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Abstract. Author in [10] gave a characterization for norm attaining and absolutely norm attaining para-
normal operators. In the present paper, we generalize these results for ∗-paranormal operators. We prove
that elements of this class of operators admit invariant subspaces as an extension of Istratescu result [9].
Compacity and conditions for normality of norm attaning ∗-paranormal operators are also established.

Introduction and Background

One of the consequences of the famous Hahn-Banach theorem, is that for every vector x in a Banach
space X, there exists a functional f in the dual space X′ with ∥ f ∥ = 1 for which f (x) = ∥x∥. Hence, if x0 ∈ X

is a unit vector, then there exists f ∈ X′ satisfying ∥ f ∥ = 1 = f (x0). That is, on each Banach space, there exist
linear bounded functionals that attain their norms. Author in [16] showed that the set of norm attaining
operators on Banach spaces is not dense by giving an example of an operator T0 : L1

[0,1] → C([0, 1]) for
which if T is a contraction satisfying ∥T − T0∥ ≤

1
2 , then T is not norm attaining. Also, in [5], it’s proved that

if Y is a Banach space of dimension 1, then the same set is norm dense in the Banach algebra B(X,Y) of
bounded linear operators fromX toY for any Banach spaceX.Throughout this paper, H denotes a separable
complex Hilbert space. An operator A is said to be paranormal if ∥Ax∥2 ≤ ∥A2x∥∥x∥ for each vector x ∈ H,
and ∗-paranormal if ∥A∗x∥2 ≤ ∥A2x∥∥x∥, x ∈ H, i.e., the operator A∗2A2

− 2rAA∗ + r2 is nonnegative for all
r > 0. Properties of these classes of operators are given in [1, 2] and [12]. Also, A is said to be norm attaining,
if there exists a unit vector x ∈ H for which ∥Ax∥ = ∥A∥, and absolutely norm attaining, if the restriction
A
∣∣∣
M is norm attaining for any closed subspace M ⊂ H (see [10]). According to [10], the operator A is norm

attaining if and only if ∥A∥2 is an eigenvalue of A∗A. For an operator A ∈ B(H), the range of A and the null
space are denoted by R(A) and N(A) respectively.

In [10], are given a characterization and some properties of norm attaining paranormal operators. In the
present paper, we extend these results for ∗-paranormal operators. We give a nontrivial invariant subspace
for elements of such a class of operators, and we show that this subspace becomes reducing under a certain
condition. Next, a structure theorem of the given operators and their normality are also established. Other
results on compact ∗-paranormal operators are showed at the end of this work.
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* Corresponding author: Salah Mecheri
Email addresses: mecherisalah@hotmail.com (Salah Mecheri), a.nasli@univ-chlef.dz (Aissa Nasli Bakir)



S. Mecheri, A.N. Bakir / Filomat 38:7 (2024), 2381–2386 2382

1. Main results

Definition 1.1. [6] An operator A ∈ B(H) is said to be norm attaining if there exists a unit vector x ∈ H satisfying
∥Ax∥ = ∥A∥.

Example 1.2. Let S be the unilateral right shift on ℓ2 defined for each integer n, (n ≥ 1) by Sen = en+1, where (en)n≥1
denotes the standard orthonormal basis of ℓ2. Then, S attains its norm since ∥Se1∥ = 1 = ∥S∥.

Example 1.3. [10] If Sα is the operator defined on ℓ2 by Sαx = (αnxn)n, x = (xn)n≥1 ∈ ℓ2, where α = (αn)n≥1 is a real
increasing sequence, then

∥Sαx∥22 <
(
sup
n≥1
∥αn∥

)2

∥x∥22, x ∈ ℓ2 (1)

Hence, ∥Sα∥ ≤ sup
n≥1
∥αn∥. Next,

∥Sα∥ ≥ sup
n≥1
∥Sen∥ = sup

n≥1
∥αn∥

Thus, ∥Sα∥ = sup
n≥1
∥αn∥. Inequality (1) shows that Sα is not norm attaining.

