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Additive maps preserving inner inverses on B(X)
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Abstract. Let B(X) be the algebra of all bounded linear operators on a complex Banach space X. In this
paper, we determine the structures of all additive surjective maps on B(X) preserving inner inverses in
both directions.

1. Introduction and Notations

Over the last few decades there has been a considerable interest in the so-called linear preserver problems.
One of the most famous problems in this direction is Kaplansky’s conjecture [7] asking whether every unital
linear surjective map between two semi-simple Banach algebras which preserves invertibility is a Jordan
homomorphism. For more details on linear preserver problems, we refer the reader to [3, 5, 8] and the
references therein. As we know, generalized inverse is a very important concept in operator theory(cf.[1,
4, 6]). Therefore, a lot of studies have been done on the subject of linear or additive preserver problems
with respect to different kinds of generalized inverses. In [9], the authors initiated the study of linear
maps preserving generalized invertibility. It has been shown that such maps preserve the ideal of compact
operators in both directions and their induced maps on the Calkin algebra are Jordan automorphisms.
Then a remarkable improvement was achieved in [10]. By reducing the condition of linearity, Boudi [2]
characterized additive maps preserving strongly generalized inverses. We note that inner inverse is an
elementary notion in generalized inverse theory. That is, letA be an algebra and a, b ∈ A. If aba = a, then
b is an inner inverse of a. Of course, if b is a generalized inverse of a described in [2] or in [9, 10], then b is
an inner inverse of a. Motivated by those discussions, we characterize additive surjective maps preserving
inner inverses in both directions.

Let X be a complex Banach space, B(X) the algebra of all bounded linear operators on X and F (X) the
ideal of all finite rank operators. For an operator T ∈ B(X), write ker(T) for its kernel, ran(T) for its range
and T∗ for its adjoint on the topological dual spaceX∗. For every nonzero x ∈ X and f ∈ X∗, the symbol x⊗ f
stands for the rank-one bounded linear operators defined by (x ⊗ f )z = f (z)x for all z ∈ X. Note that every
operator of rank one can be written in this form. The operator x ⊗ f is an idempotent if and only if f (x) = 1
and x ⊗ f is a nilpotent if and only if f (x) = 0. The set of all idempotents in B(X) will be denoted by P(X).
Recall that P,Q ∈ P(X) are orthogonal if PQ = QP = 0 and P ≤ Q if PQ = QP = P. As usual, we denote
respectively by C andQ the complex number field and the rational number field. Without any confusion, I
denotes the identity operator on any Banach space.
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Let A,B ∈ B(X). If ABA = A, then we say that B is an inner inverse of A. We say that a map
φ : B(X)→ B(X) preserves inner inverses in both directions if

φ(A)φ(B)φ(A) = φ(A)⇔ ABA = A

for all A,B ∈ B(X). In this paper, we will characterize an additive surjective map φ on B(X) preserving
inner inverses in both directions.

2. Main results

Letφ be an additive map onB(X). We completely determine all forms of maps preserving inner inverses
in both directions on B(X).

Theorem 2.1 Let X be an infinite dimensional complex Banach space and φ : B(X) → B(X) an additive surjective
map. Then φ preserves inner inverses in both directions if and only if there exist a scalar α ∈ {1,−1} and either a
bijective bounded linear, or conjugate linear operator A : X → X such that

φ(T) = αATA−1 for all T ∈ B(X);

or a bijective bounded linear, or conjugate linear operator B : X∗ → X such that

φ(T) = αBT∗B−1 for all T ∈ B(X).

In the second case, X must be a reflexive Banach space.

Let n > 1 and let Mn(C) be the algebra of all complex n × n matrices. For any ring isomorphism τ on C
and T = (ti j) ∈Mn(C), we define Tτ = (τ(ti j)) and Ttr = (t ji).

Theorem 2.2 Let φ : Mn(C) → Mn(C) be an additive surjective map. Then φ preserves inner inverses in both
directions if and only if there exist an invertible matrix A ∈ Mn(C) and a ring automorphism τ : C → C such that
either φ(T) = αATτA−1 for all T = (ti j) ∈Mn(C) or φ(T) = αATtr

τ A−1 for all T = (ti j) ∈Mn(C), where α = ±1.

