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Abstract.
In this paper, we examine quantum contract signing protocol of Paunković, Bouda and Matheus. We

show that there is a limit function for modified probability of cheating, substantially improving results
previously obtained by the authors.

1. Introduction

Contract signing is an important topic in cryptography, which involves two parties, called Alice and
Bob, who want to exchange the commitments to a contract. But one party has to go first in sending their
commitment, giving an advantage to the other party, and hence one wants a protocol which is both fair and
viable.

A protocol is fair if either both parties get each other commitments, or none does. A protocol is viable if
it enables signing parties to get each other commitments provided they both act honestly. It can be shown
(see [2]) that it is impossible to design a fair and viable contract signing protocol, without involving a third,
trusted party (called Trent). If the third party is involved, then Alice and Bob could, for instance, send their
commitments to Trent, who would send them back in a way that ensures fairness and viability. However,
it is desirable to involve Trent only if necessary. A protocol is called optimistic, if the third, trusted party, is
involved only when one party is cheating or the communication is interrupted.

In optimistic protocols, Alice and Bob exchange messages, so that in the end both parties will end up
with signed contract. However, if there is a disruption or evidence of cheating, the parties have an option
to invoke Trent, who would then bind the contract, assuring fairness.

Some protocols are only probabilistically fair, i.e. there is a small probability of advantage to one
party. Such protocols have been designed using classical cryptography, which are both optimistic and
probabilistically fair by M.O.Rabin in [3] and Ben-Or, O. Goldreich, Silvio Micali, and R.L. Rivest in [4].

However, they rely heavily on digital signatures. In [1], a protocol was proposed in the context of
quantum information theory [5]. The idea of quantum contract signing is to use a pair of non-commuting
observables (quantum complementarity), and inherent properties of quantum mechanics, to achieve a
probabilistically fair, viable and optimistic protocol. Let us first describe this protocol.
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Let

|+⟩ =
1
√

2
(|0⟩ + |1⟩)

and

|−⟩ =
1
√

2
(|0⟩ − |1⟩)

Define

Â = 1 · |1⟩⟨1| + 0 · |0⟩⟨0|

R̂ = 1 · |+⟩⟨+| + 0 · |−⟩⟨−|

to be the corresponding accept and reject observables.
The protocol consists of three phases, initialization, exchange, and binding.

• In the initialization phase, Trent chooses, at random, N qubits, out of the set {|+⟩, |−⟩, |0⟩, |1⟩}, and sends
them to Alice, and similarly, sends randomly chosen N qubits from the same set to Bob. In addition,
Trent lets Alice know which qubits are sent to Bob, and lets Bob know which qubits are sent to Alice.
Thus, Alice has N qubits but does not know (without performing measurement) which ones she has,
while Bob knows which qubits are sent to her, and vice versa.

• In the exchange phase, Trent is not involved. If Alice wants to accept the contract, she will measure
her first qubit in the accept basis (i.e. measure obserable Â on her first qubit), and send result to Bob.
If she wants to reject the contract, she will measure R̂ instead. Then Bob reciprocates, by measuring
either accept or reject observable on his first qubit, and sends result to Alice. The process continues
until all N qubits are measured.

• Note that roughly half of the qubits sent to each Alice and Bob are in reject, and half in accept basis.
Thus, parties can note what the other party is measuring, by comparing the results sent to them on
the qubits which are in the corresponding basis, when there should be a perfect agreement with the
classical information sent by Trent. Thus, if both parties are honest and want to accept the contract,
they will note this and do not need to invoke Trent (i.e. protocol is viable). However, if they notice
that there is evidence of cheating (for instance, change in basis being measured), they have an option
to stop communication, and proceed to binding. In this case, they will have an option to try to
bind contract, by measuring all the remaining qubits in the accept basis, or refuse the contract, by
measuring all the remaining qubits in the reject basis. After that they send all of their results to Trent,
together with information about which observables they measured.