In operator theory, it’s well known that the existence of nontrivial invariant subspaces for bounded
linear operators on separable Hilbert spaces is one of the hard open problems. It dates back to the 1950s.
Positive solutions of this problem are showed for special types of nonnormal operators [13, 14]. Istratescu
in [9, Lemma 2.3] gave an invariant subspace for paranormal operators. In the sequel, we extend the
Istratescu’s result for ∗-paranormal operators as follows

Theorem 1.4. Let A ∈ B(H) be a ∗-paranormal operator with ∥A∥ = 1. Then, the subspace N(I − AA∗) is invariant
for A.

Proof. Note first that for a unit vector x ∈ N(I − AA∗), ∥A∗x∥ = 1 and by the ∗-paranormality of A,

∥A∗x∥2 = 1 ≤ ∥A2x∥

Hence,

∥A∗Ax − x∥2 = ∥A∗Ax∥2 − 2∥Ax∥2 + 1 = ∥A∗Ax∥2 − 2∥A2A∗x∥2 + 1

= ∥A∗Ax∥2 − 2
∥∥∥∥A2 A∗x
∥A∗x∥

∥∥∥∥2
∥A∗x∥2 + 1

≤ ∥A∗Ax∥2 − 2 + 1
≤ 0

Thus, x ∈ N(I − A∗A). Therefore, N(I − AA∗) ⊂ N(I − A∗A). Furthermore,

(AA∗)Ax = A(A∗Ax) = Ax

This shows that Ax ∈ N(I − AA∗). The result is proved.

Corollary 1.5. Let A ∈ B(H) be ∗-paranormal. Then, M = N(∥A∥2I − AA∗) is an invariant subspace for A.

We can easily prove the following result

Lemma 1.6. For an operator A ∈ B(H), M = N(∥A∥2I − AA∗) = N(|A∗| − ∥A∥I). Furthermore, if A∗ is norm
attaining, then M , {0}.
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Lemma 1.7. [15] Let T ∈ B(H). The following statements are equivalent

1. T is norm attaining.

2. T∗ is norm attaining .

3. ||T|| is an eigenvalue of |T|.

4. |||T||| is an eigenvalue of |T|.

5. |T| is norm attaining.

6. |T∗| is norm attaining.

7. |T|2 is norm attaining.

8. |T∗|2 is norm attaining.

9. ||T|| is an eigenvalue of |T∗|.

Corollary 1.8. Let A ∈ B(H) be ∗-paranormal. If A is norm attaining, then ∥A∥ is an eigenvalue of |A|.

Proof. By Corollary 1.5 and Lemma 1.6, the operator |A∗| − ∥A∥I is not injective. The result follows then by
applying Lemma 1.7.

Corollary 1.9. If both A and A∗ in B(H) are ∗-paranormal, then M = N(∥A∥2I − AA∗) is a reducing subspace for A

Proof. By Corollary 1.5, M is invariant for A, and M ⊂ N(∥A∥2I−A∗A) according to the proof of Theorem 1.4.
Since A∗ is also ∗-paranormal, N(∥A∥2I−A∗A) ⊂M is an invariant subspace for A∗. Thus, M = N(∥A∥2I−A∗A)
is a reducing subspace for A.

Theorem 1.10. Let A ∈ B(H) be a ∗-paranormal such that A is norm attaining. If M = N(|A∗| − ∥A∥I) is finite
dimensional subspace, then

1. M is a reducing subspace for A.

2. A
∣∣∣
M⊥ is also ∗-paranormal.

Proof. 1. M is an invariant subspace for A by Corollary 1.5, and A∗
∥A∥ is an isometry operator on M. Since M

is of finite dimension, A∗
∥A∥ is unitary on M. Under the decomposition H =M ⊕M⊥,we can write

