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Abstract. LetA be a unital Banach algebra,M be a unitalA-bimodule, and W be a separating point ofM.
We show that if linear mappings δ and τ from A intoM satisfy δ(AB) = δ(A)B + Aτ(B) for each A,B in A
with AB =W, then τ is a Jordan derivation and δ is a generalized Jordan derivation. Based on this result, if
linear mappings δ and τ from a unital semisimple Banach algebraA into itself satisfy δ(W) = δ(A)B+Aτ(B)
for each A,B ∈ A with AB = W, then τ is a Jordan derivation and δ(A) = τ(A) + δ(I)A for every A in A.
As an application, we present a characterization of linear mappings δ and τ on a unital semisimple Banach
∗-algebraA satisfying δ(W) = δ(A)B∗ + Aτ(B)∗ for each A,B ∈ Awith AB∗ =W.

1. Introduction

LetA be a unital Banach algebra over the complex field C,M be a unitalA-bimodule, and δ be a linear
mapping fromA intoM. Recall that δ is called a derivation if δ(AB) = δ(A)B + Aδ(B) for each A,B ∈ A; δ is
called a Jordan derivation if δ(A2) = δ(A)A + Aδ(A) for each A ∈ A.

Let W be a fixed element ofA. A linear mapping δ fromA intoM is said to be a derivable mapping at W
if

δ(W) = δ(A)B + Aδ(B)

for every A,B inA with AB = W. There are a wide number of scholars investigating the conditions under
which mappings on algebras are thoroughly determined by their action on fixed products. Several previous
papers study derivable mappings at zero on various algebras [1, 9–11]. Several people consider derivable
mappings at a non-zero element under certain conditions [4, 12, 14, 16, 18].

We recall that a ∗-algebra is an algebra A equipped with an involution that is a mapping ∗ from A into
itself, such that

(λA + µB)∗ = λA∗ + µB∗, (AB)∗ = B∗A∗ and (A∗)∗ = A,
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whenever A,B in A, λ, µ in C, where λ, µ denote conjugate complex numbers. Let A be a ∗-algebra, then
anA-bimoduleM is a ∗-A-bimodule ifM equipped with a ∗-mapping fromM into itself, such that

(λM + µN)∗ = λM∗ + µN∗ (AM)∗ =M∗A∗ (MA)∗ = A∗M∗ and (M∗)∗ =M,

whenever A,B inA, M,N inM and λ, µ in C.
Kishimoto [13] studies ∗-derivations. Let A be a ∗-algebra and M be a ∗-A-bimodule. A derivation

δ from A into M is a ∗-derivation if δ(A∗) = δ(A)∗ for each A in A. In fact, every derivation is a linear
combination of two ∗-derivations. We can define a linear mapping δ̂ from A intoM by δ̂(A) = δ(A∗)∗ for
every A in A. Therefore δ = δ1 + iδ2, where δ1 =

1
2 (δ + δ̂) and δ2 =

1
2i (δ − δ̂). Hence, δ1 and δ2 are both

∗-derivations.
Let W be a fixed element in A. A linear mapping δ from a ∗-algebra A into its ∗-A-bimodule M is a

∗-derivable mapping at W if

δ(W) = Aδ(B)∗ + δ(A)B∗

for each A,B inA with AB∗ = W. A number of papers are devoted to characterizing ∗-derivable mappings
at zero on C∗-algebras, zero product determined algebras, group algebras L1(G) and standard operator
algebras [6, 7, 10].

In this paper, we study a natural problem of characterizing linear mappings δ and τ from a unital Banach
algebraA into its unitalA-bimoduleM satisfying

δ(W) = δ(A)B + Aτ(B) (FW)

for each A,B in A with AB = W, where W is a fixed element of A. The forerunners in this line can be
attributed to Ghahramani, Benkovic, etc [3, 5, 8] where these authors consider linear mappings δ and τ from
a zero product determined algebra (ring) or standard operator algebra into its bimodule satisfying (FW),
where W is zero. However, according to our knowledge, δ and τ satisfying (FW), where W is a non-zero
element, have not been deeply studied.

