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On ADS modules with the summand sum property
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Abstract. A module M is called ADS, if for any decomposition M = K⊕L of M and any complement N of K
in M, M = K⊕N. A module is said to have the summand sum property if the sum of any two direct summands
is a direct summand. In this note, we investigate ADS modules with the summand sum property.

1. Introduction

The objective of this article is to examine the family of ADS modules having the summand sum
property. Firstly, Fuchs [11] introduced ADS property for Abelian groups. In [7], Burgess and Raphael
define that a module M is an ADS module if for any decomposition M = K ⊕ L of M and any complement
N of K in M, M = K ⊕ N. Later, ADS modules were studied by many authors [1, 21–23, 25, 26]. In [25],
Takil Mutlu studied ADS modules having the summand intersection property (SIP), and the author calls
M is an SA module if it is ADS having SIP (see also [26–28]). In this paper, we study on ADS modules with
SSP. In Example 2.1, we provide some examples to show that the family of ADS modules and the family of
SSP modules are different, and we define that a module M is SSA if M is ADS module having SSP. Firstly
we remark that, SA modules are SSA (Example 2.4(1)). Some counter examples are provided in Example
2.9 that there exists an SSA module which is not SA. An equivalent condition for SSA modules is given in
Theorem 2.3 which tell us that a module M is SSA iff for any direct summand K of M and any complement
N of any direct summand of M, we have K + N ≤⊕ M. We have shown which module properties imply
the SSA property: If a module is both injective and prime then it is SSA, and every (weak) duo module
is SSA, and an extending module with SSP is an SSA module. A necessary condition for the equivalence
of SA and SSA module families is given in Proposition 2.10 that the family of SA modules and the family
of SSA modules coincide for D4-modules. It is proved in Proposition 2.12 that a direct summand of an
SSA module is SSA. But the direct sum of two SSA modules need not to be SSA (Example 2.13). We give
a condition as to when direct sum of SSA modules is SSA that if K and L are any two SSA modules over
a ring R satisfying that r(K) + r(L) = R, then the R-module K ⊕ L is SSA (Theorem 2.14). In Theorem 2.15,
we prove that if M is an extending module, then M is SSA iff the sum of two closed submodules of M is closed.

In the rest of the paper, we characterize semisimple rings, right V-rings, right hereditary rings, von
Neumann regular rings and right SI-rings with using SSA modules. For example, we prove in Remark
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2.17 that a ring R is semisimple iff any R-module is SSA; or equivalently, any finitely generated R-module
is SSA; or equivalently, the direct sum of any two SSA modules is SSA. A ring R is a right V-ring iff any
finitely cogenerated R-module is SSA; or equivalently, any finitely copresented R-module is SSA. A ring
R is right hereditary iff any injective R-module is SSA; or equivalently, any factor module of an injective
R-module is SSA; or equivalently, the sum of two injective submodule of any R-module is SSA. We provide
new characterizations of regular rings that a ring R is regular iff any principal right ideal of M2(R) is SSA;
or equivalently, any principal right ideal of M2(R) generated by a diagonal matrix is SSA; or equivalently,
any finitely generated submodule of a projective right R-module is a direct summand; or equivalently,
any finitely generated submodule of a projective right R-module is SSA; or equivalently, any 2-generated
submodule of a projective right R-module is SSA. At the end of the paper, we prove in Theorem 2.20 that a
ring R is right SI iff RR is nonsingular and all singular right R-modules are SSA.

In this paper, R always denotes an associative ring with unity, and every module is unital, we use MR to
denote a right R-module. K � K′ illustrates that there is an isomorphism between K and K′. The injective
hull of M will be denoted by E(M). K ≤M, K ≤ess M and K ≤⊕ M denote K is a submodule of M, is essential
in M and a direct summand of M, respectively. Wilson [29] defines a module M has SIP if for any K, L ≤⊕ M,
K ∩ L ≤⊕ M. Garcia [12] calls a module M has SSP if for any K, L ≤⊕ M, K + L ≤⊕ M. A module M is called:

• extending if any submodule is essential in a direct summand.
• C3 module if for any K, L ≤⊕ M with K ∩ L = 0, K ⊕ L ≤⊕ M.
• quasi-continuous if it is extending having C3.

