^{\infty}[0,1]$ and then $\pi_{n}^{C}: L^{\infty}[0,1] \rightarrow \mathbb{X}_{n}$ is a projection. In the Lagrange form π_{n}^{C} is

$$
\pi_{n}^{C} g=\sum_{i=1}^{n} \sum_{p=0}^{r} g\left(\tau_{i p}\right) l_{i p}
$$

where $\left\{l_{i p}, 1 \leq i \leq n, 0 \leq p \leq r\right\}$ is the Lagrange basis of \mathbb{X}_{n} satisfying

$$
l_{i p}\left(\tau_{j q}\right)=\delta_{i j} \delta_{p q}, \quad 1 \leq i, j \leq n, \quad 0 \leq p, q \leq r
$$

From here on, for notational convenience, we will write π_{n}^{G} or π_{n}^{C} as π_{n}.
The projection π_{n} converge to identity operator pointwise on $C[0,1]$ and, for $g \in C_{\Delta^{\prime}}^{\alpha}$ (see Chatelin and Lebbar [11])

$$
\begin{equation*}
\left\|\left(I-\pi_{n}\right) g\right\|_{\infty} \leq C_{1}\left\|g^{(\beta)}\right\|_{\infty} h^{\beta} \tag{2.10}
\end{equation*}
$$

where

$$
\beta=\min \{\alpha, r+1\}
$$

and C_{1} is a constant independent of n. Moreover, the projection π_{n} is uniformly bounded with respect to n, i.e.

$$
\begin{equation*}
p=\sup _{n}\left\|\left.\pi_{n}\right|_{C_{\Delta}}\right\|<\infty . \tag{2.11}
\end{equation*}
$$

Let

$$
\beta_{1}=\min \{\beta, \gamma+1\} \quad \text { and } \quad \beta_{2}=\min \{\beta, \gamma+2\} .
$$

For $\mu=1, \ldots, \beta_{2}$, if $g \in C_{\Delta^{\prime}}^{\mu}$, then, additionally, we have again, from Chatelin and Lebbar [11],

$$
\begin{equation*}
\left\|\left(I-\pi_{n}\right) g\right\|_{\infty} \leq C_{1}\left\|g^{(\mu)}\right\|_{\infty} h^{\mu} \tag{2.12}
\end{equation*}
$$

The following result is quoted from [15, Lemma 2.2].
For $g \in C_{\Delta}$, let $\pi_{n, i} g=\left.\left(\pi_{n} g\right)\right|_{\Delta_{i}}$. If $g \in C_{\Delta^{\prime}}^{\alpha}$, then

$$
\begin{equation*}
\left\|\left(I-\pi_{n, i}\right) g_{i}\right\|_{\infty, \Delta_{i}} \leq C_{1}\left\|g_{i}^{(\beta)}\right\|_{\infty, \Delta_{i}} h_{i}^{\beta}, \quad 1 \leq i \leq n . \tag{2.13}
\end{equation*}
$$

Henceforth, we assume that C is a generic constant independent of n. According to Grammont et al. [14], if $g \in C_{\Delta}$, then

$$
\begin{equation*}
\left\|\left(\mathcal{K}^{\prime}\left(x_{0}\right) g\right)^{(\mu)}\right\|_{\infty} \leq C\|g\|_{\infty}, \quad 0 \leq \mu \leq \gamma_{1}+1 . \tag{2.14}
\end{equation*}
$$

2.3. Kantorovich method for Urysohn equations

For our convenience we let

$$
\begin{equation*}
y=\mathcal{K}(x) \tag{2.15}
\end{equation*}
$$

Thus, writing the solution of (2.2) as $x=y+f$, we have

$$
\begin{equation*}
y=\mathcal{K}(y+f) \tag{2.16}
\end{equation*}
$$

The Kantorovich method, is obtained by applying the projection method to equation (2.16). Thus, the approximate solution is

$$
\begin{equation*}
x_{n}^{K}=y_{n}+f \tag{2.17}
\end{equation*}
$$

where y_{n} satisfies

$$
\begin{equation*}
y_{n}-\pi_{n} \mathcal{K}\left(y_{n}+f\right)=0 \tag{2.18}
\end{equation*}
$$

The theoretical advantage of the proposed method is that the inhomogeneous term is now 0 rather than $\pi_{n} f$ in projection methods which may be smoother than f.
Observe that the aforementioned equations can be reduced to a single equation for x_{n}

$$
\begin{equation*}
x_{n}^{K}-\pi_{n} \mathcal{K}\left(x_{n}^{K}\right)=f \tag{2.19}
\end{equation*}
$$

We notice that this form is directly introduced in [13] to define the Kantorovich method. Throughout this paper, this method will be referred to as the Kantorovich-Galerkin method when an orthogonal projection is used, and the Kantorovich-collocation method when an interpolatory projection is employed. Finally, the iterated Kantorovich approximation is defined by

$$
\begin{align*}
\widetilde{x}_{n}^{K} & =\mathcal{K}\left(x_{n}^{K}\right)+f, \\
& =\widetilde{y}_{n}+f, \tag{2.20}
\end{align*}
$$

where $\widetilde{y}_{n}=\mathcal{K}\left(y_{n}+f\right)$. From (2.18) and (2.20) we observe that $y_{n}=\pi_{n} \widetilde{y}_{n}$, and hence

$$
\begin{equation*}
\widetilde{y}_{n}-\mathcal{K}\left(\pi_{n} \widetilde{y}_{n}+f\right)=0 \tag{2.21}
\end{equation*}
$$

For the implementation of the method, we define

$$
F_{n}(v)=v-\pi_{n} \mathcal{K}(v+f)
$$

Then, equation (2.18) becomes

$$
F_{n}\left(y_{n}\right)=0
$$

This last equation is solved iteratively by using the Newton-Kantorovich method. For an initial approximation $y_{n}^{(0)}$, define

$$
y_{n}^{(k+1)}=y_{n}^{(k)}-\left[F_{n}^{\prime}\left(y_{n}^{(k)}\right)\right]^{-1} F_{n}\left(y_{n}^{(k)}\right)
$$

where $F_{n}^{\prime}\left(y_{n}^{(k)}\right)$ is the Fréchet derivative of F_{n} given by

$$
F_{n}^{\prime}\left(y_{n}^{(k)}\right)=I-\pi_{n} \mathcal{K}^{\prime}\left(y_{n}^{(k)}+f\right)
$$

By a simple calculus, we get

$$
\begin{equation*}
y_{n}^{(k+1)}-\pi_{n} \mathcal{K}^{\prime}\left(y_{n}^{(k)}+f\right) y_{n}^{(k+1)}=\pi_{n} \mathcal{K}\left(y_{n}^{(k)}+f\right)-\pi_{n} \mathcal{K}^{\prime}\left(y_{n}^{(k)}+f\right) y_{n}^{(k)} \tag{2.22}
\end{equation*}
$$

Since $y_{n}^{(k)} \in \mathbb{X}_{n}$, we can write for the orthogonal projection

$$
y_{n}^{(k)}=\sum_{j=1}^{N}\left\langle y_{n}^{(k)}, \varphi_{j}\right\rangle \varphi_{j}=\sum_{j=1}^{N} v_{n}^{(k)}(j) \varphi_{j}
$$

where $N=n(r+1)$ and $\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}$ is the orthonormal ordered basis of \mathbb{X}_{n} given by (2.5). Then, (2.22) is equivalent to the following linear system of size N

$$
\left(I-A_{n}^{(k)}\right) v_{n}^{(k+1)}=r_{n}^{(k)}
$$

where for $i, j=1, \ldots, N$,

$$
\begin{align*}
A_{n}^{(k)}(i, j & =\left\langle\mathcal{K}^{\prime}\left(y_{n}^{(k)}+f\right) \varphi_{j}, \varphi_{i}\right\rangle, \tag{2.23}\\
r_{n}^{(k)}(i) & =\left\langle\mathcal{K}\left(y_{n}^{(k)}+f\right), \varphi_{i}\right\rangle-\left(A_{n}^{(k)} v_{n}^{(k)}\right)(i) .
\end{align*}
$$