We also study the problem of characterizing linear mappings δ and τ from a Banach ∗-algebraA into its
∗-A-bimoduleM satisfying

δ(W) = δ(A)B∗ + Aτ(B)∗ (F∗W)

for each A,B inAwith AB∗ =W, where W is a fixed element ofA. If we assume that δ = τ in (F∗W), then the
∗-derivable mapping at W is obtained.

This paper is organized as follows. In Section 2, we give a completely characterization of linear mappings
δ and τ from a Banach algebra A with unit I into its unital A-bimoduleM satisfying (FI) (Theorem 2.3).
In this section, we also study linear mappings δ and τ from a unital Banach ∗-algebra A into its unital
∗-A-bimoduleM satisfying (F∗I) (Theorem 2.7).

In Section 3, we establish some theorems about linear mappings satisfying FW , where W is a separating
point. One of the main results (Theorem 3.1) states that if δ and τ are linear mappings from a unital Banach
algebraA into its unitalA-bimoduleM satisfying (FW), then τ is a Jordan derivation and δ is a generalized
Jordan derivation.

Based on this result, we consider a special class of algebra: semisimple algebra. We prove that linear
mappings δ and τ on a unital semisimple Banach algebra A satisfy (FW) if and only if τ is a derivation
and δ(A) = τ(A) + δ(I)A for each A in A. Moreover, δ and τ satisfy δ(WA) = δ(W)A + Wτ(A) and
τ(AW) = Aτ(W) + δ(A)W − δ(I)AW for each A in A (Theorem 3.3). As an application, we present a
characterization of linear mappings δ and τ on a unital semisimple Banach ∗-algebra A satisfying (F∗W)
(Theorem 3.4).
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2. Unit element

This section is devoted to characterizing linear mappings δ and τ from a unital Banach algebra A into
its unitalA-bimoduleM satisfying FI or F∗I , where I is the unit element ofA.

For this purpose, it is worth to recall some notions. Let A be a unital algebra and M be a unital
A-bimodule. A linear mapping δ from A into M is called a generalized Jordan derivation if δ(A ◦ B) =
δ(A) ◦ B + A ◦ δ(B) − Aδ(I)B − Bδ(I)A for each A,B ∈ A, where A ◦ B = AB + BA onA.

Lemma 2.1. LetA be a unital algebra,M be a unitalA-bimodule, and δ be a linear mapping fromA intoM. The
following are equivalent:

1. δ is a generalized Jordan derivation;
2. there is a Jordan derivation τ fromA intoM such that δ(A ◦ B) = δ(A)B + δ(B)A + Aτ(B) + Bτ(A) for each

A,B inA;
3. there is a Jordan derivation τ fromA intoM such that δ(A ◦ B) = τ(A)B + τ(B)A + Aδ(B) + Bδ(A) for each

A,B inA;
4. there is a Jordan derivation τ fromA intoM such that δ(A2) = δ(A)A + Aτ(A) for each A inA;
5. there is a Jordan derivation τ fromA intoM such that δ(A2) = τ(A)A + Aδ(A) for each A inA;
6. there is a Jordan derivation τ fromA intoM such that δ(A) = τ(A) + δ(I)A for each A inA;
7. there is a Jordan derivation τ fromA intoM such that δ(A) = τ(A) + Aδ(I) for each A inA.

If δ has one of the properties (2)-(7), then δ is called a generalized Jordan derivation, and τ the relating Jordan
derivation

Recall that a linear mapping γ fromA intoM is called a left Jordan centralizer if γ(A2) = γ(A)A holds for
each A inA.

Lemma 2.2. Let A be an algebra. Then δ is a generalized Jordan derivation if and only if δ = τ + γ, where τ is a
Jordan derivation ofA and γ is a left Jordan centralizer ofA.