A =
(

A
∣∣∣
M S

0 T

)
where S ∈ B(M⊥,M) and T ∈ B(M⊥,M⊥). Since A is ∗-paranormal,

0 ≤ A∗2A2
− 2rAA∗ + r2 =

(
X Y
Y∗ Z

)
for all r > 0,where

X = (A
∣∣∣
M)∗2(A

∣∣∣
M)2
− 2r

(
A
∣∣∣
M(A

∣∣∣
M)∗ + SS∗

)
+ r2I

Y = (A
∣∣∣
M)∗2(A

∣∣∣
MS + ST) − 2rST∗

Z = (A
∣∣∣
MS + ST)∗(A

∣∣∣
MS + ST) + T∗2T2

− 2rTT∗ + r2I

By [7, Theorem 6], we get X ≥ 0 and Z ≥ 0. Hence,

(A
∣∣∣
M)∗2

(
A
∣∣∣
M)2
− 2r(A

∣∣∣
M(A

∣∣∣
M)∗ + SS∗

)
+ r2I ≥ 0

for all r > 0. Thus, for r = 1, and since (A
∣∣∣
M)∗ is unitary, SS∗ ≤ 0. Implying S = 0.

2. Follows from the fact that Z ≥ 0 and S = 0.
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Corollary 1.11. Let A ∈ B(H) be a compact ∗-paranormal operator. Then, M = N(∥A∥2I − AA∗) reduces A.

Proof. Since A is compact, so is AA∗. Then, M , {0}, and M is finite dimensional by Fredholm Alternative.
The rest of the proof follows by applying Theorem 1.10.

Definition 1.12. [6] An operator A ∈ B(H) is said to be absolutely norm attaining, brievly AN-operator, if the
restriction A

∣∣∣
M is norm attaining for any closed subspace M ⊂ H, that is, there exists a unit vector x ∈M for which

∥A
∣∣∣
Mx∥ = ∥Ax∥ = ∥A

∣∣∣
M∥

Example 1.13. [15] The operator A on ℓ2 defined by Ae1 =
1
2 e1 and Aen = en, (n ≥ 2) is inAN(ℓ2), where (en)n is

the standard basis of ℓ2.

AnAN-operator is norm attaining. Also, both of isometries and compact operators areAN-operators [6].
If A isAN-operator, then A∗ may not beAN-operator [6, 15].

Lemma 1.14. [11] The restriction of a ∗-paranormal operator on a closed invariant subspace is also ∗-paranormal.

Theorem 1.15. Let A ∈ B(H) be a ∗-paranormal operator. Suppose that A∗ ∈ AN(H) is also ∗-paranormal. Put
Λ = σ(|A∗|). Then, there exists a sequence (Hα,Vα)α∈Λ where

1. Hα is a reducing subspace for A.

2. Vα ∈ B(Hα) is an isometry.

for which

a. H =
⊕
α∈Λ

Hα

b. A∗ =
⊕
α∈Λ

αVα

c. σ(A∗) ⊆
⊕
α∈Λ

αT with T denotes the unit circle.

Proof. Since A∗ ∈ AN(H),H1 = N(AA∗ −∥A∥2I) is a reducing subspace for A by Corollary 1.9. Let A1 = A
∣∣∣
H1
.

Then, A∗1 = A∗
∣∣∣
H1
∈ AN(H1), and for all x ∈ H1, AA∗x = ∥A∥2x. If H1 = H, then AA∗ = ∥A∥2I. Put β1 = ∥A∥.

Then, β1 ∈ σ(|A∗|) and AA∗ = β2
1I, i.e., V1 =

1
β1

A∗ is an isometry on H = H1. Hence, A∗1 = β1V1.