In order to prove Theorems 2.1 and 2.2, we need some lemmas firstly. In the sequel, we assume that
φ : B(X)→ B(X) is an additive surjective map preserving inner inverses in both directions.

Lemma 2.3. φ is injective.

Proof. We firstly prove that φ(I) , 0. Assume on the contrary that φ(I) = 0. By the surjectivity of φ, there
exists a nonzero operator S ∈ B(X) such that φ(S) = I. Note that I3 = I. Thus φ(S)3 = φ(S), which implies
that S3 = S. Note that every additive map is Q − linear. It easily follows that φ(S + rI) = I for all r ∈ Q,
and then φ(S + rI)3 = φ(S + rI). This shows that (S + rI)3 = S + rI. By a simple calculation, we can get
Ir2 + 3Sr + (3S2

− I) = 0 for all r ∈ Q, a contradiction.
Next we will prove that φ is injective. Suppose on the contrary that there exists T , 0 such that φ(T) = 0.

Then φ(I + rT) = φ(I) for all r ∈ Q. It follows from φ(I)3 = φ(I) that φ(I + rT)3 = φ(I + rT). This implies that
(I + rT)3 = I + rT. Therefore, T = 0 by the arbitrariness of r. This is a contradiction. Thus φ is injective.

Lemma 2.3 ensures that φ is bijective and so φ−1 satisfies the same properties as φ. In the following
lemma, we denote by σ(A) the spectrum of A ∈ B(X).

Lemma 2.4. φ(I) = I or φ(I) = −I.

Proof. We may assume thatφ(A) = I by the surjectivity ofφ. Since A3 = A, by the spectral mapping theorem,
we get that σ(A) ⊆ {0,−1, 1}. We claim that 0 < σ(A). If 0 ∈ σ(A) and let f be the characteristic function of
{0}, then f is analytic on a neighborhood of σ(A). Put P = f (A). It follows from the Riesz functional calculus
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that P , 0, P2 = P and PA = AP = 0.Note that P(rA+P)P = P for all r ∈ Q. Then φ(P)(rI+φ(P))φ(P) = φ(P).
Since φ(P)3 = φ(P), we have φ(P) = 0. But φ is injective by Lemma 2.3, a contradiction.

It now follows that σ(A) ⊆ {−1, 1}. If σ(A) = {−1} or σ(A) = {1}, we can see that A = −I or A = I. If
σ(A) = {1,−1} and put f1 and f−1 are characteristic functions of {1} and {−1} respectively, then both f1(A) and
f−1(A) are nonzero idempotents such that X = f1(A)X+̇ f−1(A)X and A = f1(A)A+̇ f−1(A)A = A1+̇A2. Note
that σ(A1) = {1} and σ(A2) = {−1}. It easily follows that A1 = I on f1(A)X as well as A2 = −I on f−1(A)X since
A3

1 = A1 as well as A3
2 = A2. For every nonzero operator T0 ∈ B( f−1(A)X, f1(A)X) and r ∈ Q, put

AT =

(
I rT0
0 −I

)
= A + rT,

where T =
(

0 T0
0 0

)
. It is clear that A3

T = AT, that is, (I + rφ(T))3 = I + rφ(T). It can be obtained by simple

calculation that φ(T) = 0. This contradicts with the injectivity of φ. Therefore, φ(I) = I or φ(I) = −I.

Without loss of generality, we next assume that φ(I) = I. It is easy to check that φ preserves idempotents
in both directions. Furthermore, We will show that φ preserves rank-one idempotents in both directions.

Lemma 2.5. φ preserves rank-one idempotents and their orthogonality in both directions.

Proof. First, we will prove that φ preserves rank-one idempotents in both directions. Let P = x ⊗ f be an
idempotent. Then Q = φ(P) is an idempotent. Suppose on the contrary that Q has rank greater than one.
Then there exist two rank-one idempotents Q1,Q2 such that Q1,Q2 ≤ Q and Q1Q2 = Q2Q1 = 0. Obviously,
QiQQi = Qi for i = 1, 2. Thus we have

φ−1(Qi)Pφ−1(Qi) = φ−1(Qi).