Proof. Firstly, suppose that δ is a generalized Jordan derivation ofA, then there exists a Jordan derivation τ
such that δ(A2) = δ(A)A + Aτ(A) and τ(A2) = τ(A)A + Aτ(A) for each A ∈ A. Thus (δ − τ)(A2) = (δ − τ)(A)A
for each A inA. This implies γ = δ − τ is a left Jordan centralizer ofA and δ = τ + γ, as desired.

Conversely, by direct calculation

δ(A2) = τ(A2) + γ(A2)
= τ(A)A + Aτ(A) + γ(A)A
= (τ + γ)(A)A + Aτ(A)
= δ(A)A + Aτ(A)

for each A inA. Thus δ is a generalized Jordan derivation.

We now explore our first conclusion about linear mappings satisfying FI.

Theorem 2.3. LetA be a unital Banach algebra andM be a unitalA-bimodule. If δ and τ are linear mappings from
A intoM, then the following are equivalent:
(i) δ(I) = δ(A)A−1 + Aτ(A−1) for each invertible element A inA;
(ii) δ(I) = δ(A)B + Aτ(B) for each A,B ∈ A with AB = I;
(iii) τ is a Jordan derivation and δ(A) = τ(A) + δ(I)A for each A inA.

Proof. It is clear that (ii) implies (i). First we prove that (i) implies (iii). By assumption δ(I) = δ(I) + τ(I), we
have τ(I) = 0. Let T be an invertible element inA. By (i),

δ(I) = δ(TT−1) = δ(T)T−1 + Tτ(T−1).
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It follows that

δ(T)T−1 = δ(I) − Tτ(T−1), (2.1)

Tτ(T−1) = δ(I) − δ(T)T−1. (2.2)

Let A ∈ A, n ∈ N with n ≥ ∥A∥ + 2, and B = nI + A. Then B and I − B are both invertible inA. By (2.1) and
(2.2), we obtain that

δ(B)B−1 = δ(I) − Bτ(B−1)

= δ(I) − Bτ(B−1(I − B) + I)

= δ(I) − Bτ(B−1(I − B))

= δ(I) − (I − B)[(I − B)−1Bτ(B−1(I − B))]

= δ(I) − (I − B)[δ(I) − δ((I − B)−1B)B−1(I − B)]

= δ(I) − (I − B)δ(I) + (I − B)δ((I − B)−1B)B−1(I − B)

= Bδ(I) + (I − B)δ((I − B)−1
− I)B−1(I − B)

= Bδ(I) + (I − B)δ((I − B)−1)(I − B)B−1
− (I − B)δ(I)B−1(I − B)

= Bδ(I) + (I − B)[δ(I) − (I − B)−1τ(I − B)]B−1
− (I − B)δ(I)B−1(I − B)

= Bδ(I) + (I − B)δ(I)B−1
− τ(I − B)B−1

− (I − B)δ(I)B−1(I − B)

= δ(I) + τ(B)B−1.

Thus δ(B)B−1 = δ(I) + τ(B)B−1, i.e., δ(B) = δ(I)B + τ(B). Since B = nI + A, we have

δ(A) = τ(A) + δ(I)A (2.3)

for each A inA.
It remains to show that τ is a Jordan derivation. For each invertible element T ∈ A, by (2.3) and (i), we

have

τ(T−1)T + T−1τ(T) = [δ(T−1) − δ(I)T−1]T + T−1τ(T)

= δ(T−1)T + T−1τ(T) − δ(I)
= 0.

It follows from [16, Lemma 2.1], τ is a Jordan derivation.
Finally, we prove that (iii) implies (ii). For each A,B ∈ Awith AB = I, since τ is a Jordan derivation,

δ(A) = δ(ABA) = τ(ABA) + δ(I)ABA
= τ(A)BA + Aτ(B)A + ABτ(A) + δ(I)ABA
= (τ(A) + δ(I)A)BA + Aτ(B)A + τ(A)
= δ(A)BA + Aτ(B)A + δ(A) − δ(I)A.

