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Abstract. In this work, we start by introducing a general methodology to generate new relay fusion
frames from given ones, namely the Spatial Complement Method, and analyze the relationships between
the parameters of the original and the new relay fusion frame. We then present another simple approach
to obtain relay fusion frames by considering fusion frames for its components. An explicit characterization
concerning the existence of Parseval relay fusion frame consisting of two initial subspaces is given. More-
over, we obtain a necessary and sufficient condition under which the spatial complements of alternate dual
relay fusion frames remain to be alternate dual relay fusion frames. Some results about Bessel relay fusion
sequences are included. Finally, several examples are also given.

1. Introduction and preliminaries

Throughout the present paper, I, J and K will denote generic countable (or finite) index sets. Let H
and K (resp. Ki, i ∈ I) be separable complex Hilbert spaces and let B(H ,K ) (resp. B(H ,Ki), i ∈ I) be the
space of all the bounded linear operators from H to K (resp. Ki, i ∈ I). If H = K we write B(H). For an
operator T ∈ B(H ,K ), ran T denotes the range of T, ker T the nullspace of T, T∗ ∈ B(K ,H) the adjoint of T.
We use IH (resp. IK ) to denote the identity operator onH (resp. K ). If W ⊆ H and V ⊆ K are two closed
subspaces, we let πW ∈ B(H) and τV ∈ B(K ) denote the orthogonal projections onto the subspaces W and
V, respectively. In particular, we use the notation {Wi}i∈I ⊏ H to represent a family of closed subspaces
{Wi}i∈I of a Hilbert spaceH , for the sake of brevity.

Frames are generalizations of orthonormal bases in Hilbert spaces. A frame as well as an orthonormal
basis allows each element in the underlying Hilbert space to be written as an unconditionally convergent
infinite linear combination of the frame elements; however, in contrast to the situation for a basis, the
coefficient might not be unique. Nice properties of frames make them very useful in characterization of
function spaces and other fields of applications such as sigma-delta quantization [2], filter bank theory [3],
signal and image processing [5] and wireless communications [13]. The formal definition is as follows.

Definition 1.1. A system F = { fi}i∈I of elements inH is a f rame forH if there exist constants α, β > 0 such that

α∥ f ∥2 ⩽
∑
i∈I

|⟨ f , fi⟩|2 ⩽ β∥ f ∥2, ∀ f ∈ H . (1)
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Fusion frames were introduced in [6] (under the name f rames o f subspaces) and further developed in
[7], and have quickly become a major tool in the implementation of distributed systems. One of the main
applications of fusion frames is to sensor networks [8]. It can be regarded as a frame-like collection of
subspaces in a Hilbert space, which clearly generalizes classical vector frames. The precise definition is as
follows.

Definition 1.2. Let {Wi}i∈I ⊏ H and let {wi}i∈I ∈ ℓ∞(I) such that wi > 0 for every i ∈ I. The pair {(Wi,wi)}i∈I is a
f usion f rame forH if there exist numbers 0 < α ⩽ β < ∞ which satisfy that

α∥ f ∥2 ⩽
∑
i∈I

w2
i ∥πWi ( f )∥2 ⩽ β∥ f ∥2, ∀ f ∈ H .

In this case we say that {(Wi,wi)}i∈I is an (α, β)-fusion frame.

In [17], Sun introduced a generalization of frames, called the 1- f rames, and showed that g-frames include
the frames and fusion frames mentioned above and proved that g-frames share many useful properties
with frames. However, the generality of this notion is not suitable for modeling distributed processing.

Definition 1.3. A sequence {Λi ∈ B(H ,Ki) : i ∈ I} is called a 1- f rame for H with respect to {Ki : i ∈ I} if there
exist two positive constants α and β such that

α∥ f ∥2 ⩽
∑
i∈I

∥Λi( f )∥2 ⩽ β∥ f ∥2, ∀ f ∈ H .

In this case we say that {Λi ∈ B(H ,Ki) : i ∈ I} is an (α, β)-g-frame.

Non-orthogonal fusion frames as another generalization of fusion frames introduced in [10] in order to
achieve sparsity of the fusion frame operator. The basic observation in [10] is that replacing orthogonal
projections in the original definition of fusion frames by non-orthogonal projections onto the same subspaces
can result in a fusion frame operator which is much sparser. Recall that a non-orthogonal projection onto a
closed subspace V of a Hilbert spaceH is a linear mapping PV fromH onto V which satisfies P2

V = PV.

Definition 1.4. Let {Vi}i∈I ⊏ H and let {vi}i∈I be a family of positive weighting scalers. We say {(PVi , vi)}i∈I is a
non-ortho1onal f usion f rame forH if there exist constants 0 < α ⩽ β < ∞ which satisfy that

α∥ f ∥2 ⩽
∑
i∈I

v2
i ∥PVi ( f )∥2 ⩽ β∥ f ∥2, ∀ f ∈ H ,

In [14], the authors introduced the idea of r-fusion frames and showed that this includes more other
cases of generalizations of frames concept and proved that many basic properties can be derived within
this more general context. As r-fusion frame is an extension of fusion frame, it is more suitable for
applications requiring three-stage (local-relay-global) signal/data analysis, which is mainly used in areas
requiring distributed relay processing [15]. We now make the formal definition of the objects that we shall
be studying.

Definition 1.5. Let {Wi}i∈I ⊏ H and let {Vi j} j∈Ji ⊏ Ki for each i ∈ I. Let {vi j}i∈I, j∈Ji be a family of positive weights
and Ti ∈ B(H ,Ki) for all i ∈ I. Then the quadruple {(Wi,Vi j,Ti, vi j)}i∈I, j∈Ji (denoted by R for short) is said to be a
relay f usion f rame, or simply r- f usion f rame, if there exist constants 0 < α ⩽ β < ∞ such that

α∥ f ∥2 ⩽
∑

i∈I, j∈Ji

v2
i j∥τVi j TiπWi ( f )∥2 ⩽ β∥ f ∥2, ∀ f ∈ H . (2)

In this case we say that R is an (α, β)-r-fusion frame.
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The numbers α and β are called lower and upper r- f usion f rame bounds. We callR a Parseval r-fusion frame
if α = β = 1. An α-ti1ht r-fusion frame provided that α = β. If R satisfies the second inequality in (2), then it
is said to be a Bessel r- f usion sequence inH with Bessel r-fusion bound β. The operators Ti, spaces Ki, i ∈ I
are called relay operators and relay spaces, respectively. Moreover, if { f : τVi j TiπWi ( f ) = 0, i ∈ I, j ∈ Ji} = {0},
then we say that R is r-complete.

One easily verifies that, in view of the given definitions, frames, fusion frames, non-orthogonal fusion
frames and g-frames are all special cases of this notion. As well as vector frames, there are some bounded
operators associated to an r-fusion frame. First, we set the Hilbert space Rℓ2 :=

⊕
i∈I, j∈Ji

Vi j (endowed with
the ℓ2 norm) and we define the analysis operator TR : H 7→ Rℓ2 and the synthesis operator T∗

R
: Rℓ2 7→ H of R

by

TR( f ) =
{
vi jτVi j TiπWi ( f )

}
i∈I, j∈Ji

, ∀ f ∈ H ,

T∗
R

( f ) =
∑

i∈I, j∈Ji

vi jπWi T
∗

i fi j, f = { fi j}i∈I, j∈Ji ∈ Rℓ2 .