This means that φ−1(Qi) is an idempotent of rank one. Then we can assume that φ−1(Qi) = xi ⊗ fi, i = 1, 2,
where fi(xi) = 1. Observe that

(xi ⊗ fi)(x ⊗ f )(xi ⊗ fi) = xi ⊗ fi,

we get that fi(x) f (xi) = 1, that is, fi(x) , 0 and f (xi) , 0.
On the other hand, it is clear that Q1(Q1 + rQ2)Q1 = Q1 for every r ∈ Q. Then

φ−1(Q1)(φ−1(Q1) + rφ−1(Q2))φ−1(Q1) = φ−1(Q1).

By calculation we have φ−1(Q1)φ−1(Q2)φ−1(Q1) = 0, that is, (x1 ⊗ f1)(x2 ⊗ f2)(x1 ⊗ f1) = 0. Hence f1(x2) = 0
or f2(x1) = 0. We may assume that f1(x2) = 0 (the case that f2(x1) = 0 can be considered in a similar way).

Note that Q1 +Q2 ≤ Q. Then we have (Q1 +Q2)Q(Q1 +Q2) = Q1 +Q2. Thus

(φ−1(Q1) + φ−1(Q2))φ−1(Q)(φ−1(Q1) + φ−1(Q2)) = φ−1(Q1) + φ−1(Q2).

Since φ−1(Qi)φ−1(Q)φ−1(Qi) = φ−1(Qi) for i = 1, 2, we have

φ−1(Q2)φ−1(Q)φ−1(Q1) + φ−1(Q1)φ−1(Q)φ−1(Q2) = 0,

and then
f2(x) f (x1)x2 ⊗ f1 + f1(x) f (x2)x1 ⊗ f2 = 0.

Note that f2(x) f (x1) , 0 and f1(x) f (x2) , 0. Then x2 ⊗ f1 and x1 ⊗ f2 are linearly dependent. If x1 and x2 are
linearly dependent, then f1(x1) = 0. If f1 and f2 are linearly dependent, then f2(x2) = 0. This contradicts
with the fact that x1 ⊗ f1 and x2 ⊗ f2 are idempotents.

It is elementary that φ preserves the orthogonality of rank-one idempotents in both directions.
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For a subset S ⊆ X, the symbol
∨

S stands for the closed subspace spanned by S, and let S⊥ = { f ∈ X∗ :
f (x) = 0, ∀x ∈ S}. For a subset M ⊆ X∗, let M⊥ = {x ∈ X : f (x) = 0, ∀ f ∈M}.

Lemma 2.6. φ preserves linear spans of idempotents of rank one.

Proof. Let x0 ⊗ f0 be an idempotent. let λ ∈ C. Put S = φ(λx0 ⊗ f0) and φ(x0 ⊗ f0) = y0 ⊗ 10 with 10(y0) = 1.
It suffices to show that there exists µ ∈ C such that S = µ(y0 ⊗ 10). We will complete the proof by two steps.

Step 1. ran(S) ⊆
∨
{y0}.

Let 1 ∈ {y0}
⊥ and take any nonzero y ∈ X. We consider the following two cases. If 1(y) , 0, then we

may assume without loss of generality that 1(y) = 1. Put x⊗ f = φ−1(y⊗ 1). It follows from Lemma 2.5 that
x ⊗ f is an idempotent. We claim that Sy ∈ ker(1). Indeed, since 1(y0) = 0, we easily get

(y ⊗ 1)(y ⊗ 1 + y0 ⊗ 10)(y ⊗ 1) = y ⊗ 1.

Then
(x ⊗ f )(x ⊗ f + x0 ⊗ f0)(x ⊗ f ) = x ⊗ f ,

which implies that (x ⊗ f )(x0 ⊗ f0)(x ⊗ f ) = 0. It implies that

(x ⊗ f )(x ⊗ f + λx0 ⊗ f0)(x ⊗ f ) = x ⊗ f .

Thus
(y ⊗ 1)(y ⊗ 1 + S)(y ⊗ 1) = y ⊗ 1.

This means that (y ⊗ 1)S(y ⊗ 1) = 0. That is, 1(Sy) = 0.
If 1(y) = 0, we can find y1 ∈ X such that 1(y1) = 1. Thus 1(y1 + y) = 1. By the first case we obtain that

Sy1 ∈ ker(1) and S(y1 + y) ∈ ker(1). Hence Sy ∈ ker(1).
Therefore, by the choice of 1we have Sy ∈

∨
{y0} for every y ∈ X, that is, ran(S) ⊆

∨
{y0}.

Step 2. ran(S∗) ⊆
∨
{10}.