Let $\left\{L_{1}, \ldots, L_{N}\right\}$ be the Lagrange basis of \mathbb{X}_{n} satisfying $L_{i}\left(s_{j}\right)=\delta_{i j}$, where $\left\{s_{1}, \ldots, s_{N}\right\}$ are the ordered interpolation points given by (2.9). For the interpolatory projection, we can write

$$
y_{n}^{(k)}=\sum_{j=1}^{N} y_{n}^{(k)}\left(s_{j}\right) L_{j}=\sum_{j=1}^{N} v_{n}^{(k)}(j) L_{j}
$$

Then, we obtain the system of linear equations

$$
\left(I-B_{n}^{(k)}\right) v_{n}^{(k+1)}=q_{n}^{(k)},
$$

where for $i, j=1, \ldots, N$,

$$
\begin{align*}
B_{n}^{(k)}(i, j) & =\left(\mathcal{K}^{\prime}\left(y_{n}^{(k)}+f\right) L_{i}\right)\left(s_{j}\right), \\
q_{n}^{(k)} & =\mathcal{K}\left(y_{n}^{(k)}+f\right)\left(s_{i}\right)-\left(B_{n}^{(k)} v_{n}^{(k)}\right)(i) . \tag{2.24}
\end{align*}
$$

2.4. Projection-type method for Hammerstein equations

Let $\Psi: \mathcal{C}[0,1] \rightarrow \mathcal{C}[0,1]$ be the Nemytskii bounded and continuous operator defined by

$$
\Psi(x)(t)=\psi(t, x(t)), \quad x \in \mathcal{C}[0,1], \quad t \in[0,1]
$$

and let T be the linear integral operator with a kernel κ of class $C(\alpha, \gamma)$ that is,

$$
\begin{equation*}
(T x)(t)=\int_{0}^{1} \kappa(s, t) x(t) d t, \quad t \in[0,1], \quad x \in \mathbb{X} \tag{2.25}
\end{equation*}
$$

With this notation, the Hammerstein equation (1.2) takes the following form

$$
\begin{equation*}
x-T \Psi(x)=f \tag{2.26}
\end{equation*}
$$

It is more convenient to set

$$
z(t)=\psi(t, x(t))=\psi(t, T z(t)+f(t)), \quad t \in[0,1] .
$$

Thus, we obtain the equivalent equation for the function z

$$
\begin{equation*}
z=\Psi(T z+f) \tag{2.27}
\end{equation*}
$$

The projection method for (2.27) is seeking an approximate solution $z_{n} \in \mathbb{X}_{n}$ which satisfies the operator equation

$$
\begin{equation*}
z_{n}=\pi_{n} \Psi\left(T z_{n}+f\right) \tag{2.28}
\end{equation*}
$$

The desired projection-type solution x_{n}^{S} is then defined to be

$$
x_{n}^{S}=T z_{n}+f
$$

which means that

$$
\begin{equation*}
x_{n}^{S}=T \pi_{n} \Psi\left(x_{n}^{S}\right)+f \tag{2.29}
\end{equation*}
$$

Let

$$
F_{n}(v)=v-\pi_{n} \Psi(T v+f) .
$$

Then, equation (2.28) becomes

$$
\begin{equation*}
F_{n}\left(z_{n}\right)=0 . \tag{2.30}
\end{equation*}
$$

The Fréchet derivative of F_{n} is given by

$$
F_{n}^{\prime}(v)=I-\pi_{n} \Psi^{\prime}(T v+f) T
$$

The Newton-Kantorovich method for solving (2.30) iteratively give for an initial approximation $z_{n}^{(0)}$

$$
\begin{equation*}
z_{n}^{(k+1)}-\pi_{n} \Psi^{\prime}\left(T z_{n}^{(k)}+f\right) T z_{n}^{(k+1)}=\pi_{n} \Psi\left(T z_{n}^{(k)}+f\right)-\pi_{n} \Psi^{\prime}\left(T z_{n}^{(k)}+f\right) T z_{n}^{(k)} \tag{2.31}
\end{equation*}
$$

In the case of the orthogonal projection, $z_{n}^{(k)}=\sum_{j=1}^{N} v_{n}^{(k)}(j) \varphi_{j}$, and (2.31) is equivalent to the following linear system of size N

$$
\left(I-A_{n}^{(k)}\right) v_{n}^{(k+1)}=r_{n}^{(k)},
$$

where

$$
\begin{align*}
A_{n}^{(k)}(i, j) & =\left\langle\Psi^{\prime}\left(T z_{n}^{(k)}+f\right) T \varphi_{j}, \varphi_{i}\right\rangle, \quad i, j=1, \ldots, N, \\
r_{n}^{(k)}(i) & =\left\langle\Psi\left(T z_{n}^{(k)}+f\right), \varphi_{i}\right\rangle-\left(A_{n}^{(k)} v_{n}^{(k)}\right)(i) \tag{2.32}
\end{align*}
$$

while for the interpolatory projection $z_{n}^{(k)}=\sum_{j=1}^{N} v_{n}^{(k)}(j) L_{j}$, the system of linear equations is

$$
\left(I-B_{n}^{(k)}\right) v_{n}^{(k+1)}=q_{n}^{(k)}
$$

where

$$
\begin{align*}
B_{n}^{(k)}(i, j) & =\left[\Psi^{\prime}\left(T z_{n}^{(k)}+f\right) T L_{i}\right]\left(t_{j}\right), \quad i, j=1, \ldots, N, \\
q_{n}^{(k)} & =\Psi\left(T z_{n}^{(k)}+f\right)\left(s_{i}\right)-\left(B_{n}^{(k)} v_{n}^{(k)}\right)(i) . \tag{2.33}
\end{align*}
$$

The following interesting observation was made in many papers (see for instance [6, 17]). The integrals in the linear systems (2.23) and (2.24) must be computed at each step of the iteration. However, since in (2.32) and (2.33), the coefficients $v_{n}^{(k)}(j)$ involving in the expression of $z_{n}^{(k)}$ can be extracted out of the operator T, the integrals will depends only on the basis, not on the unknowns $v_{n}^{(k)}(j)$ and this make the computations of the integrals necessary only once throughout the iteration process. Therefore, in the Kumar and Sloan method, the number of integrals to be calculated is significantly lower than in the Kantorovich method.

3. Convergence rates

3.1. Kantorovich method

Let $x_{0} \in \mathbb{X}$ be the unique solution (1.1). For $i=1,2$, define

$$
\begin{aligned}
A_{i} & =\max \left\{\left|\frac{\partial^{\mu} \kappa_{i}}{\partial s^{\mu}}(s, t, u)\right|:(s, t, u) \in \Phi_{i}, \mu=0, \ldots, \alpha\right\} \\
A & =\max \left\{A_{1}, A_{2}\right\}
\end{aligned}
$$

where

$$
\Phi_{i}=\left\{(s, t, u):(s, t, u) \in \Pi_{i},|u| \leq\left\|x_{0}\right\|_{\infty}\right\} .
$$

It is straightforward that

$$
\begin{equation*}
\left\|\left(\mathcal{K}\left(x_{0}\right)\right)^{(\mu)}\right\|_{\infty} \leq A, \quad \mu=0, \ldots, \alpha . \tag{3.1}
\end{equation*}
$$

The following result is crucially used (see [7, Theorem 4.1]).
If the kernel \mathcal{K} is of class $C_{2}(\alpha, \gamma)$, the Urysohn operator \mathcal{K} is a continuous operator on C_{Δ}^{v} into $C_{\Delta}^{\min \{\alpha, \gamma+v+2\}}, v \geq$ 0 .