By composing TR and T∗
R

, we obtain the r- f usion f rame operator SR for R defined by

SR( f ) = T∗
R

TR( f ) =
∑

i∈I, j∈Ji

v2
i jπWi T

∗

iτVi j TiπWi ( f ), ∀ f ∈ H .

The r-fusion frame operators exhibit important properties similar to those of the frame operators. For
example, if R is an r-fusion frame with frame bounds α and β, then the frame operator for R is a bounded,
positive, self-adjoint, invertible operator onH with αIH ⩽ SR ⩽ βIH .

To summarize, r-fusion frame is a new signal representation method that uses collections of relay
subspaces instead of vectors to represent signals. Such a representation provides significant flexility
compared to classical frame representations. The rich structure of the r-fusion frames framework allows us
to capture more complicated signal modes, which in practical terms adds new aspects to the frame theory.
Nevertheless, as mentioned in [15], the theory of the r-fusion frame is far from fully developed, and we
hope that this work can stimulate the research on this interesting subject.

The present paper is organized as follows. In Sect.2, we give some methods to obtain r-fusion frames
and present new types of r-fusion frames in Hilbert spaces. Owing to the fact that the relay operators
are involved, several known results can be derived from our results by proper choices of operators and
parameters. We first introduce a general way, namely the Spatial Complement Method, to generate new
r-fusion frames from existing ones and analyze the connections between the parameters of the original and
the new r-fusion frame. Motivated by the idea of spatial complements, we define relay spatial complements
and dual spatial complements, and derive some related results. Some of the remarks are also customized
about the relationships among them. We then obtain new r-fusion frames by considering fusion frames for
its components. Moreover, an explicit characterization of Parseval r-fusion frame consisting of two initial
subspaces is given. We also show that under some conditions r-fusion frames are stable, which will play an
important role in studying r-fusion frames for Hilbert spaces. The main purpose of Sect.3 is to investigate
Bessel r-fusion sequences and alternate dual r-fusion frames. The condition that the spatial complements
of alternate dual r-fusion frames to be again alternate dual r-fusion frames is determined, and it is applied
to fusion frames. Some results about Bessel r-fusion sequences are obtained. Finally, several concrete
examples are also given.

2. Construction of new r-fusion frames

In this section, we first present a general way, namely the Spatial Complement Method, for constructing
a new r-fusion frame from a given r-fusion frame and establish the relationship between the parameters of
the two r-fusion frames. This idea was first developed in [9] for constructing tight fusion frames with given
parameters, and later refined in [4]. It seems to be a natural method to generate a new r-fusion frame from
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a given r-fusion frame. We begin by defining the notion of spatial complement r-fusion frame for a given
r-fusion frame. Since the case of multi-relay space is similar (just with a more involved notation), we only
consider the situation of single relay space.

Definition 2.1. Let {(Wi,Vi,T, vi)}i∈I be an r-fusion frame for H . Then we call the family {(W⊥

i ,Vi,T, vi)}i∈I the
spatial complement to {(Wi,Vi,T, vi)}i∈I, if {(W⊥

i ,Vi,T, vi)}i∈I is also an r-fusion frame, where W⊥

i is the orthogonal
complement of Wi.

It is readily to see that a “dual” relation also holds in this case, that is, {(Wi,Vi,T, vi)}i∈I is also a spatial
complement for {(W⊥

i ,Vi,T, vi)}i∈I. In what follows, given an r-fusion frame, we will implicitly assume that
the r-fusion frame bounds are optimal and attainable, i.e. there exist elements of initial Hilbert space H
such that equal signs can occur in r-fusion frame inequality (2). Armed with the Definition 2.1, we can now
state and prove our first result.

Theorem 2.2. Let relay operator T : H 7→ K be an isometry such that {(Wi,K ,T, vi)}i∈I is an (α, β)-r-fusion frame
forH with

∑
i∈I

v2
i < ∞. Then the following conditions are equivalent.

(i)
⋂
i∈I

Wi = {0}.

(ii) β <
∑
i∈I

v2
i .

(iii) The family {(W⊥

i ,K ,T, vi)}i∈I is a
( ∑

i∈I
v2

i − β,
∑
i∈I

v2
i − α

)
-r-fusion frame.

Proof. (i)⇒ (ii): By supposition, for any f ∈ H , we have∑
i∈I

v2
i ∥τKTπWi ( f )∥2 ⩽

∑
i∈I

v2
i ∥ f ∥2.

Duo to β is optimal, this implies that

β ⩽
∑
i∈I

v2
i . (3)

We claim that equality sign holds precisely in inequality (3) if and only if
⋂
i∈I

Wi , {0}.

“⇒” Assume that β =
∑
i∈I

v2
i . By using the r-fusion frame property, this yields that there exists some f ∈ H

so that

β∥ f ∥2 =
∑
i∈I

v2
i ∥τKTπWi ( f )∥2 =

∑
i∈I

v2
i ∥πWi ( f )∥2 =

∑
i∈I

v2
i ∥ f ∥2,

which implies that

f ∈
⋂
i∈I

Wi , {0}.

“⇐” Obvious.
(ii)⇒ (iii): We start from the inequality

αIH ⩽
∑
i∈I

v2
i πWi T

∗τKTπWi =
∑
i∈I

v2
i πWi ⩽ βIH ,

from which we deduce that(∑
i∈I

v2
i − β

)
IH ⩽

∑
i∈I

v2
i (IH − πWi ) ⩽

(∑
i∈I

v2
i − α

)
IH .
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Exploiting the fact that
∑
i∈I

v2
i > β, we conclude that

{(W⊥

i ,K ,T, vi)}i∈I = {(IH − πWi )H ,K ,T, vi)}i∈I

is a
( ∑

i∈I
v2

i − β,
∑
i∈I

v2
i − α

)
-r-fusion frame.

(iii)⇒ (i): From [15, Theorem 2.12], we know that a necessary condition for a setting to be an r-fusion
frame is that the initial subspaces can span the whole ambient space H . Assume that (i) is false and we
shall obtain a contradiction. If there exists a vector 0 , f ∈

⋂
i∈I

Wi, then f⊥W⊥

i for all i ∈ I, and therefore,

{W⊥

i }i∈I does not spanH . This is a contradiction to (iii).

We point out here that the hidden assumption that the optimal r-fusion frame bounds can be reached
cannot be removed, since there may not be any element in the ambient Hilbert space H found that make
the equal signs in the r-fusion frame inequality (2) true, cf. [11, Proposition 5.4.4].

In case relay operator T is merely a bounded operator, we have the following weak result.