That is, 0 = [δ(A)B + Aτ(B) − δ(I)]A. Hence δ(I) = δ(A)B + Aτ(B) for each A,B ∈ Awith AB = I.

Remark 2.4. (i) Let us point out here that one can also show that if (ii) is replaced with δ(I) = τ(A)B + Aδ(B) for
each A,B ∈ A with AB = I in the above theorem, the conclusion still holds.
(ii) In fact, Theorem 2.3 is an extension of [15, Theorem 2]. If δ and τ are linear mappings from A into M with
δ(I) = 0, then the following are equivalent:

1. 0 = δ(A)A−1 + Aτ(A−1) for each invertible element A inA;
2. 0 = δ(A)B + Aτ(B) for each A,B ∈ A with AB = I;
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3. δ and τ are Jordan derivations and δ(A) = τ(A) for each A inA.

The next corollary follows immediately from Theorem 2.3.

Corollary 2.5. Let A be a unital Banach algebra andM be a unital A-bimodule. If δ is a linear mapping from A
intoM, then the following are equivalent:
(i) δ(I) = δ(A)A−1 + Aδ(A−1) − Aδ(I)A−1 for each inverible A ∈ A;
(ii) δ(I) = δ(A)B + Aδ(B) − Aδ(I)B for each A,B ∈ A with AB = I;
(iii) δ is a generalized Jordan derivation.

Let W be a fixed element ofA. A linear mapping δ fromA intoM is called a generalized derivable mapping
at W if δ(AB) = δ(A)B + Aδ(B) − Aδ(I)B for each A,B ∈ A with AB = W. It is worth noting in Corollary 2.5
that every generalized derivable mapping at I from a unital Banach algebra A into its unital A-bimodule
M is a generalized Jordan derivation.

Corollary 2.6. Let A be a unital Banach algebra and M be a unital A-bimodule. If δ is a generalized derivable
mapping at X and Y fromA intoM with X + Y = I, then δ is a generalized Jordan derivation.

Proof. For arbitary A,B ∈ Awith AB = I, we have ABX = X and ABY = Y. Since δ is a generalized derivable
mapping at X and Y, it follows that

δ(X) = δ(ABX) = δ(A)BX + Aδ(BX) − Aδ(I)BX (2.4)

and

δ(Y) = δ(ABY) = δ(A)BY + Aδ(BY) − Aδ(I)BY. (2.5)

Combining (2.4) and (2.5), we obtain

δ(I) = δ(AB(X + Y)) = δ(A)B + Aδ(B) − Aδ(I)B,

i.e., δ is a generalized derivable mapping at I. On account of Corollary 2.5, δ is a generalized Jordan
derivation.

Our following result explores the connection between linear mappings satisfying (FI) on a Banach
algebra and ∗-linear mappings satisfying (F∗I) on a Banach ∗-algebra.

Theorem 2.7. LetA be a unital Banach ∗-algebra,M be a unital ∗-A-bimodule, and δ, τ be linear mappings fromA
intoM. Then the following are equivalent:
(i) δ and τ satisfy

δ(A)B∗ + Aτ(B)∗ = δ(I)

for each A,B ∈ A with AB∗ = I;
(ii) τ(A∗)∗ is a Jordan derivation and δ(A) = τ(A∗)∗ + δ(I)A for each A inA.