• In the binding phase, when it occurs, Trent makes the ultimate decision if the contract is binding, or
rejected/void. In order to do that, Trent will get results of the measurement on all of their qubits by
both Alice and Bob. Then he chooses, according to a predefined (by the protocol, this is something
defined in advance) probability distribution a number α between 1/2 and 1. The contract is binding
to both parties, if at least a fraction α of Alice’s qubits from accept basis are measured correctly, and
also less than α fraction of Bob’s reject qubits are measured correctly by Bob, or vice versa. If there is
evidence that Alice cheated (did not measure the basis she reported she did), only Bob’s results will
count, and similarly if Bob cheated, only Alice will be taken into account. In all other cases, contract
is declared invalid.

Paunković, Bouda and Mateus have shown that protocol is viable and proabilistically fair, and that
probability of cheating can be made arbitrarily small. They have hypothesized that as N goes to infinity,
probability of cheating goes to zero as N−1/2, but have shown this only by numerical evidence.

The probability of cheating, computed in [1], depends on the strategy of the cheating party. Namely,
out of N qubits, a number of them, say m, can be measured in the attempt to cheat, and thus strategies of



V. Božin, H. Louka / Filomat 38:6 (2024), 1915–1922 1917

cheating that they considered are indexed by a number m. For fixed N and given m, and α chosen by Trent,
probability of successful cheating is then given by:

Pch(m;α) = PR(m;α)(1 − PR(m;α)) (1)

for a given m between 0 and N, and α ∈ (0.5, 1), where PR(m;α), the expected probability to reject the
contract, is:

PR(m;α) =
N∑

NR=0

q(NR)P1(m;α,NR) (2)

Here q(NR) is the probability to have exactly NR states from the reject basis:

q(NR) = 2−N
(

N
NR

)
,

N∑
NR=0

q(NR) =
N∑

NR=0

2−N
(

N
NR

)
= 1

and P1(m;α,NR) is the probability to (be able to) reject the contract.

P1(m;α,NR) =
m′∑

n=n′
P2(n; m,NR)P3(n;α,NR) (3)

Here n′ =

m −NR if m ≥ NR

0 otherwise
, m′ =

NR if m ≥ NR

m otherwise

P2(n; m,NR) =
(
m
n

)(
N −m
NR − n

)(
N
NR

)−1

(4)

P3(n;α,NR) = 2−n
T∑

i=0

(
n
i

)
(5)

T =

n if n < (1 − α)NR

(1 − α)NR otherwise

Note that these values are of various probabilities, between 0 and 1.
Finally, if p(α) is Trent’s probability distribution for choosing α, probability of cheating for cheater

strategy indexed by m is given by

Pch(m) =
∫ 1

1/2
p(α)Pch(m;α)dα.

In [8] it was shown that parameter randomization is necessary in order for probability of cheating to go
to zero for large N. Otherwise, the cheating party can pick a value of m such that the probability of cheating
stays bounded away from zero:

Theorem 1.1. (see [8]) For any fixed α ∈ (0.5, 1) and ε < 0.25, maximum over all m between 0 and N of Pch(m;α)
will be greater than ε if N is large enough. Moreover, Pch(2(1 − α)N;α) tends to 1/4 as N goes to infinity.

On the other side, when the probability density function p is bounded, i.e. when the probability of
choosing α from any interval does not exceed some fixed constant times length of that interval, the authors
have shown in [9] that probability of cheating goes to zero as 1/

√
N, confirming the conjecture from [1].

Namely,
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Theorem 1.2. (see [9]) If the probability density function p is bounded, then there is a constant A such that
Pch(m,N) ≤ A/

√
N, where

Pch(m,N) =
∫ 1

1/2
p(α)Pch(m,N;α)dα.

This result was based on the following estimating lemma:

Lemma 1.3. (see [9]) There is a constant C such that if |m − 2(1 − α)N| > x
√

N, then Pch(m, α; N) < Ce−x2/128,
where α ∈ (1/2, 1), 0 ≤ m ≤ N.