Theorem 2.3. Let T ∈ B(H ,K ) such that {(Wi,K ,T, vi)}i∈I is an (α, β)-r-fusion frame forH . If there exist constants
λ, µ > β so that

µ∥ f ∥2 ⩽
∑
i∈I

v2
i ∥T( f )∥2 ⩽ λ∥ f ∥2, ∀ f ∈ H , (4)

then the family {(W⊥

i ,K ,T, vi)}i∈I is a
(
(
√
µ −
√
β)2, (

√
λ +
√
β)2
)
-r-fusion frame.

Proof. Assume that {(Wi,K ,T, vi)}i∈I is an (α, β)-r-fusion frame for H . Let f be an arbitrary element of H .
Observe that(∑

i∈I

v2
i ∥τKTπW⊥

i
( f )∥2

) 1
2

=
(∑

i∈I

v2
i ∥T(IH − πWi )( f )∥2

) 1
2

.

By the triangle inequality, we have(∑
i∈I

v2
i ∥T(IH − πWi )( f )∥2

) 1
2

⩾
(∑

i∈I

v2
i ∥T( f )∥2

) 1
2

−

(∑
i∈I

v2
i ∥τKTπWi ( f )∥2

) 1
2

We see from (4) that(∑
i∈I

v2
i ∥T( f )∥2

) 1
2

−

(∑
i∈I

v2
i ∥τKTπWi ( f )∥2

) 1
2

⩾ (
√
µ −
√
β)∥ f ∥.

Hence(∑
i∈I

v2
i ∥τKTπW⊥

i
( f )∥2

) 1
2

⩾ (
√
µ −
√
β)∥ f ∥.

Similarly we can prove that(∑
i∈I

v2
i ∥τKTπW⊥

i
( f )∥2

) 1
2

⩽ (
√

λ +
√
β)∥ f ∥.
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More generally, we have

Theorem 2.4. Let T ∈ B(H ,K ) such that {(Wi,Vi,T, vi)}i∈I is an (α, β)-r-fusion frame forH . If there exist constants
λ, µ > β so that

µ∥ f ∥2 ⩽
∑
i∈I

v2
i ∥τVi T( f )∥2 ⩽ λ∥ f ∥2, ∀ f ∈ H , (5)

then the family {(W⊥

i ,Vi,T, vi)}i∈I is a
(
(
√
µ −
√
β)2, (

√
λ +
√
β)2
)
-r-fusion frame.

The following theorem shows that the parameters of the new r-fusion frame can be determined from
those of the generating fusion frame prior to the construction.

Theorem 2.5. Let T : H 7→ K be an isometry such that {(Wi,K ,T, vi)}i∈I is an r-fusion frame for H with
the associated spatial complement {(W⊥

i ,K ,T, vi)}i∈I. Let SR denote the frame operator for {(Wi,K ,T, vi)}i∈I with
eigenvectors {x j} j∈J and respective eigenvalues {ξ j} j∈J. Then the r-fusion frame operator for {(W⊥

i ,K ,T, vi)}i∈I possesses

the same eigenvectors {x j} j∈J and respective eigenvalues
{∑

i∈I
v2

i − ξ j

}
j∈J

.

Proof. By hypothesis, we obtain that∑
i∈I

v2
i πWi T

∗τKTπWi (x j) =
∑
i∈I

v2
i πWi (x j) = ξ jx j, ∀ j ∈ J.

Hence,∑
i∈I

v2
i (IH − πWi )(x j) =

(∑
i∈I

v2
i − ξ j

)
x j,

as claimed.

Theorem 2.6. Let T : H 7→ K be an isometry such that {(Wi,K ,T, vi)}i∈I is an α-tight r-fusion frame forH , not all

of whose subspaces equalH . Then {(W⊥

i ,K ,T, vi)}i∈I is a
( ∑

i∈I
v2

i − α
)
-tight r-fusion frame.

Proof. Let f ∈ H . Then we have∑
i∈I

v2
i ∥τKTπW⊥

i
( f )∥2 =

∑
i∈I

v2
i ∥πW⊥

i
( f )∥2

=
∑
i∈I

v2
i ∥(IH − πWi )( f )∥2

=
∑
i∈I

v2
i (∥ f ∥2 − ∥πWi ( f )∥2)

=
( ∑

i∈I
v2

i − α
)
∥ f ∥2.

It is readily verified that
∑
i∈I

v2
i − α = 0 if and only if all initial subspaces {Wi}i∈I equalH . Therefore we have

α <
∑
i∈I

v2
i , and the application of Theorem 2.2 proves the claim.

The next two propositions extend (or refine) Theorem 3.9 and Theorem 3.12 of [14]. First we state a
useful lemma for our discussion.

Lemma 2.7. ([12]) Let A ∈ B(H) and V ⊆ H be a closed subspace. Then

πVA∗ = πVA∗πAV.
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Proposition 2.8. Let {(Wi,Vi,Ti, vi)}i∈I be an r-fusion frame for H and A ∈ B(H ,K ) be an invertible operator.
Then {(Wi,AVi,AτVi Ti, vi)}i∈I is an r-fusion frame forH .

Proof. Suppose that {(Wi,Vi,Ti, vi)}i∈I is an r-fusion frame with frame bounds α and β. We first prove the
upper frame bound for {(Wi,AVi,AτVi Ti, vi)}i∈I. For each f ∈ H, we have∑

i∈I
v2

i ∥τAVi AτVi TiπWi ( f )∥2 =
∑
i∈I

v2
i ∥AτVi TiπWi ( f )∥2

⩽ β∥A∥2∥ f ∥2.

Now we find a lower frame bound for {(Wi,AVi,AτVi Ti, vi)}i∈I. Let f ∈ H. Observe that∑
i∈I

v2
i ∥τAVi AτVi TiπWi ( f )∥2 =

∑
i∈I

v2
i ∥AτVi TiπWi ( f )∥2

⩾
∑
i∈I

v2
i

1
∥A−1∥2

∥τVi TiπWi ( f )∥2

⩾ α
∥A−1∥2

∥ f ∥2.

This proves the claim.

Proposition 2.9. Let {(Wi,Vi,Ti, vi)}i∈I be an r-fusion frame for H and A ∈ B(H) be an invertible operator. Then
{(AWi,Vi,TiπWi A, vi)}i∈I is an r-fusion frame forH .

Proof. For all f ∈ H, we have∑
i∈I

v2
i ∥τVi TiπWi AπAWi ( f )∥2 =

∑
i∈I

v2
i ∥τVi TiπWi A( f )∥2

⩽ β∥A∥2∥ f ∥2.

Now we obtain a lower bound for {(AWi,Vi,TiπWi A, vi)}i∈I. Let f ∈ H, we compute∑
i∈I

v2
i ∥τVi TiπWi AπAWi ( f )∥2 =

∑
i∈I

v2
i ∥τVi TiπWi A( f )∥2

⩾ α
∥A−1∥2

∥ f ∥2.

The conclusion follows.