Proof. Suppose δ and τ satisfy (i), define the linear mapping τ̂ from A intoM by τ̂(A) = τ(A∗)∗ for each A
inA. By assumption

δ(A)B + Aτ(B∗)∗ = δ(I)

for each A,B ∈ Awith AB = I, that is,

δ(A)B + Aτ̂(B) = δ(I)
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for each A,B ∈ A with AB = I. This shows that δ and τ̂ satisfy the hypothesis in Theorem 2.3, thus τ̂ is a
Jordan derivation and δ(A) = τ̂(A) + δ(I)A = τ(A∗)∗ + δ(I)A, for each A ∈ A. Therefore

τ(A∗) = (δ(A) − δ(I)A)∗

for each A ∈ A.
Conversely, since τ(A∗)∗ is a Jordan derivation, for each A,B ∈ Awith AB∗ = I, we have

δ(B∗) = τ((B∗)∗)∗ + δ(I)B∗ = τ((B∗AB∗)∗)∗ + δ(I)B∗

= τ((B∗)∗)∗AB∗ + B∗τ((A)∗)∗B∗ + B∗Aτ((B∗)∗)∗ + δ(I)B∗

= τ(B)∗ + B∗τ(A∗)∗B∗ + B∗Aτ(B)∗ + δ(I)B∗.

It follows from τ(B)∗ = δ(B∗) − B∗τ(A∗)∗B∗ − B∗Aτ(B)∗ − δ(I)B∗ that

δ(A)B∗ + Aτ(B)∗ = δ(A)B∗ + A[δ(B∗) − B∗τ(A∗)∗B∗ − B∗Aτ(B)∗ − δ(I)B∗]
= δ(A)B∗ + Aδ(B∗) − τ(A∗)∗B∗ − Aτ(B)∗ − Aδ(I)B∗

= [δ(A) − τ(A∗)∗]B∗ + A[δ(B∗) − τ(B)∗ − δ(I)B∗]
= δ(I).

This completes the proof.

3. Separating points

For an algebra A and an A-bimoduleM, an element W in A is a left (or right) separating point ofM if
WM = 0 (or MW = 0) implies M = 0 for each M ∈ M. W is called a separating point if W is both a left
separating point and a right separating point. It is easy to see that left (right) invertible elements inA are
left (right) separating points ofM, and invertible elements inA are separating points ofM.

We are interested in the properties of linear mappings satisfying FW and F∗W , where W is a separating
point ofM. A celebrated result is established that linear mappings δ and τ from a unital Banach algebraA
into a unitalA-bimoduleM satisfying FI, where I is the unit ofA, if and only if τ is a Jordan derivation and
δ(A) = τ(A) + δ(I)A for each A inA. At this point the reader should be tempted to ask if a similar situation
exists for linear mappings satisfying FW , where W is a separating point ofM. We see next that at least one
of the directions is true.

Theorem 3.1. LetA be a unital Banach algebra,M be a unitalA-bimodule, and W be a separating point ofM. If
linear mappings δ and τ fromA intoM satisfy

δ(W) = δ(A)B + Aτ(B)

for each A,B inA with AB = W, then τ is a Jordan derivation and δ is a generalized Jordan derivation. Moreover δ
and τ satisfy δ(WA) = δ(W)A +Wτ(A) and τ(AW) = Aτ(W) + δ(A)W − δ(I)AW for each A inA.

Proof. By WI =W, it follows that δ(W) = δ(W)+Wτ(I). Since W is a separating point ofM, we have τ(I) = 0.
Let T be an invertible element inA. On account of

δ(W) = δ(WT−1T) = δ(WT−1)T +WT−1τ(T)

and

δ(W) = δ(TT−1W) = δ(T)T−1W + Tτ(T−1W),
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we have

δ(WT−1) = δ(W)T−1
−WT−1τ(T)T−1, (3.1)

WT−1τ(T) = δ(W) − δ(WT−1)T, (3.2)

δ(T)T−1W = δ(W) − Tτ(T−1W), (3.3)

τ(T−1W) = T−1δ(W) − T−1δ(T)T−1W. (3.4)

Let A ∈ A, n ∈ N with n ≥ ∥A∥ + 2, and B = nI + A. Then B and I − B are both invertible in A. On the
one hand, it follows from (3.1) and (3.2) that

WB−1τ(B) = δ(W) − δ(WB−1)B

= δ(W) − δ(WB−1(I − B) +W)B

= δ(W)(I − B) − δ(WB−1(I − B))B

= δ(W)(I − B) − [δ(W)B−1(I − B) −WB−1(I − B)τ((I − B)−1B)B−1(I − B)]B

=WB−1(I − B)τ((I − B)−1B)(I − B)

=WB−1(I − B)τ((I − B)−1
− I)(I − B)

=WB−1(I − B)τ((I − B)−1)(I − B).