Let R be ring and n a positive integer, Mn(R) denote the ring of n×n matrices over R. For any terminology,
which is not presented, we suggest to see [4, 10, 19].

Now, we recall two known results that we will use frequently throughout the paper:

Lemma 1.1. [7, Proposition 1.1] Amodule M is ADS iff for any decomposition M = K ⊕ L, K and L are mutually
injective.

Lemma 1.2. [2, Theorem 8] A module M has SSP iff for any decomposition M = K ⊕ L and any homomorphism
σ : K→ L, σ(K) ≤⊕ L.

2. ADS modules with SSP: SSA Modules

At the beginning of the section, we give some examples to illustrate that the family of ADS modules
and the family of SSP modules are different.

Example 2.1. 1. Let F be a field and R be the ring below

R =




u z 0 0
0 v 0 0
0 0 v t
0 0 0 u

 : u, v, z, t ∈ F

, and M = RR. M does not have SSP by [15, Example 2.6]. Since M is

an injective right R-module by [17, Example 16.19], M is an ADS module.
2. Let M = Q ⊕ (Z/Zp) where p is prime. There is four direct summands as follows: 0 ⊕ 0, M, 0 ⊕ (Z/Zp) and
Q ⊕ 0. Thus, it is obvious that M has SSP. But M is not ADS by [25, Example 2.4].

From above mentioned examples, naturally, one might pose the question that “what can be said of a
module which is ADS with the summand sum property?”. Hence;

Definition 2.2. We call a module M is SSA if it is ADS having SSP. This abbreviation is initials of “summand”,
“sum” and “absolute” words.

Our next theorem gives an equivalent condition for SSA modules.
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Theorem 2.3. The following conditions are equivalent for an R-module M:

1. M is an SSA module;
2. for any direct summand K of M and any complement N of any direct summand of M, K +N ≤⊕ M;

Proof. (1) ⇒ (2) Assume M is SSA. Let K, K′ ≤⊕ M and N a complement of K′ in M. Since M is ADS,
M = K′ ⊕N, and hence N ≤⊕ M. Thus K +N ≤⊕ M because M has SSP.
(2)⇒ (1) Assume M has the property above. Let M = K⊕ L be an arbitrary decomposition of M, and N be a
relative complement of K in M. Then K ⊕N ≤ess M. By the hypothesis, K ⊕N ≤⊕ M. Thus, M = K ⊕N, and
hence M is ADS. Now, let K, L ≤⊕ M. Then M = L ⊕ L′ for some L′ ≤ M. By [24, Lemma 2.2], L is a relative
complement of L′ in M. By (2), K + L ≤⊕ M, and hence M has SSP.

Clearly, uniform, indecomposable and semisimple modules are SSA modules. Now, we give some
non-trivial examples of SSA modules:

Example 2.4. 1. Every SA module is SSA. To show this, let M be SA. Then M is a C3 module by [21, Theorem
2.7]. Then by [2, Lemma 19(1)], M has SSP, and hence M is SSA.

2. If R is injective and right Ore domain, then the right R-module R ⊕ R is SSA by [6, Proposition 4] and [2,
Lemma 19(1)].

3. Any injective prime module is SSA by [15, Proposition 2.1] and [2, Lemma 19(1)].

A submodule X of M is called fully invariant, if for any endomorphism ρ of M, ρ(X) ⊆ X. A module
is called (weak) duo if every (direct summand) submodule is fully invariant. A module is weak duo iff its
endomorphism ring is Abelian (see [8, Theorem 4.4]). Takil Mutlu proved in [25, Proposition 2.15] that
if a module is extending, duo, PQ-injective, then M is SA. We can drop the extending and PQ-injective
assumptions of this result. Now, we prove that every (weak) duo module is an SA module (and hence an
SSA module):

Proposition 2.5. Any (weak) duo module is an SSA module.

Proof. Let M be a weak duo module. Then by [18, Theorem 5] M has both SIP and SSP. It remains to show
that any weak duo module is ADS. For this, let a weak duo module M = K⊕L be a direct sum of submodules
K and L of M. Let N be a complement of K in M. By [8, Theorem 4.4], any direct summand of M is uniquely
complemented. Thus K ⊕ N ≤ess M = K ⊕ L. Since K is uniquely complemented, N ≤ess L. It implies that
N = L, i.e., M = K ⊕N. Thus, M is ADS.