Example 2.10. Let {(Wi,Vi,Ti, vi)}i∈I be an r-fusion frame forH with the associated spatial complement {(W⊥

i ,Vi,Ti, vi)}i∈I.
Let F be a frame for relay Hilbert space K . Denote SF the frame operators for frame F . Let Ṽi = S−1

F
Vi and

T̃i = S−1
F
τVi Ti. It follows from Theorem 2.8, both {(Wi, Ṽi, T̃i, vi)}i∈I and {(W⊥

i , Ṽi, T̃i, vi)}i∈I are r-fusion frames for
H . Note that in the case of single relay space, local relay dual and global relay dual of relay fusion frames are the
same, see Section 3.2 of [14] for further details. Similarly, let Ŵ⊥

i = S−1
R

W⊥

i and T̂i = TiπW⊥

i
S−1
R

, where SR is the

frame operator for {(W⊥

i ,Vi,Ti, vi)}i∈I. Via Theorem 2.9, {(Ŵ⊥

i ,Vi, T̂i, vi)}i∈I, j∈Ji is also an r-fusion frame forH .

Inspired by the idea of spatial complements, we now define relay spatial complements.

Definition 2.11. Let {(Wi,Vi,T, vi)}i∈I be an r-fusion frame for H . Then we call the family {(Wi,V⊥i ,T, vi)}i∈I
the relay spatial complement to {(Wi,Vi,T, vi)}i∈I, if {(Wi,V⊥i ,T, vi)}i∈I is also an r-fusion frame, where V⊥i is the
orthogonal complement of Vi.

The following theorem is a relay space version of Theorem 2.12 in [15], and will be used in the proof of
Theorem 2.13.

Theorem 2.12. Let relay operator T : H 7→ K be a surjective such that {(H ,Vi,T, vi)}i∈I is an r-fusion frame forH .
Then span{

⋃
i∈IVi} = K .
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Proof. Since {(H ,Vi,T, vi)}i∈I is an r-fusion frame for H , by Theorem 2.14 of [15], we know that T is also a
injective fromH toK . Now assume that span{

⋃
i∈I Vi} , K . Then there exists 0 , h ∈ (span{

⋃
i∈I Vi})⊥ ⊆ K ,

such that τVi (h) = 0 for every i ∈ I. Since T : H 7→ K is a surjective, there exists 0 , f ∈ H so that h = T( f ).
It follows that τVi TπH ( f ) = 0 for each i ∈ I, which contradicts with the assumption that {(H ,Vi,T, vi)}i∈I is
an r-fusion frame forH . Thus we conclude that span{

⋃
i∈I Vi} = K .

The following theorem is analogous to Theorem 2.2, which shows that the properties of relay spatial
complements are similar to those of spatial complements.

Theorem 2.13. Let relay operator T : H 7→ K be a unitary such that {(H ,Vi,T, vi)}i∈I is an (α, β)-r-fusion frame
forH with

∑
i∈I

v2
i < ∞. Then the following conditions are equivalent.

(i)
⋂
i∈I

Vi = {0}.

(ii) β <
∑
i∈I

v2
i .

(iii) The family {(K ,V⊥i ,T, vi)}i∈I is a
( ∑

i∈I
v2

i − β,
∑
i∈I

v2
i − α

)
-r-fusion frame.

Proof. Let us follow the strategy used in the proof of Theorem 2.2.
(i)⇒ (ii): By assumption, for every f ∈ H , we have∑

i∈I

v2
i ∥τVi T( f )∥2 ⩽

∑
i∈I

v2
i ∥ f ∥2.

It follows that

β ⩽
∑
i∈I

v2
i .

Write 1 = T( f ). It is plain to observe that equality sign holds in the above inequality if and only if

1 ∈

⋂
i∈I

Vi , {0}.

(ii)⇒ (iii): Since

αIH ⩽
∑
i∈I

v2
i T∗τVi T ⩽ βIH ,

we have(∑
i∈I

v2
i − β

)
IH ⩽

∑
i∈I

v2
i T∗(IK − τVi )T ⩽

(∑
i∈I

v2
i − α

)
IH .

Applying the fact that
∑
i∈I

v2
i > β, this yields that

{(H ,V⊥i .T, vi)}i∈I = {(H , (IK − τVi )K ,T, vi)}i∈I

is a
( ∑

i∈I
v2

i − β,
∑
i∈I

v2
i − α

)
-r-fusion frame.

(iii) ⇒ (i): Assume the opposite, i.e. there exists a vector 0 , h ∈
⋂
i∈I

Vi, then h⊥V⊥i for all i ∈ I, and

therefore, {V⊥i }i∈I does not spanK . Via Theorem 2.12, this is a contradiction to (iii).
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Remark 2.14. We remark here that there also exist relay spatial complement versions of Theorem 2.3, 2.4, 2.5, 2.6,
which are similar and the proofs carrying over with small changes. To simplify the description, we omit them. It should
be noted that not all properties of the initial subspaces can be directly transferred to the relay subspaces. For instance,
the Theorem 2.12 may fail if relay operator T is not a surjective. Recall that there are no additional requirements for
relay operators for properties similar to the initial subspaces, cf. [15, Theorem 2.12].

In view of the notions of spatial complements and relay spatial complements, it is naturally to define
dual spatial complements.

Definition 2.15. Let {(Wi,Vi,T, vi)}i∈I be an r-fusion frame for H . Then we call the family {(W⊥

i ,V
⊥

i ,T, vi)}i∈I
the dual spatial complement to {(Wi,Vi,T, vi)}i∈I, if {(W⊥

i ,V
⊥

i ,T, vi)}i∈I is also an r-fusion frame, where W⊥

i is the
orthogonal complement of Wi and V⊥i is the orthogonal complement of Vi.

Remark 2.16. In light of the definition of dual spatial complements, one can consider the dual spatial complement as
a spatial complement of the relay space complement of a given r-fusion frame. Likewise, the dual spatial complement
can also be regarded as relay spatial complement of spatial complement of a given r-fusion frame. Provided that each
of them can form an r-fusion frame for environmental spaceH . For this reason, the connections between them can be
studied in a way that mimics the previous work of the present paper. We omit the details.

Before proceeding, we now provide the following elementary observations between the frames, fusion
frames, non-orthogonal fusion frames, g-frames and r-fusion frames, which can help us to better understand
the r-fusion frame settings.

Theorem 2.17. With the notation defined as in Section 1.

(i) Let {ei jk}k∈Ki j be an orthonormal basis for the subspaces Vi j for each i ∈ I, j ∈ Ji. Then {vi jπWi T∗i ei jk}i∈I, j∈Ji,k∈Ki j

is a frame forH if and only if {(Wi,Vi j,Ti, vi j)}i∈I, j∈Ji is an r-fusion frame forH .
(ii) {(Wi,wi)}i∈I is a fusion frame forH if and only if {(H ,Wi, πWi ,wi)}i∈I is an r-fusion frame forH .

(iii) {Λi ∈ B(H ,Ki) : i ∈ I} is a g-frame for H with respect to {Ki : i ∈ I} if and only if {(H ,Ki,Λi, 1)}i∈I is an
r-fusion frame forH .

(iv) {(PVi , vi)}i∈I is a non-orthogonal fusion frame forH if and only if {(H ,Vi,PVi , vi)}i∈I is an r-fusion frame forH .

Proof. Statement (i) can be found in [14, Theorem 4.1]. For statements (ii)-(iv), it is easy to observe the
relationships from the given definitions.