Since W is a separating point ofM, it follows that

B−1τ(B) = B−1(I − B)τ((I − B)−1)(I − B).

That is,

τ(B) = (I − B)τ((I − B)−1)(I − B).

Multiplying W from the left of the above equation, we have that

Wτ(B) =W(I − B)τ((I − B)−1)(I − B)

= [δ(W) − δ(W(I − B))(I − B)−1](I − B)
= δ(W)(I − B) − δ(W −WB)
= δ(WB) − δ(W)B.

Thus, δ(WB) = δ(W)B +Wτ(B). Since B = nI + A, we have that

δ(WA) = δ(W)A +Wτ(A) (3.5)

for each A inA.
On the other hand, it follows from (3.3) and (3.4) that

δ(B)B−1W = δ(W) − Bτ(B−1W)

= δ(W) − Bτ(B−1(I − B)W +W)

= δ(W) − Bτ(W) − Bτ(B−1(I − B)W)

= δ(W) − Bτ(W) − B[B−1(I − B)δ(W) − B−1(I − B)δ((I − B)−1B)B−1(I − B)W]

= δ(W) − Bτ(W) − (I − B)δ(W) + (I − B)δ((I − B)−1B)B−1(I − B)W

= B(δ(W) − τ(W)) + (I − B)δ((I − B)−1
− I)B−1(I − B)W

= Bδ(I)W − (I − B)δ(I)B−1(I − B)W + (I − B)δ(I − B)−1B−1(I − B)W.
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Since W is a separating point ofM, it follows that

δ(B)B−1 = Bδ(I) − (I − B)δ(I)B−1(I − B) + (I − B)δ((I − B)−1)B−1(I − B).

That is,

δ(B) = Bδ(I)B − (I − B)δ(I)(I − B) + (I − B)δ((I − B)−1)(I − B).

Multiplying W from the right of the above equation, we have

δ(B)W = Bδ(I)BW − (I − B)δ(I)(I − B)W + (I − B)δ(I − B)−1(I − B)W

= Bδ(I)BW − (I − B)δ(I)(I − B)W + (I − B)[δ(W) − (I − B)−1τ((I − B)W)]
= δ(I)BW − Bτ(W) + τ(BW).

Thus, τ(BW) = Bτ(W) + δ(B)W − δ(I)BW. By B = nI + A, we have

τ(AW) = Aτ(W) + δ(A)W − δ(I)AW (3.6)

for each A inA.
Now we prove that τ is a Jordan derivation and δ is a generalized Jordan derivation. For each invertible

element T inA, by (3.5) and (3.6),

δ(W) = δ(WTT−1) = δ(WT)T−1 +WTτ(T−1)

= [δ(W)T +Wτ(T)]T−1 +WTτ(T−1)

= δ(W) +Wτ(T)T−1 +WTτ(T−1)

and

δ(W) = δ(T−1TW) = δ(T−1)TW + T−1τ(TW)

= δ(T−1)TW + T−1[Tτ(W) + δ(T)W − δ(I)TW]

= δ(T−1)TW + τ(W) + T−1δ(T)W − T−1δ(I)TW.

Thus

Wτ(T)T−1 +WTτ(T−1) = 0

and

δ(T−1)TW + T−1δ(T)W − T−1δ(I)TW = δ(W) − τ(W) = δ(I)W.