In this paper we obtain a more precise estimate, in effect substantially improving on these previous
results. Define for 0 ≤ x ≤ 1 and a natural number N,

Qch(x,N) = Pch(⌊xN⌋,N)
√

N. (6)

Note that these functions also depend on the probability distribution according to which a parameter α is
chosen in the binding phase - we treat this probability distribution as a fixed part of the protocol, and study
how probabilities of cheating depend on number of qubits exchanged and measured.

Then we get in particular the following result:

Theorem 1.4. Suppose p : (1/2, 1) → R is a non-negative, bounded probability density function, which has only
discontinuities of first kind. Then the corresponding functions Qch(·,N) have a point-wise limit

Q(x) = lim
N→∞

Qch(x,N),

Q(x) =
1
√

4π
p̄(1 − x/2)

√
x(2 + x(1 − x)(2 − x)) (7)

where p̄(α) = p(α) at points of continuity, otherwise p̄(α) is mean of one-sided limits of p at α.

To assess the asymptotic behavior, the following formulas, coming from the normal approximation to
the binomial distribution, will be used:

(
n

⌊n/2 − l⌋

)
1

2n+1 =
e−2l2/n

√
2πn

+O(n−3/2) (8)

and (
n

⌈n/2 − l⌉

)
1

2n+1 =
e−2l2/n

√
2πn

+O(n−3/2) (9)

These well known estimates can be also be obtained from the Stirling expansion formula (see, for
instance [7]).

We also recall the Hoeffding’s inequalities (see [6]):

2−n
∑

0≤i≤n(1/2−ε)

(
n
i

)
≤ e−2ε2n (10)

and

2−n
∑

0≤i≤n(1/2+ε)

(
n
i

)
≥ 1 − e−2ε2n (11)
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2. Limit Function

In this section, we will give a proof of Theorem 1.4.

Proof. Suppose that p is a bounded probability density function with discontinuities only of first kind, and
let d > 0 be some number. Using Lemma 1.3, we have (extending p to be 0 to define it on all real numbers,
if necessary):

Pch(m; N)
√

N =
√

N
∫ 1

1/2
p(α)Pch(m, α; N)dα

=
√

N
∫ 1−m/2N+d/

√
N

1−m/2N−d/
√

N
p(α)Pch(m, α; N)dα +O

( ∫ ∞

d
e−y2/128dy

)
=
√

N
∫ 1−m/2N+d/

√
N

1−m/2N−d/
√

N
p(α)Pch(m, α; N)dα + o(1)

where the the error terms are uniform as d goes to infinity by Lemma 1.3.
Suppose x = m/N, and use change of variables so thatα(t) = 1−x/2+t/

√
N, which gives that dα = dt/

√
N,

we get

Pch(m; N)
√

N =
∫ d

−d
p(α(t))Pch(m, α(t); N)dt + o(1)

To compute our limit, we will let d be large, and then compute limit as N goes to infinity, treating our
limit essentially as a repeated limit.

Set α = α(t). The probability to cheat is given by:

Pch(m;α) = PR(m;α)(1 − PR(m;α)) (12)

Thus we are interested in PR(xN; 1 − x/2 + t/
√

N) = QR(x, t,N). We will compute limit of this function
as N goes to infinity. Note that estimates we will use do not change if we change x by θ/N with |θ| < 1, so
when evaluating QR(x, t,N) we will take m = ⌊xN⌋without loss of generality.

For convenience of the estimates, we will introduce a number c, and assume N ≫ c2; we may think
of our limit as a repeated limit of PR, limc→∞ limN→∞ PR, or of its estimates (which may in fact depend on c) .