In what follows, we introduce another simple technique to obtain relay fusion frames. As defined in
[16], we consider a (λi, µi)-g-frame {Λi j ∈ B(Ki,Vi j) : j ∈ Ji} for each Ki in a g-frame {Λi ∈ B(H ,Ki) : i ∈ I},
such that

0 < λ = infλi ⩽ supµi = µ < ∞.

In this case we say that {Λi j ∈ B(Ki,Vi j) : j ∈ Ji} is (λ, µ)-bounded for all i ∈ I.
The following result is a generalization of Theorem 2.2 of [16].

Theorem 2.18. Let Si ∈ B(H), i ∈ I and Ti ∈ B(H ,Ki), i ∈ I. Let {Λi j ∈ B(Ki,Vi j) : j ∈ Ji} be a (λi, µi)-g-frame
for eachKi and suppose that they are (λ, µ)-bounded. Then the following conditions are equivalent.

(i) {TiSi ∈ B(H ,Ki) : i ∈ I} is a g-frame forH with respect to {Ki : i ∈ I}.
(ii) {Λi jTiSi ∈ B(H ,Vi j) : i ∈ I, j ∈ Ji} is a g-frame forH with respect to {Vi j : i ∈ I, j ∈ Ji}.

Proof. To obtain the second statement from the first, let us assume that {TiSi ∈ B(H ,Ki) : i ∈ I} is an
(α, β)-g-frame forH with respect to {Ki : i ∈ I}. Then for all f ∈ H we have∑

i∈I, j∈Ji

∥Λi jTiSi( f )∥2 ⩽
∑
i∈I

µi∥TiSi( f )∥2 ⩽ βµ∥ f ∥2.
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Also we have∑
i∈I, j∈Ji

∥Λi jTiSi( f )∥2 ⩾
∑
i∈I

λi∥TiSi( f )∥2 ⩾ αλ∥ f ∥2.

To derive the first statement from the second, assume that {Λi jTiSi ∈ B(H ,Vi j) : i ∈ I, j ∈ Ji} is an
(α, β)-g-frame forH with respect to {Vi j : i ∈ I, j ∈ Ji}. Since TiSi( f ) ∈ Ki for each f ∈ H , we have∑

i∈I

∥TiSi( f )∥2 ⩽
∑
i∈I

1
λi

∑
j∈Ji

∥Λi jTiSi( f )∥2 ⩽
β

λ
∥ f ∥2.

Also ∑
i∈I

∥TiSi( f )∥2 ⩾
∑
i∈I

1
µi

∑
j∈Ji

∥Λi jTiSi( f )∥2 ⩾
α
µ
∥ f ∥2.

This implies the first statement of the theorem.

Now we consider (non-orthogonal) fusion frames instead of (λi, µi)-g-frames and we have the following
corollary.

Corollary 2.19. Let {Wi}i∈I ⊏ H and Ti ∈ B(H ,Ki), i ∈ I. Let {(Vi j, vi j)}i∈I, j∈Ji be a (λi, µi)-(non-orthogonal) fusion
frame for eachKi and suppose that they are (λ, µ)-bounded. Then the following conditions are equivalent.

(i) {TiπWi ∈ B(H ,Ki) : i ∈ I} is a g-frame forH with respect to {Ki : i ∈ I}.
(ii) {(Wi,Vi j,Ti, vi j)}i∈I, j∈Ji is a (non-orthogonal) r-fusion frame forH .

Moreover, if {(Vi j, vi j)}i∈I, j∈Ji is a Parseval fusion frame forKi for all i ∈ I, then g-frame bound for {TiπWi ∈ B(H ,Ki) :
i ∈ I} and r-fusion frame bound for {(Wi,Vi j,Ti, vi j)}i∈I, j∈Ji are the same.

Proof. To prove this corollary, just mimic the proof of the Theorem 2.18.

Theorem 2.20. Let {(Wi,wi)}i∈I be an (α, β)-fusion frame for H and {(PVi j , vi j)}i∈I, j∈Ji be a (λi, µi)-non-orthogonal
fusion frame for each Wi which are (λ, µ)-bounded. Then {(PVi jπWi , vi jwi)}i∈I, j∈Ji is an (αλ, βµ)-non-orthogonal fusion
frame forH .

Proof. We first note that

PVi jπWi PVi jπWi = PVi jπWi .

Therefore, PVi jπWi is a non-orthogonal projection fromH onto Vi j for each i ∈ I, j ∈ Ji. Let f be an arbitrary
element ofH . Then we have∑

i∈I, j∈Ji

∥∥∥vi jwiPVi jπWi ( f )
∥∥∥2 ⩾∑

i∈I

λi

∥∥∥wiπWi ( f )
∥∥∥2 ⩾ λ∑

i∈I

w2
i

∥∥∥πWi ( f )
∥∥∥2 ⩾ αλ∥ f ∥2.

Similarly we can prove that∑
i∈I, j∈Ji

∥∥∥vi jwiPVi jπWi ( f )
∥∥∥2 ⩽ βµ∥ f ∥2.

The following theorem now gives an explicit characterization concerning the existence of Parseval r-
fusion frame consisting of two initial subspaces, which also indicates how to construct such special Parseval
r-fusion frame. For a characterization of general Parseval r-fusion frame we refer to [15, Theorem 2.15].
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Theorem 2.21. Let W1,W2 be closed non-trivial subspaces of H and V1,V2 be closed non-trivial subspaces of K .
Suppose that T1 : W1 7→ V1, T2 : W2 7→ V2 are unitary operators and v1, v2 > 0. The following conditions are
equivalent.

(i) {(W1,V1,T1, v1), (W2,V2,T2, v2)} is a Parseval r-fusion frame forH .
(ii) Either we have V1 ⊥ V2 and v1 = v2 = 1 or we have W1 =W2 = H and v2

1 + v2
2 = 1.

Proof. (i)⇒ (ii): First we assume that W2 , H . Fix some 1 ⊥W2. Then, by (i),

∥1∥2 = v2
1∥τV1 T1πW1 (1)∥2 + v2

2∥τV2 T2πW2 (1)∥2

= v2
1∥πW1 (1)∥2 + v2

2∥πW2 (1)∥2

= v2
1∥πW1 (1)∥2

⩽ v2
1∥1∥

2,

hence v2
1 ⩾ 1. On the other hand for all f ∈W1, we have

∥ f ∥2 = v2
1∥τV1 T1πW1 ( f )∥2 + v2

2∥τV2 T2πW2 ( f )∥2

= v2
1∥ f ∥2 + v2

2∥πW2 ( f )∥2

⩾ v2
1∥ f ∥2.

This implies v2
1 ⩽ 1 and therefore v1 = 1. Now for all f ∈W1,

∥ f ∥2 = ∥ f ∥2 + v2
2∥πW2 ( f )∥2.

This shows that W1 ⊥W2 and V1 ⊥ V2 follows immediately. Now v2 = 1 follows from

∥ f ∥2 = ∥(πW1 + πW2 ) f ∥2 = ∥πW1 ( f )∥2 + v2
2∥πW2 ( f )∥2,∀ f ∈ H .