Since W is a separating point,

τ(T)T−1 + Tτ(T−1) = 0

and

δ(T−1)T + T−1δ(T) − T−1δ(I)T = δ(I).

It follows from [16, Lemma 2.1] and Corollary 2.5 that τ is a Jordan derivation and δ is a generalized Jordan
derivation.

Remark 3.2. (i) In Theorem 3.1, if condition (i) is changed to

A,B ∈ A, AB =W =⇒, δ(W) = τ(A)B + Aδ(B),

theorem remains valid.
(ii) If I in Theorem 2.3 is replaced by W, we find that only one sufficient condition (Theorem 3.1) can be obtained. The
natural question then is, does its necessity hold?
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Unfortunately, we have been unable to answer the above question. In order to find a complete char-
acterization of linear mappings satisfying FW , we need to impose some conditions. For example, every
Jordan derivation on an algebra is a derivation. In the next, assume thatA is a semisimple algebra, i.e., the
redical of A, Rad(A) = {0}. Our next goal is to give two characterizations of linear mappings on a unital
semisimple Banach algebra which satisfy FW and linear mappings on a unital semisimple Banach ∗-algebra
which satisfy F∗W , respectively.

Theorem 3.3. LetA be a unital semisimple Banach algebra and W be a separating point ofA. If δ and τ are linear
mappings fromA into itself, then the following are equivalent:
(i) δ and τ satisfy δ(W) = δ(A)B + Aτ(B) for each A,B inA with AB =W;
(ii) τ is a derivation and δ(A) = τ(A) + δ(I)A for each A inA.

Proof. Clearly, (ii) implies (i). Let’s prove that (i) implies (ii). By the proof of Theorem 3.1, we have that τ is
a Jordan derivation, δ is a generalized Jordan derivation, and

τ(AW) = Aτ(W) + δ(A)W − δ(I)AW (3.7)

for each A inA. Since every Jordan derivation on a semisimple algebra is a derivation, then τ is a derivation
and

τ(AW) = Aτ(W) + τ(A)W (3.8)

for each A inA. Comparing (3.7) and (3.8),

δ(A)W − δ(I)AW = τ(A)W.

We reduce that δ(A) = τ(A) + δ(I)A for each A inA from W is a separating point ofA, as required.

Now, we return to linear mappings satisfying F∗W on a unital semisimple Banach ∗-algebraA where W
is a separating point ofA.

Theorem 3.4. LetA be a unital semisimple Banach ∗-algebra, δ and τ be linear mappings onA. Then the following
are equivalent:
(i) δ and τ satisfy

δ(W) = δ(A)B∗ + Aτ(B)∗

for each A,B ∈ A with AB∗ =W, where W is a separating point ofA;
(ii) τ(A∗)∗ is a derivation and δ(A) = τ(A∗)∗ + δ(I)A, for each A inA.

Proof. Let’s first prove that (i) implies (ii). Define the linear mapping τ̂ fromA into itself by τ̂(A) = τ(A∗)∗,
for each A inA. By assumption

Aτ̂(B) + δ(A)B = Aτ(B∗)∗ + δ(A)B = δ(W)

for each A,B ∈ A with AB = W. It is easy to see that δ and τ̂ coincides with the conditions in Theorem 3.3,
which proves that τ̂ is a derivation and δ(A) = τ̂(A) + δ(I)A = τ(A∗)∗ + δ(I)A, for each A inA. Therefore we
conclude that

τ(A∗) = (δ(A) − δ(I)A)∗,

for each A ∈ A.
Next, we prove that (ii) implies (i). Since τ(A∗)∗ is a derivation, for each A,B ∈ Awith AB∗ =W,

τ(W∗)∗ = τ((AB∗)∗)∗ = τ(A∗)∗B∗ + Aτ(B)∗.
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From δ(A) = τ(A∗)∗ + δ(I)A for each A inA, we have

δ(A)B∗ + Aτ(B)∗ = τ(A∗)∗B∗ + δ(I)AB∗ + Aτ(B)∗

= τ(W∗)∗ + δ(I)W
= δ(W).