Theorem 3.1. Let the kernel κ be of class $C_{2}(\alpha, \gamma)$ and assume that 1 is not an eigenvalue of $\mathcal{K}^{\prime}\left(x_{0}\right)$. Then there exists a real number $\delta_{0}>0$ such that the approximate equation (2.19) has a unique solution x_{n}^{K} in $\mathcal{B}\left(x_{0}, \delta_{0}\right)$ for a sufficiently large n. Moreover, for $f \in \mathcal{C}^{\alpha}[0,1]$

$$
\begin{equation*}
\left\|x_{n}^{K}-x_{0}\right\|_{\infty}=\mathcal{O}\left(h^{\beta}\right), \tag{3.2}
\end{equation*}
$$

whereas for $f \in \mathcal{C}[0,1]$

$$
\begin{equation*}
\left\|x_{n}^{K}-x_{0}\right\|_{\infty}=\mathcal{O}\left(h^{\beta_{2}}\right) \tag{3.3}
\end{equation*}
$$

Proof. Since the Kantorovich method is equivalent to a projection method for the quantity $y_{0}=\mathcal{K}\left(x_{0}\right)$, and since $x_{n}^{K}-x_{0}=y_{n}-y_{0}$ the error bound follow immediately from the analysis of the projection method. Indeed, we derive from [7, Theorem 2.2]

$$
\begin{equation*}
\left\|x_{n}^{K}-x_{0}\right\|_{\infty} \leq C\left\|\left(I-\pi_{n}\right) y_{0}\right\|_{\infty} . \tag{3.4}
\end{equation*}
$$

The operator \mathcal{K} is a continuous map from C_{Δ}^{α} to C_{Δ}^{α}. Thus, if $f \in \mathcal{C}^{\alpha}[0,1], \mathcal{K}\left(x_{0}\right) \in C_{\Delta}^{\alpha}$ and it follows from (2.13) and (3.1) that

$$
\begin{aligned}
\left\|\left(I-\pi_{n}\right) \mathcal{K}\left(x_{0}\right)\right\|_{\infty} & \leq C_{1}\left\|\left(\mathcal{K}\left(x_{0}\right)\right)^{(\beta)}\right\|_{\infty} h^{\beta} \\
& \leq C_{1} A h^{\beta} .
\end{aligned}
$$

Hence, the estimate (3.2) is a consequence of (3.4).
Next, we recall that for $f \in \mathcal{C}[0,1]$, we have $x_{0} \in \mathcal{C}[0,1]$. Furthermore, the operator \mathcal{K} is a continuous map from C_{Δ} to $C_{\Delta}^{\gamma / 2}$, where

$$
\gamma_{2}=\min \{\alpha, \gamma+2\}
$$

Consequently, if we take (2.12), we can say that

$$
\begin{equation*}
\left\|\left(I-\pi_{n}\right) \mathcal{K}\left(x_{0}\right)\right\|_{\infty} \leq C_{1}\left\|\left(\mathcal{K}\left(x_{0}\right)\right)^{\left(\beta_{2}\right)}\right\|_{\infty} h^{\beta_{2}} . \tag{3.5}
\end{equation*}
$$

We now deduce (3.3) from (3.1) and (3.4). This completes the proof.
The following estimates are provided by Chatelin and Lebbar [11].
Let T be a linear integral operator with kernel $\kappa \in C(\alpha, \gamma)$. Then, for any $x \in C_{\Delta}^{\alpha}$

$$
\begin{equation*}
\left\|T\left(I-\pi_{n}^{G}\right) x\right\|_{\infty} \leq c_{2}\left\|x^{(\beta)}\right\|_{\infty} h^{\beta+\beta_{2}} \tag{3.6}
\end{equation*}
$$

In addition, if $\alpha \geq r+1$,

$$
\begin{equation*}
\left\|T\left(I-\pi_{n}^{C}\right) x\right\|_{\infty} \leq c_{2}\|x\|_{\beta_{3}, \infty} h^{\beta_{3}} \tag{3.7}
\end{equation*}
$$

where

$$
\beta_{3}=\min \{\alpha, 2 r+2, r+\gamma+3\} .
$$

Theorem 3.2. Let the kernel κ be of class $C_{2}(\alpha, \gamma)$ and let \widetilde{x}_{n}^{K} be the iterated Kantorovich solution defined by (2.20). If $f \in \mathcal{C}^{\alpha}[0,1]$, then for the orthogonal projection

$$
\begin{equation*}
\left\|\widetilde{x}_{n}^{K}-x_{0}\right\|_{\infty}=\mathcal{O}\left(h^{\beta+\beta_{2}}\right) \tag{3.8}
\end{equation*}
$$

while for the interpolatory projection

$$
\begin{equation*}
\left\|\widetilde{x}_{n}^{K}-x_{0}\right\|_{\infty}=\mathcal{O}\left(h^{\beta_{3}}\right) \tag{3.9}
\end{equation*}
$$

Proof. First we observe that $\widetilde{x}_{n}^{K}-x_{0}=\widetilde{y}_{n}-y_{0}$. It then follows, by essentially the same argument as for the iterated projection method, but now x_{0} is replaced by $\mathcal{K}\left(x_{0}\right)$ that (see equation (5.12) in [7])

$$
\begin{align*}
\widetilde{x}_{n}^{K}-x_{0} & =\left(I+M \pi_{n}\right)\left(\mathcal{K}\left(x_{n}^{K}\right)-\mathcal{K}^{\prime}\left(x_{0}\right)\left(x_{n}^{K}-x_{0}\right)-\mathcal{K}\left(x_{0}\right)\right) \tag{3.10}\\
& -M\left(I-\pi_{n}\right) \mathcal{K}^{\prime}\left(x_{0}\right)\left(x_{n}^{K}-x_{0}\right)-M\left(I-\pi_{n}\right) \mathcal{K}\left(x_{0}\right) .
\end{align*}
$$

By applying the mean-value theorem for operators to \mathcal{K} and using the Lipschitz continuity of \mathcal{K}^{\prime}, we get

$$
\begin{align*}
\| \mathcal{K}\left(x_{n}^{K}\right)-\mathcal{K}^{\prime}\left(x_{0}\right) & \left(x_{n}^{K}-x_{0}\right)-\mathcal{K}\left(x_{0}\right) \| \\
& =\left\|\left[\mathcal{K}^{\prime}\left(x_{n}^{K}+\theta\left(x_{0}-x_{n}^{K}\right)\right)-\mathcal{K}^{\prime}\left(x_{0}\right)\right]\left(x_{n}^{K}-x_{0}\right)\right\|, \\
& \leq \gamma(1-\theta)\left\|x_{n}^{K}-x_{0}\right\|_{\infty}^{2} \tag{3.11}
\end{align*}
$$

where $0<\theta<1$. As $\mathcal{K}\left(x_{0}\right) \in C_{\Delta}^{\alpha}$ and $m \in \mathcal{C}(\alpha, \gamma)$, then using (3.6) and (3.7), we respectively obtain

$$
\begin{equation*}
\left\|M\left(I-\pi_{n}^{G}\right) \mathcal{K}\left(x_{0}\right)\right\|_{\infty}=\mathcal{O}\left(h^{\beta+\beta_{2}}\right) \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|M\left(I-\pi_{n}^{C}\right) \mathcal{K}\left(x_{0}\right)\right\|_{\infty}=\mathcal{O}\left(h^{\beta_{3}}\right) \tag{3.13}
\end{equation*}
$$

In addition, as stated in the proof of Lemma 2.1 in [14],

$$
\begin{equation*}
\left\|\left(I-\pi_{n}\right) \mathcal{K}^{\prime}\left(x_{0}\right)\right\|_{\infty}=\mathcal{O}\left(h^{\beta_{2}}\right) \tag{3.14}
\end{equation*}
$$