If W2 = H , towards a contradiction assume that W1 , H . Fix 1 ⊥W1. Then

∥1∥2 = v2
1∥πW1 (1)∥2 + v2

2∥πW2 (1)∥2 = v2
2∥1∥

2,

hence v2
2 = 1. Now for 1 ∈W1, we obtain

∥1∥2 = v2
1∥πW1 (1)∥2 + v2

2∥πW2 (1)∥2 = (v2
1 + 1)∥1∥2.

But this can only be true if v1 = 0, a contradiction. Thus W1 = H . Now for all f ∈ H ,

∥ f ∥2 = v2
1∥ f ∥2 + v2

2∥πW2 ( f )∥2 = (v2
1 + v2

2)∥ f ∥2,

so v2
1 + v2

2 = 1.
(ii)⇒ (i): This is obvious.

The following proposition is an r-fusion frame version of a result due to Asgari and Khosravi [1, Theorem
2.8].

Proposition 2.22. Let {Mi}i∈I ⊏ H , Si ∈ B(H ,Ki), {Ui j} j∈Ji ⊏ Ki for each i ∈ I such that {(Mi,Ui j,Si,ui j)}i∈I, j∈Ji is
r-complete and let {(Wi,Vi j,Ti, vi j)}i∈I, j∈Ji be an (α, β)-r-fusion frame. IfΨ : H 7→ H define by

Ψ( f ) =
∑

i∈I, j∈Ji

(u2
i jπMi S

∗

iτUi j SiπMi − v2
i jπWi T

∗

iτVi j TiπWi )( f )

is a compact operator, then {(Mi,Ui j,Si,ui j)}i∈I, j∈Ji is an r-fusion frame.
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Proof. Let Φ : H 7→ H be an operator defined by Φ = SR +Ψ. SinceΨ is bounded and self-adjoint, a simple
computation shows that Φ is a bounded and self-adjoint operator. Now for all f ∈ H we have

∥Φ( f )∥ = ∥SR( f ) +Ψ( f )∥ ⩽ (β + ∥Ψ∥)∥ f ∥.

Hence∑
i∈I, j∈Ji

u2
i j∥τUi j SiπMi ( f )∥2 = ⟨Φ( f ), f ⟩ ⩽ (β + ∥Ψ∥)∥ f ∥2. (6)

On the other hand, sinceΨ is a compact operator,ΨS−1
R

is also a compact operator onH . ThusΦ has closed
range. Now we show that Φ is injective. If f ∈ H and Φ( f ) = 0, then∑

i∈I, j∈Ji

u2
i j∥τUi j SiπMi ( f )∥2 = ⟨Φ( f ), f ⟩ = 0.

Hence ui jτUi j SiπMi ( f ) = 0 for each i ∈ I, j ∈ Ji. Since {(Mi,Ui j,Si,ui j)}i∈I, j∈Ji is r-complete, we have f = 0.
Moreover, we have

ran Φ = (ker Φ∗)⊥ = (ker Φ)⊥ = H .

Hence Φ is surjective and thus invertible onH . Now, by using the Cauchy-Schwartz inequality and (6), we
compute

∥Φ( f )∥4 =
(〈 ∑

i∈I, j∈Ji
u2

i jπMi S∗iτUi j SiπMi ( f ),Φ( f )
〉)2

=
( ∑

i∈I, j∈Ji
u2

i j

〈
τUi j SiπMi ( f ), τUi j SiπMiΦ( f )

〉)2
⩽
( ∑

i∈I, j∈Ji
u2

i j

∥∥∥τUi j SiπMi ( f )
∥∥∥∥∥∥τUi j SiπMiΦ( f )

∥∥∥)2
⩽
( ∑

i∈I, j∈Ji
u2

i j

∥∥∥τUi j SiπMi ( f )
∥∥∥2)( ∑

i∈I, j∈Ji
u2

i j

∥∥∥τUi j SiπMiΦ( f )
∥∥∥2)

⩽ (β + ∥Ψ∥)∥Φ( f )∥2
( ∑

i∈I, j∈Ji
u2

i j

∥∥∥τUi j SiπMi ( f )
∥∥∥2).

Altogether, we obtain

∑
i∈I, j∈Ji

u2
i j∥τUi j SiπMi ( f )∥2 ⩾

∥ f ∥2

(β + ∥Ψ∥)∥Φ−1∥2
.

We close this section with the following example, which shows that sparsity of the fusion frame operator
naturally exists by applying the structure of r-fusion frames.

Example 2.23. As we know, the standard fusion frame operator SW is always non-sparse with an extremely high
probability [10]. Whereas, the effectiveness of fusion frame applications in distributed systems is reflected in the
efficiency of the end fusion process. This in turn is reflected in the efficiency of the inversion of SW, which in turn is
heavily dependent on the sparsity of SW. The lack of sparsity of SW is a significant hinderance in computing SW and
its inverse, which is necessary to apply the theory. So the central issue in the effective application of fusion frames is
to have sparsity for SW—preferably for it to be a diagonal operator. We now show that sparsity of the fusion frame
operator naturally exists by applying the structure of r-fusion frames.
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LetW = {(Wi, vi)}i∈I be a fusion frame forH . Then the fusion frame operator forW is given by

SW =
∑
i∈I

v2
i πWi .

Diagonalization of SW involves a unitary operator T such that

SR = THSWT = TH
(∑

i∈I

v2
i πWi

)
T =
∑
i∈I

v2
i TH(X̃H

i Xi)T,

where Xi and X̃i are frame matrices with columns being the frame elements {wi j} j and its dual {w̃i j} j, cf. [10, Section
6.2].

Obviously, a transformation in the form of E = XiT would have diagonalized SW. The new frame system E = XiT
will measure signal f through E = XiT( f ). This can be implemented by requiring T acts on f before sensor Xi acts
on f (which can be designed so at the sensor manufacturing stage). Concurrently, the new frame system E = XiT
has the structure of r-fusion frames. This is why r-fusion frame is a more natural tool to realize the sparsity of the
fusion frame operator. The reader should be aware that subspace transformation is not feasible under the mechanism
of standard fusion frames.

3. Bessel r-fusion sequences and alternate dual r-fusion frames

In this section, we consider two Bessel r-fusion sequences RV = {(Wi,Vi j,Ti, vi j)}i∈I, j∈Ji with Bessel bound
β1 and RU = {(Mi,Ui j,Si,ui j)}i∈I, j∈Ji with Bessel bound β2. We introduce the operator

SVU( f ) =
∑

i∈I, j∈Ji

vi jui jπWi T
∗

iτVi jτUi j SiπMi ( f ), ∀ f ∈ H .

By [14], it follows that series converges unconditionally. We have also

⟨SVU( f ), 1⟩ =
∑

i∈I, j∈Ji

vi jui j

〈
τUi j SiπMi ( f ), τVi j TiπWi (1)

〉
, ∀ f , 1 ∈ H .