This completes the proof.

Remark 3.5. Let A be a unital Banach ∗-algebra and M be a unital ∗-A-bimodule. Suppose that δ is a linear
mappings fromA intoM. By [2, Remark 1], the following conditions are not equivalent:

AB∗ =W =⇒ δ(W) = δ(A)B∗ + Aδ(B)∗, (D1)
A∗B =W =⇒ δ(W) = δ(A)∗B + A∗δ(B). (D2)

Similarly, linear mappings δ and τ from a unital semisimple Banach ∗-algebraA into itself, the following conditions
are not equivalent:

AB∗ =W =⇒ δ(W) = δ(A)B∗ + Aτ(B)∗, (T1)
A∗B =W =⇒ δ(W) = δ(A)∗B + A∗τ(B). (T2)

Hence, if linear mappings δ and τ satisfy condition (T2), where W is a separating point of A, then by suitable
modification to the proof of Theorem 3.4, we can obtain a similar result.

Corollary 3.6. LetA be a unital semisimple Banach ∗-algebra and δ be a linear mapping ofA. Then δ satisfies

δ(W) = δ(A)B∗ + Aδ(B)∗

for each A,B ∈ A with AB∗ =W, where W is a separating point ofA, if and only if δ is a ∗-derivation.
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[5] D. Benkovič, M. Grašič, Generalized derivations on unital algebras determined by action on zero products, Linear Algebra Appl. 445

(2014), 347–368.
[6] B. Fadaee, K. Fallahi, H. Ghahramani, Characterization of linear mappings on (Banach) ∗-algebras by similar properties to derivations,

Math. Slovaca. 70 (2020), no. 4, 1003–1011.
[7] B. Fadaee, H. Ghahramani, Linear maps on C∗-algebras behaving like (anti-)derivations at orthogonal elements, Bull. Malays. Math. Sci.

Soc. 43 (2020), no. 3, 2851–2859.
[8] H. Ghahramani, On rings determined by zero products, J. Algebra Appl. 12 (2013), no. 8, 1350058, 15 pp.
[9] H. Ghahramani, On derivations and Jordan derivations through zero products, Oper. Matrices. 8 (2014), no. 3, 759–771.

[10] H. Ghahramani, Linear maps on group algebras determined by the action of the derivations or anti-derivations on a set of orthogonal
elements, Results Math. 73 (2018), no. 4, Paper No. 133, 14 pp.

[11] H. Ghahramani, Z. Pan, Linear maps on ∗-algebras acting on orthogonal elements like derivations or anti-derivations, Filomat. 32 (2018),
no. 13, 4543–4554.

[12] J. He, J. Li, W. Qian, Characterizations of centralizers and derivations on some algebras, J. Korean Math. Soc. 54 (2017), no. 2, 685–696.
[13] A. Kishimoto, Dissipations and derivations, Comm. Math. Phys. 47 (1976), no. 1, 25–32.
[14] F. Lu, The Jordan structure of CSL algebras, Studia Math. 190 (2009), no. 3, 283–299.
[15] J. Li, S. Li, Linear mappings characterized by action on zero products or unit products, Bull. Iran. Math. Soc. 48 (2022), no. 1, 31–40.
[16] J. Li, J. Zhou, Characterizations of Jordan derivations and Jordan homomorphisms, Linear Multilinear Algebra. 59 (2011), no. 2, 193–204.
[17] A. M. Sinclair, Jordan homomorphisms and derivations on semisimple Banach algebras, Proc. Amer. Math. Soc. 24 (1970), 209–214.
[18] J. Zhu, C. Xiong, Derivable mappings at unit operator on nest algebras, Linear Algebra Appl. 422 (2007), no. 2–3, 721–735.