Let z ∈ {10}⊥ and take any nonzero h ∈ X∗. Similar to Step 1, we can easily get S∗h ∈
∨
{10} for every

h ∈ X∗. Thus ran(S) ⊆
∨
{10}.

Therefore, S = µ(y0 ⊗ 10) for some scalar µ ∈ C. Then φ preserves linear spans of idempotents of rank
one.

Lemma 2.7. φ maps rank-one nilpotents to nilpotents of rank at most two.

Proof. Taking any x⊗ f with f (x) = 0. Then we can find 1 ∈ X∗ such that 1(x) = 1. Thus x⊗1+rx⊗ f = x⊗(1+r f )
is an idempotent of rank one for every r ∈ Q. Set A = φ(x ⊗ 1), B = φ(x ⊗ f ). By Lemma 2.5, both A and
A + rB are idempotents of rank one. Since A2 = A and (A + rB)2 = A + rB, by calculation we get that B2 = 0
and B = AB + BA. This implies that B is a nilpotent of rank at most two.

It is well-known that every operator of rank one is either a scalar multiple of an idempotent or a square-
zero operator. By Lemmas 2.5, 2.6 and 2.7, we infer that φ maps F (X) onto itself.

Proof of Theorem 2.1.

Proof. According to [11, Main Theorem], there exist a scalar α ∈ {1,−1} and either
(i) there exists a bijective bounded linear, or conjugate linear operator A : X → X such thatφ(F) = αAFA−1

for all F ∈ F (X); or
(ii) there exists a bijective bounded linear, or conjugate linear operator B : X∗ → X such that φ(F) =

αBF∗B−1 for all F ∈ B(X). In this case, Xmust be a reflexive Banach space.
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Assume that φ satisfies (i). For any T ∈ B(X), let

ψ(T) = αA−1φ(T)A.

Clearly, ψ satisfies the same properties as φ. Furthermore, ψ(F) = F for all finite rank operators F. It suffices
to show that ψ(T) = T for all T ∈ B(X). Let x ∈ X. We will prove the result in the following two cases.

Case 1. Tx , 0.

For any f ∈ X∗, we claim that ⟨Tx, f ⟩ = 1 if and only if ⟨ψ(T)x, f ⟩ = 1. Indeed, if ⟨Tx, f ⟩ = 1, then
(x ⊗ f )T(x ⊗ f ) = x ⊗ f and thus ψ(x ⊗ f )ψ(T)ψ(x ⊗ f ) = ψ(x ⊗ f ). This means that (x ⊗ f )ψ(T)(x ⊗ f ) = x ⊗ f ,
that is, ⟨ψ(T)x, f ⟩ = 1. The converse can be in a similar way. Take an f ∈ X∗ such that ⟨Tx, f ⟩ = 1. For
every 1 ∈ {Tx}⊥, we easily get⟨Tx, f + 1⟩ = 1. Thus ⟨ψ(T)x, f ⟩ = 1 and ⟨ψ(T)x, f + 1⟩ = 1, which implies that
⟨ψ(T)x, 1⟩ = 0. It now follows that ψ(T)x ∈ ker(1) for every 1 ∈ {Tx}⊥. Hence ψ(T)x ∈

∨
{Tx}. This means

that ψ(T)x and Tx are linearly dependent. Therefore, ψ(T)x = λTx for some nonzero scalar λ ∈ C. Note that
(x ⊗ f )T(x ⊗ f ) = x ⊗ f implies that (x ⊗ f )ψ(T)(x ⊗ f ) = x ⊗ f by the assumption on ψ. It entails that λ = 1,
that is, ψ(T)x = Tx.

Case 2. Tx = 0.

Take any y ∈ X with Ty , 0. Then ψ(T)x + ψ(T)y = ψ(T)(x + y) = T(x + y) = Ty = ψ(T)y. Then
ψ(T)x = 0 = Tx. Thus we have ψ(T) = T. Therefore φ(T) = αATA−1 for all T ∈ B(X). If φ satisfies (ii), then
put φ(T) = αB−1φ(T)B, we get in a similar way that φ(T) = T for all T ∈ B(X). Hence φ(T) = αBT∗B−1 for all
T ∈ B(X).

The proof of Theorem 2.2 follows from Lemma 2.6 and [11, Theorem 4.5].
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