From Hoeffding inequalities (10, 11) we see, regardless of m, that as c goes to infinity:

PR(m;α) =
∑

N
2 −c
√

N<NR< N
2 +c
√

N

q(NR)P1

(
m;α,NR

)
+ o(1) (13)

Note that in the formula (3), for our chosen value of m = xN, value m/2 will be between n′ and m′, when
N
2 − c

√
N < NR < N

2 + c
√

N, for fixed c if N is large enough.
Note also that if m

2 − 3c
√

N < n < m
2 + 3c

√
N , we can substitute m

2 − q
√

m < n < m
2 + q

√
m , with q

proportional toc as N goes to infinity, and the whole interval will be between n′ and m′ for fixed c if N is
large enough, so

P1(m;α,NR) =
∑

m
2 −q
√

m<n< m
2 +q
√

m

P2(n; m,NR)P3(n;α,NR) (14)

+
∑

n′≤n≤ m
2 −q
√

m

P2(n; m,NR)P3(n;α,NR) (15)

+
∑

m
2 +q
√

m≤n≤m′

P2(n; m,NR)P3(n;α,NR) (16)
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We will again prove that the last two sums are o(1). Recall that

P2(n; m,NR) =
(
m
n

)(
N −m
NR − n

)(
N
NR

)−1

(17)

Hence,
m∑

n=0

P2(n; m,NR) = 1, as a probability distribution, corresponding to probabilities that among the

NR uniformly chosen different natural numbers from 1 to N there are exactly n no larger than m. Also P3 is
between 0 and 1, so we will estimate tails of the distribution P2.

Note that in the last two sums of (16), |n−m/2| ≥ 3c
√

N, and moreover, since other values of NR are part
of o(1) terms in (13), N

2 − c
√

N < NR < N
2 + c

√
N.

From this it follows that(
m
n

)(
N
NR

)−1

≤

(
m

m/2

)(
N

N/2 − c
√

N

)−1

= (2m/
√

m)
(
2N(e−2c2

/
√

N)
)−1(

1 +O(1/N)
)

= 2m−N
(
e2c2

√
N
m

)(
1 +O(1/N)

)
= 2m−NO(e2c2

)

Using (8) and (10), we get

m′∑
n= m

2 +q
√

m

P2(n; m,NR)P3(n;α,NR) ≤
m′∑

n= m
2 +q
√

m

P2(n; m,NR)

= O(e2c2
) · 2−(N−m)

m′∑
n= m

2 +3c
√

N

(
N −m
NR − n

)

= O(e2c2
) · 2−(N−m)

N−m
2 −2c

√
N∑

k=0

(
N −m

k

)
= O(e2c2

) · e−8c2 N
N−m = o(1)

as c goes to infinity, where we applied the Hoeffding’s inequality to get the last line.
Similarly, we get

m
2 −q
√

m∑
n=n′

P2(n; m,NR)P3(n;α,NR) ≤

m
2 −q
√

m∑
n=n′

P2(n; m,NR)

= O(e2c2
) · 2−(N−m)

m
2 −3c

√
N∑

n=n′

(
N −m
NR − n

)

= O(e2c2
) · 2−(N−m)

N−m∑
k≥ N−m

2 +2c
√

N

(
N −m

k

)
= O(e2c2

) · e−8c2 N
N−m = o(1).

Moreover, from these calculations we see that∑
m
2 −q
√

m<n< m
2 +q
√

m

P2(n; m,NR) = 1 + o(1).
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Let us estimate P3(n;α,NR), for fixed c but as N goes to infinity, under restrictions on NR and n, namely,
N
2 − c

√
N < NR < N

2 + c
√

N and m
2 − q

√
m < n < m

2 + q
√

m, as we only consider first sums in (13) and (16).
Let NR =

N
2 + r

√
N and n = m

2 + s
√

m = m
2 + s

√
x
√

N
We will again use normal approximation to binomial distribution, i.e. as N goes to infinity (c, on which

restrictions depend, is fixed), we have:

P3(n; m,NR) = 2−n
T∑

i=0

(
n
i

)
=

1
2

(
1 + erf(y)

)
+ o(1),

where erf(y) = 2
√
π

∫ y

0 e−u2 du, and under our restrictions on NR and n, T = ⌈(1 − α)NR⌉,with the correspond-

ing value y =
T
n −

1
2

1
2
√

n

√
2
=

2T − n
√

2n
= r
√

x − t/
√

x − s + o(1).