Combining (3.8) with the estimates (3.10)-(3.14) and making use of $\beta_{3} \leq \beta+\beta_{2}$, the remarks

$$
\min \left\{2 \beta, \beta+\beta_{2}\right\}=\beta+\beta_{2}
$$

and

$$
\min \left\{2 \beta, \beta+\beta_{2}, \beta_{3}\right\}=\min \left\{\beta+\beta_{2}, \beta_{3}\right\}=\beta_{3}
$$

ends the proof.
Theorem 3.3. Let the kernel κ be of class $C_{2}(\alpha, \gamma)$ and let \widetilde{x}_{n}^{K} be the iterated Kantorovich-Galerkin solution defined by (2.20). If $f \in \mathcal{C}[0,1]$, then there holds

$$
\begin{equation*}
\left\|\widetilde{x}_{n}^{K}-x_{0}\right\|_{\infty}=\mathcal{O}\left(h^{2 \beta 2}\right) . \tag{3.15}
\end{equation*}
$$

Proof. For a fixed $s \in[0,1]$, let $m_{s}(t)=m(s, t), t \in[0,1]$. Using the orthogonality of π_{n}^{G},

$$
\begin{aligned}
{\left[M\left(I-\pi_{n}^{G}\right) \mathcal{K}\left(x_{0}\right)\right](s) } & =\left\langle m_{s,}\left(I-\pi_{n}^{G}\right) y_{0}\right\rangle \\
& =\left\langle\left(I-\pi_{n}^{G}\right) m_{s,}\left(I-\pi_{n}^{G}\right) y_{0}\right\rangle \\
& =\sum_{j=1}^{n}\left\langle\left(I-\pi_{n}^{G}\right) m_{s,}\left(I-\pi_{n}^{G}\right) y_{0}\right\rangle_{j}
\end{aligned}
$$

where

$$
\left\langle\left(I-\pi_{n}^{G}\right) m_{s,}\left(I-\pi_{n}^{G}\right) y_{0}\right\rangle_{j}=\int_{t_{j-1}}^{t_{j}}\left[\left(I-\pi_{n}^{G}\right) m_{s}\right](t)\left[\left(I-\pi_{n}^{G}\right) y_{0}\right](t) d t
$$

It results now, from the Cauchy-Schwarz inequality that

$$
\begin{equation*}
\left|\left[M\left(I-\pi_{n}^{G}\right) \mathcal{K}\left(x_{0}\right)\right](s)\right| \leq \sum_{j=1}^{n}\left\|\left(I-\pi_{n}^{G}\right) m_{s}\right\|_{2, \Delta_{j}}\left\|\left(I-\pi_{n}^{G}\right) y_{0}\right\|_{2, \Delta_{j}} \tag{3.16}
\end{equation*}
$$

For $j=1, \ldots, n$, the bounds (2.4) and (3.5) allows us to write

$$
\begin{align*}
\left\|\left(I-\pi_{n}^{G}\right) y_{0}\right\|_{2, \Delta_{j}} & \leq C_{1} h_{j}^{\beta_{2}}\left\|y_{0}^{\left(\beta_{2}\right)}\right\|_{2, \Delta_{j}} \\
& \leq C_{1} h_{j}^{\beta_{2}+1 / 2}\left\|y_{0}^{\left(\beta_{2}\right)}\right\|_{\infty} . \tag{3.17}
\end{align*}
$$

Also, [11, Lemma 9] tells us that if $s \in\left(t_{i-1}, t_{i}\right)$, then

$$
\left\|\left(I-\pi_{n}^{G}\right) m_{s}\right\|_{2, \Delta_{j}}= \begin{cases}\mathcal{O}\left(h_{j}^{\beta+1 / 2}\right), & j \neq i, \tag{3.18}\\ \mathcal{O}\left(h_{i}^{\beta_{1}+1 / 2}\right), & j=i,\end{cases}
$$

whereas for $s \in \Delta$,

$$
\begin{equation*}
\left\|\left(I-\pi_{n}^{G}\right) m_{s}\right\|_{2, \Delta_{j}}=\mathcal{O}\left(h_{j}^{\beta+1 / 2}\right), \quad j=1, \ldots, n . \tag{3.19}
\end{equation*}
$$

These results implies that

$$
\begin{equation*}
\left\|M\left(I-\pi_{n}^{G}\right) \mathcal{K}\left(x_{0}\right)\right\|_{\infty}=\mathcal{O}\left(h^{\beta_{2}+\min \left\{\beta, \beta_{1}+1\right\}}\right) . \tag{3.20}
\end{equation*}
$$

Since $\min \left\{\beta, \beta_{1}+1\right\}=\beta_{2}$, then combining (3.3), (3.10), (3.14) with (3.20) yields (3.21). The proof is finished.
Theorem 3.4. Let the kernel κ be of class $C_{2}(\alpha, \gamma)$ and let \widetilde{x}_{n}^{K} be the iterated Kantorovich-collocation solution defined by (2.20). If $f \in C[0,1]$, then if $\gamma \geq 0$ we have

$$
\begin{equation*}
\left\|\widetilde{x}_{n}^{K}-x_{0}\right\|_{\infty}=\mathcal{O}\left(h^{\min \left\{2 \beta_{2}, r+1\right\}}\right) . \tag{3.21}
\end{equation*}
$$

Proof. Arguing as in the proof of Theorem 3.1.2, we can deduce from (3.3),(3.10),(3.11),(3.13) and (3.14) that

$$
\begin{equation*}
\left\|\widetilde{x}_{n}^{K}-x_{0}\right\|_{\infty} \leq\left\|M\left(I-\pi_{n}^{C}\right) y_{0}\right\|_{\infty}+\mathcal{O}\left(h^{2 \beta_{2}}\right) . \tag{3.22}
\end{equation*}
$$

Lemma 11 in Chatelin and Lebbar [11] states that for any $s \in[0,1]$

$$
\begin{aligned}
M\left(I-\pi_{n}^{C}\right) y_{0}(s) & =\sum_{j=1}^{n}\left\langle\left(I-\pi_{n}^{G}\right) m_{s} \delta_{j}^{r+1} y_{0}, v\right\rangle_{j^{\prime}} \\
& =\sum_{j=1}^{n}\left\langle\left(I-\pi_{n}^{G}\right) m_{s} \delta_{j}^{r+1} y_{0},\left(I-\pi_{n}^{G}\right) v\right\rangle_{j}
\end{aligned}
$$

where $\delta_{j}^{r+1} y_{0}(s)=\left[\tau_{j 0}, \ldots, \tau_{j r}, s\right] y_{0}$ denote the divided difference of y_{0} at $\left\{\tau_{j 0}, \ldots, \tau_{j r}, s\right\}$ and

$$
v_{j}(s)=\prod_{p=0}^{r}\left(s-\tau_{j p}\right), \quad 1 \leq j \leq n .
$$

Therefore, using the Cauchy-Schwarz inequality, we obtain

$$
\begin{equation*}
\left|M\left(I-\pi_{n}^{C}\right) y_{0}(s)\right| \leq \sum_{j=1}^{n}\left\|\left(I-\pi_{n}^{G}\right)\left(m_{s} \delta_{j}^{r+1} y_{0}\right)\right\|_{\infty, \Delta_{j}}\left\|\left(I-\pi_{n}^{G}\right) v_{j}\right\|_{\infty, \Delta_{j}} \tag{3.23}
\end{equation*}
$$

From Lemma 2.2 in [15], it follows that

$$
\begin{equation*}
\left\|\left(I-\pi_{n}^{G}\right) v_{j}\right\|_{\infty, \Delta_{j}} \leq C(r+1)!h_{j}^{r+1} . \tag{3.24}
\end{equation*}
$$

Hence

$$
\left|M\left(I-\pi_{n}^{C}\right) y_{0}(s)\right| \leq c\left(\sum_{j=1}^{n}\left\|\left(I-\pi_{n}^{G}\right)\left(m_{s} \delta_{j}^{r+1} y_{0}\right)\right\|_{\infty, \Delta_{j}}\right) h^{r+1}
$$

Using the technique employed in [15, Lemma 3.1], we are able to demonstrate that

$$
\sup _{s \in[0,1]}\left|\left[\tau_{j 0}, \ldots, \tau_{j r}, s\right] y_{0}\right| \leq C_{3} .
$$