If H1 ⊊ H, then H = H1 ⊕H⊥1 , and A = A1 ⊕ A2,where A2 = A
∣∣∣
H⊥1

is ∗-paranormal by Lemma 1.14. Hence,

A∗ =
(
β1V1 0

0 A∗2

)
Let H2 = H⊥1 . Note that A∗2 ∈ AN(H2) is also ∗-paranormal. By the same previous process, either A∗2 = β2V2
or A∗2 = β2V2 ⊕ A∗3,with β2 = ∥A2∥ ∈ σ(|A∗|). Then, A∗ admits the representation

A∗ =
(
β1V1 0

0 β2V2

)
or A∗ =

 β1V1 0 0
0 β2V2 0
0 0 A∗3

 (2)

Continuing with the same way, we get the following cases :
Case 1. The process stops after n steps. Then, H = ⊕

1≤k≤n
Hk and A∗ = ⊕

1≤k≤n
βkVk,where βk ∈ σ(|A∗|), k = 1, 2, ..,n
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and β1 > β2 > β3... > βn. Obviously, |A∗| =
⊕

1≤k≤n
Ik, Ik is the identity operator on Hk.

If each eigenvalue βi, i = 1, 2, ..,n is of finite multiplicity, then Hi is finite dimensional, and Ai is unitary, i =
1, 2, ..,n and we have

H = ⊕
1≤k≤n

Hk and A∗ =
⊕
1≤k≤n

βkVk (3)

Since |A∗| ∈ AN(H), it can have atmost one eigenvalue of infinite multiplicity, say β j. Thus,

H =

 ⊕
1≤k≤n,k, j

Hk

 ⊕H j and A∗ =

 ⊕
1≤k≤n, k, j

βkVk

 ⊕ β jV j (4)

Note that Vk, (1 ≤ k ≤ n, k , j) are unitary and V j is an isometry. Clearly σ(A∗) ⊂ ⊕
1≤k≤n
βkT.

Case 2. The process does not stop after finite steps: We get a sequence (βn,Hn,A∗n)n for which βn+1 <
βn, A∗n = A∗

∣∣∣
Hn
= βnVn, (n ≥ 1). Since βn ∈ σ(|A| and βn ≥ m(A∗), n ≥ 1, the sequence βn) converges to

α = me(A∗) the essential minimum modulus of A∗. Also, there may exist at most finitely many spectral
values α1, α2, .., αm between m(A∗) and me(A∗) by [10]. Let H̃k be the eigenspaces and Ã∗k(1 ≤ k ≤ m) be the
corresponding unitaries associated to γk respectively. Since the eigenvectors of |A∗| span a dense space of
H,we’ve necessarily H =

⊕
k≥1

Hk
⊕

1≤ j≤m
H̃ j. Also, σ(|A∗) = {βn}

∞

n=1 ∪ {β} ∪ {αk}
m
k=1. Therefore, A∗ can be written as

A∗ =

⊕
k≥1

βnVn

 ⊕
⊕

1≤ j≤m

α jṼ j

 =⊕
α∈Λ

αVα (5)

Thus,

σ(A∗) =
∞⊔

n=1

σ(βnVn) ⊕
n⊔

k=1

σ(αkVk) ⊆
∞⊔

n=1

βnT ⊕
n⊔

k=1

αkT =
⊕
α∈Λ

αT (6)

where
⊔

denotes the the disjoint union. If α ∈ σp(|A∗| with infinite multiplicity, then β = α by [15, Theorem
3.8]. Thus, β ∈ σp(|A∗|with infinite multiplicity, and also the unique limit point of σ(|A∗|. Therefore, we get

A∗ =

 ⊕
α∈Λ,α,β

αVα

 ⊕ βVβ (7)

The next results give sufficient conditions that ensure the normality of ∗-paranormal operators. We have
then

Theorem 1.16. Let A ∈ B(H) such that A and A∗ are ∗-paranormal, and A∗ ∈ AN(H). If |A∗| has no eigenvalue
with infinite multiplicity, then A is normal.

Proof. According to the hypotheses, A∗ can be written as in Equation (3) or Equation (5) in the proof of
Theorem 1.15. Since V j is a finite dimensional isometry in the two cases, V j is unitary. Thus, A is necessarily
normal.

Corollary 1.17. Let A ∈ B(H) be a compact operator. If both of A and A∗ are ∗-paranormal, then A is normal.

Proof. A ∈ AN(H) by [15, Proposition 2.1]. The result follows then by Theorem 1.16.
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