By Cauchy-Schwartz inequality, we have

|⟨SVU( f ), 1⟩| ⩽
√
β1β2∥ f ∥∥1∥,

hence SVU is a bounded operator and ∥SVU∥ ⩽
√
β1β2.We also note that S∗VU = SUV and SVV = SRV , where

SRV is the frame operator for RV. We say that RU is an alternate dual for RV if we have SVU = IH . Alternate
duality is a symmetric relation, and we can say that RV and RU are alternate dual to each other.

We recall that a family of bounded operator {Ti}i∈I on a Hilbert space H is called a resolution o f the
identity onH if we have

f =
∑
i∈I

Ti( f ), ∀ f ∈ H ,

where the series converges unconditionally for all f ∈ H .

Theorem 3.1. Let RV and RU be Bessel r-fusion sequences as mentioned above. Then the following are equivalent.

(i) SVU is bounded below.
(ii) There exists an operator A ∈ B(H) such that {Bi j}i∈I, j∈Ji is a resolution of identity, where

Bi j = vi jui jAπWi T
∗

iτVi jτUi j SiπMi , i ∈ I, j ∈ Ji.
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Moreover, if one of conditions holds, then both of these Bessel r-fusion sequences are r-fusion frames.

Proof. (i)⇒ (ii): If SVU is bounded below, then there exists A ∈ B(H) such that ASVU = IH . It follows that

f =
∑

i∈I, j∈Ji

vi jui jAπWi T
∗

iτVi jτUi j SiπMi ( f ), ∀ f ∈ H .

(ii) ⇒ (i): If there exists an operator A ∈ B(H) such that {Bi j}i∈I, j∈Ji is a resolution of identity, then for
each f ∈ H we have

f =
∑

i∈I, j∈Ji

vi jui jAπWi T
∗

iτVi jτUi j SiπMi ( f ) = ASVU( f ).

Hence IH = ASVU. It follows that for all f ∈ H ,

∥SVU( f )∥ ⩾
1
∥A∥
∥ f ∥.

For the ‘Moreover’ part, we assume that SVU is bounded below, then there exists a number C > 0 such
that for every f ∈ H , ∥SVU( f )∥ ⩾ C∥ f ∥. It follows that

C∥ f ∥ ⩽ ∥SVU( f )∥

= sup
1∈H ,∥1∥=1

∣∣∣∣∣〈 ∑
i∈I, j∈Ji

vi jui jπWi T∗iτVi jτUi j SiπMi ( f ), 1
〉∣∣∣∣∣

⩽
( ∑

i∈I, j∈Ji
v2

i j

∥∥∥τVi j TiπWi (1)
∥∥∥2) 1

2
( ∑

i∈I, j∈Ji
u2

i j

∥∥∥τUi j SiπMi ( f )
∥∥∥2) 1

2

⩽
√
β1

( ∑
i∈I, j∈Ji

u2
i j

∥∥∥τUi j SiπMi ( f )
∥∥∥2) 1

2

.

Hence

C2

β1
∥ f ∥2 ⩽

∑
i∈I, j∈Ji

u2
i j

∥∥∥τUi j SiπMi ( f )
∥∥∥2.

On the other hand, since S∗VU = SUV, we can say that SUV is also bounded below. Now similar to the above
proof we have

D2

β2
∥ f ∥2 ⩽

∑
i∈I, j∈Ji

v2
i j

∥∥∥τVi j TiπWi ( f )
∥∥∥2.

Theorem 3.2. LetRV andRU be Bessel r-fusion sequences as mentioned above. Assume that there exist λ1 < 1, λ2 >
−1 such that

∥ f − SVU( f )∥ ⩽ λ1∥ f ∥ + λ2∥SVU( f )∥, ∀ f ∈ H . (7)

Then both RV and RU are r-fusion frames forH and(1 − λ1

1 + λ2

)2 1
β1
∥ f ∥2 ⩽

∑
i∈I, j∈Ji

v2
i j

∥∥∥τVi j TiπWi ( f )
∥∥∥2,

(1 − λ1

1 + λ2

)2 1
β2
∥ f ∥2 ⩽

∑
i∈I, j∈Ji

u2
i j

∥∥∥τUi j SiπMi ( f )
∥∥∥2.
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Proof. From assumptions,

∥ f ∥ − ∥SVU( f )∥ ⩽ λ1∥ f ∥ + λ2∥SVU( f )∥, ∀ f ∈ H .

It follows that

∥SVU( f )∥ ⩾
1 − λ1

1 + λ2
∥ f ∥, ∀ f ∈ H .

Now using Theorem 3.1 the conclusion follows.

Corollary 3.3. LetRV andRU be Bessel r-fusion sequences as mentioned above. Assume that there exist λ1 < 1 such
that

∥ f − SVU( f )∥ ⩽ λ1∥ f ∥, ∀ f ∈ H . (8)

Then both RV and RU are r-fusion frames forH and

(1 − λ1)2

β1
∥ f ∥2 ⩽

∑
i∈I, j∈Ji

v2
i j

∥∥∥τVi j TiπWi ( f )
∥∥∥2,

(1 − λ1)2

β2
∥ f ∥2 ⩽

∑
i∈I, j∈Ji

u2
i j

∥∥∥τUi j SiπMi ( f )
∥∥∥2.

Proof. It suffices to take λ2 = 0 in Theorem 3.2.

Theorem 3.4. Let RV be an (α, β)-r-fusion frame and let RU be a Bessel r-fusion sequence. Suppose that there exists
a number 0 < λ < α such that

∥(SUV − SRV ) f ∥ ⩽ λ∥ f ∥,∀ f ∈ H .

Then both SUV and SVU are invertible and {(Mi,Ui j,Si,ui j)}i∈I, j∈Ji is an r-fusion frame.

Proof. Let f ∈ H . Then

∥SUV( f )∥ = ∥SUV( f ) − SRV ( f ) + SRV ( f )∥ ⩾ ∥SRV ( f )∥ − ∥SUV( f ) − SRV ( f )∥ ⩾ (α − λ)∥ f ∥.

Therefore SUV is bounded below and thus injective with closed range. On the other hand, since

∥SVU − SRV∥ = ∥(SUV − SRV )∗∥ ⩽ λ,

we can infer that SVU is also injective with closed range by the above result. Hence both SVU and SUV are
invertible. Now by previous Theorem 3.1, {(Mi,Ui j,Si,ui j)}i∈I, j∈Ji is an r-fusion frame.

Let us consider the case of single relay space again. The following proposition reveals the relationship
between spatial complements of r-fusion frames that are alternate dual to each other.

Proposition 3.5. Let T,S ∈ B(H ,K ) such that {(Wi,K ,T, vi)}i∈I is an r-fusion frame for H with the associated
spatial complement {(W⊥

i ,K ,T, vi)}i∈I and {(Mi,K ,S,ui)}i∈I is another r-fusion frame for H with the associated
spatial complement {(M⊥

i ,K ,S,ui)}i∈I. If {(Mi,K ,S,ui)}i∈I is an alternate dual of {(Wi,K ,T, vi)}i∈I and
∑
i∈I

viui < ∞,

then {(M⊥

i ,K ,S,ui)}i∈I is an alternate dual of {(W⊥

i ,K , T, vi)}i∈I if and only if∑
i∈I

viuiT∗S =
∑
i∈I

viuiπWi T
∗S +
∑
i∈I

viuiT∗SπMi ,

where the series converges unconditionally.
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Proof. Suppose that {(Mi,K ,S,ui)}i∈I is an alternate dual r-fusion frame of {(Wi,K , T, vi)}i∈I. Then we have∑
i∈I

viuiπWi T
∗τKτKSπMi =

∑
i∈I

viuiπWi T
∗SπMi = IH .