Thus,

$$
\left\|M\left(I-\pi_{n}^{C}\right) y_{0}\right\|_{\infty} \leq C C_{3}(1+p)\|m\|_{\infty} h^{r+1}
$$

Combining the above inequality with (3.22), the desired estimate follows.
If $r=0$ and $\alpha \geq 1$, we have $\beta_{2}=1$. Hence, it follows from (3.21) that

$$
\left\|\widetilde{x}_{n}^{K}-x_{0}\right\|_{\infty}=\mathcal{O}(h) .
$$

We now show that, if $\gamma=0$, then the above order of convergence can be increased to h^{2}.
Theorem 3.5. Let \widetilde{x}_{n}^{K} be the iterated Kantorovich-collocation solution defined by (2.20). If $f \in \mathcal{C}[0,1]$, then for $\kappa \in C_{2}(\alpha, 0)$ with $\alpha \geq 1$, we have

$$
\left\|\widetilde{x}_{n}^{K}-x_{0}\right\|_{\infty}=\mathcal{O}\left(h^{2}\right) .
$$

Proof. For $r=0$, let $\tau^{j}=\tau_{j 0}=\frac{t_{j-1}+t_{j}}{2}$ be the collocation points. By (2.4) and (3.24), one has

$$
\begin{equation*}
\left\|\left(I-\pi_{n}^{G}\right) v_{j}\right\|_{2, \Delta_{j}} \leq c h_{j}^{3 / 2} \tag{3.25}
\end{equation*}
$$

where $v_{j}(s)=\left(s-\tau^{j}\right)$. By using the mean-value theorem,

$$
\delta_{j}^{1} y_{0}=\frac{y_{0}(s)-y_{0}\left(\tau^{j}\right)}{s-\tau^{j}}=y_{0}^{(1)}\left(\sigma_{j}\right), \quad \sigma_{j} \in\left(t_{j-1}, s\right) .
$$

Since $y_{0}^{(1)} \in C_{\Delta}^{\gamma_{2}-1}=C_{\Delta}^{1}$, it is obvious that the kernel $m y_{0}^{(1)} \in C(\min \{\alpha, \gamma+1\}, \gamma)=C(1,0)$. As $\beta=\beta_{1}=\beta_{2}=1$, we conclude from (3.18) and (3.19) that

$$
\begin{equation*}
\left\|\left(I-\pi_{n}^{G}\right) m_{s} \delta_{j}^{1} y_{0}\right\|_{2, \Delta_{j}}=\mathcal{O}\left(h_{j}^{3 / 2}\right), \quad s \in[0,1] . \tag{3.26}
\end{equation*}
$$

The proof of the required estimate is accomplished by substituting (3.25) and (3.26) into (3.23) and combining with (3.22), respectively.

3.2. Projection-type method

For the remainder of the paper, we will assume that the kernel \mathcal{K} of the Hammerstein integral operator $T \Psi$ is of class $C(\alpha, \gamma)$. When f is smooth, the following result demonstrates that the projection-type approach converges as quickly as the iterated Kantorovich method.

Theorem 3.6. Let x_{n}^{S} be the projection-type solution defined by (2.29). Suppose that x_{0} is the unique solution of (1.2) and that 1 is not an eigenvalue of $(T \Psi)^{\prime}\left(x_{0}\right)$. If $\psi \in C^{\alpha}([0,1] \times \mathbb{R})$ and $f \in \mathcal{C}^{\alpha}[0,1]$, then for the Galerkin-type method

$$
\begin{equation*}
\left\|x_{n}^{S}-x_{0}\right\|_{\infty}=\mathcal{O}\left(h^{\beta+\beta_{2}}\right), \tag{3.27}
\end{equation*}
$$

whereas for the collocation-type method

$$
\begin{equation*}
\left\|x_{n}^{S}-x_{0}\right\|_{\infty}=\mathcal{O}\left(h^{\beta_{3}}\right) \tag{3.28}
\end{equation*}
$$

Proof. Firstly, we define

$$
z_{0}(t)=\psi\left(t, x_{0}(t)\right), \quad t \in[0,1] .
$$

In Theorem 2 of Kumar [16] it was shown that

$$
\begin{equation*}
\left\|x_{n}^{S}-x_{0}\right\|_{\infty} \leq c\left\|T\left(I-\pi_{n}^{C}\right) z_{0}\right\|_{\infty} \tag{3.29}
\end{equation*}
$$

and this estimate is valid not just for π_{n}^{C}, but also for the orthogonal projection. Let

$$
\Psi_{p}=\max _{t \in[0,1]}\left|\frac{\partial^{p} \Psi}{\partial t^{p}}\left(t, x_{0}(t)\right)\right|, \quad p=0, \ldots, \alpha .
$$

Therefore, we have from (3.6) and (3.7)

$$
\begin{align*}
\left\|T\left(I-\pi_{n}^{G}\right) z_{0}\right\| & \leq C_{2}\left\|z_{0}^{(\beta)}\right\|_{\infty} h^{\beta+\beta_{2}} \\
& \leq C_{2} \Psi_{\beta} h^{\beta+\beta_{2}} \tag{3.30}
\end{align*}
$$

and

$$
\begin{align*}
\left\|T\left(I-\pi_{n}^{C}\right) z_{0}\right\| & \leq C_{2}\left\|z_{0}\right\|_{\beta_{3}, \infty} h^{\beta_{3}} \\
& \leq C_{2}\left(\sum_{i=0}^{\beta_{3}} \Psi_{i}\right) h^{\beta_{3}} . \tag{3.31}
\end{align*}
$$

Combining (3.29) with the aforementioned estimates yields the desired results. This reach the proof.
If f is not smooth, the convergence order of the Galerkin-type solution is lower than that of the iterated Kantorovich-Galerkin solution, as stated in the result below.

Theorem 3.7. Suppose that x_{0} is the unique solution of (1.2) and that 1 is not an eigenvalue of $(T \Psi)^{\prime}\left(x_{0}\right)$. Then, if $\psi \in \mathcal{C}([0,1] \times \mathbb{R})$ and $f \in \mathcal{C}[0,1]$, the Galerkin-type solution fulfills

$$
\begin{equation*}
\left\|x_{n}^{S}-x_{0}\right\|_{\infty}=\mathcal{O}\left(h^{\beta_{2}}\right) \tag{3.32}
\end{equation*}
$$

Proof. For a fixed $s \in[0,1]$, let $\kappa_{s}(t)=\kappa(s, t), t \in[0,1]$. Arguing as in the proof of Theorem 3.1.4, the following upper bound can be estabilished

$$
\begin{equation*}
\left\|T\left(I-\pi_{n}^{G}\right) z_{0}\right\|_{\infty} \leq \max _{s \in[0,1]} \sum_{j=1}^{n}\left\|\left(I-\pi_{n}^{G}\right) \kappa_{s}\right\|_{2, \Delta_{j}}\left\|\left(I-\pi_{n}^{G}\right) z_{0}\right\|_{2, \Delta_{j}} \tag{3.33}
\end{equation*}
$$

In the first place, we may write from (2.4) and (2.12)

$$
\begin{equation*}
\left\|\left(I-\pi_{n}^{G}\right) z_{0}\right\|_{2, \Delta_{j}} \leq(1+p) h_{j}^{1 / 2} \Psi_{0} \tag{3.34}
\end{equation*}
$$

To continue, we have used the same procedure for the kernel m in (3.18) and (3.19), which entails

$$
\begin{equation*}
\left\|\left(I-\pi_{n}^{G}\right) \mathcal{K}_{s}\right\|_{2, \Lambda_{j}}=\mathcal{O}\left(h_{j}^{1 / 2+\min \left\{\beta, \beta_{1}\right\}}\right) . \tag{3.35}
\end{equation*}
$$

By combining (3.34) and (3.35) with the inequality (3.33) and the estimate (3.29), we reach the proof of (3.32).