Corollary 2.6. If the direct sum K ⊕ L is weak duo, then K and L are mutually injective.

Proof. It is clear by Proposition 2.5 and Lemma 1.1.

By Proposition 2.5, we can also state that any commutative ring is SA.

Proposition 2.7. If a module is extending with SSP, then it is an SSA module.

Proof. It is routine.

Converse of this proposition is not true, in general. There exists an SSA module which is not extending:

Example 2.8. Let F be a field and V be an F-vector space with dim VF = 2. Let V = v1F ⊕ v2F and R =
[
F V
⧹

0 F

]
={[

f v
0 f

]
: f ∈ F, v ∈ V

}
the trivial extension of F by V. Since R is indecomposable as an R-module, RR is an SSA

module. Take I1 =

{[
0 v1 f
0 0

]
: f ∈ F

}
and I2 =

{[
0 v2 f
0 0

]
: f ∈ F

}
. I1 is a complement of I2 in RR. But I1 is

not a direct summand of RR. So, RR is not an extending module.
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Example 2.4(1) and the following two examples indicate that the class of SA modules is a proper subclass
of SSA modules.

Example 2.9. 1. Let F be a field and R =
[
F F
0 F

]
. I =

[
0 F
0 F

]
and J =

[
F F
0 0

]
are right R-modules. Let L = R/J

and K = I ⊕ L. K has SSP by [12, Remark on page 81]. It is showed in [2, Example 3] that K does not have SIP,
and also it is showed in [25, Example 2.3] that K is an ADS module. Consequently, K is SSA but it is not SA.

2. Consider M = Zp∞ ⊕Zp∞ as aZ-module. The authors showed in [15, Example 2.4(1)] that M is not SIP. Since
Zp∞ is an injectiveZ-module and any finite direct sum of injective modules is injective, M is injective. On the
other hand, since Z is a right hereditary ring, M is an SSA module by Remark 2.17(3). But M is not SA.

Clear from the definitions, every module with SSP satisfies C3, and it is known from [21] that every ADS
module satisfies the C3 condition. From the above mentioned examples and propositions, we have the
following implications for an R-module M:

M is (weak) duo⇒M is SA⇒M is SSA⇒
M has SSP

or
M is ADS

⇒M is C3

M is called a D4-module if K, L ≤⊕ M with M = K+L and K � L, then K∩L ≤⊕ M [9]. The next proposition
gives a condition as to when the family of SSA modules and the family of SA modules are equivalent.

Proposition 2.10. If M is a D4-module, then M is an SA module iffM is an SSA module.

Proof. The necessity is clear. The converse follows by [9, Example 2.7].

Corollary 2.11. For any ring R, R is right SA-ring iff it is right SSA-ring.

Proof. It is clear because any projective (free) R-module is a D4-module.

Right SA-rings were studied by Takil Mutlu in [26].

Proposition 2.12. Let M be SSA, and X ≤⊕ M. Then N is also SSA.

Proof. Let M be an SSA module, and X ≤⊕ M. Then M = X′ ⊕ X for some X′ ≤ M. Let K ≤⊕ X, and N be
a complement of a direct summand L in X. We want to show that K + N ≤⊕ X. Clearly, K ≤⊕ M. On the
other hand, there exists a submodule L′ of X such that X = L⊕ L′. Clearly M = X′ ⊕X = X′ ⊕ L⊕ L′. Clearly,
N is a complement of X′ ⊕ L in M by [24, Lemma 2.2]. Since M is SSA, we have K + N ≤⊕ M, and hence
K +N ≤⊕ X. So, X is SSA.

Now, we give various examples which show that direct sum of two SSA modules need not to be an SSA
module.

Example 2.13. 1. LetZ denote the ring of integer. SinceZZ is indecomposable,ZZ is an SSA module. (Z⊕Z)Z
does not have SSP (see [2, Ex. 5]), and it is not ADS by Lemma 1.1. So, it is not SSA.

2. LetZ4 := Z/4Z. Since (Z4)Z4 is indecomposable, (Z4)Z4 is an SSA module. The injectiveZ4-moduleZ4⊕Z4
is an ADS module but it does not have SSP. So, it is not an SSA module.