Observe that∑
i∈I

viuiπW⊥

i
T∗τKτKSπM⊥i

=
∑
i∈I

viuiπW⊥

i
T∗SπM⊥i

=
∑
i∈I

viui(IH − πWi )T∗S(IH − πMi )

=
∑
i∈I

viuiT∗S −
∑
i∈I

viuiπWi T∗S −
∑
i∈I

viuiT∗SπMi +
∑
i∈I

viuiπWi T∗SπMi .

It follows that∑
i∈I

viuiπW⊥

i
T∗τKτKSπM⊥i

= IH

if and only if∑
i∈I

viuiT∗S =
∑
i∈I

viuiπWi T
∗S +
∑
i∈I

viuiT∗SπMi .

The proof is completed.

We have the following fusion frame version of Proposition 3.5 above.

Proposition 3.6. Let {(Wi, vi)}i∈I be a fusion frame for H with the associated spatial complement {(W⊥

i , vi)}i∈I and
{(Mi,ui)}i∈I be an r-fusion frame for H with the associated spatial complement {(M⊥

i ,ui)}i∈I. If {(Mi,ui)}i∈I is an
alternate dual of {(Wi, vi)}i∈I and

∑
i∈I

viui < ∞, then {(M⊥

i ,ui)}i∈I is an alternate dual of {(W⊥

i , vi)}i∈I if and only if∑
i∈I

viuiIH =
∑
i∈I

viuiπWi +
∑
i∈I

viuiπMi ,

where the series converges unconditionally.

Remark 3.7. If relay operator T : H 7→ K is an isometry such that {(Wi,K ,T, vi)}i∈I is an r-fusion frame for H
with the associated spatial complement {(W⊥

i ,K ,T, vi)}i∈I, then {(W⊥

i ,K ,T, vi)}i∈I can never be an alternate dual of
{(Wi,K ,T, vi)}i∈I. To appreciate this, we consider equation∑

i∈I

viuiπWi T
∗TπW⊥

i
= 0.

Therefore, in general, Mi cannot be taken as W⊥

i in above propositions.

Similarly, we have the following propostion.

Proposition 3.8. Let T,S ∈ B(H ,K ) such that {(H ,Vi,T, vi)}i∈I is an r-fusion frame for H with the associated
relay spatial complement {(H ,V⊥i ,T, vi)}i∈I and {(H ,Ui,S,ui)}i∈I is an r-fusion frame forH with the associated relay
spatial complement {(H ,U⊥i ,S,ui)}i∈I. If {(H ,Vi, T, vi)}i∈I is an alternate dual of {(H ,Ui,S,ui)}i∈I and

∑
i∈I

viui < ∞,

then {(H ,V⊥i , T, vi)}i∈I is an alternate dual of {(H ,U⊥i ,S,ui)}i∈I if and only if∑
i∈I

viuiT∗S =
∑
i∈I

viuiT∗(τVi + τUi )S,

where the series converges unconditionally. In particular, if T and S are invertible operators, then the statement holds
if and only if∑

i∈I

viuiIK =
∑
i∈I

viui(τVi + τUi ).
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Proof. The proof is similar to the proof of the Proposition 3.5.

We end this paper with the following examples, which provide some specific scenarios of r-fusion
frames. We refer the reader to [15] for more examples about r-fusion frames.

Example 3.9. Consider Hilbert space H := {(x1, x2, · · · , xN) : x1, x2, · · · , xN ∈ RN
}. Let {e1, e2, · · · , eN} and

{u1,u2, · · · ,uN} be two orthonormal bases ofH . Set

W1 = span{e1, e2, · · · , eN−1},W2 = span{e2, e3, · · · , eN}, · · · ,WN = span{e1, · · · , eN−2, eN},

and

V1 = span{u1,u2, · · · ,uN−1},V2 = span{u2,u3, · · · ,uN}, · · · ,VN = span{u1, · · · ,uN−2,uN}.

Define Ti : H 7→ H for any i = 1, 2, · · · ,N such that for each f ∈ H ,

T1( f ) =
N−1∑
i=1

⟨ f , ei⟩ui, T2( f ) =
N∑

i=2

⟨ f , ei⟩ui, · · · , TN( f ) =
N−2∑
i=1

⟨ f , ei⟩ui + ⟨ f , eN⟩uN.

Assume that v1 = v2 = · · · = vN = 1. Then we get

N∑
i=1

v2
i ∥τVi TiπWi ( f )∥2 =

N∑
i=1

v2
i ∥TiπWi ( f )∥2 = (N − 1)∥ f ∥2, ∀ f ∈ H . (9)

Hence, {(Wi,Vi,Ti, vi)}i∈{1,2,··· ,N} is an (N-1)-tight r-fusion frame forH .

Example 3.10. Assume that {ei}
∞

i=1 is an orthonormal basis of Hilbert spaceH and {u j}
∞

j=1 is an orthonormal basis of
Hilbert spaceK . Fix number M ∈N and define

Wi = span{e1, · · · , ei}, 1 ⩽ i ⩽M;
Wi = span{ei−M+1, · · · , ei}, i ⩾M.

Let T be an arbitrary isometry operator fromH intoK . Then {(Wi,K ,T, 1)}∞i=1 is an M-tight r-fusion frame forH .

Example 3.11. LetH and K be two separable Hilbert spaces such thatH = W1 ⊕W2 and K = V1 ⊕ V2. Here we
denote by ⊕ the direct sum of orthogonal subspaces. Let relay operator T be a unitary operator fromH ontoK so that
TW1 = V1 and TW2 = V2. Assume that v1 = v2 = 1. Then

{(Wi,Vi,T, vi)}i∈{1,2}; {(H ,Vi,T, vi)}i∈{1,2}; {(Wi,K ,T, vi)}i∈{1,2};
{(W⊥

i ,K ,T, vi)}i∈{1,2}; {(H ,V⊥i ,T, vi)}i∈{1,2}; {(W⊥

i ,V
⊥

i ,T, vi)}i∈{1,2}

are all Parseval r-fusion frames forH . Further,
(a) R-fusion frames {(W⊥

i ,K ,T, vi)}i∈{1,2} and {(Wi,K ,T, vi)}i∈{1,2} are spatial complements to each other.
(b) R-fusion frames {(H ,Vi,T, vi)}i∈{1,2} and {(H ,V⊥i ,T, vi)}i∈{1,2} are relay spatial complements to each other.
(c) R-fusion frames {(Wi,Vi,T, vi)}i∈{1,2} and {(W⊥

i ,V
⊥

i ,T, vi)}i∈{1,2} are dual spatial complements to each other.
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