It should be mentioned that since $\pi_{n}^{C} x_{n}^{K}=\pi_{n}^{C} \widetilde{x}_{n}^{K}$, then the two solutions agrees at the collocation points. Therefore x_{n}^{K} and \widetilde{x}_{n}^{K} converge with the same order at those points. For example under the hypothesis of Theorem 3.1.2 we have the following superconvergence phenomenon for x_{n}^{K}

$$
\max _{1 \leq i \leq N}\left|\left[x_{n}^{K}-x_{0}\right]\left(t_{i}\right)\right|=\mathcal{O}\left(h^{\beta_{3}}\right) .
$$

Remark 3.8. Assume that $f \in \mathcal{C}^{\alpha}[0,1]$ and $\alpha \geq r+1$. If $r \leq \gamma$, then since

$$
\beta=\beta_{1}=\beta_{2}=r+1
$$

and

$$
\beta_{3}=2 r+2
$$

the following full orders

$$
\left\|x_{n}^{K}-x_{0}\right\|_{\infty}=\mathcal{O}\left(h^{r+1}\right)
$$

and

$$
\left\|\widetilde{x}_{n}^{K}-x_{0}\right\|_{\infty}=\mathcal{O}\left(h^{2 r+2}\right)
$$

corresponding to the case of a smooth kernel are recovered.
It should be mentioned that for the Kantorovich and the iterated Kantorovich-Galerkin methods, the preceding convergence orders also hold when $f \in \mathcal{C}[0,1]$. If $r>\gamma$, then

$$
\beta=r+1, \beta_{1}=\gamma+1
$$

and

$$
\beta_{2}=\gamma+2, \beta_{3}=r+\gamma+3
$$

Thus,

$$
\left\|x_{n}^{K}-x_{0}\right\|_{\infty}=\mathcal{O}\left(h^{r+1}\right)
$$

and

$$
\left\|\widetilde{x}_{n}^{K}-x_{0}\right\|_{\infty}=\mathcal{O}\left(h^{r+\gamma+3}\right) .
$$

If $f \in \mathcal{C}[0,1]$, for the Kantorovich method and the iterated Kantorovich-Galerkin method, we have

$$
\left\|x_{n}^{K}-x_{0}\right\|_{\infty}=\mathcal{O}\left(h^{\gamma+2}\right)
$$

and

$$
\left\|\widetilde{x}_{n}^{K}-x_{0}\right\|_{\infty}=\mathcal{O}\left(h^{2 \gamma+4}\right)
$$

For the iterated Kantorovich-collocation method, if $r>2 \gamma+2$, then

$$
\left\|\widetilde{x}_{n}^{K}-x_{0}\right\|_{\infty}=\mathcal{O}\left(h^{2 \gamma+4}\right) .
$$

4. Numerical results

Here, we propose several numerical experiments to demonstrate the effectiveness of the presented methods. Two Hammerstein equations having Green's kernels and with exact solutions of varying regularity are considered. We solve the associated linear systems for each test equation and then we compute the infinite norm of the errors with respect to the true value x_{0}. We also evaluate how well each proposed approach performs in comparison to the other. It should be noted that the integrals in the linear system were computed using a high order Gauss-quadrature rule.
We choose \mathbb{X}_{n} to be the space of piecewise constant functions $(r=0)$ or the space of piecewise linear polynomials $(r=1)$ with respect to the uniform partition of $[0,1]$

$$
0=\frac{1}{n}<\frac{2}{n}<\ldots<\frac{n}{n}=1 .
$$

Let π_{n}^{G} be the restriction to $L^{\infty}[0,1]$ of the orthogonal projection from $L^{2}[0,1]$ to \mathbb{X}_{n}. The operator π_{n}^{C} is chosen to be either the interpolatory projection at the n midpoints

$$
\tau^{i}=\frac{2 i-1}{2 n}, i=1, \ldots, n
$$

or at the $2 n$ Gauss points given by

$$
\tau_{1}^{i}=\frac{2 i-1}{2 n}-\frac{1}{2 n} \frac{1}{\sqrt{3}} \quad \text { and } \quad \tau_{2}^{i}=\frac{2 i-1}{2 n}+\frac{1}{2 n} \frac{1}{\sqrt{3}}, i=1, \ldots, n
$$

Note that the maximum errors $\left\|x_{n}^{K}-x_{0}\right\|_{\infty},\left\|\widetilde{x}_{n}^{K}-x_{0}\right\|_{\infty}$ and $\left\|x_{n}^{S}-x_{0}\right\|_{\infty}$ are approximated respectively by

$$
\begin{aligned}
& E_{K}^{n}=\max _{i=1,2, \ldots, 10^{2}}\left|\left(x_{n}^{K}-x_{0}\right)\left(y_{i}\right)\right|, \\
& \left.\widetilde{E}_{K}^{n}=\max _{i=1,2, \ldots, 10^{2}} \mid \widetilde{x}_{n}^{K}-x_{0}\right)\left(y_{i}\right) \mid
\end{aligned}
$$

and

$$
E_{S}^{n}=\max _{i=1,2, \ldots, 10^{2}}\left|\left(x_{n}^{S}-x_{0}\right)\left(y_{i}\right)\right|
$$

where y_{i} are equally spaced points in $[0,1]$. The orders of convergence are calculated using the formulas

$$
\delta_{K}=\frac{\log \left(E_{K}^{n} / E_{K}^{2 n}\right)}{\log (2)}, \quad \widetilde{\delta}_{K}=\frac{\log \left(\widetilde{E}_{K}^{n} / \widetilde{E}_{K}^{2 n}\right)}{\log (2)}, \quad \delta_{S}=\frac{\log \left(E_{S}^{n} / E_{S}^{2 n}\right)}{\log (2)} .
$$

Example 1. We consider the following Hammerstein equation quoted from [18]

$$
x(s)-\int_{0}^{1} \kappa(s, t) \psi(t, x(t)) d t=f(s), \quad s \in[0,1]
$$

where

$$
\kappa(s, t)=\frac{1}{\sigma \sinh \sigma} \begin{cases}\sinh \sigma s \sinh \sigma(1-t), & s \leq t \\ \sinh \sigma(1-s) \sinh \sigma t, & t \leq s\end{cases}
$$

with $\sigma=\sqrt{12}$, and

$$
\psi(t, x(t))=\sigma^{2} x(t)-2(x(t))^{3}, \quad t \in[0,1]
$$

We have $f(s)=\frac{1}{\sinh \sigma}\left\{2 \sinh \sigma(1-s)+\frac{2}{3} \sinh \sigma s\right\}$ and the exact solution is

$$
x_{0}(s)=\frac{2}{2 s+1}, \quad s \in[0,1]
$$

In this example

$$
\alpha=\infty, \quad \gamma=0, \quad \gamma_{1}=1, \quad \gamma_{2}=2
$$

For $r=0$, we recall from Remark 3.8 and Theorem 3.6 that the expected orders of convergence in Kantorovich, iterated Kantorovich and projection-type methods, are respectively,

$$
\delta_{K}=1, \widetilde{\delta}_{K}=2 \quad \text { and } \quad \delta_{S}=2
$$

whereas for $r=1$, the orders are as follows

$$
\delta_{K}=2, \widetilde{\delta}_{K}=4 \quad \text { and } \quad \delta_{S}=4
$$