3. Let p be a prime integer. It is obvious that Q andZ/Zp is an SSA module. It is showed in Example 2.1(2) that
M = Q ⊕ (Z/Zp) has SSP, but it is not ADS. So, it is not SSA.

In the next result, for any K ≤M, r(K) denotes the right annihilator of K in R. Now, we give a condition
as to when direct sum of SSA modules to be SSA.

Theorem 2.14. Let K and L be any two SSA modules over a ring R satisfying that r(K) + r(L) = R. Then, the
R-module K ⊕ L is SSA.
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Proof. Let X be a direct summand of K ⊕ L. By [15, Proposition 3.9], X = K1 ⊕ L1 where K1 ≤ K and L1 ≤ L.
Clearly, K1 ≤

⊕ K and L1 ≤
⊕ L. Now, let Z be a complement of a direct summand Y in K ⊕ L. Then again by

[15, Proposition 3.9], Y = K2 ⊕ L2 and Z = K′2 ⊕ L′2 where K2,K′2 ≤ K and L2,L′2 ≤ L. We want to show that
X + Z ≤⊕ K ⊕ L. Then,

K′2 ∩ K2 = (K′2 ⊕ L′2) ∩ K2 ≤ (K′2 ⊕ L′2) ∩ (K2 ⊕ L2) = Z ∩ Y = 0,

L′2 ∩ L2 = (K′2 ⊕ L′2) ∩ L2 ≤ (K′2 ⊕ L′2) ∩ (K2 ⊕ L2) = Z ∩ Y = 0,

and hence we have K′2 ∩K2 = 0 and L′2 ∩ L2 = 0. , So, K′2 is a complement of K2 in K, and L′2 is a complement
of L2 in L. Since K and L are SSA modules, K1 + K′2 ≤

⊕ K and L1 + L′2 ≤
⊕ L. Thus,

(K1 + K′2) ⊕ (L1 + L′2) = (K1 + L1) + (K′2 + L′2) = X + Z ≤⊕ K ⊕ L.

So, K ⊕ L is an SSA module.

Recall that any quasi-continuous module is ADS, but may not have SSP, please see Example 2.1(1). Thus,
a quasi-continuous module may not be SSA. On the other hand, an SSA module satisfies C3 but may not
be an extending module, see Example 2.8. So, an SSA module need not to be quasi-continuous.

Theorem 2.15. Let M be an extending module. M is an SSA module iff the sum of two closed submodules of M is
closed.

Proof. Suppose C and C′ be two closed submodules of M. Since M is an extending module, we have C,
C′ ≤⊕ M. Since M has SSP, C + C′ ≤⊕ M. Thus, C + C′ is closed in M. For the converse, let K, L ≤⊕ M. By
the hypothesis, K + L is a closed in M. We have K + L ≤⊕ M as M is extending. Then M is quasi-continous.
Thus, M is ADS by [7], and hence M is SSA.

Theorem 2.16. Let M =M1 ⊕M2 be an R-module, and f : M1 →M2 a homomorphism, E(M) = E1 ⊕E2, where E1
is injective hull of Im( f ), and π : E(M)→ E1 projection map. If M is SSA, then π(M) ⊆⊕ M.

Proof. Let M be SSA, and σ : M1 → M2 be a homomorphism. Now Im(σ) ≤⊕ M because M has SSP. The
submodule E2 ∩M is a complement of Im(σ) in M. Let’see this: if N is a complement containing E2 ∩M in
M and n ∈ N, it can be written that n = e1 + e2, ei ∈ Ei. If e1 = 0, we have n = e2 ∈ E2 ∩M. If e1 , 0, then
there is r ∈ R with 0 , re1 ∈ Im(σ). Then rn = re1 + re2 and re1 ∈ Im(σ) ∩ N = 0, and this contradicts to our
assumption. Hence, M = Im(σ) ⊕ (E2 ∩M) and π(M) = Im(σ) because M is SSA.

The rest of the paper, we characterize some well-studied rings with using SSA modules. As an analogue
of [5, Corollary 3.3], it is easy to prove the fact that if M ⊕ E(M) is SSA, then M is an injective module.
With using this fact and using similar techniques in [3, 5], it is not difficult to prove the next four results in
Remark 2.17, thus, we give them without proofs.

Remark 2.17. Let R be an arbitrary ring.