Thus, we get as N goes to infinity,

P3(n; m,NR) = 2−n
T∑

i=0

(
n
i

)
=

1
2

(
1 + erf(r

√
x − t/

√
x − s)

)
+ o(1).

Similarly, using (8) we get

P2(n; m,NR) =

√
2e−2s2/xe−2(r−s

√
x)2/(1−x)√

x(1 − x)πNe−2r2
(1 + o(1))

and

q(NR) =
2e−2r2

(1 + o(1))
√

2πN
.

Now, passing from sums to integrals, and taking limit as N tends to infinity, we see that there is

lim
N→∞

QR(x, t,N) = QR(x, t),

where

QR(x, t) =
∫
∞

−∞

∫
∞

−∞

drds
1
π

e−2s2/xe−2(r−s
√

x)2/(1−x)√
x(1 − x)

(
1 + erf(r

√
x − t/

√
x − s)

)
,

QR(x, t) = 1/2 +
∫
∞

−∞

∫
∞

−∞

drds
1
π

e−2s2/xe−2(r−s
√

x)2/(1−x)√
x(1 − x)

erf(r
√

x − t/
√

x − s).

Using a table integral ∫
∞

−∞

e−x2/cerf(ax + b)dx =
√

cπ erf(b/
√

1 + ca2)

(which can be obtained for instance using Fourier transform), we compute∫
∞

−∞

∫
∞

−∞

drds
1
π

e−2s2/xe−2(r−s
√

x)2/(1−x)√
x(1 − x)

erf (r
√

x − t/
√

x − s)

=

∫
∞

−∞

ds
e−2s2/x

√
2πx

erf
(−t/

√
x − s(1 − x)√

1 + x(1 − x)/2

)
=

1
2

erf
( −t√

x(1 + x(1 − x)(2 − x)/2)

)
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Finally, we get, using that erf is odd, and
∫
∞

0 (1 − erf2(x))dx =
√

2/π

Q(x) = p+
∫
∞

0
QR(x, t)(1 −QR(x, t))dt + p−

∫ 0

−∞

QR(x, t)(1 −QR(x, t))dt

=
p̄
2

∫
∞

0
dt

(
1 − erf 2

( t√
x(1 + x(1 − x)(2 − x)/2)

))
= p̄

√
x(2 + x(1 − x)(2 − x))

2
√
π

where p+ = limα→(1−x/2)+ p(α) and p− = limα→(1−x/2)− p(α), and p̄ = (p+ + p−)/2. So we have obtained

Q(x) =
1
√

4π
p̄(1 − x/2)

√
x(2 + x(1 − x)(2 − x)) (18)

as claimed.

Now note that if we set x = 2(1 − α) then√
x(2 + x(1 − x)(2 − x)) = 2

√

1 − 3α + 8α2 − 10α3 + 4α4,

so if we set C =
∫ 1

1/2 dα/(2
√

1 − 3α + 8α2 − 10α3 + 4α4), C = 0.673673 . . . , then the optimal probability distri-
bution on interval (1/2, 1) is obtained with the following probability density function:

p0(α) =
1

2C
√

1 − 3α + 8α2 − 10α3 + 4α4
,

for which
Q0 = 1/(2C

√
π) = 0.41874 . . .

is the optimal (sharp) lower bound for supremum of Q(x) over x ∈ (0, 1). The bound is attained if Trent uses
p0, and on the other hand we have

Corollary 2.1. For any bounded probability density function p on (1/2, 1) with discontinuities only of first kind,
there is x ∈ (0, 1) such that

Q(x) ≥ Q0,

where Q(x) is given by expression (18).

From this it follows that no strategy of Trent for choosing α in the binding phase can beat the choice
according to p0, namely

Corollary 2.2. For any constant C < Q0 and sufficiently large N,

max
m

Pch(m,N) >
C
√

N
.
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