The numerical outcomes are reported in Tables 1-4.
C. Allouch / Filomat 38:6 (2024), 2157-2176

n	$\left\\|x_{n}^{K}-x_{0}\right\\|_{\infty}$	δ_{K}	$\left\\|\widetilde{x}_{n}^{K}-x_{0}\right\\|_{\infty}$	$\bar{\delta}_{K}$	$\left\\|x_{n}^{S}-x_{0}\right\\|_{\infty}$	δ_{S}
2	3.66×10^{-1}	-	4.79×10^{-2}	-	1.77×10^{-2}	-
4	2.61×10^{-1}	0.49	1.02×10^{-2}	2.22	1.02×10^{-2}	1.93
8	1.53×10^{-1}	0.77	2.53×10^{-3}	2.02	2.73×10^{-3}	1.93
16	8.20×10^{-2}	0.90	6.55×10^{-4}	1.95	7.31×10^{-4}	2.01
32	4.23×10^{-2}	0.95	1.61×10^{-4}	2.02	1.80×10^{-4}	2.01
64	2.15×10^{-2}	0.98	3.99×10^{-5}	2.01	4.61×10^{-5}	2.00
Table 1: Orthogonal projection $(r=0)$						

n	$\left\\|x_{n}^{K}-x_{0}\right\\|_{\infty}$	δ_{K}	$\left\\|\widetilde{x}_{n}^{K}-x_{0}\right\\|_{\infty}$	$\widetilde{\delta}_{K}$	$\left\\|x_{n}^{S}-x_{0}\right\\|_{\infty}$	δ_{S}
2	4.35×10^{-1}	-	2.28×10^{-2}	-	7.52×10^{-3}	-
4	2.81×10^{-1}	0.63	6.45×10^{-3}	2.13	3.67×10^{-3}	1.04
8	1.58×10^{-1}	0.83	1.61×10^{-3}	2.00	1.29×10^{-3}	1.50
16	8.33×10^{-2}	0.92	3.97×10^{-4}	2.02	3.59×10^{-4}	1.85
32	4.27×10^{-2}	0.96	9.83×10^{-5}	2.01	9.20×10^{-5}	1.96
64	2.16×10^{-2}	0.98	2.47×10^{-5}	1.99	2.31×10^{-5}	1.99

Table 2: Interpolatory projection ($r=0$)

Figure 1 presents, for the purpose of completeness, error graphs for each of the different approaches when n is equal to 2 .

Figure 1: For $r=0$, we give on the left, the errors of the approximations for Example 1 produced by Kantorovich, iterated Kantorovich and projection-type methods for both the orthogonal and the interpolatory projections. On the right, we display the corresponding errors to the case where $r=1$.

Even though the errors in the infinity norm are essentially identical in the iterated Kantorovich and projectiontype methods, for both the orthogonal and the interpolatory projections, we notice that the graphical behavior of the errors differs.

n	$\left\\|x_{n}^{K}-x_{0}\right\\|_{\infty}$	δ_{K}	$\left\\|\widetilde{x}_{n}^{K}-x_{0}\right\\|_{\infty}$	$\widetilde{\delta}_{K}$	$\left\\|x_{n}^{S}-x_{0}\right\\|_{\infty}$	δ_{S}
2	1.33×10^{-1}	-	3.91×10^{-3}	-	8.04×10^{-3}	-
4	4.04×10^{-2}	1.73	3.88×10^{-4}	3.33	1.49×10^{-3}	3.09
8	1.07×10^{-2}	1.92	4.41×10^{-5}	3.71	1.03×10^{-4}	3.42
16	2.67×10^{-3}	2.00	3.08×10^{-6}	3.84	6.64×10^{-6}	3.66
32	6.32×10^{-4}	1.08	1.97×10^{-7}	3.96	4.02×10^{-7}	4.06

[^1]| n | $\left\\|x_{n}^{K}-x_{0}\right\\|_{\infty}$ | δ_{K} | $\left\\|\widetilde{x}_{n}^{K}-x_{0}\right\\|_{\infty}$ | $\widetilde{\delta}_{K}$ | $\left\\|x_{n}^{S}-x_{0}\right\\|_{\infty}$ | δ_{S} | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 1.42×10^{-1} | - | 3.83×10^{-3} | - | 1.66×10^{-2} | - | |
| 4 | 4.13×10^{-2} | 1.79 | 4.01×10^{-4} | 3.26 | 1.48×10^{-3} | 3.49 | |
| 8 | 1.07×10^{-2} | 1.95 | 2.31×10^{-5} | 4.11 | 9.64×10^{-5} | 3.94 | |
| 16 | 2.67×10^{-3} | 2.00 | 1.93×10^{-6} | 3.58 | 5.31×10^{-6} | 4.18 | |
| 32 | 6.61×10^{-4} | 2.01 | 1.22×10^{-7} | 3.99 | 2.90×10^{-7} | 4.20 | |
| Table 4: Interpolatory projection $(r=1)$ | | | | | | | |

From Tables 1-4, it can be seen that the computed orders of convergence match with the theoretical ones. To emphasize the difference between various methods, we compare in Figure 2 the CPU time (in seconds) required to obtain the approximate solutions for different values of n.

The iterated Kantorovich approach is slightly slower than the projection-type method, as can be seen. In addition, given the two approaches, the interpolatory projection requires fewer arithmetic operations than the orthogonal projection.

Example 2. The following second example

$$
x(s)-\int_{0}^{1} \kappa(s, t) \psi(t, x(t)) d t=f(s), \quad s \in[0,1]
$$

is chosen to favour the Kantorovich method over the projection-type method, in that κ is the Green kernel given by (see [1])

$$
\kappa(s, t)=\frac{1}{2(1-\sigma \eta)} \begin{cases}\left(2 s t-t^{2}\right)(1-\sigma \eta)+s^{2} t(\sigma-1), & t \leq \min \{\eta, s\} \tag{4.1}\\ s^{2}(1-\sigma \eta)+s^{2} t(\sigma-1), & s \leq t \leq \eta \\ \left(2 s t-t^{2}\right)(1-\sigma \eta)+s^{2}(\sigma \eta-t), & \eta \leq t \leq s \\ s^{2}(1-t), & \max \{\eta, s\} \leq t\end{cases}
$$

and the inhomogeneous term f is selected so that $x_{0}(t)=\left|t-\frac{1}{2}\right|^{\frac{1}{4}}$. Note that the kernel is discontinuous on the line $t=\eta$.
We choose $\sigma=2$ and $\eta=\frac{1}{3}$. For $r=0$, the expected orders of convergence in the Kantorovich method and its iterated version, are respectively, 1 and 2, whereas for Galerkin-type method the order is 1 . The expected orders for $r=1$, are respectively 2,4 and 2 .
The numerical outcomes are given in Tables 5-8.

n	$\left\\|x_{n}^{K}-x_{0}\right\\|_{\infty}$	δ_{K}	$\left\\|\widetilde{x}_{n}^{K}-x_{0}\right\\|_{\infty}$	$\widetilde{\delta}_{K}$	$\left\\|x_{n}^{S}-x_{0}\right\\|_{\infty}$	δ_{S}
2	3.41×10^{-2}	-	8.65×10^{-4}	-	1.11×10^{-2}	-
4	2.27×10^{-2}	0.59	2.71×10^{-4}	1.67	2.95×10^{-3}	1.90
8	1.30×10^{-2}	0.81	7.20×10^{-5}	1.91	7.77×10^{-4}	1.93
16	6.92×10^{-3}	0.91	1.85×10^{-5}	1.96	2.01×10^{-4}	1.95
32	3.57×10^{-3}	0.95	4.70×10^{-6}	1.97	5.16×10^{-5}	1.96
64	1.81×10^{-3}	0.98	1.20×10^{-6}	1.97	1.31×10^{-5}	1.97

Table 5: Orthogonal projection ($r=0$)

n	$\left\\|x_{n}^{K}-x_{0}\right\\|_{\infty}$	δ_{K}	$\left\\|\widetilde{x}_{n}^{K}-x_{0}\right\\|_{\infty}$	$\widetilde{\delta}_{K}$	$\left\\|x_{n}^{S}-x_{0}\right\\|_{\infty}$	δ_{S}
2	3.87×10^{-2}	-	2.29×10^{-4}	-	1.41×10^{-2}	-
4	2.42×10^{-2}	0.68	1.21×10^{-4}	0.93	4.71×10^{-3}	1.58
8	1.34×10^{-2}	0.86	3.60×10^{-5}	1.75	1.57×10^{-4}	1.58
16	7.03×10^{-3}	0.93	9.54×10^{-6}	1.91	5.28×10^{-4}	1.58
32	3.60×10^{-3}	0.97	2.47×10^{-6}	1.95	1.79×10^{-4}	1.57
64	1.82×10^{-3}	0.98	6.41×10^{-7}	1.95	6.08×10^{-5}	1.55

Table 6: Interpolatory projection ($r=0$)

Figure 3 below shows the graphs of the errors of various methods for $n=2$.