(1) R is semisimple iff any R-module is SSA iff any finitely generated R-module is SSA iff any 2-generated R-module
is SSA iff the direct sum of any two SSA modules is SSA iff any submodule of a projective R-module is SSA
iff any submodule of R ⊕ R is SSA iff any submodule of an injective R-module is SSA iff any SSA R-module is
injective.

(2) R is a right V-ring (that is, any simple right R-module is injective [30]) iff any finitely cogenerated R-module
is SSA iff any finitely copresented R-module is SSA.

(3) R is right hereditary (that is any factor module of an injective module is injective [30, 39.16]) iff any injective
R-module is SSA iff any factor module of an injective R-module is SSA iff the sum of two injective submodule
of any R-module is SSA.

(4) R is a von Neumann regular ring iff any principal right ideal of M2(R) is SSA iff any principal right ideal of
M2(R) generated by a diagonal matrix is SSA iff any finitely generated submodule of a projective right R-module
is SSA iff any 2-generated submodule of a projective right R-module is SSA.
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As a consequence of Remark 2.17(3), we can state the following two corollaries.

Corollary 2.18. Let M be an arbitrary module over a right hereditary ring R. Then E(M) is an SSA R-module.

Corollary 2.19. Let M be an arbitrary Z-module (i.e., Abelian group). Then, E(M) is an SSA module.

There exists a module over a right hereditary ring which is not SSA, please see Example 2.13(1).

R is called a right SI-ring if all singular right R-modules are injective; or equivalently, all singular right
R-modules are semisimple [14, Proposition 3.1].

Theorem 2.20. The next conditions are equivalent for a ring R:

(1) R is a right SI-ring;
(2) R is right nonsingular and all singular right R-modules are SA;
(3) R is right nonsingular and all singular right R-modules are SSA;
(4) R is right nonsingular and all singular right R-modules have SIP;
(5) R is right nonsingular and all singular right R-modules have SSP.

Proof. (1) ⇒ (2) First note that any right SI-ring is right nonsingular by [10, p.127]. If R is a right SI-ring,
then all singular right R-modules are injective, and hence ADS. Then by [14, Proposition 3.1], all singular
right R-modules is semisimple, and hence SA.
(2)⇒ (3)⇒ (5) and (2)⇒ (4) Clear.
(4) ⇒ (1) Let A be a singular right R-module. By [13, Proposition 1.22(b) and 1.23(c)], E(A) ⊕ E(E(A)/A)
is singular. Then, by the hypothesis, E(A) ⊕ E(E(A)/A) has SIP. Let ρ : E(A) → E(A)/A be the canonical
epimorphism, and i : E(A)/A → E(E(A)/A) be the inclusion map. Clearly, Ker(ioρ) = Ker(ρ) since i is
monomorphism. Then Ker(ioρ) = Ker(ρ) = A ≤⊕ E(A) by [16, Proposition 1]. Thus, A is injective. Conse-
quently, R is right SI.
(5) ⇒ (1) We consider an arbitrary singular R-module A. By above facts, A ⊕ E(A) is singular. By the
hypothesis, A ⊕ E(A) has SSP. Let i : A→ E(A) be an injection map. Then A � i(A) ≤⊕ E(A) by Lemma 1.2.
Thus, A is injective, and hence R is right SI.
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Mosić.
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[8] G. Călugăreanu, P. Schultz, Modules with abelian endomorphism rings, Bull. Aust. Math. Soc. 82(1) (2010), 99-112.
[9] N. Ding, Y. Ibrahim, M. Yousif, Y. Zhou, D4-modules, J. Algebra Appl. 16(09) (2017), 1750166.

[10] N. V. Dung, D. V. Huynh, P. F. Smith, R. Wisbauer, Extending Modules, (Pitman RN Mathematics 313), Longman, Harlow, 1994.
[11] L. Fuchs, Infinite Abelian Groups I, Pure and Applied Mathematics, Academic Press, New York-London 1970.
[12] J. L. Garcia, Properties of direct summands of modules, Comm. Algebra, 17(1) (1989) 73-92.
[13] K. R. Goodearl, Ring theory: Nonsingular rings and modules, (Vol. 33). CRC Press, 1976.
[14] K. R. Goodearl, Singular torsion and the splitting properties, No. 1-124. American Mathematical Soc. 1972.
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