Figure 3: For $r=0$, we give on the left, the errors of the approximations for Example 2 produced by Kantorovich, iterated Kantorovich and projection-type methods for both the orthogonal and the interpolatory projections. On the right, we give the corresponding errors to the case $r=1$.

n	$\left\\|x_{n}^{K}-x_{0}\right\\|_{\infty}$	δ_{K}	$\left\\|\widetilde{x}_{n}^{K}-x_{0}\right\\|_{\infty}$	$\widetilde{\delta}_{K}$	$\left\\|x_{n}^{S}-x_{0}\right\\|_{\infty}$	δ_{S}
2	1.13×10^{-2}	-	1.68×10^{-4}	-	4.79×10^{-4}	-
4	3.29×10^{-3}	1.78	6.35×10^{-6}	4.72	8.53×10^{-5}	2.49
8	8.74×10^{-4}	1.91	7.23×10^{-7}	3.14	1.50×10^{-5}	2.51
16	2.24×10^{-4}	1.96	7.31×10^{-8}	3.30	2.60×10^{-6}	2.53
32	5.68×10^{-5}	1.98	5.07×10^{-9}	3.85	3.71×10^{-7}	2.81

Table 7: Orthogonal projection $(r=1)$

Tables 5-8, illustrate that a high accuracy is obtained by the iterated Kantorovich method even when the solution and the right hand side are only continuous.

n	$\left\\|x_{n}^{K}-x_{0}\right\\|_{\infty}$	δ_{K}	$\left\\|\widetilde{x}_{n}^{K}-x_{0}\right\\|_{\infty}$	$\widetilde{\delta}_{K}$	$\left\\|x_{n}^{S}-x_{0}\right\\|_{\infty}$	δ_{S}
2	1.20×10^{-2}	-	1.86×10^{-4}	-	1.38×10^{-3}	-
4	3.36×10^{-3}	1.83	6.75×10^{-6}	4.78	4.57×10^{-4}	1.60
8	8.82×10^{-4}	1.93	7.02×10^{-7}	3.27	1.55×10^{-4}	1.56
16	2.25×10^{-4}	1.97	5.86×10^{-8}	3.58	5.35×10^{-5}	1.53
32	5.70×10^{-5}	1.98	5.78×10^{-9}	3.34	1.87×10^{-5}	1.52
Table $8 . ~$						

When compared to the projection-type method, the iterated Kantorovich method has extremely reasonable computational costs, especially when considering the quality of the generated findings.

Conclusions

To approximatively solve the nonlinear problem (1.1), two efficient numerical approaches based on projection operators have been suggested. Both of the proposed methods for these types of kernels are novel contributions to the literature, since, unlike the standard projection method, the error estimation of the Kantorovich method depends precisely on the regularity of $K f$ instead of f, which is smoother if f has very low smoothness. Further, the Galerkin-type method which form a redefinition of the collocation-type method seems to have not been investigated before for Green's kernels. The approximate solution has been obtained at a very low computational cost and by solving a given linear system. The convergence of the methods have been proved, providing superconvergent results even when the solution is only continuous. Moreover, we have shown by some experimental results that our procedure reaches the same accuracy when the solution is sufficiently smooth. We believe that sharper estimates than those stated previously could have been provided, especially in the projection-type method.

References

[1] J. Graef, L. Kong, F. Minhós, Generalized hammerstein equations and applications, Results. Math. 294, 309-322 (2016).
[2] C. Allouch, S. Remogna, D. Sbibih, M. Tahrichi, Superconvergent methods based on quasi-interpolating operators for fredholm integral equations of the second kind, Appl. Math. Comp. 404 (2021) 126-227.
[3] C. Allouch, D. Sbibih, M. Tahrichi, Superconvergent product integration methods for Hammestein integral equations, J. Int. Eqns. Appl 31 (1), (2019) 1-28.
[4] C. Allouch, M. Arrai, M. Tahrichi, Legendre Kantorovich methods for Uryshon integral equations, Int. J. Nonlinear Anal. Appl. 13 (2022) No. 1, 143-157.
[5] C. Allouch, D. Sbibih, M. Tahrichi, Numerical solutions of weakly singular Hammerstein integral equations, J. Appl. Math. Comput. 329 (2018) 118-128.
[6] K. Atkinson, A survey of numerical methods for solving nonlinear integral equations, J. Int. Eqns. Appl. 4 (1), (1992), 15-46.
[7] K. Atkinson, F. Potra, Projection and iterated projection methods for nonlinear integral equations, SIAM J. Numer. Anal. 24 (1987) 1352-1373.
[8] K. Atkinson, F. Potra, The discrete Galerkin method for nonlinear integral equations, J. Int. Eqns. Appl. 1 (1), (2019), 17-54.
[9] D. Barrera, M. Bartoň, I. Chiarella, S. Remogna, On numerical solution of Fredholm and Hammerstein integral equations via Nyström method and Gaussian quadrature rules for splines, Appl. Numer. Math. 174 (2022) 71-88.
[10] D. Barrera, F. El Mokhtari, M. J. Ibáñez, D. Sbibih, Non uniform quasi-interpolation for solving Hammerstein integral equations Int. J. Comput. Math. 97 (2018) 1-16.
[11] F. Chatelin R. Lebbar, Superconvergence results for the iterated projection method applied to a Fredholm integral equation of the second kind and the corresponding eigenvalue problem, J. Int. Eqns. Appl 6 (1984), 71-91.
[12] R. P. Kulkarni, G. Rakshit, Discrete Modified Projection Methods for Urysohn Integral Equations with Green's Function Type Kernels, Math. Model. Anal. 25, (3), 421-440, (2020).
[13] L. Grammont, M. Ahues, F. D. D'Almeida, For nonlinear infinite dimensional equations, which to begin with: Linearization or discretization, J. Int. Eqns. Appl 26 (3) (2014), 413-436.
[14] L. Grammont, R. P. Kulkarni, T.J. Nidhin, Modified projection method for Urysohn integral equations with non-smooth kernels, J. Comp. Appl. Math 294, (2016), 309-322.
[15] R. P. Kulkarni, T.J. Nidhin, Approximate solution of Uryshon integral equations with non-smooth kernels, J. Int. Eqns. Appl 28 (2), (2016) 221-261.
[16] S. Kumar, Superconvergence of a collocation-type method for Hammerstein equations, IMA J. Numer. Anal. 7 (1987), 313-325.
[17] S. Kumar, I.H. Sloan, A new collocation-type method for Hammerstein equations, Math. Comput. 178, (1987), 585-593.
[18] A. Rane, K. Patil, G. Rakshit, Richardson extrapolation for the iterated Galerkin solution of Urysohn integral equations with Green's kernels Int. J. Comput. Math. 99, (2022), 1538-1556.
[19] E. Schock, Galerkin-like methods for equations of the second kind, J. Int. Eqns. Appl 4, 361-364 (1982).
[20] I.H. Sloan, Four variants of the Gaterkin method for Integral equations of the second kind, IMA J. Numer. Anal. 4 (1984), 9-17.
[21] F. Riesz, B. S. Nagy, Functional Analysis, Frederick Ungar Pub., New York, (1955).
[22] M. A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press, London, 1964.

[^0]: 2020 Mathematics Subject Classification. Primary 45G10; Secondary: 47H30, 45L05, 65J15, 65R20.
 Keywords. Urysohn integral equation, Projection operator, Gauss points, Kantorovich method, Projection-type method.
 Received: 12 January 2023; Revised: 19 May 2023; Accepted: 15 September 2023
 Communicated by Marko Petković
 Email address: c.allouch@ump.ac.ma (Chafik Allouch)

[^1]: Table 3: Orthogonal projection ($r=1$)

